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Abstract 
 
The depth from motion or kinetic depth X-ray imaging (KDEX) technique is designed 
to enhance the luggage screening at airport checkpoints. The technique requires multiple 
views of the luggage to be obtained from an arrangement of linear X-ray detector arrays. 
This research investigated a solution to the unique problems defined when considering 
the possibility of replacing some of the X-ray sensor views with synthetic images. If 
sufficiently high quality synthetic images can be generated then intermediary X-ray 
sensors can be removed to minimise the hardware requirements and improve the 
commercial viability of the KDEX technique. Existing image synthesis algorithms are 
developed for visible light images. Due to fundamental differences between visible light 
and X-ray images, those algorithms are not directly applicable to the X-ray scenario. 
The conditions imposed by the X-ray images have instigated the original research and 
novel algorithm development and experimentation that form the body of this work.  

A voting based dual criteria multiple X-ray images synthesis algorithm (V-DMX) is 
proposed to exploit the potential of two matching criteria and information contained in a 
sequence of images. The V-DMX algorithm is divided into four stages. The first stage is 
to aggregate matching cost among input images. Subsequently, a novel voting approach 
is developed for electing the “best” disparity prior to generation of synthetic pixels. A 
void filling routine is applied to complete the synthetic image generation. 

A series of experiments, using real acquired images, investigated the fidelity of the 
synthesised images resulting from application of the V-DMX algorithm as a function of 
several parameters: number of input images, matching criterion, method of handling 
multiple images and X-ray beam separation. The performance measure is based on 
counting the number of pixel errors in the synthetic images relative to the ground truth 
images. 

The V-DMX employs the widely adopted sum of squared differences (SSD) criterion 
and a novel criterion, which is derived from the laminography technique, termed 
laminography intensity (LamI). SSD is shown experimentally to have poor performance 
when the image contains repeating features, discontinuities and overlapping regions. 
While the overall performance of the LamI is found to be weaker than SSD, LamI 
consistently outperformed SSD in discontinuity and overlapping regions. This has 
spurred the use of LamI as a complement to SSD. Integration of the two criteria has 
demonstrably produced better results than using solely either of the criteria. 

Limitations of the algorithm are assessed by increasing the angular separation between 
X-ray beams used to produce the perspective X-ray images. The resultant image fidelity 
degraded as the angular separation increases. This result was expected because the 
increase in angular separation meant a concomitant increase in images’ dissimilarity and 
disparity window. Empirical evidence demonstrated that synthetic images may be 
satisfactorily produced by processing images produced by X-ray beams separated by 
angular increments up to 6º. This result is based on comparing the algorithm 
performance for four beam separations, which are 4°, 6°, 8° and 10°. This finding 
reveals that, for example, a 32-view X-ray scanner with 1° beam separation may be 
scaled down to a 7-view system with at least the same angular coverage.  

The encouraging result has formed a basis for further research to extend the current 
algorithmic approach to the use of dual-energy X-ray data. The practical performance of 
the algorithm will be evaluated by conducting human factors investigation in 
collaboration with the US Department of Homeland Security. 
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Chapter One Introduction 

1.1 Background 

The research programme seeks to improve the luggage screening at airport checkpoints. 

The unique arrangement of items in a “typical” suitcase or carry-on bag makes the 

interpretation of these images by X-ray machine security personnel extremely difficult. 

Under high volume and stressful working conditions, their screening task is exacerbated 

by the lack of visual cues to depth in an image that has been produced by transmitted 

radiation. The global government bodies have identified that the current way forward is 

the development of systems which produce a so-called “best image first” [10]. 

Academics at Nottingham Trent University have responded to this ethos by 

collaborating with the UK Home Office. Preliminary human factors work conducted by 

the Federal Aviation Administration (FAA) and the Defence Evaluation and Research 

Agency (now QinetiQ) in the UK has confirmed that the 3D images have important 

implications for improving the speed and the efficiency of security checks [15]. 

Past work by the University team in collaboration with the Home Office Scientific 

Development Branch (HOSDB) UK, over a twenty-year period, has produced a novel 

binocular stereoscopic X-ray technique, Evans [13,14], to aid the detection and 

identification of objects in X-ray scans of luggage. Imaging technology based on this 

early work is now commercially available [10]. More recently the University team in 

collaboration with the US Department of Homeland Security (DHS) and the Home 

Office Scientific Development Branch UK has developed X-ray imaging techniques that 

combine binocular stereoscopic imagery with motion or kinetic depth effects. The 

technique produces “moving” binocular stereoscopic image sequences from a static 

configuration of multiple line-scan X-ray sensors and a single X-ray source [1,2,3,4,5]. 

Movement or rotation of an object relative to the observer can produce a vivid depth in 

a two dimensional display. The ability effectively to “look around” an object under 

inspection using multiple views is particularly advantageous in comparison with 

standard stereoscopic techniques [7,8,9,10]. Linear “motion parallax” refers to the 

differential angular velocities of retinal images of points moving laterally with the same 

speed, but at different distances (from the eye in the case of the real world, and from the 

sensors in the case of the X-ray scanner). Therefore, this effect can be used to produce 

motion perspective. Motion perspective enables a viewer to extract depth information 
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from continuous movement occurring in a visual display. Interestingly, the depth effect 

obtained from motion can exceed that produced by the binocular stereoscopic effect. 

Motion provides a powerful visual cue to depth which greatly enhances the 

interpretation of spatially complex structures: termed kinetic depth effect [6] in 

shadowgraph images and identified as kinetic depth X-ray (KDEX) imaging in this 

work. However, to produce a smooth image rotation over sufficiently wide angles 

suitable for security screening applications does require a relatively large number of 

views (up to 32) [5]. The implementation of such a large number of folded array [7] 

detectors presents a number of serious practical problems for the construction of the 

X-ray collimators and configuration of the dual-energy sensor modules. This problem is 

exacerbated by the small angular increments, of the order of 1º, required between each 

successive view and the physical bulk of the sensor arrays. These physical constraints 

currently preclude the development of a “single pass” KDEX imaging system. 

Therefore, this research programme seeks to establish whether image synthesis [11,12] 

can be used to compute intermediary views of sufficiently high visual quality to enable 

the angular separation of the sensors to be increased. If this can be achieved then the 

world’s first dual-energy X-ray scanner producing kinetic binocular stereoscopic 

dual-energy X-ray images can be realised. 

The research programme is aimed at synthesising and introducing high quality 

intermediary images between successive pairs of practical (or detector derived) images 

in a sequence of transmission X-ray images. The fundamental requirement of such an 

image synthesis technique is to develop matching algorithms to solve the 

correspondence problem. However, the correspondence problem is ill-posed inherently, 

and is practically unsolvable. This problem is exacerbated by the transparency property 

of X-ray images, which makes them fundamentally different from visible light images. 

Therefore, photometric compatibility, continuity and uniqueness constraints that are 

commonly applied to visible light images are unsuitable for X-ray images.  

Among the existing algorithms that use multiple images (i.e. more than two images) to 

produce a disparity map, there is no clear indication about the optimal number of 

images needed. The number of images that require processing is a critical practical 

consideration for the implementation of the KDEX technology, as it will strongly 

influence the hardware complexity, system cost and operational speed. This research 
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programme is designed to carefully evaluate the algorithm performance as a function of 

the number of images required and the angular separation between these images. These 

aspects are considered further in terms of the total angular coverage achievable as an 

indicator of the potential cost effectiveness of KDEX technology.  

To the author’s knowledge, there is no literature concerning image synthesis in a 

sequence of transmission (dual-energy or polychromatic) X-ray images. Previous work 

by the university team concerning the automatic extraction of 3D information from 

stereoscopic X-ray images, Sobania [15], utilised neighbourhood correlation analysis 

with a Mexican hat filter. However, the depth information extracted was used to render 

3D representations of the objects under inspection. A major consideration in this respect 

is to apply the techniques developed in this research to dual-energy X-ray imaging. It is 

anticipated that image synthesis incorporating the dual-energy data would significantly 

increase the computational loading for a real time application, possibly requiring 

custom hardware. These wider considerations have prompted the authors to look at 

simple techniques detailed in this thesis as a first step in algorithm development.  

To achieve the research aim and objectives set out in this thesis requires that an image 

synthesis algorithm, which specifically addresses the properties of transmission X-ray 

images and the associated correspondence problem, be investigated and developed. 

1.2 Aim and objectives  

The aim of the work is to investigate image synthesis techniques to reduce the hardware 

required to implement a novel kinetic X-ray imaging technique. To achieve this, the 

following objectives were set. 

• To develop an image synthesis algorithm that utilises multiple perspective images. 

• To devise a method to determine the optimal number of images required for 

producing high quality synthetic images. 

• To investigate a new correspondences matching criterion suitable for transmission 

X-ray images. 

• To formulate a performance measure for assessing the resultant synthetic images. 

• To evaluate the limitations of individual criterion and combined criteria. 
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• To evaluate the algorithm performance as a function of the X-ray beam angles used 

to produce the input images and the total angular coverage achievable. 

 

1.3 Research contributions 

A list of the major contributions contained in this thesis is outlined as follows. 

A novel matching criterion termed laminogram intensity criterion. This is derived from 

a novel interpretation of X-ray laminographic data developed in this work. 

A weighted based matching cost aggregation method termed “sum of reciprocals” was 

devised to preferentially accentuate low matching cost values. 

A ranking based voting system is developed to resolve the conflict between multiple 

disparities and thus decide the optimum disparity for pixels under consideration.  

An integration method to combine two different but balancing criteria, by virtue of 

repeating matching process, which underpins the development of the V-DMX. 

 

1.4 Structure of the report 

This report consists of eight chapters: 

• Chapter One Introduction: presents the background, scope and objectives of the 

thesis. 

• Chapter Two Enabling technologies and theoretical considerations: presents an 

introduction to various X-ray techniques, overview of the existing image synthesis 

approaches, and followed by a discussion on considerations that have been taken to 

address the correspondence problem and X-ray transparency.   

• Chapter Three Image synthesis algorithm: presents a detailed description of the 

developed algorithm and its supporting methodology. 

• Chapter Four Experiment considerations and overview: presents the experiment 

methodology, experiment plan and image input considerations. 
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• Chapter Five Experiments and analysis: Laminogram intensity (LamI) criterion: 

reports the experiment results and analysis of the laminogram intensity criterion for 

different experiment conditions. 

• Chapter Six Experiments and analysis; Sum of squared differences (SSD) criterion: 

reports the experiment results and analysis of the Sum of squared differences (SSD) 

criterion for different experiment conditions. 

• Chapter Seven Development of the V-DMX algorithm: reports the experiment 

results and analysis to support the development of a V-DMX algorithm. 

• Chapter Eight Summary, Conclusions and future Work: summarises the work 

completed, presents the conclusions and proposes the direction of future work.  
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Chapter Two Enabling technologies and theoretical 

considerations 

2.1 Introduction 

This chapter presents an overview of the enabling technologies and the theoretical 

considerations necessary for the design and investigation of the synthetic algorithm 

presented in Chapter 3. 

The multiple view (stereoscopic) X-ray imaging techniques previously developed by the 

university team, and utilised in this work, are discussed briefly. Two different 

experimental X-ray scanners are presented as the practical source of the perspective 

image sequences used for the algorithm development and investigation. The basic 

principles of X-ray laminography are presented as laminograms are implemented to 

enhance the identification of corresponding or conjugate image points.  

A review of computational methods for the identification of corresponding points and 

features in a sequence of perspective images is presented. Establishing the coordinate 

position of each synthetic pixel involves searching for corresponding pixels throughout 

the image sequence. The correspondence problem encountered in X-ray image 

sequences is ill posed and similar to its visible light counterpart, although the inherent 

transparency property of X-ray images exacerbates matching problems. Searching for 

the correspondences is only part of the synthesis technique investigated in this work. To 

ensure a realistic blend of practical and synthetic images requires that the intensity of 

each synthetic pixel be carefully computed.  

In theory, image synthesis requires solving the correspondence problem as a precursor 

to establishing the relative location (in the x, y and z-axes) and the orientation (pitch, 

yaw and roll) of each object in the scene to accurately predict the content of the 

synthetic image. Additional factors to be considered include the amount of attenuation 

experienced by the X-ray beam and the properties of the X-ray detectors. The 

polychromatic nature of the X-ray source, installed in typical airport luggage security 

scanners, is also an important aspect of the imaging chain under consideration in this 

work.  
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Knowledge from enabling technologies has inspired some theoretical considerations 

prior to the development of synthetic algorithm. Considerations cover several issues 

related to transparency of X-ray images and some issues related to utilising multiple 

images for image synthesis.  

2.2 Stereoscopic X-ray imaging 

In 1895 Roentgen, the discoverer of X-rays, observed shadowgraph images by placing 

objects between an X-ray source and a fluorescent screen [16]. From this discovery to 

the present day, X-ray imaging has undergone constant development, particularly in the 

fields of medicine [17,18,19], non-destructive inspection [20] and security screening 

[21,22,23,24,25,26,27,28,29]. Modern systems incorporate many different techniques to 

produce X-ray images. 

In aviation security screening, X-rays are routinely used to examine baggage contents to 

help detect dangerous or illegal items. Stereo techniques have been available to 

radiologists for decades, J. MacKenzie Davidson introduced stereoscopy to radiology in 

1898 [30].  

The Manual of photogrammetry [31] defines stereoscopy as: 

“……… the science and art that deals with the use of images to produce a   three-

dimensional visual model with characteristics analogous to those of actual features 

viewed using true binocular vision.” 

Binocular stereoscopic X-ray imaging offers an effective screening method, used in 

airport security. The application of stereoscopy in X-ray imaging originates from the 

operating principles of the human visual system [32,33]. Binocular parallax is one of the 

most robust depth cues utilised by a human observer [34,35]. The utilisation of 

binocular stereoscopic imagery provides security personnel with a mechanism to 

understand the relative spatial position of cluttered items in X-ray scans of luggage. 

Previous work by the university team has developed techniques, now commercially 

realised, which also produce colour coded imagery to enable the observer to 

discriminate between different types materials. Thus binocular stereoscopic X-ray 

screening techniques [36,37] can greatly enhance the human observer’s understanding 

of the true nature of the 3D scene under observation. 
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Figure 2.1 The schematic of the binocular stereoscopic folded dual-energy X-ray 
screening system invented and developed by the university team. 

The stereoscopic imaging technique developed by the university team, utilises a single 

X-ray source, a pair of folded linear dual-energy X-ray arrays and a pair of CCD 

cameras as illustrated in Figure 2.1. The two slit-collimated X-ray beams are arranged 

to irradiate a left and a right folded configuration of linear detector arrays. This 

technique has formed the basis of several commercially available products, 

manufactured by 3D X-ray Ltd.  

The inspection volume formed by the two overlapping fields of view of a stereoscopic 

system may be considered in terms of the spatial sampling pattern formed by individual 

sensing elements that comprise the image sensors. The intersecting field of view of a 

left image sensing element and a right image sensing element form a volume element or 

a voxel. The whole of the stereoscopic region is comprised of a 3D tessellation of 

voxels. Figure 2.2 illustrates a voxel as a function of the angle σ between the 

intersecting lines of sight of two X-ray sensing elements. The size of the voxel in the 

depth (or z-axis) is δZ and δX is the motion axis resolution. It is readily appreciated 

from the simple geometry that when the angle σ increases, the minimum detectable 

increment in object space δZ decreases. However, in binocular stereoscopic systems the 

maximum allowable σ is limited by the maximum permissible parallax in the resultant 

display, which in turn is determined by the maximum disparity that can be fused by an 

observer comfortably [38,39]. 
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Figure 2.2 Dependency of voxel dimensions on δ and δX. 

In stereo matching, the smaller δZ produced the larger the potential disparity window. 

This effect will increase the depth resolution potentially available but decrease the 

likelihood of identifying corresponding points, which enable the increase in depth 

resolution to be realised.  

2.3 Multiple view X-ray imaging 

More recent research by the university team [2,3] has developed novel techniques, 

which combine binocular stereoscopic imagery with motion or kinetic depth effects 

(KDE). Movement or rotation of an object relative to the observer can produce a vivid 

appearance of depth in a two dimensional display. This effect is achieved by collecting 

a number of different views (typically from 6 to 32 in this work) of the object under 

inspection. The resultant perspective images are presented in a specific sequence on a 

standard video display monitor. The linear “motion parallax”, apparent in the displayed 

image sequence, is due to the differential angular velocities of points moving laterally 

with the same speed, but at different distances from the sensors in the X-ray scanner. 
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viewed from different viewpoints, thus revealing attributes of the object that may not be 

evident in a simple two-dimensional display. 

Two different experimental X-ray machines have been used to produce the image 

sequences utilised by the research group. This research only uses image sequences 

produced by X-ray machine described in Section 2.3.2. Each system has a high degree 

of utility for experiments but is very different in terms of their physical construction and 

imaging capabilities. 

2.3.1 Flatbed multiple view X-ray scanner  

Initial research [5] concentrated on simulating complex multiple line-scan X-ray source 

configurations with an X-ray image intensifier system (see Figure 2.3). In order to store 

electronically the shadowgraph information projected onto the input window of the 

image intensifier, the output window is optically coupled to an area array camera. Thus 

as the object under inspection is translated through the X-ray beam, image information 

is produced by collecting and storing data from the selected photosite columns on the 

charge coupled device (CCD) array. The selected column on the area array maps to a 

line on the 9cm diameter input window of the image intensifier. In this way a novel 

line-scan system can be produced. In order to produce motion parallax in a sequential 

display of images requires that each successive pair of perspective images exhibit 

parallax as a function of range from the perspective centre (i.e. X-ray point source) of 

the imaging system. 

 
Figure 2.3 Line-scan principle utilising a) image intensifier X-ray system b) linear X-
ray detector array system. 
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2.3.2 Folded array multiple view X-ray scanner  

The machine illustrated in Figure 2.3 employs a 140kVP polychromatic X-ray source 

and a folded array of linear X-ray sensors depicted in Figure 2.4 [40]. It has an 

inspection tunnel, which is 40cm high by 60cm wide, and is designed to scan full size 

luggage. 

  

X
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Figure 2.4 Depiction of the experimental system with a single folded array in multiple 
positions. 

The X-ray source/sensor assembly may be rotated about the conveyor belt to enable the 

collection of the multiple views at different angular position Hon and Evans [41,42, 

43,44,45]. In this way the image output of a single pass multiple view scanner can be 

simulated. Figure 2.5 illustrates the modular configuration of the folded linear X-ray 

detector 

array.

 

Point X-ray 

Conveyer belt 

Slit-collimated  
X-ray beam 

Folded linear 
array modules 

Inspection 
Tunnel 

Horizontal arm 

Vertical 
arm 

 



 12 

Figure 2.5 Modular configuration of the folded linear (dual-energy) X-ray detector 
array. 

This experimental machine was designed by the university team for the investigation of 

depth from motion (or kinetic) binocular stereo imaging and constructed at the Ionising 

Laboratories at Sandridge of Home Office Scientific Development Branch UK, and is 

housed in the university’s Imaging and Display Research Laboratories. 

2.4 X-ray laminography  

Plantes [46] introduced a slice imaging technique termed laminography [47] that was 

employed in medical diagnostics until the 1970s. Laminography utilises motion (or 

different relative positions) of the X-ray focal spot and X-ray detector to produce an 

image of a single layer or depth plane through the object under inspection. Spatial 

structures above and below the “in focus” depth plane produce blurring artefacts in the 

resultant laminogram (i.e. image of the layer of interest in the object under inspection). 

Laminography techniques may be categorised in accordance with the type of relative 

motion employed between X-ray source and X-ray detection plane, circular motion and 

linear motion being the most common (see Figure 2.6). 

The Laminography principle is often based on the relative motion of the X-ray source 

and the detector, about a plane of interest in a stationary object.   

  
 
Figure 2.6 “Classical” laminography  

 
The basic principles of X-ray laminography is described in [48]. The basic geometric 

principle of laminography is to maintain a one-to-one correspondence, throughout the 
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motion cycle, between the spatial structures in the focal slice and their absolute position 

on the detector plane. X-ray intensity summation occurs by conserving the ray paths 

from the X-ray source through specific locations in the focal slice to fixed positions on 

the detector. Circular motion, in comparison to say linear motion, reduces the likelihood 

of image artefacts resulting from preferred spatial structure orientation. Early 

laminography machines utilised radiographic film to produce an image of each focal 

slice. This cumbersome approach required a new scan together with a new radiographic 

film for each slice image.  

Digital laminography [49] employs electronic X-ray detection elements to sample and 

store successive images in a digital format. The advantage of storing a sequence of 

images, acquired at different relative positions during the motion cycle, is that the data 

for successive slices is obtained in a single scan. Furthermore, the availability of digital 

imagery enables the reconstruction of the projection data using well-known CT 

reconstruction algorithms such as the Algebraic Reconstruction Technique (ART) [50]. 

This approach produces improved contrast resolution and helps to reduce the smearing 

artefacts prevalent in simple tomosynthesis [51].  

Computed laminography (CL) [52] has been investigated and developed by the 

Fraunhofer Institute of Non-destructive Testing IZEP, to utilise linear translation of the 

object through a fan beam of X-rays as illustrated in Figure 2.7.  

 
 
Figure 2.7 Limited angle CL. 
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The use of linear translation enables the X-ray source and detector to remain stationary. 

The image collection geometry is similar to the “flatbed” version of the KDEX 

technique developed by the university team. However, the Fraunhofer Institute’s 

technique and the NTU’s technique are based on very different design considerations 

and are quite different in practice.   

2.5 Image synthesis   

Image synthesis is the process of creating new images from some form of image 

description. The approach to synthesising images may be broadly categorized as model 

based or image based.  Model based techniques are designed to compute and manipulate 

a 3D mathematical representation of the scene. Such techniques computationally 

reconstruct other viewpoints, as required, and are highly computationally intensive. 

Image based techniques employ matching processes to identify correspondences 

between two or more input images that refer to the same scene point. Given two original 

images, a pixel in one image is the corresponding pixel in the other image if both pixels 

are projections along the lines of sight of the same physical scene element.  Once these 

correspondences are known, the world coordinates of each image point can be 

reconstructed by triangulation.    

If the two images are of the same scene at a different time, then computing the 

correspondence can help determine any motion in the scene. If the two images are taken 

simultaneously from different stationary points, then computing the correspondence 

may be used to determine the range or depth in the scene. In this research, new images 

are synthesized from a sequence of original perspective images obtained from an X-ray 

scanner. 

2.5.1 Stereo matching  

Stereo matching is the problem of identifying correspondences between two input 

images obtained with different angular views. It is a fundamental computer vision 

problem with a wide range of applications [53,54,55,56,57], and it has been extensively 

studied in the computer vision field for decades. Scharstein D and Szeliski R [58] 

present an extensive survey on recent stereo algorithms. Despite the advances in 

computing and electronics technology, the correspondence problem remains relevant 

and challenging. There are two basic techniques widely used, correlation-based, and 



 15 

feature-based methods. Correlation-based methods attempt to establish a 

correspondence by matching image intensities while feature-based methods attempt to 

establish correspondence by matching a sparse set of image features. Each approach is 

discussed in the following text. 

2.5.1.1 Correlation-based methods 

Correlation-based methods usually rely on statistical correlations between local 

intensity regions to enable similarity measurements. Typically they implement various 

types of statistical correlation between colour or intensity patterns in the local support 

windows. By using local support windows, image ambiguity is reduced efficiently while 

the discriminative power of the similarity measure is increased. Correlation-based 

methods have been applied successfully to stereo images with good features and smooth 

surface variations [59, 60]. The method has the advantage of directly producing dense 

disparity maps but it tends to fail where there is lack of texture or where depth 

discontinuities occur.  It is assumed that all pixels in a support window are from similar 

depth in a scene and, therefore, that they have similar disparities. 

