View synthesis for depth from motion 3D x-ray imaging.

Liu, Y, 2009. View synthesis for depth from motion 3D x-ray imaging. PhD, Nottingham Trent University.

[img]
Preview
Text
194132_Liu Yong PhD Thesis 200901.pdf

Download (7MB) | Preview

Abstract

The depth from motion or kinetic depth X-ray imaging (KDEX) technique is designed to enhance the luggage screening at airport checkpoints. The technique requires multiple views of the luggage to be obtained from an arrangement of linear X-ray detector arrays. This research investigated a solution to the unique problems defined when considering the possibility of replacing some of the X-ray sensor views with synthetic images. If sufficiently high quality synthetic images can be generated then intermediary X-ray sensors can be removed to minimise the hardware requirements and improve the commercial viability of the KDEX technique. Existing image synthesis algorithms are developed for visible light images. Due to fundamental differences between visible light and X-ray images, those algorithms are not directly applicable to the X-ray scenario. The conditions imposed by the X-ray images have instigated the original research and novel algorithm development and experimentation that form the body of this work. A voting based dual criteria multiple X-ray images synthesis algorithm (V-DMX) is proposed to exploit the potential of two matching criteria and information contained in a sequence of images. The V-DMX algorithm is divided into four stages.

Item Type: Thesis
Creators: Liu, Y.
Date: 2009
Rights: This work is the intellectual property of the author, and may also be owned by the research sponsor(s) and/or Nottingham Trent University. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, of if a more substantial copy is required, should be directed in the first instance to the author.
Divisions: Schools > School of Science and Technology
Depositing User: EPrints Services
Date Added: 09 Oct 2015 09:34
Last Modified: 09 Oct 2015 09:34
URI: http://irep.ntu.ac.uk/id/eprint/159

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year