Correlation-based methods are easier to implement than feature-based methods and 

provide a dense disparity map, but they tend not to work well when the viewpoints are 

very different. A key issue in correlation-based methods is the appropriate selection of a 

window size for calculation. The kernel of the correlation-based methods for stereo 

matching lies in the underlying similarity criterion that determines optimal statistical 

correlation between windows around corresponding points. Correlation methods assume 

that all pixels in a correlation window have the same depth. This assumption is violated 

at depth discontinuities. When the comparison windows straddle a depth discontinuity, 

they represent projections of different surface regions. This effect can result in object 

borders being blurred and small details or objects being removed.  

The key problem associated with this window-based approach is that the size of the 

correlation windows must be carefully chosen. Too small a window may not capture 

enough image information, and increases the noise problem and can lead to a decrease 

in correct matches. Too large a window tends to produce matching less susceptible to 

noise but increases the actual variations in image intensity. A larger window is not a 

cure-all, since it can result in a greater number of false positives in occlusion zones and 

increases smoothing of disparity across discontinuities.  Adaptive searching windows 
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have been proposed to solve this problem. Adaptive-window methods [61,62,63, 

64,65,66] seek to find an optimal support window for each pixel by adaptively changing 

the size and shape of a window. Kostkova and Sara [67] introduced a new method to 

find suitable matching windows based on disparity space found pre-matching. Geiger et 

al [68] and Fusiello et al [69] adopted a multiple window method where a limited 

number of distinct windows are implemented for each pixel and disparity, to identify 

the best correlation. Some multiple-window methods [70] select an optimal support 

window among the pre-defined windows, which are located at different positions with 

the same shape. This is also the idea behind spatially shiftable windows [71,72].   

Rectangular-shaped and constrained-shaped windows, however, may be inappropriate 

for pixels near arbitrarily shaped depth discontinuities. To resolve this problem, 

segmentation-based methods [73] use segmented regions with arbitrary size and shapes 

as support windows. Methods [74] have been proposed that assign support-weights to 

the pixels in a support window while fixing its shape and size. 

Most of the correlation-based methods use intensity to measure similarity. This 

approach has limitations when the image suffers from aperture problems, so 

non-parametric local transforms were developed as the base for correlation. 

Non-parametric local transforms rely on the relative ordering of local intensity values, 

and not the intensity values themselves. There are basically two non-parametric local 

transforms: the rank transform, which measures local intensity, and the census 

transform, which summarises local image structure. Bhat and Nayar [75,76] worked on 

ordinal measures, which also belong to this category. Ordinal measures are based on 

relative ordering of intensity values in windows, and have demonstrable robustness. 

Non-parametric transforms suffer from the limitation that the amount of information 

they associate with a pixel is not very large. Non-parametric transform based methods 

rely only on the rank, during the transform; a lot of information is lost as a result of this 

approach and the intensity variance is less in the transformed image. 

2.5.1.2 Feature-based methods 

Feature-based methods produce sparse disparity maps that work by matching 

characteristic special features of two images, such as corners or edges to produce a 

sparse disparity map [77]. This method matches more abstract features, rather than 

matching textured regions in the two images. Feature-based methods provide more 
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precise positioning for the matching results and are more reliable than correlation-based 

matching when good image features (e.g. corners, edges) can be extracted from the 

scene. They are also faster than correlation-based methods, and relative insensitive to 

illumination changes, but only provide sparse disparity maps. Because of the sparse and 

irregularly distributed nature of the features, the matching results must be augmented by 

an interpolation step if a dense map of the scene is desired. If a feature-based method is 

used, an extra stage is required for feature detection in the two images, which increases 

the computational cost. As feature-based methods can only produce a sparse disparity 

map, they are usually implemented together with other techniques to generate a dense 

disparity map.  

Feature-based methods are widely used in wide-base stereo image matching. In methods 

[78,79,80], local features are extracted independently from the two images, which are 

then characterised by invariant descriptors and finally matched.  

2.5.1.3 Other methods 

Other types of stereo matching methods have also been developed such as pixel-based 

[81] and diffusion-based [82].   

Segmentation techniques have been investigated to separate the image into several 

regions [83], since the regions contain much more information than individual pixels; 

the possibility of making a wrong decision concerning a particular region is greatly 

reduced. This approach is termed segment-based. Segmentation information is used in 

several recent stereo approaches [84,85,86,87] where the assumption that discontinuity 

only occurs at the boundaries of the segmented regions. These methods use features of 

the segmented areas in the matching process. 

A stereo algorithm is termed a local method if it consists of matching cost computation, 

aggregation of cost, and disparity computation while a global method [88,89] consists 

of matching cost computation and disparity optimisation. The global matching is 

formulated as the minimisation of an energy term that takes into account the matching 

constraints induced by the local stereo algorithm. Fast, approximate minimisation of this 

energy is achieved through graph cuts [90,91,92], which is based on the max flow 

algorithm in graph theory.  Dynamic programming [93,94] is another global method.  
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2.5.2 Multiple view stereo matching  

Reconstruction of a 3D scene from sequence of multiple views is a fundamental 

challenge that has been extensively investigated in computer vision, and numerous 

applications [95,96,97,98] have been developed. 

The multiple view stereo evaluation website [99] provides a significant amount of 

information concerning this topic. This website provides some standard sequences of 

images, to the input data for comparative studies. Dyer [100] gives a useful review of 

multiple stereo algorithms up to 2001. SM. Seitz et al [101] provided a recent and 

comprehensive review of multiple stereo methods where existing methods are 

categorized according to six fundamental properties: scene representation, photo 

consistency measure, visibility model, shape prior, reconstruction algorithm and 

initialization requirements.  

The following section is a review of the various existing multiple view stereo matching 

methods according to three important aspects related to the algorithm developed in this 

work. 

2.5.2.1 Correlation-based, feature-based and other methods 

As previously mentioned, stereo matching methods can be divided into 

correlation-based and feature-based methods. The majority of the multiple view stereo 

matching methods share some knowledge with stereo matching and can be incorporated 

into this category.     

Some methods compare two images at a time, and use window matching metrics such 

as Sum of squared differences or normalized cross correlation, B. Jia et al [102] 

introduced a method that computes the sum of squared-differences (SSD) values for 

each stereo pair in orthogonal-directions, then it simply adds the individual SSD to 

produce the sum of SSDs. The resulting function is called the OSSSD by the author.  

When dealing with discontinuity and wide-base images, feature-based method is known 

to be better. Ferrari et al. [103] proposed an algorithm for identifying multi-view feature 

correspondences across an unordered set of widely separated views.  
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As in stereo matching, there are other ways to categorise matching methods, global 

methods such as graph cuts are also used frequently in multiple stereo matching 

[104,105].  

 

Several methods can also be combined into a single application; Watanabe, M. Ohta, Y    

[106] developed a matching method that utilises correlation, feature-based matching 

using edges and the segment-based matching using connected edges. The method 

executes each matching process in parallel, with making use of information from other 

processes whenever necessary. Then, depending upon different image features, the best-

suited algorithm is selected and applied automatically to those features. Each module 

evaluates the extent of confidence of its own processing, and the reliability score is 

attached when the result of processing is exchanged. 

2.5.2.2 Scene representation    

There are numerous ways to represent the geometry an object. Most multiple view 

algorithms use voxels, level-sets, polygon meshes, or depth maps. Some algorithms 

adopt a single representation; others employ different representations for various stages.  

Methods using multiple depth maps [107,108] are better suited to limited scene datasets, 

as the computation of a depth map has a minimum requirement of two images.  

This research programme aims to produce a set of depth maps, and then generate virtual 

intermediary images. The angular coverage of the experimental X-ray scanner is not 

large enough for a reliable construction of 3D model of the luggage under inspection. 

Some methods [108,109,110] compute a set of depth maps and then merge them 

together to obtain a final 3D representation of objects, As a set of depth maps are 

calculated, to ensure a single consistent 3D scene interpretation, these methods enforce 

constraints between depth maps [111] or merge the set of depth maps into a 3D scene as 

a post process. P. Merrell et al [110] advocates a two-stage process in which the first 

stage generates potentially noisy, overlapping depth maps from a set of calibrated 

images and the second stage fuses these depth maps to obtain an integrated surface with 

higher accuracy, suppressed noise, and reduced redundancy. Most algorithms, except 

[112,113], decide the potential depth of candidate points using two images, then refer to 
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other depth maps using geometrical consistency and other constraints and to obtain an 

optimum depth for the candidate points.  

Correspondence matching for stereo images is inherently noisy, ambiguous and prone to 

multiple matches, hence identifying the correct disparity information from multiple 

disparity maps requires sophisticated optimisation methods. T. Kanade et al proposed an 

algorithm [113] simply accumulates the measures of the matching criterion SSD from 

all the stereo pairs into a single value, and then computes the corresponding point from 

these measures. The method accumulates matching measure values from all images for 

a final decision, rather than filtering and optimisation the set of depth maps.   

M. Goesele et al [107] presents another way of using these depth maps. Each depth map 

is used to reconstruct a part of the structure that has high confidence correspondence 

points. Each map has different low confidence correspondence which relates to 

occlusions, low textured regions, discontinuity regions, e.g, most of these effects occur 

in different image regions in different views, so each map can fill in a part of the final 

structure, and improve the accuracy in regions that are reconstructed multiple times.   

2.5.2.3 Image selection  

As multiple images are available, when determining the disparity for one candidate 

point or one candidate feature, some algorithms try to only use those images that 

contain useful information during the matching process, for example, only those images 

in which the candidate point or the candidate feature is visible.  Most of the multiple 

view stereo methods simply choose the ‘nearest’ images for each reference view, for 

example, C. Hernandez and F. Schmitt [114] proposed an algorithm that limits the 

matching process to clusters of nearby cameras.  

M. Goesele et al [115] tried to intelligently match images on a pixel level and illustrates 

that such adaptive view selection enables robust performance even with dramatic 

appearance variability. The underlying rationale is that, given of a set of sequence 

images, there should be some subsets of images, which are captured under compatible 

lighting, weather, and exposure conditions, as well as sufficiently similar resolutions, so 

that the features in those images should have similar appearance. By automatically 

identifying such subsets, the problem can be simplified.  
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A specific point or feature may only be visible in some subsets of images. A visibility 

model can be used to specify which images to consider during the matching process. 

Because scene visibility can change dramatically with viewpoint, almost all modern 

multi-view stereo algorithms account for occlusions in some way or another. 

G. Vogiatzis et al [116] use the current estimate of the geometry to predict visibility for 

every point on a surface. It aims to decide which scene structures are visible in which 

images. Others use the current estimate of the shape to compute the exact visibility of 

all points [117]. 

2.6 Common matching constraints  

Constraints that are commonly used by stereo matching methods are listed as follows:  

1 Epipolar constraint: 

The corresponding point can only occur along the epipolar line in an image taken from a 

different station point of the same scene. This constraint reduces the potential 2D search 

space into 1D search. The epipolar constraint can be reliably applied only after the 

geometry of the system is known and a series of corresponding epipolar lines in both 

stereo images is estimated. Calibration is used to make two images satisfy this criterion. 

The epipolar constraint is one of the most fundamentally useful pieces of information, 

which can be exploited 

2 Uniqueness constraint: 

The uniqueness constraint [118] enforces a one-to-one mapping between pixels in two 

images. This states that in most cases, a pixel from the first image can correspond to 

only one pixel in the second image. An exception arises when two or more points lie on 

one ray originating from the first camera and can be seen as separate points from the 

second, which is called self-occlusion. This constraint holds for opaque surfaces, but 

fails if partially transparent surfaces are present in the scene. 

 
3 Photometric compatibility constraint: 
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The compatibility constraint states that intensities of a point in the first and second 

images only change a little. The intensities may not be exactly the same due to many 

different effects such as the light source and surface normal, but the difference is 

expected to be relatively small. In correlation-based stereo matching algorithms, it 

implies that corresponding image widows have high cross-correlation intensity.  

4 Geometric similarity constraint: 

Geometric similarity assumes that the shape characteristic of the features found in the 

first and second images do not change too much.  

5 Disparity smoothness constraint: 

Smoothness constraint is developed from the assumption that a visible surface, and 

therefore the disparity of corresponding points, varies smoothly almost everywhere over 

the scene.  In the presence of multiple visible surfaces with discontinuities, this 

constraint is invalid. 

6 Ordering constraint: 

This constraint says that for a surface of similar depth, corresponding feature points 

typically lie in the same order along the epipolar line.   

2.7 Theoretical considerations 

2.7.1 Transparency  

The transmission of X-rays through an object to produce a shadowgraph which results 

in the transparency property commonly attributed to such imagery. As a result, an 

overlapping structure in an X-ray image may appear as an integral part of two or more 

spatially separate objects. This property makes X-ray images fundamentally different 

from visible light images and presents additional considerations and complexities for 

the development of image synthesis techniques.  

2.7.1.1 Multiple correspondences 

The intensity of each pixel in the resultant images is an aggregated intensity of all points 

along the ray path under consideration. Each pixel may have multiple correspondences 
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associated with a number of different overlapping structures encountered along the ray 

path. Figure 2.8 presents the scenario where objects under inspection are imaged by 

X-rays which are incident normal to the detector plane and alternatively at an angle to 

the detector plane. Two different interrogating rays image the section of the rectangular 

object in the diagram. The resultant pixels (PixAng1) and (PixVert1), produced by the 

inclined and the normal rays respectively, are a corresponding pair, although their 

intensities are different. However, PixVert1 is also the corresponding point for PixAng2. 

As a result, PixVert1 has two potential correspondences arising from the transparency 

property in the transmission image. In contrast, pixels in visible light images are not, in 

general, subject to such uncertainty for potential matches. Any error produced by the 

multiple correspondences has the potential to create “voids” in the resultant synthetic 

images, which requires further computational measures to be undertaken to produce 

acceptable synthetic imagery. 

 

Figure 2.8 Illustration of multiple correspondences: PixAngl and PixAng2 record the 
X-ray attenuation from the inclined ray, while PixVertl and PixVert2 record the X-ray 
attenuation from the normal rays. 

 
The three factors affecting the nature of multiple correspondences in X-ray images are 

described as follows. 

a)  Effective thickness 

The “effective thickness” of an object is defined, in the context of this research, as the 

length of the ray path subtended by the object(s) under inspection. Thus the effective 
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thickness can change from view-to-view and also within a single view, the latter being 

known as structural unsharpness. Each effect is a fundamental property of transmission 

X-ray imaging and is discussed in the following text.  

Variation in “effective thickness” exhibited by multiple views  

The intensity of the pixels, which comprise the resultant image, is proportional 

to the amount of attenuation experienced by the X-ray beam. The distance 

travelled through a given material or object largely determines the amount of 

attenuation. When an object is acquired at different perspective angles, the 

commensurate change in the ray path through the object (or effective thickness) 

produces a relative change in the image intensity. In practice, the thicker the 

object, the greater the intensity fluctuation observed for different perspective 

views. Thus even a relatively straightforward correspondence-matching task can 

be problematic. On a practical note, very thin objects often produce negligible 

variations in intensity if they nominally occupy a plane parallel with respect to 

the detector plane. The complex overlapping patterns of objects routinely 

encountered in images of luggage further exacerbate the problems associated 

with integrated thicknesses.  

Variation in the “effective thickness” exhibited within a single image (or structural 

unsharpness)  

Soft or blurred edges are a fundamental property of transmission images. This 

effect is a natural consequence of transmission imaging, termed structural 

unsharpness, and is the result of the variation in ray paths through an imaged 

object. Typically, structural unsharpness may be observed near the boundaries of 

imaged objects. The effect tends to limit the performance of the view synthesis 

algorithm. A practical example of structural unsharpness is illustrated in Figure 

2.9 (see included line profile). It is important to note that this effect should not 

be confused with other types of unsharpness arising from practical fluctuations 

or the limited resolution of the imaging system.  
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Figure 2.9 Illustration of structural  unsharpness.   

The shape of an object may dramatically change as a function of the viewing 

angle. This orientation factor (or shape transformation) is a known challenge in 

synthesising visible light images. Due to the transparency inherent in X-ray 

images, many overlapping structures may transform their shape simultaneously 

presenting highly complex and unpredictable scenarios. 

b)  Material composition 

The chemical composition of an object plays an important role in its X-ray attenuation 

properties and the resultant image intensity. Assuming that the rectangular object 

depicted in Figure 3.1 is made of a highly attenuating dense material (e.g, metal) and the 

round object is made of a less dense material (e.g. acrylic), the difference in intensity 

between PixAng1 and PixVert1 could be marginal, leading to a potentially robust match. 

On the other hand, a switch of the material characteristics of the two objects would 

confound a matching process due to occlusion. 

c) Angular separation of the perspective images  

The greater the angular separation employed in the imaging geometry used to collect a 

sequence of perspective images, the greater the magnitude of the sequential parallax 

evident in the resultant imagery. As the angular separation is increased, the individual 

images tend to become increasingly dissimilar in terms of shape, overlapping features 

and intensity due to the factors discussed in a) and b) in the preceding text. In simple, 

uncluttered scenes it may be advantageous to acquire highly disparate imagery in which 

objects, or their salient features, have been conveniently separated, in the x-axis, by 

virtue of their relative location in range (or z-axis). It is equally relevant to consider 
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highly cluttered scenes whereby increased parallax results in highly dissimilar imagery 

in which it is difficult or impossible to automatically identify corresponding points or 

features.  

Figure 2.10 and Figure 2.11 are organised to illustrate the effect of perspective angle on 

view synthesis. Figure 2.10 is a modification of Figure 2.8 by mainly adding a third set 

of lines of ray (named 2nd angular lines of ray) that has smaller angle separation from 

the vertical lines of ray, in relative to 1st angular lines of ray. In comparison, the 

intensity difference between PixVert1 and PixNew1 is smaller than the intensity 

difference between PixVert1 and PixAng1. The reduction in intensity difference is very 

favourable to matching correspondences and influencing the intensity of the synthetic 

pixels. 

 

Figure 2.10 Relationship between perspective angle and intensity: Smaller Separation 
Smaller Intensity Difference. PixAngl, PixNew1 and PixVert1 are the first pixels that 
records the X-ray attenuation from the first angular lines of ray, the second angular 
lines of ray and the vertical lines of ray respectively. 
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Figure 2.11 Relationship between perspective angle and intensity: Bigger Separation 
Smaller Intensity Difference. 

However, a relatively increased angular separation between views may also contribute 

to positive outcome. Figure 2.11 depicts two objects are scanned by three perspective 

rays: 2°, 0° and -2°. It can be appreciated from Figure 2.11 that Pixel-a and Pixel-c may 

have very similar intensities although the angular separation is big.  

The observation revealed that acquiring images of an object from multiple perspectives 

could offer valuable information to improve the performance of the search algorithm. 

The two scenarios illustrated by Figure 2.10 and Figure 2.11 might sound contradictory 

in terms of the superiority of employing different angular separations between adjacent 

views. The conflicting requirement is a central issue for stereo matching because there 

are only two images involved. In this research programme the potential benefits of a 

range of angular separations is explored using multiple perspective images. 

2.7.1.2 Limitations of common matching constraints 

Figure 2.12 illustrates a hypothetical example of an X-ray image and a visible light 

image consisting of a simple arrangement of three geometric objects. The search for 

corresponding points is limited within a maximum allowable disparity window, which 

in turn is determined by the design parameters of the experimental system. As can be 

deduced from Figure 2.12, the search for the point-p in the X-ray image, along its search 

direction, will encounter depth discontinuity, inconsistency and, variation in pixel 

values. Thus point-p may be associated with several correspondences thereby increasing 

the matching ambiguity. In contrast, the search in the visible light image does not 

encounter this effect (usually) as the square object occludes the other two objects. This 

situation can be further exacerbated in the X-ray case when the material composition of 

the different objects is taken into account. Common matching constraints have good 

  2o         0o       -2o 
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performance in visible light image matching. However, due to the relatively increased 

frequency of multiple correspondences in X-ray images and more discontinuity regions 

that  arising from transparency, common matching constraints which are commonly 

used for visible light images such as uniqueness, smoothness, ordering constraints 

become at worst inappropriate and often produce unstable results when applied to X-ray 

images. 

  
Figure 2.12 A hypothetical example of a square object, a circular object and a 
triangular object, where (a) represents the visible light image and (b) the X-ray image 
while (c) illustrates the object separation in the depth or range axis. 

2.7.2 Multiple images 

2.7.2.1 Image features under consideration  

It is implied that using multiple images might help to solve some problems associated 

with stereo matching. However, more information may also carry the risk of increased 

ambiguities. The problems that are commonly suffered by stereo matching algorithms 

that apply correlation-based method for visible light images include repeating features, 

overlapping, discontinuity and homogenous areas. X-ray images exhibit modified 

versions of these problems. Amongst these problems, homogeneous areas were 

considered to be similar as repeating features. The following sub-sections are organised 

to illustrate the advantages and disadvantages of employing multiple images for 

addressing the remaining three common problems. 
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Figure 2.13 consists of a selection of X-ray images that were imaged at the angles of 6°, 

2° and -2°. Object 1 and Object 2 are repeating features. By applying stereo matching 

criterion on any two of the three images, Object 1 would have an equal opportunity to 

match with either Object 1 or Object 2, and thus could produce an erroneous result. 

However, when all three perspective images are utilised in the matching process, it may 

decrease the likelihood of Object 1 matching with Object 2. For example, if Object 1 in 

the 2° image matches with Object 2 in the -2° image, then the corresponding point of 

Object 1 in the 6° image should appear at Position A, which is evidently a wrong 

coordinate. The example signifies that an appropriate use of the information extracted 

from multiple images may offer a significant advantage. On the other hand, as 

illustrated in Figure 2.14, adding more images to the matching process does not always 

convey useful data. Object 1 is overlapped by a dense object (black blob), which alters 

the intensity significantly. Under such circumstances, it is difficult to decide the 

coordinate of Object 1 in the 6° image.  

 
Figure 2.13 Effect of using multiple images for repeating features. Position A illustrates 
the possible location of Object 1 in 6° image as a result of stereo mismatching when 
only the 2° and -2° images are deployed. 

 
Figure 2.14 Effect of using multiple images on repeating features. A dense object tends 
to cause ambiguity in the search of correspondence. 

b)  Overlapping Structure 

Over the past decades, extensive research has been devoted to solving the problems 

produced by overlapping structures. Occlusion destroys the parallax information 
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associated with overlapping foreground or background objects. The nature of occlusion 

in X-ray images is different from visible light images in that multiple object features 

may cause localised occlusions due to the X-ray beam not fully penetrating the 

overlapping objects. Acquiring images from multiple perspectives can improve the 

probability of obtaining image information produced from unoccluded ray paths. For 

example, as illustrated by Figure 2.15, if stereo matching is applied to the -2° and 2° 

images to synthesise a target intermediary image at 0°, the matching of the knife would 

be problematic because it is camouflaged by the umbrella in the 2° image. Alternatively, 

if the stereo pair -6° and -2°is employed then the matching of the knife would be 

successful. This observation indicates the utility afforded to the matching process in 

comparison to using only two views. 

 

Figure 2.15 Effect of using multiple images on overlapping structures. 

c)  Discontinuity 

Figure 2.16 exemplifies a discontinuity condition where the task is to create an 

intermediary image at the angle of 12°. If the 13° image and the 11° image are used for 

the correspondence search, the leftmost edge of Object 1 may suffer from unwanted 

distortion because it is too close to the umbrella’s edge. Employing the 11° image and 

the 9° image will produce a more robust result. It is advantageous to identify the 

appropriate local conditions to facilitate a high integrity matching process. 

 
Figure 2.16 Effect of using multiple images on discontinuity. 
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2.7.2.2 Laminogram 

Knowledge from Section 2.4 suggests that, with multiple perspective X-ray images 

available, a set of laminograms can be generated. The theory of laminography shows 

that objects located in different depth planes will focus in different laminograms. If a 

method can be designed to find out in which laminogram those objects are focused, then 

the information associated with the focused image features could offer a potential 

solution to the difficult correspondence problem. Inspired by this hypothesis, a 

laminogram intensity based matching criterion is introduced in this work.  
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Chapter Three Image synthesis algorithm 

3.1 Introduction 

The image synthesis algorithm developed in this research programme is presented fully 

in this chapter. The algorithm is termed the, “voting based dual criteria multiple X-ray 

images synthesis (V-DMX)”. The algorithm is designed to accept X-ray detector images 

produced by the kinetic depth X-ray (KDEX) imaging techniques previously developed 

by the university team. The synthetic images produced by the algorithm may be used to 

replace X-ray detector images and therefore reduce the total number of detectors 

required to realise a KDEX sequence.  

The algorithm employs three detector images to produce disparity information for 

generating the synthetic images. A novel approach has been proposed to first compute 

the matching cost [58] using data extracted from the input images and followed by the 

application of a rank based voting process to decide the “best” disparity for generating 

the synthetic pixels.  

The algorithm employs two matching criteria namely SSD and laminogram intensity. 

SSD is a widely used matching criterion but can perform poorly for regions exhibiting 

overlapping structure and discontinuity each of which is particularly prevalent in X-ray 

images. The laminogram intensity criterion is based upon a novel interpretation of 

X-ray laminographic data developed in this work. Both criteria are described in 

Section 3.7.  

Each criterion is applied in two separate, but potentially parallel, processes to produce 

two independent disparity information tables for a selected image. Both disparity 

information tables are used to produce the resultant synthetic image. 

3.2 The algorithm  

3.2.1 Algorithm overview    

Among the existing algorithms that use multiple images (i.e. more than two images) to 

produce a disparity information table, there is no clear indication about the optimal 

number of images needed. The number of images that require processing is a critical 

practical consideration for the implementation of the KDEX technology, as it will 
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strongly influence the hardware complexity, system cost and operational speed. This 

research programme is designed to carefully evaluate the algorithm performance as a 

function of the number of images required and the angular separation between these 

images. These aspects are considered further in terms of the total angular coverage 

achievable as an indicator of the potential cost effectiveness of KDEX technology.  

The experimental X-ray scanner produces a line-scan format sequence of images, which 

form the input data for the image synthesis algorithm. Ultimately, to evaluate the 

performance of the algorithm, the resultant synthetic images are compared with ground 

truth images produced at the appropriate X-ray beam angle by the scanner as depicted in 

the diagram below. 
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Figure 3.1 Conceptual overview of the image synthesis algorithm in relation to the 
input detector images and the output synthetic image(s).   

Figure 3.1 illustrates the conceptual overview of the image synthesis algorithm in the 

context of the basic X-ray beam geometry that produces the synthetic image S14o. The 

algorithm is comprised of a number of different stages and processes. To 

comprehensively describe the approach developed requires that the images selected for, 

and processed by, the various algorithm stages be identified by appropriate names. This 

point is particularly important, as an individual image may form a part of several 

different sets of images, which are input to a number of different stages within the 
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algorithm. This section describes the naming convention adopted and presents it within 

the context of the overall structure of the algorithm. 

a) Detector Images 

The practical X-ray images that are produced by the linear X-ray detector arrays; 

nDetect is the acronym adopted to indicate the number of detector images. 

b) Target Image 

The image which is in the process of being synthesised, is termed the target image. 

Initially the target image contains no data. Its relative position in the sequence of 

detector X-ray images is commensurate with the position of the resultant synthetic 

image, which in turn is determined by the angular distribution of the detector images 

under consideration.  

c) Reference Images 

The images employed to produce a target image by virtue of its disparity information.  

For each target image, the two adjacent perspective images i.e. the images that are 

closest in angular separation with respect to the target image, in the image sequence, are 

selected as the reference images. The image on the left side (negative direction) of the 

target image will be selected as the first reference image, and the other is selected as the 

second reference image. The left image is an arbitrary choice. 

d) Input Images 

The detector images that have been predetermined to provide data for the computation 

of the matching cost; nInput is the acronym adopted to indicate the number of input 

images. nInput required to generate a single target image is three.  

To generate different target images, three different input images are selected from the 

detector images. The criteria used to select the three images from detector images are:  

• In the first case the images closest to the target image. 
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• In choosing the third input image i.e. there is more than one image that has equal 

angular separation to the target image, then the image nearest to the first 

reference image is chosen as the third input image. 

e) Voting Images 

Voting images are selected from the input images. Each voting image is utilised in the 

production of a single disparity information table. Disparity information is employed to 

determine the most appropriate or “best” disparity value obtainable from the reference 

images; nVote is the acronym adopted for indicating the number of voting images. 

nVote for the SSD criterion is two, and nVote for LamI criterion is three. The criterion 

used to select the voting images from the input images are the same as that used to 

select the input images from the detector images.  

3.2.2 Algorithm diagrams  

The image synthesis technique developed in this research programme is broadly divided 

into two distinct processes, as illustrated by the flowchart in Figure 3.2. The first 

process is to determine the correspondences for each pixel; the second process generates 

the synthetic image by interpolating the intermediary coordinate position and assigning 

the intensity to each synthetic pixel.  
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Figure 3.2 Flowchart of the image synthesis algorithm. 

Due to differences in the operational nature of the two criteria employed, the 

prerequisite of the algorithm is a comparative study of the selection procedure that 

determines the optimum number of input images and voting images required by each 

criterion for image synthesis. The results of the empirical study are reported in Chapters 

5, 6 & 7.  To provide the reader a general idea of the operation of the developed 

V-DMX algorithm, Figure 3.3 is presented to illustrate the synthesis of a target image at 

14 o (i.e, S14 o).  
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Figure 3.3a Graphical illustration of the algorithm to synthesis a target image at 14 o.   
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See following diagram 3.3b 

Matching costs from 
selected voting images 

Input image 

(3) Compute matching cost table for 
D8o using criterion LamI 
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(4) Apply rank voting to 
matching costs generated 
by SSD criterion for D16o  

(5) Apply rank voting to 
matching costs generated 

by LamI criterion for D16o 

(6) Apply rank voting to 
matching costs generated 
by SSD criterion for D12o  

Voting for 
Disparity 

(7) Take D16 o as the first reference image 
assign intensity to pixels in S14o using: 
Step 1: voting results generated by LamI* 
Step 2: voting results generated by SSD 

(8) Take D12 o as the second reference image to assign intensity to pixels in S14o using 
voting results of pixels, which are not matched by the first reference image D16o. 

Synthetic Image 
Generation 

(9) Voids filling  

   S14o 

Matching costs from 
selected voting images 

Matching costs from 
selected voting images 

Matching costs from 
selected voting images 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 3.3b Graphical illustration of the algorithm to synthesis a target image at 14o. 
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In this chapter, each of the algorithmic processes is individually presented in the 

following sections to provide the reader with a coherent, localised and detailed 

description of the algorithm design. 

3.3 Matching cost computation 

Multiple views of the same scene can significantly enhance the identification of 

corresponding points in comparison to two views. Initially, a process that can track the 

potential correspondences throughout the image sequence, on a pixel-by-pixel basis, to 

improve the probability of identifying satisfactory matches was investigated.  

The process requires satisfying two geometric constraints. 

(a) Epipolar line constraint  

It is assumed that any y-disparity (vertical in the display axis) in the KDEX images is 

negligible, thus the epipolar line is constrained to the x-axis (horizontal in the display 

axis) [5]. 

(b) Constant disparity constraint (i.e. from one pair of adjacent images to the next pair 

of adjacent images) 

The rate of change of disparity, with respect to the z-axis (normal to the plane of linear 

translation) in object space, is constant from one pair of adjacent images to the next pair 

of adjacent images. In other words the number of depth or disparity planes and the 

separation between adjacent planes (i.e. depth resolution) in object space is nominally 

constant over the X-ray beam angles of interest in this research programme [5]. 

The first step in the algorithm is to compute several matching costs and aggregate those 

matching costs together. For example, in stereo matching, for one pixel, one disparity is 

associated with a single matching cost. When nInput images are involved, for one pixel, 

one disparity is associated with a nInput-1 individual matching cost. If all these 

matching costs are considered together then the matching process is akin to common 

stereo matching. The nInput images are defined by their selection for the matching cost 

aggregation process. The computation of the matching cost requires choosing initially a 

matching reference image. For example, in stereo matching, a stereo pair can be chosen 

to compute the matching cost for producing a disparity information table. In effect, two 



 41 

disparity information tables can be generated for a single stereo pair. The subsequent 

process is to build a single or “best” disparity information table from the two individual 

disparity information tables. In this example, both perspective images, which comprise 

the stereo image, are used as voting images and implemented in a voting process to 

build the final disparity information tables. The following flowchart in Figure 3.4 

illustrates the computation of the matching cost. 

 
 
Figure 3.4 Flowchart of the matching cost computation. 

The following paragraphs describe the two proposed computation methods, which are 

termed a) laminography and b) sum of reciprocals. Each complementary method plays 

an important role in the overall process. The LamI criterion forms the basis for a 

Calculate matching cost between 
input image and voting image 

Done all input 
images? 

Aggregate all matching costs 

Done all voting 
images? 

Done all criteria? 

Start 

End 

   Yes 
   No 

   Yes 
   No 

   No 
   Yes 
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laminography matching cost calculation method; the SSD criterion forms the basis for a 

sum of reciprocals matching cost calculation method.  

3.3.1 Laminography 

The laminography matching cost calculation method requires the production of a set of 

laminograms, and then matching cost is calculated between voting images and 

laminograms. Figure 3.5 illustrates the procedures of using laminography matching cost 

calculation method to calculate matching cost table for D16o, during the process of   

generating target image S14o using the designed V-DMX algorithm. Matching cost 

tables for D12o and D8o are also calculated using laminography matching cost 

calculation method, the procedures are quite similar as in Figure 3.5.   
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Figure 3.5 Graphical illustration of using laminography matching cost calculation method to calculate matching cost table for D16o, during the 
process of synthesising a target image at 14o. 

Synthetic image 

D 16 o   D 12 o 

Multiple X-ray beams 

 

S 14 o D 8 o 

X-ray Point Source 

 

S 10 o 
 

  S 6 o 

Synthetic image Synthetic image Input image Input image Input image 

(1.2.1) Generate a set of laminograms based on image D16o  

nInput

nInput

i
yDmixiI

DmyxL
∑
=

−+

= 1
),)((

),,,(  

m equal to one, as D16o is the first of the input images, D is a disparity between 0 and the maximum disparity.  nInput is 
equal to three as the number of input images is three. The number of laminograms is equal to maximum disparity plus 1.  
 

(1.2.2) Calculate the matching cost table for D16o using LamI criterion  
 
COSTFINALLamI (x,y,m,D)=L(x,y,m,D) 
 
LamI criterion takes the intensity of the related laminogram as its matching cost.  
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By appropriate processing of the input images, a set of laminograms can be produced. 

The maximum number of laminograms that can be generated is determined by the 

disparity window size (Dmax) of the reference image. If Dmax is 10 pixels in size, then 11 

laminograms can be generated. In this research programme, an averaging method is 

applied to generate a Dmax+1 number of laminograms from nInput as governed by the 

following equation. 

nInput

nInput

i
yDmixiI

DmyxL
∑
=

−+

= 1
),)((

),,,(                  Equation 3.1 

 
I1 – I8   refer to detector images 
 
Im(x,y) refers to the intensity of the pixel at position x,y in  image m. 
 
D is the possible disparity between two images.  
 
L(x,y,m,D) refers to the intensity of the pixel at position x,y of  laminogram calculated  
using disparity D  based on voting image m.  
 
Figure 3.6 illustrates a laminogram for a disparity value of 0, generated by 8 input 

images; in addition, Figure 3.7 presents a series of thumbnail laminograms to illustrate 

the effect of in focus and out of focus conditions, for a series of objects placed at 

different depths in the luggage. The objects in a black box are in focus. The in focus 

content of each laminogram represents a specific depth plane in the object space. 

  
 
Figure 3.6 Laminogram of a luggage item for the disparity value 0. 
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  disparity 0     disparity 1      disparity 2      disparity 3      disparity 4        disparity 5 

                
  disparity 6      disparity 7      disparity 8        disparity 9     disparity 10     disparity 11 

     
disparity 12       disparity 13 
 
Figure 3.7 A sequence of 14 laminograms illustrating in focus and out of focus 
conditions for a series of objects at different depths. 

Initially, for one pixel, one disparity is associated with a nInput-1 individual matching 

cost, however after a set of laminograms were created, for one pixel, one disparity is 

only associated with one matching cost, which is calculated between the voting image 

and the laminogram associated with the disparity under consideration.    

For the laminogram intensity criterion, matching cost is given by: 

COSTFINALLamI(x,y,m,D)=L(x,y,m,D)                                                         Equation 3.2                                                 
 
COSTFINAL(x,y,m,D)  refers to the final matching cost for a pixel at position x,y  for a 
voting image m with a disparity value of D. 
 

3.3.2 Sum of reciprocals (SOR) 

Equation 3.1 applies an equal weight to each input image to produce laminograms, 

matching cost is then calculated based on those laminograms as in Equation 3.2.  

Inevitably, the averaging nature of laminography tends to hide individual intensity of 

each input images. To compensate for this effect, a new matching cost calculation 

method based on the sum of reciprocals is proposed to preferentially emphasize each 

individual matching cost value calculated between voting image and input image. The 

method provides a weight to each matching cost by the simple expedient of converting 

the matching cost into its reciprocal. In this manner, low matching cost values will have 
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a higher score, by virtue of their higher reciprocal value. SSD criterion utilise SOR 

matching cost calculation method. 

Figure 3.8 illustrates the procedures of using sum of reciprocals matching cost 

calculation method to calculate matching cost table for D16o, during the process of   

generating target image S14o using the designed V-DMX algorithm. Matching cost 

table for D12o is also calculated using sum of reciprocals matching cost calculation 

method, the procedures are quite similar as in Figure 3.8.   
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Figure 3.8 Graphical illustration of using the sum of reciprocals matching cost calculation method calculate matching cost table for D16o during the 
process of  synthesising  a target image at 14 o. 
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(1.1.1) Compute the matching cost table for D16o between D16o and D12o 
using the SSD criterion  

∑
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SSD
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m is equal to 1 and i is equal to 2, D16o is the first input image and D12o is 
the second input image. The Window size for SSD is 5*5 

(1.1.2) Compute the matching cost table for D16o between D16o and D8o 
using the SSD criterion  

∑
∈

−+−
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yxWvu
im

SSD

m

vDmiuIvuI

DimyxCOST
 

m is equal to 1 and i is equal to 3, D16o is the first input image and D8o is 
the third input image.  The Window size for SSD is 5*5 

 
(1.1.3) Compute the initial matching cost table generated by SSD for D16o, by 
aggregation of the two matching cost tables.    
 
If COSTSSD(x,y,m,i,d) = 0, then COSTSSD(x,y,m,i,d) = 1 

∑
=

=
nInput

i SSD
SSD DimyxCOST

DmyxCOSTFINAL
2 ),,,,(

1),,,(   

nInput is equal to 3 as the number of input images is three, m is equal to one, the 
initial value of i  is 2 as i is not equal to m. 

Input image Input image Input image 
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For one pixel, one disparity is associated with a nInput-1 individual matching cost, each 

individual cost is calculated as: 

∑
∈

−+−=
),(),(

2)],*)((),([),,,,(
yxWvu

imSSD
m

vDmiuIvuIDimyxCOST   

                                                                                                                         Equation 3.3      
 
COST(x,y,m,i,D) refers to the matching cost for a pixel at position x,y for voting image 

m with disparity D calculated between voting image m and input image i.  

 
nInput-1 individual  matching costs are aggregated according to: 

If  COSTSSD(x,y,m,i,d)=0, then COSTSSD(x,y,m,i,d)=1                                  Equation 3.4 
 

∑
=

=
nInput

i SSD
SSD DimyxCOST

DmyxCOSTFINAL
1 ),,,,(

1),,,(                     ( i not equal m)                          

                                                                                                                         Equation 3.5 
 
Thus for one pixel, one final matching cost is obtained for each disparity. 
 

3.4 Voting for disparity 

The result of the previous process is sets of matching cost value tables for all possible 

disparities for each voting image. These matching cost value tables can also be called 

disparity information tables, as from these matching cost values, a disparity can be 

decided for each pixel by applying a winner-take–all method [58]. As all voting images 

are of the same scene, the disparities of corresponding points in each voting image 

should, ideally, be identical but the ill-posed nature of the correspondence problem 

produces many potentially conflicting disparities. In this work a voting system is 

developed to resolve the conflict between multiple disparities. Rank voting is a 

correspondence disparity consistency voting process. Using other nVote-1 disparity 

information tables optimises each disparity information table; the voting image is 

defined as the image whose disparity information table is involved in the disparity 

consistency voting process. Applying the correspondence disparity consistency voting 

among voting images can optimise every disparity information table. In this work, only 

the disparity information tables for two reference images is required, so the output from 

this stage is two disparity information tables that have been optimised by applying 

disparity voting. Figure 3.9 describes the flowchart of the voting process. 
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Figure 3.9 Flowchart of disparity voting. 

Figure 3.10 shows the disparity voting procedure for matching cost table of D16o 

generated by SSD criterion, and Figure 3.11 shows the disparity voting procedure for 

matching cost table of D16o generated by LamI criterion, during the process of 

synthesising target image at 14o using designed V-DMX algorithm. The voting 

procedures for matching cost table of D12 o generated by SSD criterion are quite similar 

as in Figure 3.10. 

Change matching cost table to matching cost 
rank table, cast vote for disparities of 

reference images, calculate aggregated rank 
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Figure 3.10 Graphical illustration of using disparity voting  method  for matching cost table of D16o generated by SSD  during the process of 
synthesising  target image at 14 o. 

(4.1) Change the matching cost table generated by SSD to matching 
cost rank table for D16o 
 
RANK_SORTSSD(x,y,m )= RANK(SORT(COSTFINALSSD(x,y,m,0), 
COSTFINALSSD(x,y,m ,1) … COSTFINALSSD(x,y,m ,Dmax))                                                                                            
 
m equal to one as D16o is the first image 

(4.2) Change the matching cost table generate by SSD to matching 
cost rank table for D12o 
 
RANK_SORTSSD(x,y,m )= RANK(SORT(COSTFINALSSD(x,y,m,0), 
COSTFINALSSD(x,y,m ,1) … COSTFINALSSD(x,y,m ,Dmax))                                                                                            
 
m equal to two as D12 o is the second image 

(4.3) Apply rank voting to optimise the matching cost table generated by SSD for D16o by using two matching cost rank 
tables of D16o and D12o 

RANK_FINALSSD(x, y, p, D) = 

∑
=

+
maxm

0j
SSD D)j),y,D,*p)-(j(xK_SORTSELECT(RAN  

mmax equal to 2 as the number of voting images is two. p equal to one, as D16 is the first reference image.  

From block 1.1 From block 1.2 
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Figure 3.11 Graphical illustration of using disparity voting method for matching cost table of D16o generated by LamI during the process of 
synthesising a target image at 14 o.  

(5.1) Change the matching cost table generated by 
LamI to matching cost rank table for D16o 
 
RANK_SORTLamI(x,y,m)= 
RANK(SORT(COSTFINALLamI(x,y,m,0), 
COSTFINALLamI(x,y,m,1) … 
COSTFINALLamI(x,y,m ,Dmax))       
                                                                                      
m equal to one as D16o is the first image 

(5.2) Change the matching cost table generated by 
LamI to matching cost rank table for D12o 
 
RANK_SORTLamI (x,y,m)= 
RANK(SORT(COSTFINALLamI (x,y,m,0),      
COSTFINALLamI (x,y,m,1) … 
COSTFINALLamI(x,y,m ,Dmax))   
                                                                                          
m equal to two as D12o is the second image 
 

(5.4) Apply rank voting to optimise the matching cost table generated by LamI for D16o by using the matching cost rank 
tables of D16o, D12o and D8o 
 
RANK_FINALLamI (x, y, p, D) = 

∑
=

+
maxm

0j
LamI D)j),y,D,*p)-(j(xK_SORTSELECT(RAN  

 
mmax equal to 3 as the number of voting images is three. p equal to one, as D16o is the first image.  

(5.3) Change the matching cost table generated by 
LamI to matching cost rank table for D8o 

 
RANK_SORTLamI (x,y,m )= 
RANK(SORT(COSTFINALLamI (x,y,m,0), 
COSTFINALLamI (x,y,m ,1) … 
COSTFINALLamI(x,y,m ,Dmax))              
                                                                                
m equal to three as D8o is the third image 
 

From block 1.2 From block 2.2 From block 3.2 
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Consider a pixel (x,y) in a perspective image I1(x,y) that has a correspondence at 

disparity d in a second perspective image I2(x+d,y). The search for correspondence 

I1(x,y) involves calculating the scores for a range of disparities in I2. The disparity with 

the highest score will be identified as the “winner”. The common approach to improve 

the integrity of the matching is to perform a reverse search, i.e, taking I2(x+d,y) as the 

reference and calculating the score of d from a disparity window in I1. It should be 

noted that the search direction for I1(x,y) and I2(x+d,y) is different and involves a 

different set of pixels, thus the calculated scores will be different. Ideally, the likelihood 

of matching I2(x+d,y) from I1(x,y) should be the same as the likelihood of matching 

I1(x,y) from I2(x+d,y). In other words, both pixels must “vote” for each other as the 

corresponding point. The adoption of a “voting” concept in this work is associated with 

the election process that occurs in choosing the “winner”. If each disparity represents a 

candidate, then the number of voting images is the number of voters eligible. Consider 

the example given here, if the scores produced by I1 and I2 are taken into account for 

deciding the “winner”, and then both images are defined as the voting images. In the 

simplest form of stereo matching which uses only scores generated by I1 to make 

decision, then only I1 is defined as the voting image but both I1 and I2 are classified as 

input images. So, if the voting images indicate that a disparity has a very high matching 

likelihood (i.e, vote in favour for a disparity), and then the disparity will be very likely 

to be declared as the “winner”. However, the application of the voting concept to 

multiple images offers a greater potential to alleviate the matching ambiguities. 

A system is introduced to initially rank the aggregated matching cost of individual 

voting images before summing the ranks together. In the context of this work, for SSD 

criterion with SOR matching cost calculation, the disparity with the smallest score (i.e, 

the least influential disparity) is given the lowest rank i.e, 1, while the disparity with the 

largest score is assigned to the largest value, i.e, the disparity window size plus 1. In this 

manner, the ranking method gives an equal voting right to each voting image.  

The ranking process is described by following relationship: 

RANK_SORT(x,y,m ) = RANK(SORT(COSTFINAL(x,y,m,0), 

COSTFINAL(x,y,m ,1) … COSTFINAL(x,y,m ,Dmax))                                 Equation 3.6 
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RANK_SORT(x,y,m )  operates on  the matching cost values, sorts the values  and then 

adjusts the results to give a rank value. The result is an array of tuples that consists of 

(position in sort, disparity value) for the pixel at x,y in voting image m. 

 
For example, if the disparity window is 10, then each voting image can vote for a 

disparity by using a rank of 1 to 11. The integration of the ranking approach to enable 

fair treatment of the voters and the common voting concept to exploit multiple images, 

forms the methodological basis of the “rank voting” proposed in this research 

programme. 

After matching cost is converted into rank, the voting process can be described by the 

following equation: 

RANK_FINAL(x, y, p, D) = ∑
=

+
nVote

0j
D)j),y,D,*p)-(jK_SORT(xSELECT(RAN  

                                                                                                                         Equation 3.7 
 
RANK_FINAL(x, y, p, D) refers to final adjusted rank value for pixel x,y with respect to 

reference image p and disparity value D.  

SELECT(array, disparity) returns the rank value given the disparity D. 

 
With the aid of Table 3.1 and Table 3.2, the procedure of determining pixel 

correspondences using the matching cost computation and the rank based voting 

processes is described. Consider eight detector images are available, three of them are 

selected as the input images and only two out of the three input images are used in the 

voting process. The task is to identify the correspondence of the pixel (3,0) in the 

reference image from a disparity window of two pixels by using the sum of reciprocals 

method and, for example, an absolute intensity difference matching criterion. The three 

input images are denoted as I1, I2 and I3; the two voting images are represented by V1 

and V2; the three disparities are symbolized as d0, d1 and d2. Table 3.1 exemplifies the 

aggregation of the matching cost process for four pixels denoted by V1(3,0), V2(3,0), 

V2(4,0) and V2(5,0). 21 II −  is the absolute intensity difference between I1 and I2. 

V1(3,0;d0) is the sum of reciprocals matching cost of disparity 0 for the pixel (3,0) in the 

first voting image. The process of matching cost aggregation generates a set of costs for 

each pixel in the voting image as indicated by the “Cost aggregation” rows in Table 3.1. 

With an appropriate sorting of these costs, each disparity with respect to the reference 
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image pixel will have nVote of costs. Table 3.2(a) illustrates the sorting outcomes. To 

illustrate the direct summation of the costs, the cost aggregation functions in the table 

are replaced by arbitrary values in the “Example cost” rows, and correspondingly 

Table 3.2(b) is derived. The “Rank” rows in Table 3.1 and Table 3.2(c) are the results of 

the conversion. This example illustrates that the ranking approach grants the same 

number of votes to each cost produced by the matching cost computation stage. At the 

voting stage, the individual votes granted are pooled together to determine the best 

disparity candidate. The disparity with the most votes, i.e, largest total rank value is 

selected as the “best” correspondence. Comparatively, the rank voting system selected 

d2 disparity as the best disparity candidate while the direct summation of costs indicates 

that d1 is the better choice.  

It can be appreciated that matching cost computation and rank voting processes work in 

tandem to form the essential part of the algorithm. The number of possible 

combinations of nInput and nVote depends on nDetector. For example, given the 

nDetector has a value of 8, then there are 35 possible combinations as tabulated in 

Table 3.3. The 3-2 pairing refers to using three input images and two voting images for 

the process. The performance of these pairs relies firmly to the nature of the criterion 

involved. Different criteria respond differently to the algorithm and thus produce a set 

of different results. So, one of the main tasks in this programme is to investigate which 

is the best pairing of the nInput and nVote for the selected criterion. Empirical results 

and associated discussion are organised in Chapter 5, 6 &7. 
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Table 3.1 Example results of the sum of reciprocals method. 
 
Note: Actual example cost values depend on the number of input images and other 
considerations; examples here are for illustrative purposes only. 
 

 

 d0 d1 d2 

21 II −  
(3,0)I-(3,0)I

1

21
 

(4,0)I-(3,0)I
1

21
 

(5,0)I-(3,0)I
1

21
 

V1(3,0) 

31 II −  
(3,0)I-(3,0)I

1

31
 

(5,0)I-(3,0)I
1

31
 

(7,0)I-(3,0)I
1

31
 

Cost Final V1(3,0;d0) V1(3,0;d1) V1(3,0;d2) 
Example cost 10 2 15 

Rank 2 1 3 

12 II −  
(3,0)I-(3,0)I

1

12
 

(2,0)I-(3,0)I
1

12
 

(1,0)I-(3,0)I
1

12
 

V2(3,0) 

32 II −  
(3,0)I-(3,0)I

1

32
 

(4,0)I-(3,0)I
1

32
 

(5,0)I-(3,0)I
1

32
 

Cost Final V2(3,0;d0) V2(3,0;d1) V2(3,0;d2) 

Example cost 2 12 5 

Rank 1 3 2 

12 II −  
(4,0)I-(4,0)I

1

12
 

(3,0)I-(4,0)I
1

12
 

(2,0)I-(4,0)I
1

12
 

V2(4,0) 

32 II −  
(4,0)I-(4,0)I

1

32
 

(5,0)I-(4,0)I
1

32
 

(6,0)I-(4,0)I
1

32
 

Cost Final V2(4,0;d0) V2(4,0;d1) V2(4,0;d2) 

Example cost 100 120 1 

Rank 2 3 1 

12 II −  
(5,0)I-(5,0)I

1

12
 

(4,0)I-(5,0)I
1

12
 

(3,0)I-(5,0)I
1

12
 

V2(5,0) 

32 II −  
(5,0)I-(5,0)I

1

32
 

(6,0)I-(5,0)I
1

32
 

(7,0)I-(5,0)I
1

32
 

Cost Final V2(5,0;d0) V2(5,0;d1) V2(5,0;d2) 

Example cost 20 2 22 

Rank 2 1 3 
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Table 3.2 Tabulated data for voting process to decide the correspondence of the pixel 
(3,0) in the reference image. 
 

 nVote 
 2-1 2-2       
 3-1 3-2 3-3      
 4-1 4-2 4-3 4-4     

nInput 5-1 5-2 5-3 5-4 5-5    
 6-1 6-2 6-3 6-4 6-5 6-6   
 7-1 7-2 7-3 7-4 7-5 7-6 7-7  
 8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8 

 
Table 3.3 Possible combinations of input images (nInput) and voting images (nVote) for 
eight detector images. 
 

3.5 Synthetic pixel generation 

3.5.1 Interpolation of a virtual target image employing a single criterion 

After the voting for disparity process is completed, the disparity value for each pixel can 

be decided by applying the winner-take-all method. Once the disparity values are 

determined, the next task is to synthesise the intermediary target images, for a single 

criterion, the process is described by the following Figure 3.12. 

 d0 d1 d2 
V1 V1(3,0;d0) V1(3,0;d1) V1(3,0;d2) 
V2 V2(3,0;d0) V2(4,0;d1) V2(5,0;d2) 

  
 
 

 d0 d1 d2 
V1 10 2 15 
V2 2 120 22 

Sum of costs 12 122 37 
 
 

 d0 d1 d2 
V1 2 1 3 
V2 1 3 3 

Sum of ranks 3 4 6 
 

3.2(a) 

3.2(b) 

3.2(c) 
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Figure 3.12 Flowchart of the synthetic pixels generation. 

The process involves establishing disparities, interpolating the coordinate position of the 

intermediary target pixels and assigning intensity values to these pixels. The 

interpolation process requires ensuring that the pixel coordinates in the target images are 

identical to the detector images. The pixel position is a function of the angular 

separation between adjacent detector images. For a relatively small angular separation 

between the X-ray beams, the midpoint view is adequately represented by placing the 

target pixels at a coordinate position, which is half way between its corresponding 

pixels in the two adjacent detector images. The error introduced by this assumption is 

negligible in this work because of the relatively small angular increments between 

adjacent perspective views. Based on this approximation, the interpolation algorithm 

begins by using the disparity information table of the first reference image to calculate 

the coordinate values. The calculation of the absolute intensity of the intermediary 

Generate disparity information for the 
first reference image 

Assign an intensity value to the target 
image using the generated disparity 

information 

Assign intensity values to pixels using 
the generated disparity information 

Generate disparity information for 
second reference image (only consider 

those pixels that have not been matched 
by pixels in the first reference image) 

Start 

End 
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target pixel is reliant upon the solution of ill posed problems and in practical terms is 

impossible. Therefore, an approximation is obtained from the intensity of corresponding 

pixels in the reference image. For each pixel, computing half of the winning disparity 

and assigning the pixel intensity from the first reference image determine the 

intermediary coordinate position and intensity of the pixel. For example, if the winning 

disparity (i.e, disparity with most votes) for a reference pixel at the coordinate of (3,0) is 

4, then the coordinate of the synthetic pixel will be (5,0).  

Due to multiple corresponding features, each pixel in the reference image will exhibit a 

number of potential disparities, which in turn produce several intermediary pixels. It is 

difficult to establish a rationale for deciding how many disparities should be considered 

as potential correspondences other than the disparity with the most votes. The method 

proposed here, to address multiple correspondences, is to proceed to using the disparity 

information of the second reference image to assign intensity to pixels in the target 

image. Only pixels in the second reference image that are not matched by pixels in the 

first reference image are entitled to participate in the interpolation process. One reason 

why some pixels remain unmatched in the first reference image is due to “legitimate” 

multiple correspondences. In other words, some pixels in the first reference image 

should be expected to match to more than one pixel in the second reference image. 

However, the algorithm allows initially many to one pixel matches, so some pixels in 

the second reference image remain unmatched; by using those unmatched pixels in 

second reference image to synthesis the target image, the algorithm indirectly allows a 

pixel in first reference image to have two disparity values, which is a normal situation in 

X-ray images.  

The transparency inherent in transmission images make it possible for a large number of 

pixels to be considered for the same coordinate position in the target image. In this work 

the lowest intensity pixel takes precedence over the higher intensity pixels when 

duplicate correspondences occur. The rationale is to consider a pixel that has duplicate 

correspondences as equivalent to a pixel “seeing” an overlapping structure. In theory, 

the pixel intensity associated with an overlapping structure is always lower than the 

intensity produced by individual object in the overlapping structure. The algorithm is 

developed to identify the lowest intensities as the best representatives of a potential 

match.  
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The first step of this process is to determine the final the maximum rank value for a 

pixel: 

MAX_ RANK_FINAL(x,y,p)=MAX(RANK_FINAL(x,y,p ,0), 
RANK_FINAL(x,y,p ,1) … RANK_FINAL(x,y,p ,Dmax))                             Equation 3.8 
 
Assign a disparity value to this pixel and employ this pixel to generate a pixel in the 

target image: 

DISAPRITY(x,y,p)= GETDISPARITY(MAX_RANK_FINAL(x,y,p) , 
RANK_FINAL(x,y,p ,0), RANK_FINAL(x,y,p ,1) … RANK_FINAL(x,y,p ,Dmax))                                                           
                                                                                                                         Equation 3.9 
 
Itarget (x+DISAPRITY(x,y,p)/2, y)= I(Iref(x,y,p))                                           Equation 3.10 
 
MAX_ RANK_FINAL(x,y,p) refers to the maximum value of RANK_FINAL of pixel at 
position x,y for reference image p.    
 
DISAPRITY(x,y,p) refers to the disparity of pixel at position x,y of reference image p. 
 
GETDISPARITY(MAX_RANK, RANK_FINAL…) returns the disparity value associated 
with the  MAX_ RANK in the array of  RANK_FINAL. 
 
Itarget (x,y)   refers to the intensity of pixel at position x,y in the target image. 
 
Iref(x,y,p)  refers to the intensity of the pixel at position x,y in the reference image p. 
 
For all pixels in the second reference image that have not been matched by the first 

reference image, employ the second reference image to assign intensity values to those 

pixels in the target image that have not already been assigned an intensity value: 

Itarget(x-DISAPRITY(x,y,p)/2, y)= I(Iref(x,y,p))                                             Equation 3.11 
 

3.5.2 Interpolation in iterations employing a single criterion 

This section describes how the interpolation can be divided into Dmax+1 iterations as 

described in Figure 3.13. 
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Figure 3.13 Flowchart of interoperation in iterations. 

 
The outcome of the disparity voting is an aggregated rank voting value of the pixels in 

the reference images. If the maximum disparity is Dmax, then for one voting image the 

maximum rank value it can vote for is Dmax+1, the minimum value is 1. After all voting 

images cast a vote, the system chooses the disparity that has the maximum rank voting 

value to be the final disparity. The maximum value of MAX_ RANK_FINAL is   

MAX(Dmax)=MAX(MAX_ RANK_FINAL(x,y,p)) = (Dmax+1)*nVote       Equation 3.12   
                                          

Generate disparity information for the 
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Assign an intensity value to the target 
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information 

Assign intensity to pixels using the 
generated disparity information. 

Generate disparity information for the 
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The minimum value of MAX_ RANK_FINAL is   

MIN(Dmax)=MIN(MAX_RANK_FINAL(x,y,p))= 1* nVote                       Equation 3.13                                        
 
MAX(Dmax) is the maximum possible rank value for a pixel with Dmax.  
 
MIN(Dmax) is the minimum possible rank value for a pixel with Dmax. 
 
Theoretically, the MAX_ RANK_FINAL value can be any value between the minimum 

rank value MIN(Dmax) to the maximum value MAX(Dmax).  

The interpolation process can be divided into Dmax+1 iterations, assign each iteration D 

(1=<D<= Dmax+1) an iteration value:  

ITERATION(D)=MAX(Dmax)-(D-1)*MIN(Dmax)                                     Equation 3.14 
 
ITERATION(D) is the value for iteration D. 
 

For each iteration D: 
 
If (MAX_ RANK_FINAL(x,y,p)> =ITERATION(D)  then  
 
DISPARITY(x,y,p)=GETDISPARITY(MAX_RANK_FINAL(x,y,p),  
RANK_FINAL(x,y,p ,0), RANK_FINAL(x,y,p ,1) … RANK_FINAL(x,y,p ,Dmax))  
 
Else go to next iteration. 
 
For each iteration D, only pixels that satisfy the iteration value are assigned a disparity 

value. The target image contains many pixels with intensity unassigned in the early 

iterations. As the iteration progresses, the unassigned pixels will also be processed. The 

transparency property inherent in X-ray images makes it possible for a number of pixels 

to be considered for the same coordinate position in the synthetic image. While the 

pixels synthesised by the early iterations are assumed more reliable, the ideal solution 

should combine the intensity of all the associated pixels to provide a concluding 

intensity value. In practice, the generation of the intermediary pixel is a highly 

complicated process which is mainly due to ill-posed nature of the correspondence 

problem and the polychromatic nature of the X-ray source. Therefore, in this research, 

the lowest intensity pixel takes precedence when multiple correspondences occur. 

Interpolation in iterations is used in later Section 3.7.1.2 to improve the laminogram 

intensity criterion and in Chapter 7 for experiments. 
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3.5.3 Interpolation employing dual criterion 

Section 3.5.1 describes the synthetic pixel generation process for one criterion; however, 

the V-DMX algorithm employs dual criteria. This section describes the synthetic pixel 

generation process employing dual criteria. 

Independently, each criterion offers different but important solutions to address 

complimentary problems encountered in the algorithm development. The SSD criterion 

is a window based matching operator. Thus, it tends to create false matches when the 

criterion is applied in regions of a discontinuity and overlapping image structure. The 

LamI criterion provides an effective alternative to handling these types of image 

features, although the SSD criterion is superior to the LamI criterion overall; the 

performance comparison of these two criteria is presented in Section 7.1.  

Both criteria are incorporated into the, “Dual Criteria Multiple X-ray Images Synthetic 

System”. Each criterion is initially run independently of one another until the synthetic 

pixel generation process is reached. The LamI criterion utilises 3 input images and 3 

voting images and stops at iteration one, consequently, only some pixels are assigned 

matching cost values in the matching cost table. The SSD criterion utilises 3 input 

images and 2 voting images and employs the SOR matching cost calculation.      

Results from the two criteria are incorporated in synthetic pixel generation process, 

disparity information from LamI is used first to assign intensity to pixels in the target 

image, for those pixels in target image have not been assigned intensity, the disparity 

information from the SSD criterion is used to assign intensity values to those pixels.  

Finally, the disparity information for the second reference image generated by the SSD 

criterion is employed to assign intensity to pixels in target image that have not been 

assigned an intensity value by LamI criterion. The new interpolation process is 

described by Figure 3.14. 
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Figure 3.14 Flowchart of the synthetic pixels generation algorithm incorporating dual 
criterion. 

Figure 3.15 and 3.16 shows the procedures of synthetic pixels generation to synthesise 

target image at 14 o using designed V-DMX algorithm.  
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Figure 3.15 Graphical illustration of synthetic pixel generation using the first reference 
image to synthesis a target image at 14 o.  

(8.1) For each pixel, identify the largest rank value in the matching cost rank 
table of D16o which contains matching cost rank value for all disparities.  
 
MAX_ RANK_FINALLamI(x,y,p)=MAX(RANK_FINALLamI(x,y,p ,0), 
RANK_FINALLamI(x,y,p ,1) … RANK_FINALLamI(x,y,p ,Dmax))                                                                                        

(8.3) Using pixel intensity and disparity 
information of D16o, assign intensity 
values to pixels in S14o, using disparities 
generated by LamI,  
 
Itarget (x+DISPARITYLamI(x,y,p)/2, y)= 
I(Iref(x,y,p)) 

(8.4) Identify the largest rank value for each pixel in 
the matching cost rank table of D16o, assign 
disparity values to the pixels 
 
MAX_ 
RANK_FINALSSD(x,y,p)=MAX(RANK_FINALSSD 
(x,y,p ,0), RANK_FINALSSD(x,y,p ,1) … 
RANK_FINALSSD(x,y,p ,Dmax))                                                                                      
 
DISPARITYSSD(x,y,p)=GETDISPARITY(MAX_ 
RANK_FINALSSD(x,y,p), RANK_FINALSSD 
(x,y,p ,0), RANK_FINALSSD(x,y,p ,1) … 
RANK_FINALSSD(x,y,p ,Dmax) )                    

(8.5) Using pixel intensity and disparity information 
of D16o, assign intensity to pixels in S14o that have 
not been assigned intensity by LamI, using 
disparities generate by the SSD criterion. 
 
Itarget (x+DISPARITYSSD(x,y,p)/2, y)= I(Iref(x,y,p)) 

Note: p equal to one in 
this diagram  

From block 4 From block 5 

(8.2) Assign disparity values to the pixels 
 
DISPARITYLamI(x,y,p)=GETDISPARITY 
(MAX_RANK_FINALLamI(x,y,p), 
RANK_FINALLamI(x,y,p ,0), 
RANK_FINALLamI(x,y,p ,1) … 
RANK_FINALLamI(x,y,p ,Dmax)) 

MAX_ 
RANK_FINALLamI(x,y,p)>= 

nVote*(Dmax+1)? 

YES – then use 
laminogram intensity 
criterion from block 5 
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Figure 3.16 Graphical illustration of synthetic pixel generation using second reference 
image to synthesis target image at 14 o.  

 
The process can be described by a set of equations: Equation 3.8 is used to find the 

maximum rank value, the following relationship checks whether the maximum rank 

value generated by LamI criterion is equal to the maximum possible rank value, if it is 

then a disparity value is assigned to the pixel, and it is used to generate a pixel in target 

image. 

If   (MAX_ RANK_FINALLamI(x,y,p)=nVote*(Dmax+1): 
 
DISPARITYLamI(x,y,p)= GETDISPARITY(MAX_RANK_FINALLamI(x,y,p) , 
RANK_FINALLamI(x,y,p,0), RANK_FINALLamI(x,y,p,1) … 
RANK_FINALLamI(x,y,p,Dmax))                                                                   Equation 3.15 
                                                                                                                        
Itarget (x+DISPARITYLamI(x,y,p)/2, y)= I(Iref(x,y,p))                                     Equation 3.16 
 
For SSD criterion, Equation 3.8 is used to get maximum rank value, then disparity for 

every pixel can be assigned by following equation: 

(9.1) Find the biggest rank value for each pixel in the matching cost rank 
table of D12o, assign disparities to pixels 
 
MAX_ RANK_FINALSSD(x,y,p)=MAX(RANK_FINALSSD(x,y,p ,0), 
RANK_FINALSSD(x,y,p ,1) … RANK_FINALSSD(x,y,p ,Dmax))      
                                                                                      
If pixel (x,y) has not been matched by pixels in D16o  then 
DISPARITYSSD(x,y,p)=GETDISPARITY(MAX_ RANK_FINALSSD(x,y,p),  
RANK_FINALSSD(x,y,p ,0), RANK_FINALSSD(x,y,p ,1) … 
RANK_FINALSSD(x,y,p ,Dmax))    
Else 
DISPARITYSSD(x,y,p)= NULL 
 

(9.2) Using pixel intensity and disparity information of D12o, assign intensity to pixels in 
S14o whose intensity are not assigned using criteria LamFi.  
Itarget(x-DISPARITYSSD(x,y,p)/2, y)= I(Iref(x,y,p))                                                         

Note: p equals to 
two in this 
diagram  

From block 8 From block 6 
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DISPARITYSSD(x,y,p)= GETDISPARITY(MAX_ RANK_FINALSSD(x,y,p), 
RANK_FINALSSD(x,y,p,0), RANK_FINALSSD(x,y,p,1) … 
RANK_FINALSSD(x,y,p,Dmax) )                                                                   Equation 3.17 
 
For all pixels in the target image that have not been assigned intensity by laminogram 

intensity criterion, using first reference image, assign intensity to pixels in target image: 

Itarget(x+DISPARITYSSD(x,y,p)/2, y)= I(Iref(x,y,p))                                      Equation 3.18 
 
For all pixels in the target image, whose intensity is not assigned by the LamI criterion, 

using pixels in the second reference image that have not been matched by pixels in the 

first reference image, assign intensity to pixels in target image: 

Itarget(x-DISPARITYSSD(x,y,p)/2, y)= I(Iref(x,y,p))                                        Equation 3.19 
 

3.6 Void filling  

A void in the context of this work is defined as a pixel coordinate position that is not 

assigned an intensity value after the interpolation process using the disparity 

information of both reference images. The voids exist due to errors of the disparity 

information and any inadequate treatment of multiple correspondences. Consider T(x,y) 

is a void in the target image with a coordinate (x,y), the possible correspondences 

matching from the first reference image (Iref) is Dmax/2, where Dmax is the disparity 

window size. So, the intensity set of T(x,y) is {Iref(x- Dmax /2,y) ,….Iref(x-D/2,y),… Iref(x, 

y)} where D = 0, 1…. Dmax. In order for the pixels in the set to match with the void, 

each pixel has a different disparity and each disparity has a vote value. By comparing 

the vote values of these pixels, the disparity with the most votes is chosen and its 

intensity is used to fill the void. The process is repeated for every void until all voids are 

filled. The process is described with the aid of Figure 3.17. 
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Figure 3.17 Flowchart of void filling.  

Figure 3.18 shows the procedures of void filling to synthesise a target image at 14 o 

using designed V-DMX algorithm.  

 
 
Figure 3.18  Graphical illustration of void filling to synthesis target image at 14o.  

 

(10.1) For voids in S14o, assign disparities to these points, by finding related maximum 
rank value generated by SSD among it’s possible correspondent points in D16o.   
 
MAX_ RANK_FINAL(x,y,p)=MAX(RANK_FINALSSD(x, y, p, 0), RANK_FINALSSD(x-
1, y, p, 1) …  RANK_FINALSSD(x-Dmax/2, y, p, Dmax/2))     
 
DISAPRITYtarget(x,y)=GETDISPARITY(MAX_RANK_FINAL(x,y,p) , 
RANK_FINALSSD(x, y, p, 0), RANK_FINALSSD(x-1, y, p, 1) …  RANK_FINALSSD(x-
Dmax/2, y, p, Dmax/2))                                                                                       
                           

(10.2) Using pixel intensity information of D16o, pixel disparity information of S14o, assign 
intensity to voids in S14o. 
 
Itarget(x, y)= Iref(x-DISPARITYtarget(x,y),y)                      

From block 4 From block 9 

For each void, find its corresponding point in the first 
reference image based on the rank value of first 

reference image 

Assign an intensity value to voids in the target image 
equal to the intensity of its corresponding points in the 

first reference 

Start  

End 
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The process can be described by following equations: the equation to find maximum 

rank value is:   

MAX_ RANK_FINAL(x,y,p)=MAX(RANK_FINALSSD(x, y, p, 0), 
RANK_FINALSSD(x-1, y, p, 1) …  RANK_FINALSSD(x-Dmax/2, y, p, Dmax/2))                                
                                                                                                                       Equation 3.20 
 
Assign a disparity value to pixels in target image: 

DISAPRITYtarget(x,y)= GETDISPARITY(MAX_RANK_FINAL(x,y,p) , 
RANK_FINALSSD(x, y, p, 0), RANK_FINALSSD(x-1, y, p, 1) …  RANK_FINALSSD(x-
Dmax/2, y, p, Dmax/2))                                                                                       
                                                                                                                       Equation 3.21 
 
DISPARITYtarget(x,y) refers to the disparity of pixel at position x,y of the target image. 

 
The equation to assign intensity to target image is: 
 
Itarget(x, y)= Iref(x-DISPARITYtarget(x,y),y,p)                                                 Equation 3.22 
 
Iref(x,y,p) refers to the intensity of the pixel with position x,y in reference image p.     
                                         

3.7 Algorithm criteria 

Besides developing the algorithm framework, a significant amount of effort was 

committed to identifying the criterion that can fully explore the potential of the 

framework. The two criteria utilised in the algorithm are described in the following 

paragraphs. Although the developed algorithm employs both criteria, each individual 

criterion may be used independently to synthesise a target image. 

3.7.1 Laminogram intensity 

3.7.1.1 Developing criterion  

As can be deduced from Figure 3.19 that an object (e.g, object A in disparity 11) 

appears to exhibit its lowest intensity when in focus. This observation illustrates that the 

lowest intensity is a potentially useful matching criterion for laminograms. For a 

reference pixel of interest positioned at coordinate position (x,y), the program compares 

the intensity of all laminograms at the same coordinate position and chooses the 

disparity with the lowest intensity as an in focus point. This novel criterion is termed the 

“laminogram intensity” (LamI). A laminogram is a result of superimposing multiple 
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perspective images. So, the quality of laminograms depends on the number of 

perspective images used. In general, the more images involved the higher quality the 

laminograms. The criterion employs the intensity of the laminogram as the matching 

cost value. In comparison with the sum of reciprocals method, the laminogram intensity 

is equivalent to the “Example cost” rows in Table 3.1 in Section 3.4. 

                                 
 disparity 0            disparity 1        disparity 2          disparity 3            disparity 4 

                                  
 disparity 5          disparity 6          disparity 7          disparity 8            disparity 9 

                                                      
 disparity 10      disparity 11                                     disparity 12           disparity 13 
 
Figure 3.19 An example of laminograms. 

In practice, when dealing with cluttered X-ray images, the laminogram intensity 

criterion will fail to perform correctly in certain circumstances. The principle of the 

criterion is based on choosing the disparity with the lowest intensity as the 

correspondence. When a bright area falls within the disparity window of a dark area, the 

relative lateral shifting of the perspective images to generate laminograms will cause the 

dark area, in visual terms to smear the relatively bright area. Figure 3.20 illustrates an 

example of this effect. If the magnitude of the smear (after averaging) is lower than the 

bright area when it is in focus, then the smearing will confound the algorithm and lead 

to an erroneous selection of disparity. 

 

 

 

A 



 70 

  
 
Figure 3.20 Illustration of the performance limitation of the basic laminogram intensity 
criterion. 

The performance of this criterion with various combinations of input images and voting 

images is presented in Section 5.1.  

3.7.1.2 Improved laminogram intensity criterion 

It can be appreciated that the performance limitation of the criterion is a function of the 

degree of smearing. In concept, the removal of dark areas will enhance the bright areas 

and thus increases the matching likelihood of the bright area. To implement this concept, 

iterations are applied similar to the concept described in the Section 3.5.2, except that 

iterations are not only within the synthetic pixel generation process. The iteration 

includes matching cost computation, voting for disparity and synthetic pixel generation, 

because laminograms require to be regenerated. So for each iteration, matching cost 

computation, voting for disparity and synthetic pixel generation are repeated. In the 

interpolation process, for each iteration, pixels are assigned a disparity in the same 

manner as described in Section 3.5.2. Figure 3.21 shows the flowchart of Improved 

LamI criterion. 

 

   

(a) Raw image (b) Laminogram #1 (c) Laminogram #2 

Dark area Bright area Shadows of the 
dark area 

Shadows of the 
dark area 
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Figure 3.21 Flowchart of Improved LamI criterion.  

The first iteration is considered to produce the most robust data. Using the Improved 

LamI criterion, in the first iteration, pixels with lower intensity are more likely to be 

matched. In the second iteration, pixels that have been assigned a disparity value will be 

excluded from the process of regenerating successive laminograms, although those 

pixels will still be included in the voting process. This approach implies that different 

pixels from the laminogram may be produced by a different number of input images. 

Effectively, the dark areas (i.e, pixels with lower intensity) are tending to be removed 

from the matching cost computation process. The pixel exclusion (i.e, dark area removal) 

procedure is iteratively implemented in which the iteration value is loosened for each 

Input images 

Matching Cost Computation 
Only include pixels have not been 

assigned disparity in each input images 

Voting for Disparity 
 

Synthetic Pixel Generation 
Generate disparity information for 

iteration D, interpolate the target image 

Output synthetic image 
 

Void Filling 
 

Finished Dmax +1 
iterations? No 
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iteration to process unmatched pixels. The performance of the improved laminogram 

intensity criterion with various combinations of input images and voting images is 

presented in Section 5.2. A performance comparison of the improved laminogram 

criterion to the basic laminogram intensity criterion is presented in Section 5.3.        

3.7.2 Sum of squared differences criterion  

The SSD criterion is well known in stereo matching world for its utility. The 

performance of SSD using laminography and rank voting with various combinations of 

the number of input images and voting images is presented in Section 6.2. The 

performance of SSD using sum of reciprocals and rank voting with various 

combinations of input images and voting images is presented in Section 6.1. A 

performance comparison of the SSD using laminography and sum of reciprocals is 

presented in Section 6.3, results indicate that the SSD has a better performance when 

employing the sum of reciprocals matching cost calculation (also discussed in Section 

6.3).    

3.8 Summary 

Each of the algorithmic processes employed in the developed V-DMX image synthesis 

algorithm is described in detail in this Chapter. The algorithm is developed to exploit 

the advantages afforded by a disparate sequence of X-ray detector images to synthesise 

intermediary images. The experiment plan presented in following Chapter 4 forms the 

basis for the empirical studies reported in Chapters 5, 6 & 7, which represents a critical 

part of the design and optimisation process for the V-DMX algorithm.  The empirical 

work indicates that the optimum performance of V-DMX algorithm is achieved when 

three adjacent X-ray detector images are employed for image synthesis. This summary 

concludes with a mathematical overview of the algorithm presented in the following 

Figure 3.22.  
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Figure 3.22a A mathematical overview of the V-DMX algorithm. 
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Figure 3.22b A mathematical overview of the V-DMX algorithm. 
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Synthetic Pixel Generation 
 
MAX_ RANK_FINAL(x,y,p)=MAX(RANK_FINAL(x,y,p ,0), RANK_FINAL(x,y,p ,1) … 
RANK_FINAL(x,y,p ,Dmax)) 
 
If (MAX_ RANK_FINALLamI(x,y,p)=nVote*(Dmax+1): 
 

DISPARITYLamI(x,y,p)= GETDISPARITY(MAX_RANK_FINALLamI(x,y,p) , 
RANK_FINALLamI(x,y,p ,0), RANK_FINALLamI(x,y,p ,1) … 
RANK_FINALLamI(x,y,p ,Dmax)) 
Itarget (x+DISPARITYLamI(x,y,p)/2, y)= I(Iref(x,y,p)) 

 
DISPARITYSSD(x,y,p)= GETDISPARITY(MAX_ RANK_FINALSSD(x,y,p) , 
RANK_FINAL(x,y,p ,0), RANK_FINAL(x,y,p ,1) … RANK_FINAL(x,y,p ,Dmax))    
 
For all the pixels in the target image that have not been assigned a intensity value by  the 
laminogram intensity criterion using the first reference image, assign intensity values to the pixels in 
the target image: 
 
Itarget (x+DISPARITYSSD(x,y,p)/2, y)= I(Iref(x,y,p)) 
 
For all pixels in the second reference image that have not been matched by the first reference image 
above, use the second reference image, assign intensity values to the pixels in the target image that 
have not been assigned intensity values by the LamI criterion: 
 
Itarget(x-DISPARITYSSD(x,y,p)/2, y)= I(Iref(x,y,p)) 

Void Filling 
 
MAX_ RANK_FINAL(x,y,p)=MAX(RANK_FINALSSD(x, y, p, 0), 
RANK_FINALSSD(x-1, y, p, 1) …  RANK_FINALSSD(x-Dmax/2, y, p, Dmax/2))     
 
DISAPRITYtarget(x,y)= GETDISPARITY(MAX_RANK_FINAL(x,y,p) , 
RANK_FINALSSD(x, y, p, 0), RANK_FINALSSD(x-1, y, p, 1) …  
RANK_FINALSSD(x-Dmax/2, y, p, Dmax/2))                                                                                      
 
Itarget(x, y)= Iref(x-DISPARITYtarget(x,y),y,p)   

       Output synthetic image 

Final synthetic image 
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Chapter 4 Experiment considerations and overview 

 
This chapter presents the methodology for a series of experiments and comparative 

studies presented in Chapters 5, 6 &7. 

4.1 Methodology 

To ensure realistic outcomes, real X-ray images were employed for the investigation. 

The images used for the indicative analysis presented in this thesis were chosen 

carefully to include objects composed of different material classes arranged in spatially 

complex scenes. The inclusion of dense amorphous structures together with overlapping 

high frequency details exhibits the multi-layered translucency typical of images 

routinely encountered at security checkpoints.  

When real and synthetic images are viewed in succession, the resultant transition should, 

ideally, be natural to the observer. Therefore, the fidelity of the synthetic images is 

established by comparing them, pixel by pixel, with detector images produced at the 

appropriate X-ray beam angle by the scanner. This approach enables a direct measure 

on how well the synthetic images resemble the detector images. In the context of this 

research programme, these detector images that are used for comparison are defined as 

the ground truth (GT) images. It should be noted that GT images were solely used for 

comparative study but not as the input images of the synthesis algorithm. Both 

quantitative and qualitative measures were undertaken to aid making decision. An 

image subtraction method is used as the quantitative measure to compute the number of 

errors (NE) between the GT images and the synthetic images. The subtraction equation 

is presented in the next section. To account for various practical fluctuations (e.g, 

system noise), the NE computation includes a tolerance that has the value of the square 

root of the intensity. This rationale is based on the prior research work [119] on 

measuring the practical noise recorded by typical X-ray luggage scanner. The success of 

the synthetic image approach will ultimately be established by conducting a series of 

human factors investigations. While such work is ongoing in the university team, it is 

beyond the scope of this thesis. Nonetheless, besides comparing the NE produced, a 

visual inspection was undertaken to assist in concluding the results within the context of 

the KDEX system. 
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The proposed synthesis algorithm V-DMX is based on using two matching criteria 

namely SSD and LamI. While the algorithm presented in Chapter 3 is the ultimate 

delivery of this research programme, the growth of the V-DMX involved conducting an 

independent investigation of each individual criterion. This is because each criterion 

contributes to different but important aspects to address the problems defined in this 

research programme. The empirical results and analysis of the SSD and LamI 

investigations are organised in Chapter 5 and Chapter 6 respectively. These experiments 

are interrelated to form the basis for the investigation into the performance of the V-

DMX, as presented in Chapter 7. Section 4.4 is prepared to explain the details of each 

experiment.  

The two critical practical considerations for realising the KDEX implementation are the 

number of input images and voting images required for processing and the total 

achievable angular coverage. These considerations are important with regard to 

establishing the optimum X-ray sensor geometry, especially for systems using up to 32 

images which are under consideration as future work. The ideal condition is to develop 

an algorithm that can cope with large angular separation between images to increase the 

total angular coverage with the use of minimal number of input images and voting 

images. However, the increase in angular separation causes a concomitant increase in 

the disparity window, which tends to introduce more matching ambiguity. Therefore, an 

investigation was instigated to assess the algorithm performance (or limitations) as a 

function of the X-ray beam angle between successive views.  

4.2 Performance measure 

Equation 4.1 is utilised as the quantitative factor to measure the performance of the 

synthetic algorithm under different experimental configuration.  

( ){ })P(G)P(S)P(Gabs|MPNE ′>′−′∈′= .                                              Equation 4.1 

Where M is dependant on the image size, )(PG ′ is the intensity of the GT image at P′ , 

and )(PS ′  is the intensity of the synthetic image at position P′ . If the intensity 

difference between GT image and the synthesised target image is bigger than the square 

root of GT image’s intensity, it is considered to be an error.  
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4.3 Experimental images and image selection 

4.3.1 Experimental images  

In each image sequence generated for the experiments, there are 32 real detector X-ray 

images with an angular separation between adjacent images of 1° covering an angular 

range of +16° to -15o. The experimental images were produced by the folded array 

multiple view X-ray scanner using line-scan imaging technique as described in 

Section 2.3.2. The resolution of the resultant line-scan images is 512 × 512. The 

selection of input images from the full sequence (32 detector images) depends on the 

angular separation involved, which is an important factor to establish the angular 

coverage of the practical system. Generally as the angular separation increases, the 

resultant images become more disparate necessitating an increase in the pixel disparity 

limit, which in turn increases the potential for spurious pixel matches. The result 

produced by the algorithm in the preliminary stage has indicated its superior capability 

by generating high quality synthetic images for angular separations smaller than 4°. 

This desirable result has therefore encouraged the author to focus on presenting 

investigation results of angular separations greater than 4° in this thesis. So, the four 

angular separations considered in this thesis are: 4°, 6°, 8° and 10°. In this thesis, results 

produced by the angular separation of 4° are utilised to illustrate the operational and 

performance of the developed algorithm. Figure 4.1 presents an example of eight 

sequential detector images with an angular separation between adjacent images of 4° 

from image set one. 

 

 

 

 

 

 

 



 78 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 Examples of detector images for image set one where the angular separation 
between images is 4°. 

All graphs and images in experiment chapter 5, 6 &7 are based on images from image 

set one unless specified. 

4.3.2 Image selection 

With an angular separation of 4°, eight out of the full sequence (32 detector images) are 

available to be selected as the input images. Thus, seven new intermediary images are 

 
              Image set one 14o              

    
                     Image set one 10o            
  

 
                Image set one   6o           

 
                  Image set one 2o               

 
                Image set one -14o               

 
              Image set one -10o               

 
                 Image set one -6o               

 
                 Image set one -2o               
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required generating, which gives a total of fifteen images in a complete sequence. As 

the number of detector images is eight, so the maximum number of input images is 

eight, the maximum number of voting images is eight.  

nDetector  ⊇   nInput  ⊇   nVote 
 
The total possible combinations of nInput and nVote for eight detector images are 35 as 

tabulated in Table 3.3. 

When the angular separation increases, the nInput and thus nVote available for image 

synthesis are less in the sequence of 32 X-ray detector images. Therefore, the number of 

possible pairings is also reduced accordingly. Table 4.1 shows the nInput and the 

number of possible pairings for the angular separations considered in this work. 

 
Table 4.1 The nInput and the number of possible pairings for four angular separations 
under investigation. 
 
The criterion to select reference images, input images and voting images from detector 

images is explained in Section 3.2.1.  

4.4 Experimental plan 

There are three experiment chapters in this thesis which are Chapter 5, 6 &7. The details 

of the experiments are illustrated by the diagram in Figure 4.2. To aid the description of 

the diagram, the (nInput, nVote) pairing for an angular separation of 4° is used as an 

example. 

Chapter 5 reports the experiment results and analysis of the novel LamI criterion for 

different experiment conditions. It contains four individual experiment sections, which 

are designed to establish the performance of the LamI criterion. The first two 

experiments govern the independent investigations into two versions of the criterion, 

namely the Basic LamI and the Improved LamI. The major departure of the two 

versions is that the Improved LamI uses an iteration process to compute the matching 

cost while the Basic LamI involves no iteration in the cost computation. The iteration 

Angular Separation (°) nInput Number of Possible Pairings 
4 8 35 
6 6 20 
8 4 9 
10 4 9 
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process is to enable the removal of dark image areas and thus improving the matching 

likelihood of the bright image areas. The details of each criterion are described in 

Section 3.7. Since both criterion versions are fundamentally the same, the matching cost 

calculation method is also the same, as governed by Equation 3.1. The preliminary 

investigation into the two criterion versions was to determine the optimum pairing of 

each criterion. Then, a comparative study between the two criterion versions using best 

pairing was conducted to demonstrate the utility afforded by the Improved LamI. 

Finally, the practical significance of the Improved LamI is studied as a function of 

increasing angular separation. 
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Figure 4.2 Experimental plan and results overview. The (nInput, nVote) pairings for an 
angular separation of 4° is taken as an example for illustration. 

The LamI criterion is a novel measure which is bespoke to the laminography matching 

cost calculation method. However, the SSD criterion can be applied to both cost 

calculation methods. When using SOR method, the SSD matching cost is computed 

Chapter 5 

Best SSD+SOR (3,2) pair 

Improved LamI (3,3) pair for one 
iteration + Best SSD+SOR (3,2) pair 

Best Improved LamI 
(8,8) pair 

Best pair (3,2) Best pair (2,2) Best pair 
(8,8) 

LamI criterion 
 
  (5.1)    Basic        (5.2)   Improved  
   (35   pairings)        (35   pairings)                      
 

SSD    criterion 
 
(6.1) Laminography          (6.2) SOR                     
       (35   pairings)                  (35 pairings)  
 

(5.3)      Basic LamI (8,8) pair 
                           VS 

Improved LamI (8,8) pair 

(6.3)     SSD+Laminography (2,2) pair 
 VS 

SSD+SOR (3,2) pair 

 (7.1)     Best Improved LamI (8,8) pair 
VS 

Best SSD+SOR (3,2) pair 

Best SSD+SOR (3,2) pair 

(7.2)   Improved LamI + Best SSD+SOR (3,2) pair 
(35 pairings * Dmax iterations) 

(7.3) V-DMX = Improved LamI (3,3) pair for one iteration  
    + Best SSD+SOR (3,2) pair 

VS 
Best SSD+SOR (3,2) pair 

 

V-DMX 

(5.4)    Assess the best Improved 
LamI with different angular 
separations 

(6.4)  Assess the best SSD+SOR with 
different angular separations         

Best pair 
(8,8) 

Best Improved LamI 
              (8,8) pair 

Best SSD+SOR (3,2) pair 

(7.4) Assess V-DMX with 
different angular separations        

Chapter 7 

Chapter 6 
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between the reference images and the input images, in which all of them are real X-ray 

images. However, the incorporation of SSD into the laminography cost calculation 

method is uncommon because the matching cost is computed between the reference 

images (real X-ray images) and the laminogram. It was considered that the intensity 

fluctuation in the neighbouring pixels of a “focused” feature in laminograms is normally 

small due to the averaging effect produced during the laminogram generation. This 

effect tends to stabilise the focused feature and may increase its matching likelihood. 

The matching cost calculation equation for using SSD with the laminography method is: 

COSTFINAL(x,y,m,D) = ∑
∈

−
),(),(

2)],,,(),([
yxWvu

m
m

DmvuLvuI .                      Equation 4.2 

It should be noted that this equation is different from the cost calculation of using SSD 

with SOR method, as presented in Section 3.3.2. After determining the optimum 

combinations of nInput and nVote for the SOR and laminography based methods, both 

optimum results are compared to find out the best method when using SSD criterion. 

Empirical results demonstrably revealed the SOR method is superior over the 

laminography method. An investigation into the angular performance was conducted on 

the SOR method.  

Chapter 7 reports the experiment results and analysis to support the development of 

V-DMX. Section 7.1 compares the best pairing of the Improved LamI with the best 

pairing of the SSD based method. The comparative result indicates that SSD based 

method has a better overall performance except for overlapping and discontinuity image 

regions. In contrast, the Improved LamI shows a relative superior in these regions. So, 

efforts were devoted to determine the best way to combine both different but balancing 

advantages afforded by the criteria. Research findings are reported in Section 7.2. 

Section 7.3 compares the performance of V-DMX with the best performance of SSD, to 

demonstrate the advantage of V-DM algorithm. Section 7.4 presents the experiment to 

assess the performance of V-DMX with different angular separations. 
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Chapter Five Experiments and analysis: Laminogram 

intensity (LamI) criterion    

 
The experiment results and analysis concerning the LamI criterion are presented in this 

chapter. These experiments are designed to be part of a larger group of interrelated 

experiments as discussed in Chapter 4. The experiment plan, Figure 4.2, illustrates the 

relationship of the experiments to the final algorithm structure. The objective of the 

experiments is to initially determine the optimum number of nInput and nVote required 

when employing the LamI criterion with the rank based voting method to generate 

intermediary images. Two different versions of the criterion, namely the Basic LamI 

and the Improved LamI, are reported and discussed. The differences between the criteria 

are explained in Chapter 3. An extended study of the Improved LamI has been 

undertaken to establish the optimum number of nInput and nVote as a function of the 

increasing angular separation between the input X-ray images. 

5.1 Experiment employing the Basic LamI criterion 

Figure 5.1 and 5.2 are arranged to enable the convenient comparison of a family of NE 

(number of errors) curves for different n-m pairings ( n input images and m voting 

images) recorded for target images at 120, 80, 40, 00, -40,- 80, -120 angles. The NE curves 

are produced by applying the Basic LamI on the integration of the laminography 

matching cost calculation and the rank voting approach. It should be noted that the 

discrete data is represented in “line graph mode” to aid the visual identification of 

relative trends in the data. The symbol nVote1 indicates one voting image is employed. 

Also, the GT image of target angle 12° and the resultant synthetic images produced by 

2-1, 8-1 and 8-8 pairings are presented in Figure 5.3 for comparative discussion.  
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5.1.1 Result: NE curves 
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Figure 5.1 NE plots for different n-m pairings produced by using the Basic LamI on laminography matching cost calculation and rank voting approach, 
to synthesis target images at 12°(left top), 8°(right top), 4°(left bottom) and 0°(right bottom), where the angular separation between adjacent detector 
images is 4o. 
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Error graph for -4 degree
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Figure 5.2 NE plots for different n-m pairings produced by using the Basic LamI on laminography matching cost calculation and rank voting approach, 
to synthesis target images at -4°(left top), -8°(right top) and -12°(left bottom), where the angular separation between adjacent detector images is 4o.  
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5.1.2 Result: Images  

 
 
Figure 5.3 (a) The ground truth (GT) image at 12° and the resultant synthetic images produced by (b) 2-1, (c) 8-1 and (d) 8-8 pairings of nInput and 
nVote. 

 

  

 

            a             b 

            c             d 
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5.1.3 Analysis 

As nVote and nInput increases there is a significant reduction in the NE. While there are 

a few outliers, the decreasing error trend can be easily observed. As can be deduced that 

the 8-8 pairing (i.e, involving 8 input images and 8 voting images) exhibited the best 

performance for all target images as can be appreciated by the visual inspection of the 

example of the resultant synthetic images arranged in Figure 5.3. Figure 5.3 (b) is the 

result of 2-1 pairing, which is equivalent to the traditional stereo matching method. As 

nInput increases for a constant nVote, the quality of the synthetic image is improved, 

see Figure 5.3 (c). A further improvement is evident when nVote increases, see 

Figure 5.3 (d). It can be concluded from these observations that the Basic LamI criterion 

performance increases as the nInput and nVote increased. To illustrate the impact of the 

increasing nInput and nVote, following four case studies are organised. 

Case study 1: Positive impact of increasing nInput with fixed nVote 

 
Figure 5.4 Regions of interest in input images over the range of 14o to -14o. 

 
Figure 5.5 Illustration of the advantage (i.e. increase in quality) of increasing nInput by 
comparing the region of interest in the ground truth (GT) image and in the synthetic 
images produced by different n-m pairings. 

 
To enable an effective discussion, the regions of interest (ROI) in all the input images 

are arranged in Figure 5.4. Also, the correlated ROI in the GT image at 12° as well as in 

   

   

A 

   GT 12o                                     2-1                  3-1               4-1                5-1 

    6-1                  7-1                 8-1  

     

 

    14o                 10o                6o                  2o                 -2o                 -6o      

   -10o                -14o 
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the resultant synthetic images for different n-m pairings are organised in Figure 5.5. It 

can be seen from Figure 5.4 that the feature-A (section of the umbrella with higher 

intensity) is not overlapped by other object in all input images. However, there is a big 

intensity fluctuation in the immediate vicinity of feature-A. As described in 

Section 3.7.1.1, the result of pixels with high intensity value is likely to be affected by 

neighbouring pixels with low intensity value. This is illustrated by the synthetic images 

that are arranged on the right hand side of the Figure 5.5. When only two input images 

are utilised, the synthetic quality is low. When more input images are included, the 

apparent defects are reduced thus the synthetic quality for feature-A is improved. In 

addition, it was observed that increasing the number of input images shows a great 

potential for enhancing the reproduction of repeating features. Figure 5.6 illustrates an 

example of this observation. 

 
Figure 5.6 Improvement in repeating feature matching (object edges in this as a result 
of increasing nInput.(image set 2). 

Case study 2: Negative impact of increasing nInput with fixed nVote 

The ROI in all the input images are arranged in Figure 5.7, and the ROI in the GT 

image at 12° as well as in the resultant synthetic images for different n-m pairings are 

organised in Figure 5.8. When nInput increases from 2 to 5, the quality of feature-A 

(portion of a curved object feature) improved because there are no dark pixels in the 

immediate vicinity of the feature-A in the input images 14o, 10o, 6o, 2o, -2o and -6o. 

However, a new darker object (highlighted with black circle in Figure 5.7) appears in 

image -14o and -10o, has caused the Basic LamI criterion to perform incorrectly on 

feature-A (see 7-1 and 8-1 images). 

     

   GT 12o                               2-1                    3-1                   4-1                  5-1 
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Figure 5.7 Regions of interest in input images over the range of 14° to -14°. 

 
Figure 5.8 Illustration of the disadvantage (i.e. decrease in quality) of increasing nInput 
by comparing the region of interest in the ground truth (GT) image and in the synthetic 
images produced by different n-m pairings. 

Case study 3: Positive impact of increasing nVote with fixed nInput 

The issue described in the previous case can be alleviated by increasing the nVote from 

1 to 8, as illustrated by Figure 5.9. It can be appreciated from the figure that the 

incorrect duplication of the curved object is partly rectified when nVote is increased 

from 7 to 8.  

 
 
Figure 5.9 Improvement in object edges as a result of increasing nVote for 8-1 (left 
most image), 8-2, 8-3, 8-4, 8-5, 8-6, 8-7 and 8-8 (right most image) pairing. 
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When the voting image is either 14o or 10o or 6o or 2o or -2o or -6o input image, the 

search for feature-A to the right hand direction will be affected by the new darker object 

that appeared in -10 o and -14 o images, leading to incorrect matching. However, when 

the voting image is -10o, the search is only affected by input image at -14o, so it can 

process feature-A better than with the other six voting images. The quality of the 

feature-A is further improved when the voting image is -14o because the search is 

limited to the left hand direction with the darker object on the right side of the feature-A.                  

Case study 4: Negative impact of increasing nVote with fixed nInput   

The synthetic result of feature-A (section of the object with higher intensity) will be 

very good when only 14o input image in Figure 5.10 is used as the voting image. This is 

because the search for correspondence is only performs to the right hand direction and 

there is no feature with intensity lower than the feature-A. On the other hand, when 

other input images are used as the voting image, the search to the left hand direction 

will encounter the dark area (i.e, feature-B) will cause some pixels of feature-A to be 

matched wrongly. In this case, adding more voting images would produce an inferior 

image quality, as shown in the 8-8 pairing result in Figure 5.11. 

 
 
Figure 5.10 Regions of interest in input images over the range of 14o to -14o. 
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Figure 5.11 Illustration of the disadvantage (i.e. decrease in quality) of increasing 
nInput by comparing the region of interest in the ground truth (GT) image and in the 
synthetic images produced by different n-m pairings. 

In summary, increasing either nInput or nVote can produce a positive and or negative 

impact on the resultant synthetic images. When only two input images are available, the 

quality of the generated target images is low because LamI does not handle pixels with 

a high intensity very effectively when they are in the vicinity of low intensity pixels. In 

practice, this is a very common scenario in luggage images; hence the performance 

when employing two input images is limited. Adding more input images can ease the 

problem, although there is a chance that adding more input images may generate 

undesirable artefacts. In practice, it is impossible to know in advance which image 

should be employed as the voting image(s) to achieve the best result. However, the 

hypothesis, as supported by the empirical results, of exploiting more images has on 

balance more advantages than disadvantages.            

5.2. Experiment employing the Improved LamI criterion 

The objective of this experiment is to determine the optimum number of input images 

(nInput) and number of voting images (nVote) when using the Improved LamI criterion 

with the rank based voting method to generate intermediary images.  

Despite the success achieved by the 8-8 rank based method, the image smearing 

produced by a darker object when in the vicinity of a lighter object remains a 

problematic aspect of the laminographic techniques employed in this work. This section 

presents the experiments results produced by the improved version of laminogram 

intensity criterion, which dynamically selects nInput employed for each iteration. 

Figure 5.12 and 5.13 are arranged to enable the convenient comparison of a family of 

NE curves for different n-m pairings recorded for target images at -120, -80, -40, 00, 40, 
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80, 120 angles. The NE curves are produced by using the laminography matching cost 

calculation together with the rank based disparity voting approach. A linear trend is 

superimposed on the discrete empirical data to aid the visual comparison of relative 

trends in the data. The symbol nVote1 indicates one voting image is employed. For 

comparative discussion, the GT image of target angle 12° and the resultant synthetic 

images produced by 2-1, 8-1 and 8-8 pairings are presented in Figure 5.14. 
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5.2.1 Result: NE curves 

Error graph for 12 degree
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Figure 5.12 NE plots for different n-m pairings produced by using the Improved LamI on laminography matching cost calculation and rank voting 
approach to synthesis target images at 12° (left top), 8°(right top), 4°(left bottom) and 0° (right bottom), where the angular separation between 
adjacent detector images is 4o. 
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Error graph for -4 degree
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Figure 5.13 NE plots for different n-m pairings produced by using the Improved LamI on laminography matching cost calculation and rank voting 
approach to synthesis target images at -4° (left top), -8°(right top) and -12°(left bottom), where the angular separation between adjacent detector 
images is 4o
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5.2.2 Result: Images 

                                              
                                       a                                                                                                                                           b 

                                                   
                                     c                                                                                                                                               d 
Figure 5.14 (a) The ground truth (GT) image at 12° and the resultant synthetic images produced by (b) 2-1, (c) 8-1 and (d) 8-8 pairings of nInput and 
nVote.      
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5.2.3 Analysis 

As evidenced by Figures 5.12, 5.13 and 5.14 the improved LamI inherits the same trend 

from the Basic LamI method reported in Section 5.1. The increased number of nInput 

and nVote, produces improved results. 

5.3 Comparative study of Basic LamI and Improved LamI 

The objective of this experiment is to compare the performance of the Basic LamI with 

respect to the Improved LamI. 

Using the rank based voting, both LamI criteria achieved the best performance when 8-8 

pairing is employed. Figure 5.15 depicts the NE plots of the two LamI criteria produced 

by the 8-8 pairing for target angles 12°, 8°, 4°, 0, 4°, -8° and -12°. As can be deduced 

from the highlighted image regions in Figure 5.16 the Improved LamI exhibits a general 

improvement in the image quality. 

5.3.1 Result: NE curves 

Error graph: Basic LamI vs Improved LamI
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Figure 5.15 Comparison of NE plots of rank based voting methods produced by the 8-8 
pairing for target angle 12°, 8°, 4°, 0, -4°, -8° and -12° using the Basic LamI and the 
Improved LamI criteria.  
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5.3.2 Result: Images 

 
a 

 
b 

Figure 5.16 Synthetic images produced using detector images separated by 4° for target 
angle 0° for produced by 8-8 pairing of the Basic LamI (a) and the Improved LamI (b) 
criteria.  

5.3.3 Analysis 

 
Figure 5.17 Laminograms of disparity 0 to disparity 7 used for synthesising target 
image at angle 0°. 
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Figure 5.16 shows the target image 0o generated by  Basic LamI and Inproved LamI. 

Figure 5.17 depicts the scene where the Basic LamI is prone to error because the 

adjacent feature (i.e, feature B) has a lower intensity. Consider feature-A has a disparity 

value of 1, so it focused in the laminogram with unity disparity value. However, due to 

smearing artefacts introduced by feature-B, the Basic LamI criterion will not choose 

disparity 1 but disparity 5 instead because the intensity of the pixel in disparity 5 is 

lower. Using the Improved LamI version, the problem may be circumvented because 

most of the feature-B would have been matched and removed before handling feature-A. 

Figure 5.18 presents the synthetic result for target image 0° produced by different 

iterations using the Improved LamI criterion. The pixels that have been matched in the 

first iteration (see Ite #1 image in Figure 5.18) are removed from all the input images. 

Then, a set of new laminograms is produced as arranged in Figure 5.19. It can be 

appreciated that after removing the pixels that have been matched in the first iteration, 

the degree of smearing over feature-A is reduced for all subsequent laminograms, which 

mitigates the mismatching encountered by the Basic LamI method. As the iteration 

continues, more pixels from feature-B will be matched and removed; eventually all of 

the pixels will be removed. The net result would be, ideally, “zero” smearing of 

feature-A and therefore an increased likelihood of a correct match. The performance of 

LamI is illustrated in Figure 5.20.                   

 
 
Figure 5.18 Synthesised images of target image 0° produced by different iterations (Ite) 
in ascending order where the top left image represents the first iteration result. 

     

 
   

     

Ite #1             Ite #2               Ite #3                 Ite #4                   Ite #5 
 

     Ite #6             Ite #7        Ite #8                 Ite #9                   Ite #10 
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Figure 5.19 Laminograms for disparity 0 to disparity 7 employed for synthesising a 
target image at angle 0° after the first iteration.   

 

 
 
Figure 5.20 Region of interest in the synthetic images produced using detector images 
separated by 4° for target angle 0°, produced by the Basic LamI (left) and the Improved 
LamI (right) criteria. 

 

5.4 Effect of increasing angular separation 

The objective of this experiment is to investigate the performance of the Improved LamI 

criterion as a function of nInput and nVote and the angular separation of the input 

images. Employing the integration of the Improved LamI and the rank based voting, the 

investigation is extended to include increased angular separation. In this thesis, the 

angular separations considered are 4 o, 6 o, 8 o and 10o. The increase in angular 

separation causes a concomitant decrease in the nInput and the number of different 

pairings for image synthesis. The relationship of angular separation, nInput and number 

of pairings are described by Table 4.1. 

Figure 5.21 is arranged to illustrate the effect of increasing angular separation on the NE 

calculation for different n-m pairings. Besides, the resultant synthetic images for target 

angle 12° produced by 2-1 and 8-8 pairings are presented in Figure 5.22 for discussion. 
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5.4.1 Result: NE curves 

Error graph a for 12 degree
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Figure 5.21 NE plots for different n-m pairings produced by using the Improved LamI on laminography matching cost calculation and rank based 
voting approach for (a)4o, (b)6o, (c)8oand (d10o angular separation between adjacent detector images where the respective target angle is 12 o, 7 o, -4 o 
and 1 o. 
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5.4.2 Result: Images 

 

Figure 5.22a Examples of synthetic images produced by 2-1 and the 8-8 pairing for (a)4o, (b)6o angular separation between adjacent detector images 
that are produced by using the Improved LamI on laminography matching cost calculation and rank based voting approach. The respective target 
angle is 12 o, 7 o.。 

  

 

     a 

    b 
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Figure 5.22b Examples of synthetic images produced by 2-1 and the 8-8 pairing for (c)8oand (d)10o angular separation between adjacent detector 
images that are produced by using the Improved LamI on laminography matching cost calculation and rank based voting approach. The respective 
target angle is  -4 o and 1 o. 

 

  

 

c 

   d 
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5.4.3 Analysis 

It can be appreciated from the NE plots in Figure 5.21 that all angular separations 

exhibited the same trend, i.e, the NE reduces as the nInput and nVote increases. This 

finding is supported by the visual inspection of the resultant synthetic images arranged 

in Figure 5.22 by comparison of the highlighted regions for each angular separation. 

5.5 Interim conclusion 

The investigation into two different versions of the LamI criterion is reported. Both 

versions achieved the best result when 8-8 pairing is employed. As described in Section 

5.1.3 and Section 5.2.3, while the increase in nInput and nVote offers a better solution, 

it may introduce unwanted artefacts during the synthesis process. Nonetheless, it was 

hypothesised and supported by the empirical results that the Improved LamI criterion 

could exploit the utility afforded by employing more images to produce an improved 

result. 
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Chapter Six Experiments and analysis: Sum of squared 

differences (SSD) criterion  

 
The experimental results and analysis concerning the SSD criterion are presented in this 

chapter. These experiments are designed to be part of a larger group of interrelated 

experiments as discussed in Chapter 4. The experiment plan, Figure 4.2, illustrates the 

relationship of the experiments to the final algorithm structure. The objective of the 

experiments described in this chapter is to initially determine the optimum number of 

nInput and nVote when the SSD criterion is incorporated into (a) sum of reciprocals 

(SOR) matching cost calculation and rank voting and (b) laminography matching cost 

calculation and rank voting methods. For convenience of discussion, the former is 

termed the SOR-Rank voting method and the latter is termed the Lam-Rank voting 

method. Empirical analysis is included to demonstrably compare the performance of 

these two competing methods. Finally, the optimum number of nInput and nVote is 

studied as a function of the increasing angular separation between the input X-ray 

images. The SSD window size is set to 5 x 5 pixels for all the experiments. 

6.1 SOR-Rank voting experiment  

The objective of the experiments is to determine the optimum number of input images 

(nInput) and voting images (nVote) when SOR-Rank voting method is used to generate 

intermediary images. Figure 6.1 and 6.2 are arranged to enable the convenient 

comparison of a family of NE (number of errors) curves for different n-m pairings 

recorded for the target images at 120, 80, 40, 00, -40, -80 and -120 angles. The NE curves 

are produced by applying the SSD criterion in the SOR matching cost calculation and 

the rank voting approach. The symbol nVote1 indicates one voting image is involved. 

Besides, the GT image at 12° and the resultant synthetic images produced by 2-1, 3-2 

and 8-8 pairings are presented in Figure 6.3 for comparative demonstration. 



105 

6.1.1 Result: NE curves 

Error graph for  12 degree
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Figure 6.1 NE plots for different n-m pairings produced by using the SSD criterion on the SOR-Rank voting method to synthesis target images at 12° 
(left top), 8°(right top), 4°(left bottom) and 0° (right bottom), where the angular separation between adjacent detector images is 4o. 
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Error graph for -4 degree
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Error graph for -8 degree
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Error graph for -12 degree
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Figure 6.2 NE plots for different n-m pairings produced using the SSD criterion on the SOR-Rank voting method to synthesis target images at -4° (left 
top), -8°(right top) and -12°(left bottom), where the angular separation between adjacent detector images is 4o.
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6.1.2 Result: Images 

 

Figure 6.3 (a) The ground truth (GT) image at 12° and the synthetic images produced by (b) 3-2, (c) 2-1 and (d) 8-8 pairings of nInput and nVote.

 

 
 

 

            a             b 

            c             d 
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6.1.3 Analysis 

The basic trend is that the NE increases when nInput increases. Employing two voting 

images produced improved performance in comparison to a single voting image. 

However, the NE increases as the nVote continues to increase. Considering all target 

images, the algorithm produced the best result with the 3-2 pairing of nInput and nVote. 

This is supported by an example of the synthetic images that are arranged in Figure 6.3. 

Figure 6.3(a) is the GT image while the other three images are the resultant images 

using (b) 3-2 pairing, (c) 2-1 pairing and (d) 8-8 pairing. The 2-1 pairing uses the least 

number of input images and voting images, which represents the typical result produced 

by the basic stereo matching method. While this pairing uses the minimum amount of 

processing time, the result is inferior to the best 3-2 pairing result. This signifies the 

success and importance of the developed V-DMX algorithm. On the other hand, when 

all images are employed for cost calculation and voting (i.e, 8-8 pairing in this example), 

the resultant images are not better than the images produced by the best 3-2 pairing. 

This can be appreciated by comparing Figure 6.3(b) and Figure 6.3(d). This desirable 

outcome has demonstrated that only three input images are required for producing 

sufficiently high quality images without using all the available detector images. Four 

case studies are presented to illustrate the effect of changing nInput and nVote, 

individually. 

Case study 1: Positive impact of increasing nInput with fixed nVote 

The example presented here concerns the synthesis of the target image at -10°. To 

enable an effective discussion, the regions of interest (ROI) in the input images are 

arranged in Figure 6.4. Besides, the same ROI in the ground truth (GT) image as well as 

in the resultant synthetic images for different n-m pairings are organised in Figure 6.5.  

 
 
Figure 6.4 Regions of interest in input images over the range of 12° to -12°. 

    
   12o             8o                4o                       0o                  -4o                      -8o                        -12o               
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Figure 6.5 Comparison of the region of interest (ROI) in ground truth (GT) image -10° 
and ROI in the synthetic images produced by different n-m pairings, the increase in 
image quality produced by increasing nInput is evident.  

 

A careful observation on the ROI extracted from the sequence of input images in 

Figure 6.4 revealed that feature-A is not overlapped in the first reference image -8o but 

is overlapped in the second reference image -12o. If only two input images are involved, 

feature-A will not be generated in the resultant synthetic image. This can be appreciated 

by inspecting 2-1 image in Figure 6.5. By adding the third input image -4o where the 

feature-A is not occluded assists the identification of the correct disparity for feature-A. 

This effect is evident on the 3-1 image in Figure 6.5. It is interesting to note that the 

images in Figure 6.5 indicate that any further addition of input images has no significant 

impact on synthesising feature-A. Nonetheless, the increase in nInput has provided 

additional support to the matching of repeating features, as exemplified by the features 

highlighted by black dotted circles in Figure 6.6. 

 
Figure 6.6 Improvement in repeating feature matching as a result of increasing nInput. 
( image set three). 

Case study 2: Negative impact of increasing nInput with fixed nVote 

 
 
Figure 6.7 Regions of interest in input images over the range of 14o to -14o. 
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      A 
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Figure 6.8 Comparison of the region of interest (ROI) in ground truth (GT) image -12° 
and ROI in the synthetic images produced by different n-m pairings, the decrease in 
image quality produced by increasing nInput is evident. 

 

In this example, the target image is at 12o, first reference image is at 14o and the second 

reference is at 10o. The ROI in all input images are arranged in Figure 6.7, and the ROI 

in the GT image as well as in the resultant synthetic images for different n-m pairings 

are organised in Figure 6.8. Comparatively, the image quality produced by using 2 to 5 

input images can be considered equivalent. However, as soon as the nInput increases to 

6 or 7 or 8, the image quality degrades significantly. This observation is due to the large 

angular separation between the reference images and the additional 6th input image 

at -6o (or 7th input image at -10 o or the 8th input image at -14o). Normally, the larger the 

angular separation between two images, the more disparate the image content becomes. 

This general implication can be appreciated by a visual comparison between the 

reference images and the additional input images at -8 o or at -10 o or -14 o. The large 

dissimilarity in the neighbourhood pixels of the two SSD windows involved contribute 

to the localised failure. It is concluded that the matching potential realised by the 

application of the SSD criterion is limited by the image dissimilarity which in turn is 

exacerbated by increased angular separation between the input images.   

Case study 3: Positive impact of increasing nVote with fixed nInput  

Consider the problem illustrated by the example in Figure 6.8 where the image quality 

degrades as the nInput increases. Empirical results in Figure 6.9 are arranged to 

demonstrate that the problem can be eased by increasing the number of voting images. 

This improved quality increases from left to right i.e. 8-1 is inferior to the 8-8 pairing. 

 
   

  
   GT 12°                       2-1           3-1         4-1         5-1   6-1     7-1       8-1 
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Figure 6.9 The region of interest in the synthetic images for target angle 12o produced 
by 8-1, 8-2, 8-3, 8-4, 8-5, 8-6, 8-7 and 8-8 pairings. 

 Case study 4: Negative impact of increasing nVote with fixed nInput 

 
Figure 6.10 Regions of interest in input images over the range of 14o to -14o.( image set 
2) 

 

 
Figure 6.11 Comparison of the region of interest (ROI) in ground truth (GT) image -12° 
and ROI in the synthetic images produced by different n-m pairings.(image set two) 

The target angle for this example is angle -12o. The ROI in all the input images are 

arranged in Figure 6.10. By comparing the feature-A in the GT image and in the 

resultant synthetic images produced by nVote = 1 to 5, it was considered to be 

comparable in terms of image quality. However, as the nVote increases to 6 or 7 or 8, 

feature-A becomes significantly distorted (see the 8-6, 8-7 and 8-8 pairings in Figure 

6.11). This is due to the increase in the overlapping in the ROI exhibited by the 6th, 7th 

and 8th voting images (i.e, 14o, 10o, 6o input images), which increases the matching 

ambiguity. 

In summary, when only two input images are involved, the SSD criterion is capable of 

handling most parts of the images very well. However, the SSD criterion is known to 

suffer from errors produced by discontinuity, repeating features, and overlapping 

   
 14o           10o             6o              2o             -2o            -6o             -10o         -14o    
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features. When the nInput increases to 3, an apparent improvement to the common 

problems were observed but simultaneously, the features that two input images can 

handle well were compromised. Nonetheless, it was considered that the utility afforded 

by employing three input images has conveyed an overall improvement to the image 

quality. As the nInput increased to more than 3, the contribution to address the common 

problems is marginal. On the other hand, the image quality reduced. This effect occurs 

because the increase in angular separation between the images (e.g, between the first 

and the fourth image) produces a concomitant increase in the dissimilarity in the SSD 

window content. It is concluded that the optimum number of nInput is three for the 

imaging geometry under consideration in this programme of research. 

Since nVote is either the subset or the full set of nInput, the nVote can only be either 1 

or 2 or 3. It was observed that while using one voting image can offer a good solution, 

SSD is still susceptible to the common problems discussed in the preceding text. The 

situation can be improved when using two images to vote for the result. Any further 

addition of voting images tends to impair the result produced by using 2 voting images. 

In comparison with the LamI criterion (as described by the Chapter 5), which favours 

more images, the empirical results produced by the SSD criterion has demonstrated the 

conflicting requirements of increasing the number of input images, as exemplified by 

the graphs in Figure 6.1 and 6.2. Thus, it is important to establish the best n-m pairing to 

optimise the utility afforded by the multiple images. In conclusion the empirical 

evidence supports, on balance, a 3-2 pairing for optimum performance. 

6.2 Lam-Rank voting experiment 

The objective of the experiments is to determine the optimum number of input images 

(nInput) and voting images (nVote) when Lam-Rank method is used to generate 

intermediary images.  

The method described in the previous section computes SSD matching costs between 

the voting images and the input images prior to combining the results using the SOR 

concept. However, when the SSD criterion is applied to the laminography matching cost 

calculation method, the computation of SSD costs refer to inherently dissimilar (in 

terms of intensity) voting images and laminograms. In other words, the SSD criterion 

operates on the raw data when using SOR method, while it operates on the laminograms 

(the combined) data when using laminography method. The rationale of the method is 
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associated with the in focus feature offered by the laminograms. When an object is in 

focus, the intensity variation in the neighbourhood window would be less fluctuating 

because the effect of other object is minimally averaged, making the in focus object to 

be more stable. 

Figures 6.12 and 6.13 are arranged to enable the convenient comparison of a family of 

NE curves for different n-m pairings recorded for target images at 120, 80, 40, 00, -40, -80 

and -120 angles. The NE curves are produced by applying SSD criterion to the 

integration of the laminography matching cost calculation and the rank voting approach. 

The symbol nVote1 indicates one voting images is involved. Besides, the GT image at 

12° and the resultant synthetic images produced by 2-1, 2-2 and 8-8 pairings are 

presented in Figure 6.14 for comparative discussion. 
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6.2.1 Result: NE curves 

Error graph for  12 degree
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Error graph for  0 degree
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Figure 6.12 NE plots for different n-m pairings produced by using the SSD criterion on Lam-Rank method to synthesis target images at 12° (left top), 
8°(right top), 4°(left bottom) and 0° (right bottom), where the angular separation between adjacent detector images is 4o. 
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Error graph for -4 degree
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Error graph for -8 degree
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Error graph for -12 degree
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Figure 6.13 NE plots for different n-m pairings produced by using the SSD criterion on Lam-Rank method to synthesis target images at -4°(left top),    
-8°(right top) and -12°(left bottom), where the angular separation between adjacent detector images is4o.
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6.2.2 Result: Images 

 

Figure 6.14 (a) The ground truth (GT) image at 12° and the synthetic images produced by (b) 2-2, (c) 2-1 and (d) 8-8 pairings of nInput and nVote.

 

  

 

            a             b 

            c             d 
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6.2.3 Analysis 

The basic trend observed is that fewer input images perform better, while an increased 

number of voting images improve the performance. It is evident that the combination 

for the best performance is the 2-2 pairing. This is supported by an example of the 

synthetic images that are arranged in Figure 6.14. Figure 6.14(a) is the GT image while 

the other three images are the resultant images using (b) 2-2 pairing, (c) 2-1 pairing and 

(d) 8-8 pairing. By visually comparing the highlighted image regions in Figure 6.14(c) 

and Figure 6.14(d), it can be appreciated that the 2-2 pairing outperformed the 2-1 

pairing result, as expected. However, if the input images and the voting images are each 

increased to eight, then the quality of the target is not radically impaired, as can be 

appreciated by comparing Figure 6.14(b) and Figure 6.14(d). The result has once again 

validated the rationale of the research programme that compelling synthetic images can 

be generated without employing all the detector images. 

6.3 Comparative study of SOR-Rank and Lam-Rank methods 

This experiment is a comparative study of the SOR matching cost calculation and the 

laminography matching cost calculation approaches. Figure 6.15 and Figure 6.16 report 

the synthetic results produced by the 3-2 pairing of the SOR approach and the 2-2 

pairing of the laminography approach.           

6.3.1 Result: NE curves 

Error graph: SOR-Rank vs Lam-Rank
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Figure 6.15 Comparison of NE plots of rank based voting methods produced by the 3-2 
pairing for the SOR matching cost calculation, and the 2-2 pairing of the laminography 
matching cost calculation methods, for target angle 12°, 8°, 4°, 0, -4°, -8° and -12° 
using the SSD criterion. 
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6.3.2 Result: Images 

 
a 

 
b 

 
Figure 6.16 Synthetic images produced using perspective images separated by 4° for 
target angle 12° produced by 3-2 pairing of the SOR matching cost calculation (a) and 
the 2-2 pairing of the laminography matching cost calculation methods (b) using the 
SSD criterion.  

6.3.3 Analysis 

As described in Section 3.3.2, SOR is designed to highlight the low matching cost 

between images, which produced better results than the laminography based method. 

This can be appreciated by comparing the curves in Figure 6.15 and the highlighted 

image regions in the resultant synthetic images in Figure 6.16. 
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Figure 6.17 Region of interest in the input images -6o -10o and -14o and in the 
laminograms with disparity.(image set 2).   

 
 
Figure 6.18 Region of interest in the ground truth (GT) image at -12° and the synthetic 
images produced by using the SSD on 3-2 SOR-Rank voting method and, by using the 
SSD on 2-2 Lam-Rank voting method. (image set 2). 

To enable a detailed discussion with an example, Figure 6.17 depicts correlated regions 

of interest (ROI) in input images at -6o, -10o and -140, as well as in laminogram with 

disparity 9. Figure 6.18 shows the same ROI in the GT target image and synthetic 

images produced by the SOR-Rank voting method using 3-2 pairing and the Lam-Rank 

voting method using 2-2 pairing. It was observed that the SOR based approach could 

handle feature-A better than the laminography based approach.  

Feature-A is overlapped by an adjacent structure in the second reference image 

(image -12o) but it is not subject to overlapping in the first reference image (image -10 o) 

and the next input image -6o in the image sequence. Using the SSD criterion, the 

matching cost on the feature-A between image -10o and image -14o is high, and the 

matching cost between image -10o and image -6o is low. When aggregating the two 

costs, the reciprocal nature of the SOR approach highlighted the low cost between -10o 

and -6o, thus generated the feature-A partially right (see Figure 6.18). 

It can be deduced from Figure 6.17 that feature-A is focused on laminogram 9 and its 

neighbourhood intensity value has changed in comparison with the first reference image. 

This led to a high matching cost that is relatively higher than the SOR approach when 

using the SSD criterion on feature-A between image 4o and laminogram 9. As a result, 

   

                                     Input images             Laminogram 
          -6o                            -10o                        -14o                              disparity 9          

   

A 

    GT -12o                  3-2 SOR-Rank  2-2 Lam-Rank  
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the laminography approach is inferior to SOR approach to synthesise feature-A, as 

presented in Figure 6.18.  

In conclusion, the SSD criterion has a better performance when using SOR matching 

cost calculation than laminography based approach.    

6.4 Effect of increasing the angular separation  

The objective of this experiment is to investigate the performance of the optimum 

setting of nInput and nVote for the SOR-Rank voting method as the angular separation 

between the input images is increased. In the research programme, the angular 

separations considered are 4 o, 6 o, 8 o and 10o. The increase in angular separation causes 

a concomitant decrease in the nInput and the number of different pairings for image 

synthesis. The relationship of angular separation, nInput and number of pairings are 

described in Chapter 5 Table 5.1.  

Figure 6.19 is arranged to illustrate the effect of increasing the angular separation on the 

NE calculation for different n-m pairings. The target angle for angular separation of 4°, 

6°, 8° and 10° is -4°, -11°, -12° and -8°, respectively. To enable a visual demonstration, 

the resultant synthetic images for target angle 12° produced by the 3-2 pairing and the 

worst pairing for each angular separation are presented in Figure 6.20. 
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6.4.1 Result: NE curves 
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Error graph d for -9 degree
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Figure 6.19 NE plots for different n-m pairings produced by using SSD criterion on the SOR-Rank voting method for (a)4o, (b)6o, (c)8oand (d)10o 
angular separation between adjacent detector images where the respective target angle is -4 o, -11 o, -4 o and -9 o.   
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6.4.2 Result: Images 

 
Figure 6.20a Examples of synthetic images produced by the 3-2 pairing (left column) and the worst pairing (right column) for (a)4o, (b)6o angular 
separation between adjacent detector images that are produced by using SSD criterion on the SOR-Rank voting method. The respective target angle is 
-4 o, -11 o. 

 

 

  

 

  a 

  b 
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Figure 6.20b Examples of synthetic images produced by the 3-2 pairing (left column) and the worst pairing (right column) for (c)8o and (d)10o angular 
separation between adjacent detector images that are produced by using SSD criterion on the SOR-Rank voting method. The respective target angle is  
-4 o and -9 o. 

  

  

   c 

d 
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6.4.3 Analysis 

It can be appreciated from Figure 6.19 that the NE plots produced by all angular 

separations exhibited the same trend, i.e, 3-2 has the lowest NE. This finding is 

supported by the visual inspection of the resultant synthetic images arranged in 

Figure 6.20. The images arranged on the left column are produced by the best 3-2 

pairing while the images on the right column are produced by the worst pairing for each 

respective angular separation.  

Generally as the angular separation of the beams is increased the resultant images 

become more disparate necessitating an increase in the pixel disparity limit, the size of 

disparity window becomes bigger which increase the number of false match. It can be 

appreciated from the synthetic images presented in Figure 6.20 that the image fidelity is 

degraded as the X-ray beam angle increases.  

6.5 Interim conclusion 

In conclusion, the empirical evidence indicated the best pairing for the SOR-Rank 

voting method and the Lam-Rank voting method is 3-2 and 2-2. This encouraging result 

revealed that the algorithm does not require all the detector images to produce 

sufficiently high quality synthetic images. The outcome of the comparative study has 

proven that the SOR approach is a better manner to compute matching cost when using 

SSD criterion. The capability of the SOR-Rank voting method was investigated as a 

function of four angular separations, which are 4°, 6°, 8° and 10°. For all angular 

separations, the 3-2 pairing outperformed other possible n-m pairings. The best result is 

obtained for 4º and the worst result at 10º. This finding was expected as increasing the 

separation of the X-ray beams also increases the maximum disparity which in turn 

increases the potential for spurious pixel matches.  
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Chapter Seven Development of the V-DMX algorithm 

 
This Chapter reports the development and empirical investigation of a dual criteria, 

which combines the complementary aspects of the Improved LamI and the SSD criteria; 

each criterion is presented and discussed independently in the preceding Chapters Five 

and Six, respectively.  

7.1 Comparative study of LamI criterion and SSD criterion  

Experiments reported in Chapters 5 &6 established the optimum pairing of input images 

and voting images for the Improved LamI and SSD criteria. For the SSD criterion, three 

input images and two voting images with SOR matching cost calculation (BEST-SSD) 

has the best performance. For the Improved LamI criterion, maximum number of input 

images and voting images (BEST-LamI) produced the best result. A comparative 

analysis of the BEST-SSD and BEST-LamI is presented in the following text and 

figures. 

7.1.1 Result: NE curves 

Error graph: BEST-SSD vs BEST-LamI 
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Figure 7.1 Comparisons of the BEST-SSD and BEST-LamI among seven target images. 
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7.1.2 Result: Images 

 
a 

 
b 

 
Figure 7.2 (a) target image 12o, created by the BEST-SSD and (b) target image 12o, 
created by the BEST-LamI.   

7.1.3 Analysis 

It can be appreciated from Figure 7.1 and the highlighted image regions in Figure 7.2 

that BEST-SSD generally outperforms BEST-LamI; however the following example 

illustrates the image feature that latter handles better than former.   
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Figure 7.3 Region of interest in input images over the range 14o to -14o that are 
separated by an angular separation of 40.(image set 2). 

 
 
Figure 7.4 Region of interest in the ground truth (GT) at -40; generated by the 
BEST-SSD  and the BEST-LamI methods.(image set 2). 

It can be observed from Figure 7.3 that, region A is located in a discontinuity area. 

Consequently the window based SSD criterion does not handle the intersecting linear 

features well, as can be appreciated from the resultant images presented in Figure 7.4. 

On the other hand the Improved LamI criterion, which is not window based, performs 

better than the SSD criterion. 

7.2 Establishing the V-DMX 

The comparative study reported in Section 7.1 shows that the BEST-SSD has a better 

overall performance except for overlapping and discontinuity regions. The V-DMX 

algorithm is investigated to take the advantage afforded by the Improved LamI to 

improve the BEST-SSD’s performance. The success of this improvement relies upon 

developing a method to search for when and where the Improved LamI outperforms the 

BEST-SSD. The search result is then used to replace the synthetic pixels produced by 

the BEST-SSD with the Improved LamI’s synthetic pixels. The method adopted in this 

research programme is based on an iteration process of Improved LamI and a NE 
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comparison in each iteration. Results from Chapter 5 revealed that the BEST-LamI 

employs the maximum nInput and nVote to produce the best synthetic images. This 

finding is based on comparing the final synthetic images produced by all the possible 

pairings of nInput and nVote. In each cycle of the iteration process, only a number of 

synthetic pixels are created. By comparing the NE of these pixels, other Improved LamI 

pairing(s) may outshine the BEST-LamI pairing. Therefore, in order to determine the 

optimum setting to integrate the Improved LamI with BEST-SSD, the performance of 

all possible pairings for the Improved LamI criterion should be reinvestigated. It should 

be noted that the iteration process is solely applied on the Improved LamI criterion 

while the synthetic images generated by the BEST-SSD is utilised as the NE 

comparison benchmark. The flowchart presented in Figure 7.5 describes algorithmic 

processes in this experiment. 

The first process is to generate the target image using the BEST-SSD method. Then, for 

each iteration of the Improved LamI criterion, calculate the NE of the generated 

synthetic pixels, only includes those pixels whose intensity are assigned in the current 

iteration. A section of the results is tabulated in Table 7.1 where the complete table for 

all iterations can be found in Appendix B. The third process is to calculate the NE of the 

BEST-SSD’s synthetic pixels, which have the same x,y position with those synthetic 

pixels generated by the Improved LamI in the current iteration. Table 7.2 tabulates a 

section of the result where the complete table is organised in Appendix B. Once all the 

iterations are completed, the final process compares the NE generated by all the possible 

pairings of Improved LamI and the BEST-SSD. Table 7.3 tabulates a section of the 

result where the NE of the BEST-SSD is subtracted from the NE of the Improved LamI, 

the complete table is organised in Appendix B. (Pair-n-m presents pairing with n input 

images and m voting images in following tables, and tables in Appendix B.)   
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Figure 7.5 Flowchart of the development of V-DMX. 
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7.2.1 Result: NE tables 

view-2-1 view-2-2 view-3-1 view-3-2 view-3-3 view-4-1 view-4-2 view-4-3 view-4-4 view-5-1 view-5-2 view-5-3 view-5-4 view-5-5
iteration1 20255 2178 2059 1762 1363 1350 1206 1079 982 974 865 798 754 725
iteration2 0 1804 18008 8470 2681 18423 13182 5282 3052 18820 15688 8468 4363 3192
iteration3 0 2148 0 4195 2109 0 3548 3298 2344 0 2584 3736 3408 2631   
 

view-6-1 view-6-2 view-6-3 view-6-4 view-6-5 view-6-6 view-7-1 view-7-2 view-7-3 view-7-4 view-7-5 view-7-6 view-7-7
iteration1 735 697 660 631 615 604 619 602 575 558 546 541 536
iteration2 19067 16720 10804 5940 3877 3163 19253 17537 12383 7564 4816 3624 3191
iteration3 0 2057 3781 3978 3388 2870 0 1680 3769 4442 3782 3209 2875  
 

view-8-1 view-8-2 view-8-3 view-8-4 view-8-5 view-8-6 view-8-7 view-8-8
iteration1 542 523 500 484 478 470 465 458
iteration2 19569 18217 13808 9137 5650 4088 3452 3142
iteration3 0 1368 3572 4517 4423 3724 3223 2951    
Table 7.1 The NE of the newly synthesised pixels in 3 iterations produced by the Improved LamI criterion using all possible pairings.(target 12o) 
 

view-2-1 view-2-2 view-3-1 view-3-2 view-3-3 view-4-1 view-4-2 view-4-3 view-4-4 view-5-1 view-5-2 view-5-3 view-5-4 view-5-5
iteration1 12957 2296 1989 1757 1518 1405 1259 1169 1102 1056 953 889 857 832
iteration2 0 1539 11054 6102 2462 11888 9105 4499 2896 12570 10889 6614 3932 3008
iteration3 0 1749 0 2983 1884 0 2374 2685 2154 0 1778 2836 2982 2455  
 

view-6-1 view-6-2 view-6-3 view-6-4 view-6-5 view-6-6 view-7-1 view-7-2 view-7-3 view-7-4 view-7-5 view-7-6 view-7-7
iteration1 816 779 745 726 711 701 688 669 644 631 622 620 615
iteration2 13020 11783 8102 5070 3598 3003 13240 12328 9090 6100 4306 3417 3057
iteration3 0 1352 2734 3313 3081 2674 0 1060 2620 3480 3299 2926 2643  
 

view-8-1 view-8-2 view-8-3 view-8-4 view-8-5 view-8-6 view-8-7 view-8-8
iteration1 602 584 566 554 549 541 536 529
iteration2 13384 12692 9865 6919 4868 3786 3259 2982
iteration3 0 910 2484 3428 3640 3324 2986 2757  
Table 7.2 The NE of the BEST-SSD”s synthetic pixels that have the same position with the newly matched pixels in three iterations by the improved 
LamI pairings. (target 12o) 
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view-2-1 view-2-2 view-3-1 view-3-2 view-3-3 view-4-1 view-4-2 view-4-3 view-4-4 view-5-1 view-5-2 view-5-3 view-5-4 view-5-5
iteration1 -7298 118 -70 -5 155 55 53 90 120 82 88 91 103 107
iteration2 0 -265 -6954 -2368 -219 -6535 -4077 -783 -156 -6250 -4799 -1854 -431 -184
iteration3 0 -399 0 -1212 -225 0 -1174 -613 -190 0 -806 -900 -426 -176   
 

view-6-1 view-6-2 view-6-3 view-6-4 view-6-5 view-6-6 view-7-1 view-7-2 view-7-3 view-7-4 view-7-5 view-7-6 view-7-7
iteration1 81 82 85 95 96 97 69 67 69 73 76 79 79
iteration2 -6047 -4937 -2702 -870 -279 -160 -6013 -5209 -3293 -1464 -510 -207 -134
iteration3 0 -705 -1047 -665 -307 -196 0 -620 -1149 -962 -483 -283 -232  
 

view-8-1 view-8-2 view-8-3 view-8-4 view-8-5 view-8-6 view-8-7 view-8-8
iteration1 60 61 66 70 71 71 71 71
iteration2 -6185 -5525 -3943 -2218 -782 -302 -193 -160
iteration3 0 -458 -1088 -1089 -783 -400 -237 -194  
Table 7.3 The NE difference between the BEST-SSD and the Improved LamI (NE of the BEST-SSD - NE of the Improved LamI) for newly synthesised 
pixels for three iterations.(target 12o)     
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7.2.2 Result: Images 

 
Figure 7.6 Target image 12o generated by the BEST-SSD method. 

 
Figure 7.7 Target image 12ogenerated by the Improved LamI using 3-3 pairing in 
iteration 1. 

7.2.3 Analysis 

Table 7.3 shows the comparison of the NE produced by the Improved LamI pairings 

and the BEST-SSD. A positive number denotes that, among the pixels generated of the 

target image in related iteration, the BEST-SSD generates more error than the Improved 

LamI, and vice-versa. The objective of this experiment is to explore how Improved 

LamI can be used to improve the performance of BEST-SSD, so a bigger number in the 

table indicates a bigger room for improvement. It can be observed that only iteration 

one contains positive data. This is the case for all possible pairings. This observation 

indicates that the Improved LamI created less error than the BEST-SSD method only 

when it operates in the first iteration. Also, it can be deduced from Table 7.3 that the 

pairing 3-3 has biggest positive number, which means this pairing produces the least NE 

compare to the NE of BEST-SSD. 
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In conclusion, the application of Improved LamI using 3-3 pairing in iteration 1 has the 

potential to improve the quality of target image created by the BEST-SSD. Owing to 

this, the V-DMX is developed to initially apply the 3-3 pairing of Improved LamI for 

one iteration to generate a portion of the synthetic image, and followed by using the 

BEST-SSD method to synthesise the remaining pixels. Figure 7.6 shows the target 

image 12o generated by the BEST-SSD method, and Figure 7.7 shows the target image 

12o generated by the Improved LamI using 3-3 pairing in iteration 1.   

7.3 Comparative study of V-DMX and BEST-SSD 

The objective of this experiment is to compare the performance of the V-DMX and the 

BEST-SSD.  

7.3.1 Result: NE curves 

Error graph: BEST-SSD vs V-DMX 

12400

12900

13400

13900

14400

14900

15400

15900

16400

16900

target 12 target 8 target 4 target 0 target -4 target -8 target -12
target image 

N
E

 B EST-SSD V -DMX
 

 
Figure 7.8 The NE comparison of the V-DMX with BEST-SSD generated by seven 
target images with an angular separation between adjacent detector images of 4°. 
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7.3.2 Result: Images 

 
 
Figure 7.9 Target image 12o created by the BEST-SSD method.  

 
 
Figure 7.10 Target image 12o created by the proposed V-DMX method. 

7.3.3 Analysis 

The performance of the proposed V-DMX is compared with BEST-SSD. Figure 7.9 and 

7.10 show the target image 12o generated by BEST-SSD and V-DMX. The NE plots are 

arranged in Figure 7.8. NE for other angular separation is presented in Appendix C. It 

can be deduced from the plots that the V-DMX has offered a slight increase in the 

overall performance over the BEST-SSD method. The improvement can be appreciated 

by referring to the example reported in the following text. 
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Figure 7.11 Region of interest in GT -8o and in target images generated by BEST-SSD, 
Improved LamI, Improved LamI iteration one, Improved LamI iteration one+ BEST-
SSD.( image set 2). 

It is obvious from the Figure 7.11 that the BEST-SSD struggled to handle region-A 

because region-A is located in discontinuity area. However, the Improved LamI can 

handle the region-A very well. When the Improved LamI iteration one is employed, 

region-A is partially generated, offering an improvement to the BEST-SSD method. 

7.4 Effect of increasing angular separation 

The objective of this experiment is to investigate the performance of the V-DMX 

algorithm as a function of the angular distribution of the X-ray beams employed to 

produce the input images. 
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7.4.1 Result: NE curves 
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Figure 7.12 Error number of the V-DMX for different angular separations of the X-ray 
beams  

 

7.4.2 Result: Images 

 

 
 
     Figure 7.13 GT image 11o. 
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     Figure 7.14 Target image generated by V-DMX with different angular separation.  

  

  

        Target 11o created by 10o angular separation          Target 11o created by 8o angular separation  

        Target 11o created by 6o angular separation          Target 11o created by 4o angular separation  
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7.4.3 Analysis 

As the angles are increased, the resultant imagery becomes increasingly disparate and 

the performance of the algorithm is decreased as can be observed in Figure 7.12 to 

Figure 7.14. The visual quality of the synthetic imagery produced at an angular 

separation of 6o is observed consistently to produce acceptable kinetic imagery; the 

decreasing quality of the synthetic imagery with increasing X-ray beam angle is also 

observed. However, the precise relationship between the visual quality of the synthetic 

imagery and its ultimate utility when incorporated into a sequence views is beyond the 

scope of this thesis, and is subject to an established human factors research programme, 

see Chapter 8. 
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Chapter Eight Summary, conclusion and future work     

8.1 Summary  

This research programme was instigated to investigate and develop an image synthesis 

algorithm capable of introducing high quality intermediary images between successive 

pairs of practical (or detector derived) images in a sequence of transmission X-ray 

images. The motivation is to establish the technological basis for a practical KDEX 

imaging system. One of the fundamental requirements of such an image synthesis 

technique is to develop matching algorithms to solve the correspondence problem. 

However, the correspondence problem is ill posed, exacerbated by the transparency 

property of X-ray images, which makes them fundamentally different from visible light 

images and presents additional considerations and complexities for image synthesis; for 

example the inapplicability of uniqueness, smoothness that are commonly applied to 

reflected visible light images. To address these issues, existing and new matching 

techniques have been proposed and integrated with new algorithmic procedures in an 

attempt to meet the overall aim of image synthesis in a KDEX scanning environment. 

Here the narrow angular separation of the order of 1º between successive views in the 

image sequences are dictated by constraints concerning perception of smooth motion, 

kinetic depth effect and binocular stereoscopic fusion. To this end it has been 

demonstrated that intermediary images may be successfully synthesised by processing 

adjacent perspective images produced by X-ray beams separated by angular increments 

of 6º. Therefore a time multiplexed sequence alternating between synthetic and X-ray 

sensor views may be produced, a key requirement if commercial machines are to be 

produced.  

The conventional SSD matching criterion has been experimentally evaluated and found 

to degrade significantly in discontinuity and overlap image regions but perform well for 

other regions. To address this limitation, a new criterion LamI based on laminography 

has been developed. Referenced to ground truth images, improvements are seen with 

this technique where SSD fails; although in the general case the technique 

underperforms SSD. Further, through the use of information from multiple images 

significant enhancements can be made. This study will enable further refinement to 

rationalise and optimise the current algorithmic approach, and is of practical 

significance when considering it is to be employed in human factors studies, funded by 



 140 

the US Department of Homeland Security (DHS) Human Factors Programme, under an 

established rolling grant entitled, “kinetic depth imaging for security screening”.  

The additional information made available by the multiple views utilised in this 

research programme is usefully implemented to enhance the treatment of repeating 

features and the handling of discontinuity and overlapping features.  

8.1.1 Algorithm  

The algorithm employs matching cost computation, voting for disparity, synthetic pixel 

generation and void filling. Images are categorised into five groups: detector images, 

target images, reference images, input images, and voting images. Different images play 

different roles in the process.  

In stereo matching, for one pixel with position (x,y) in image I1, the matching cost 

calculation only requires to consider the “other” perspective image, so each disparity 

has one matching cost. However, with multiple images, there are multiple matching 

costs and each disparity value has several matching costs; these costs require 

aggregation to obtain the final matching cost. Two matching cost computation methods 

are proposed in this project: laminography and sum of reciprocals. 

The concept of summing multiple images, with appropriate geometric registration, to 

produce an image of a planar section of an object is the basis of laminography. By 

appropriate processing of the input images, a set of laminograms, representing 

contiguous depth planes is produced. The laminogram intensity is the average value of 

the intensities contributed by all the images. The resultant matching cost calculation is 

equal to summing, with equal weighting, all the matching costs for a given disparity. 

The outcome of such a scheme is the loss of details concerning the individual matching 

costs. To preferentially emphasize low matching costs, the sum of reciprocals is 

proposed. The number of input images included in the process is nInput.  

A voting mechanism is proposed to perform multiple matching consistency voting using 

the multiple detector images. The number of voting images is equal to nVote, where 

nInput  ⊇   nVote.  A voting process is implemented after the matching cost computation 

stage. This process performs first a rank order procedure to the matching cost values 

before summing those values together.  
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Once the disparities are determined, both intensity and position (x,y) of the synthetic 

pixels may be computed. The process begins with employing the disparities of the first 

reference image to synthesise intermediate target pixels. The disparities of each pixel in 

the first reference image enabled the algorithm to determine its correspondence in the 

second reference image. Upon the completion of using all pixels of the first reference 

image for image synthesis, the algorithm can identify which pixels in the second 

reference image are not matched by the pixels of the first reference image. The 

algorithm will subsequently utilise the disparities of the unmatched pixels to synthesise 

target pixels that are not generated by the first reference image. The latter process is 

designed to partially cope with the multiple correspondences property in X-ray images. 

In other words, the latter process enabled some pixels in the first reference image to 

have two disparities (i.e. two correspondences). While this method only provided a 

partial solution, the empirical evidence has supported the rationale of the method. 

After the synthetic pixel generation process, it is still possible that some pixels in the 

target image have not been assigned an intensity value; such “empty” pixels are termed 

voids.  The possible causes of voids include errors in the disparity information table and 

inadequate treatment of multiple correspondences. The final process assigns intensity 

values to the voids by look back to it’s possible correspondent point in the first 

reference image, then select the point that have maximum score that correspond to the 

disparity that move to the void.        

8.1.2 Algorithm criteria  

To calculate the matching cost, appropriate criteria have been developed and applied. A 

novel criterion based on laminogram intensity is proposed in this project. This criterion 

utilises depth information contained in laminograms. The criterion exploits a basic 

property of laminograms concerning the reduction in intensity values which comprise 

the in focus portions of the laminogram. Simplistically stated, the “in focus” pixels 

exhibit the lowest relative intensities in comparison to the pixels with same position in 

other laminograms. This criterion is not good at handling pixels when there are other 

pixels that have lower intensity value around it. An improved version is developed to 

dynamically select input images base on iteration level to ease the effect of low intensity 

value pixels on high intensity value pixels. Experiments are conducted to explore 

laminogram intensity criterion, how many input images and voting images have best 

performance.  
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The SSD criterion is well known in stereo matching world for its utility and reliability. 

Experiments have been conducted to explore all the possible combinations of input 

images, voting images, matching cost calculation method, experiments show that, for 

SSD, three input images with two voting images and SOR matching cost calculation 

exhibits the best overall performance in comparison to other combinations.    

A comparative study of SSD and improved LamI is reported. SSD produces overall 

better performance in comparison to Improved LamI. However, it was observed that for 

some features, such as discontinuity areas and overlapping regions, Improved LamI 

outperforms SSD. The final version of the algorithm termed V-DMX is designed to 

combine the SSD criterion and the improved laminogram intensity criterion.   

Independently, each criterion offers different but important solutions to address the 

problem. The criteria are implemented as a complementary pair, mutually reinforcing 

the performance of the algorithm. Each criterion is run independently to generate 

disparity information for reference images, and the disparity information is integrated 

together in the synthetic pixel generation process. 

8.2 Conclusions 

In terms of the original aims and objectives of this research program, there has been 

significant progress. An algorithm has been developed that takes practical multiple-view 

X-ray images and generates synthesised intermediate views. 

The experiments reported investigate the fidelity of the synthesised images as a function 

of the number of input images, number of voting images, criteria, and X-ray beam 

angular separation. A performance error number, based on error with respect to a 

ground truth image, indicates the quality of synthesised images. 

Within the constraints of the experimental approach taken, these appear to support the 

feasibility of generating intermediary images from practical images with an angular 

separation of up to 6o. Since the notional requirement for image separation is 1o, this 

holds the prospect of a substantial reduction in hardware complexity. Such encouraging 

results lead to the conclusion that this work should form the basis of further 

investigation and optimization outlined in the following section. 
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One of difficulties encountered in the work undertaken is deriving a meaningful criteron 

to quantify the fidelity of the synthesized image. In the absence of access to more 

sophisticated human factors related assessment (ultimately the image is expected to be 

viewed by a human operator), the techniques employed involved a pixel error count and 

a qualitative visual inspection with reference to a ground truth practical image. These 

may not be the most applicable indicators when the image is viewed in the context of an 

operating KDEX system. 

It should also be noted that whilst good results have been obtained using the intensity of 

reference image to synthesis target images, this work has focused on the correspondence 

problem thus leaving intensity determination an area for further work. 

The development of the final algorithm involved examination of various techniques 

independently from which separate conclusions can be drawn. 

8.2.1 Laminogram intensity criterion  

The laminogram intensity criterion, designed to extract in focus content from 

laminograms, here the empirical evidence indicates that this criterion performs best with 

the maximum number of input images and the maximum number of voting images. 

Increasing the number of input images tends to produce improved laminographic data 

and produce less ambiguous results. With more voting images, more images are 

involved in the disparity consistency voting.      

In the context of this work the laminogram criterion is not reliable for the processing of 

relatively high intensity pixel values when lower intensity image structures produce 

“smearing” artefacts in the “processing vicinity”. To accommodate this scenario the 

improved version of laminogram intensity criterion dynamically selects input images on 

each iteration to create new laminograms, the result has been significantly improved.  

8.2.2 SSD criterion             

SSD is successfully applied by the synthetic algorithm. SSD performs best with three 

input images and two voting images with SOR matching cost calculation. However, it 

does not perform well for repeating features, overlapping and discontinuity regions, 

although with three input images and two voting images, performance enhancement can 
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be observed in comparison to standard stereo matching, which utilises two input images 

and one voting image.  

8.2.3 Voting based dual criteria multiple X-ray images synthesis (V-DMX)  

A comparison of the best performance pair of SSD and the best performance pair of 

Improved LamI reveals that the SSD has better performance than the improved 

laminogram intensity criterion. Interestingly, for some features exhibiting discontinuity 

and overlap regions, the improved laminogram intensity criterion performs better than 

SSD. A voting based dual criteria multiple X-ray images synthesis (V-DMX) has been 

successfully developed to exploit the complimentary advantages offered by 

implementing both criteria. Various implementations of the two criteria are investigated; 

experiment results indicate that running improved laminogram intensity criterion with 

three input images, three voting images, with iteration one followed by SSD employing 

three input images and two voting images has the best performance.   

The performance of V-DMX is compared with the best performance of SSD; 

experiment results show that, V-DMX has enhanced performance relative to the lone 

use of the SSD criterion.  

8.2.4 Final conclusion  

Empirical evidence has demonstrated that intermediary images may be successfully 

synthesised by processing adjacent detector images produced by X-ray beams separated 

by angular increments of up to 6º. Therefore, a time multiplexed sequence alternating 

between synthetic and X-ray sensor views may be produced. This encouraging result 

has formed a basis for further research to optimise the current algorithmic approach 

using dual-energy X-ray data.  

8.3 Future work 

The approach developed in this research is still in its infancy. A number of 

interdependent areas require further development work to improve the image synthesis 

techniques presented in this research. The future work is proposed as follows. 

1. Improvement in matching algorithm using dual-energy X-ray data   

 Measurements taken in two different X-ray energy windows will produce two 

sets of data, i.e, low-energy and high-energy X-ray data, which is the basis for 
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materials discrimination. It is hypothesised that the independent and or 

combined treatment of the low-energy and the high-energy X-ray data could 

enhance the algorithmic approach developed in this research programme. An 

investigation is planned to establish the efficacy of this hypothesis. 

2. Human factors evaluation to support algorithm development       

The success of the approach adopted is dependent upon the algorithms being of 

sufficiently high quality to not destroy the flow of 3D visual information to the 

observer. The validity of such work is dependent upon psychological human 

factors considerations. It is planned to test future imagery in collaboration with 

the US Dept. of Homeland Security (DHS) within the context of an established 

funded collaboration. Thus image sequences containing X-ray sensor images 

and synthetic images can be used to establish if kinetic and stereo depth cues are 

adversely affected by the inclusion of synthetic images. 

3. Extension of the synthesis algorithm to colour encoded X-ray images  

The future development of the image synthesis technique to compute 

intermediary views is to be extended to the colour encoded dual-energy 

(materials discriminating) X-ray data produced by the experimental machine. A 

novel approach utilising basis material subtraction calibration is planned in 

collaboration with the HOSDB. The future development of the image synthesis 

technique will be extended to examine the problem of producing matched colour 

images by applying basis material subtraction (BMS) calibration [8]. The benefit 

of including the BMS calculations will be theoretically assessed and if 

appropriate empirically demonstrated. The performance of the algorithms will 

continue to be tested by quantitative comparison of the computed images with 

the sensor views being replaced. 

4. Application of AI techniques to adaptively select images for processing 

The current algorithm depends on conducting a series of experiments to 

predetermine the optimum number of input images for the image synthesis 

process. This approach may limit the full potential of the algorithm during its 

actual field test. The solution to this limitation is to investigate various AI 

techniques to adaptively select images for processing. 

5. Improvement in intensity assignment 

Selecting the correct intensity to generate a target image is very important. This 

research programme has adopted an approximation, but effective, approach to 

assign synthetic pixels with the intensity of its correspondence points in the 
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reference images. Thus, there is scope to seek for a quantitative method to 

decide the intensity of target image using more sophisticated algorithms. 

6. Choose more than one disparity for one pixel based on the rank voting values 

The developed algorithm employs the disparity information of the second 

reference images and the void filling process, in an attempt, to partially solve the 

multiple correspondence problems associated with X-ray images. The practical 

limitation of the proposed method is the selection of only one “winning” 

disparity for each pixel under consideration. Since the rank voting values are 

correlated with the probability of the disparities, a statistical method may be 

exploited to choose more than one disparities for each pixel. 

7. Laminogram pre-processing  

Pre-processing of the laminograms to reduce the effect of focus artefacts has the 

potential to significantly improve the current algorithm.  
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Appendix B Tables for establishing the V-DMX experiment 

 
The NE of the newly synthesised pixels in each iterations (Ite) produced by the Improved LamI criterion using all possible pairings.(target -12o) 
 

Ite1 Ite2 Ite3 Ite4 Ite5 Ite6 Ite7 Ite8 Ite9 Ite10 Ite11 Ite12 Ite13 Ite14
Pair-2-1 20255 0 0 0 0 0 0 0 0 0 0 0 0 0
Pair-2-2 2178 1804 2148 2237 2379 2305 1948 1361 846 505 188 37 14 1
Pair-3-1 2059 18008 0 0 0 0 0 0 0 0 0 0 0 0
Pair-3-2 1762 8470 4195 2245 1072 607 406 191 66 69 33 12 13 5
Pair-3-3 1363 2681 2109 1623 1302 1174 1070 1037 833 774 610 461 364 772
Pair-4-1 1350 18423 0 0 0 0 0 0 0 0 0 0 0 0
Pair-4-2 1206 13182 3548 1120 401 218 101 80 35 26 12 2 5 0
Pair-4-3 1079 5282 3298 1991 1232 853 637 508 430 320 273 228 174 432
Pair-4-4 982 3052 2344 1605 1347 1024 849 811 679 585 522 453 422 1534
Pair-5-1 974 18820 0 0 0 0 0 0 0 0 0 0 0 0
Pair-5-2 865 15688 2584 527 208 85 53 49 12 14 3 0 1 0
Pair-5-3 798 8468 3736 1833 942 543 483 341 271 225 180 111 123 244
Pair-5-4 754 4363 3408 2051 1290 849 661 474 431 373 358 278 254 1037
Pair-5-5 725 3192 2631 1849 1273 991 779 670 573 502 442 395 335 2082
Pair-6-1 735 19067 0 0 0 0 0 0 0 0 0 0 0 0
Pair-6-2 697 16720 2057 385 134 67 32 15 15 3 0 0 0 0
Pair-6-3 660 10804 3781 1388 715 429 330 244 167 107 96 65 38 122
Pair-6-4 631 5940 3978 2233 1159 664 469 381 324 312 243 180 171 700
Pair-6-5 615 3877 3388 2150 1279 932 660 549 431 367 341 289 247 1478
Pair-6-6 604 3163 2870 1996 1342 955 711 637 485 419 397 390 324 2333
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Ite1 Ite2 Ite3 Ite4 Ite5 Ite6 Ite7 Ite8 Ite9 Ite10 Ite11 Ite12 Ite13 Ite14 Ite15
Pair-7-1 619 19253 0 0 0 0 0 0 0 0 0 0 0 0
Pair-7-2 602 17537 1680 220 103 41 20 12 5 1 1 0 0 0
Pair-7-3 575 12383 3769 1206 506 331 216 154 127 85 63 48 25 63
Pair-7-4 558 7564 4442 2061 901 572 408 325 283 226 181 152 140 454
Pair-7-5 546 4816 3782 2320 1286 775 559 466 386 340 256 223 213 1048
Pair-7-6 541 3624 3209 2237 1339 920 670 480 463 422 368 343 271 1806
Pair-7-7 536 3191 2875 2097 1346 882 715 574 444 451 361 350 328 2666
Pair-8-1 542 19569 0 0 0 0 0 0 0 0 0 0 0 0
Pair-8-2 523 18217 1368 214 62 32 19 4 0 3 0 1 0 0
Pair-8-3 500 13808 3572 1021 427 243 148 125 101 74 42 49 22 48
Pair-8-4 484 9137 4517 1809 839 490 373 287 225 177 147 109 88 267
Pair-8-5 478 5650 4423 2436 1227 696 450 375 345 267 238 161 151 751
Pair-8-6 470 4088 3724 2316 1396 854 592 503 352 325 269 274 270 1414
Pair-8-7 465 3452 3223 2215 1448 942 676 509 435 360 335 294 284 2166
Pair-8-8 458 3142 2951 2058 1389 936 655 547 424 393 371 304 312 2911  
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The NE of the BEST-SSD’s synthetic pixels that have the same position with the newly matched pixels in each iteration by the improved LamI 

pairings. (target -12o) 

Ite1 Ite2 Ite3 Ite4 Ite5 Ite6 Ite7 Ite8 Ite9 Ite10 Ite11 Ite12 Ite13 Ite14 Ite15
Pair-2-1 12957 0 0 0 0 0 0 0 0 0 0 0 0 0
Pair-2-2 2296 1539 1749 1602 1614 1461 1237 836 537 250 116 31 11 1
Pair-3-1 1989 11054 0 0 0 0 0 0 0 0 0 0 0 0
Pair-3-2 1757 6102 2983 1344 626 334 199 98 31 39 17 7 3 5
Pair-3-3 1518 2462 1884 1368 967 795 653 587 448 468 337 270 207 456
Pair-4-1 1405 11888 0 0 0 0 0 0 0 0 0 0 0 0
Pair-4-2 1259 9105 2374 728 229 137 51 44 16 10 5 2 4 0
Pair-4-3 1169 4499 2685 1588 823 542 408 341 251 178 132 140 112 231
Pair-4-4 1102 2896 2154 1406 1057 711 623 526 393 322 299 243 228 898
Pair-5-1 1056 12570 0 0 0 0 0 0 0 0 0 0 0 0
Pair-5-2 953 10889 1778 322 106 60 37 21 11 6 1 2 0 0
Pair-5-3 889 6614 2836 1217 615 328 264 203 137 113 76 49 68 135
Pair-5-4 857 3932 2982 1693 1000 559 411 312 271 239 210 175 144 606
Pair-5-5 832 3008 2455 1672 1064 747 531 459 355 316 248 224 188 1271
Pair-6-1 816 13020 0 0 0 0 0 0 0 0 0 0 0 0
Pair-6-2 779 11783 1352 223 69 42 22 9 7 4 3 0 0 0
Pair-6-3 745 8102 2734 933 407 244 181 121 100 68 58 32 18 60
Pair-6-4 726 5070 3313 1675 794 402 306 225 212 181 155 104 112 363
Pair-6-5 711 3598 3081 1847 1047 680 436 367 269 237 210 180 165 886
Pair-6-6 701 3003 2674 1783 1142 753 516 454 336 239 249 210 189 1430
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Ite1 Ite2 Ite3 Ite4 Ite5 Ite6 Ite7 Ite8 Ite9 Ite10 Ite11 Ite12 Ite13 Ite14 Ite15
Pair-7-1 688 13240 0 0 0 0 0 0 0 0 0 0 0 0
Pair-7-2 669 12328 1060 121 60 18 8 5 6 2 0 0 0 0
Pair-7-3 644 9090 2620 764 300 165 124 89 66 60 41 26 19 45
Pair-7-4 631 6100 3480 1477 593 329 251 186 158 129 112 91 74 240
Pair-7-5 622 4306 3299 1935 1029 538 393 292 215 205 153 139 126 609
Pair-7-6 620 3417 2926 2026 1156 734 483 348 283 245 208 172 173 1085
Pair-7-7 615 3057 2643 1935 1218 716 534 407 324 279 216 194 169 1547
Pair-8-1 602 13384 0 0 0 0 0 0 0 0 0 0 0 0
Pair-8-2 584 12692 910 118 40 14 10 3 0 2 0 0 0 0
Pair-8-3 566 9865 2484 650 227 144 82 67 62 44 32 27 19 34
Pair-8-4 554 6919 3428 1340 515 273 222 160 112 88 89 67 54 156
Pair-8-5 549 4868 3640 1897 926 452 279 214 184 146 114 102 95 441
Pair-8-6 541 3786 3324 1997 1115 707 454 347 236 196 172 147 146 787
Pair-8-7 536 3259 2986 1936 1292 758 535 362 337 247 218 182 160 1186
Pair-8-8 529 2982 2757 1830 1254 792 513 400 332 290 261 206 186 1590  
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The NE difference between the BEST-SSD and the Improved LamI (i.e, NE of the Improved LamI – NE of the BEST-SSD) for newly synthesised 

pixels for each iterations. (target -12o)     

Ite1 Ite2 Ite3 Ite4 Ite5 Ite6 Ite7 Ite8 Ite9 Ite10 Ite11 Ite12 Ite13 Ite14 Ite15
Pair-2-1 -7298 0 0 0 0 0 0 0 0 0 0 0 0 0
Pair-2-2 118 -265 -399 -635 -765 -844 -711 -525 -309 -255 -72 -6 -3 0
Pair-3-1 -70 -6954 0 0 0 0 0 0 0 0 0 0 0 0
Pair-3-2 -5 -2368 -1212 -901 -446 -273 -207 -93 -35 -30 -16 -5 -10 0
Pair-3-3 155 -219 -225 -255 -335 -379 -417 -450 -385 -306 -273 -191 -157 -316
Pair-4-1 55 -6535 0 0 0 0 0 0 0 0 0 0 0 0
Pair-4-2 53 -4077 -1174 -392 -172 -81 -50 -36 -19 -16 -7 0 -1 0
Pair-4-3 90 -783 -613 -403 -409 -311 -229 -167 -179 -142 -141 -88 -62 -201
Pair-4-4 120 -156 -190 -199 -290 -313 -226 -285 -286 -263 -223 -210 -194 -636
Pair-5-1 82 -6250 0 0 0 0 0 0 0 0 0 0 0 0
Pair-5-2 88 -4799 -806 -205 -102 -25 -16 -28 -1 -8 -2 2 -1 0
Pair-5-3 91 -1854 -900 -616 -327 -215 -219 -138 -134 -112 -104 -62 -55 -109
Pair-5-4 103 -431 -426 -358 -290 -290 -250 -162 -160 -134 -148 -103 -110 -431
Pair-5-5 107 -184 -176 -177 -209 -244 -248 -211 -218 -186 -194 -171 -147 -811
Pair-6-1 81 -6047 0 0 0 0 0 0 0 0 0 0 0 0
Pair-6-2 82 -4937 -705 -162 -65 -25 -10 -6 -8 1 3 0 0 0
Pair-6-3 85 -2702 -1047 -455 -308 -185 -149 -123 -67 -39 -38 -33 -20 -62
Pair-6-4 95 -870 -665 -558 -365 -262 -163 -156 -112 -131 -88 -76 -59 -337
Pair-6-5 96 -279 -307 -303 -232 -252 -224 -182 -162 -130 -131 -109 -82 -592
Pair-6-6 97 -160 -196 -213 -200 -202 -195 -183 -149 -180 -148 -180 -135 -903  
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Ite1 Ite2 Ite3 Ite4 Ite5 Ite6 Ite7 Ite8 Ite9 Ite10 Ite11 Ite12 Ite13 Ite14 Ite15
Pair-7-1 69 -6013 0 0 0 0 0 0 0 0 0 0 0 0
Pair-7-2 67 -5209 -620 -99 -43 -23 -12 -7 1 1 -1 0 0 0
Pair-7-3 69 -3293 -1149 -442 -206 -166 -92 -65 -61 -25 -22 -22 -6 -18
Pair-7-4 73 -1464 -962 -584 -308 -243 -157 -139 -125 -97 -69 -61 -66 -214
Pair-7-5 76 -510 -483 -385 -257 -237 -166 -174 -171 -135 -103 -84 -87 -439
Pair-7-6 79 -207 -283 -211 -183 -186 -187 -132 -180 -177 -160 -171 -98 -721
Pair-7-7 79 -134 -232 -162 -128 -166 -181 -167 -120 -172 -145 -156 -159 -1119
Pair-8-1 60 -6185 0 0 0 0 0 0 0 0 0 0 0 0
Pair-8-2 61 -5525 -458 -96 -22 -18 -9 -1 0 -1 0 -1 0 0
Pair-8-3 66 -3943 -1088 -371 -200 -99 -66 -58 -39 -30 -10 -22 -3 -14
Pair-8-4 70 -2218 -1089 -469 -324 -217 -151 -127 -113 -89 -58 -42 -34 -111
Pair-8-5 71 -782 -783 -539 -301 -244 -171 -161 -161 -121 -124 -59 -56 -310
Pair-8-6 71 -302 -400 -319 -281 -147 -138 -156 -116 -129 -97 -127 -124 -627
Pair-8-7 71 -193 -237 -279 -156 -184 -141 -147 -98 -113 -117 -112 -124 -980
Pair-8-8 71 -160 -194 -228 -135 -144 -142 -147 -92 -103 -110 -98 -126 -1321  
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Appendix C NE for comparative study of V-DMX and BEST-

SSD experiment  

 
The NE comparison of the V-DMX with BEST-SSD generated by seven target images 

with an angle separation between adjacent detector images of 6°. 

Error graph: BEST-SSD vs V-DMX 
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The NE comparison of the V-DMX with BEST-SSD generated by seven target images 

with an angle separation between adjacent detector images of 8°. 

Error graph: BEST-SSD vs V-DMX 
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The NE comparison of the V-DMX with BEST-SSD generated by seven target images 

with an angle separation between adjacent detector images of 10°. 

Error graph: BEST-SSD vs V-DMX 
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