1 The hyporheic zone as an invertebrate refuge: a review of variability in space, time,

2 taxa and behaviour

3

4 Rachel Stubbington

5 Biosciences, School of Science and Technology, Nottingham Trent University,

- 6 Clifton Campus, Nottingham NG11 8NS, UK
- 7

8 Abstract

9 The hyporheic zone is a potential refuge that can promote persistence of benthic 10 invertebrates during adverse conditions in surface streams. For decades, changes in 11 invertebrate depth distribution have been investigated in relation to flood, low flow and drying events, but evidence for use of the hyporheic refuge remains equivocal. 12 13 This review examines the evidence for the hyporheic zone's refugial role during hydrological disturbances. Refuge potential is influenced by determinants in four 14 15 categories. First, refuge use varies spatially in relation to physical habitat parameters, including sediment porosity and hydrologic exchange. Second, refuge use is 16 17 temporally variable, and reflects disturbance characteristics including rate of onset. 18 Third, refuge use is taxon-specific, depending on a range of morphological, 19 behavioural and physiological traits. Fourth, the behaviours governing refuge use 20 vary, with both active migrations and passive habitat use playing important roles in 21 community persistence. These four determinants interact to influence refuge use; for 22 example, the physical habitat providing an adequate refuge will vary between taxa. 23 Despite this variability, the hyporheic zone is an important component in the suite of 24 refuges that facilitate community resilience to disturbance events. As such, its 25 ecological integrity should be safeguarded through sensitive management and 26 effective rehabilitation schemes. 27 28 Additional keywords 29 Refugium, refugia, macro-invertebrate, hyporheic refuge hypothesis, epigean 30 31 Running head

32 Variability in the hyporheic zone refuge

34 Introduction

35 In recent decades, the contribution of the hyporheic zone (HZ) to the ecological 36 functioning of lotic ecosystems has become increasingly clear (Stanford and Ward 37 1993; Boulton et al. 1998; Krause et al. 2011). As an ecotone connecting the surface 38 stream and groundwater, hydrologic exchange through the HZ allows water, nutrients, 39 organic matter and organisms to move between ecosystem components (Brunke and 40 Gonser 1997; Malard et al. 2002; Williams et al. 2010). Ecosystem services provided 41 by the HZ include pollutant attenuation (Gandy et al. 2007; Domagalski et al. 2008), 42 secondary production (Smock et al. 1992; Wright-Stow et al. 2006), and habitat 43 provision for both spawning salmonids (Malcolm et al. 2004) and an invertebrate community comprising permanent hyporheic residents and transient migrants from the 44 45 benthic zone.

46

47 A key ecological role proposed for the HZ is as a refuge that promotes persistence of 48 benthos during disturbances in the surface stream (Orghidan 1959, 2010; Wood et al. 49 2010; Dole-Olivier in press), in particular during the hydrological extremes of floods 50 (Williams and Hynes 1974; Marchant 1988; Dole-Olivier et al. 1997) and drying 51 (Clifford 1966; Delucchi 1989; Clinton et al. 1996). At both extremes, some studies 52 have recorded increases in the hyporheic abundance of invertebrates during a 53 disturbance, providing evidence of refuge use, whilst other research has reported no 54 significant changes in depth distributions (summarised in Tables 1 and 2). In addition, 55 increased hyporheic abundance of benthos has been noted during low flows, due to 56 submerged habitat contraction and a concurrent increase in biotic interactions (e.g. 57 predation, competition) in the benthic zone (Covich et al. 2003; Stubbington et al. 58 2010, 2011a, 2011b). In contrast, other studies have observed no change in the depth 59 distribution of benthic taxa as flow declines (James et al. 2008; James and Suren 60 2009; Table 3).

61

Whilst these inconsistent reports of refuge use can be explained in part by differences between sampling strategies (Dole-Olivier 2011), the equivocal evidence also indicates that vertical migrations depend on certain criteria being met. Refuge use is therefore likely to vary spatially at multiple scales. In addition, whilst the HZ is a more stable habitat than the benthic zone, its sediments vary temporally, and refuge use may therefore differ between disturbance events. Finally, the HZ poses challenges to interstitial inhabitation and resource availability, and refuge use may therefore betaxon-specific.

70

This review uses evidence presented for and against the hyporheic refuge hypothesis (HRH) to examine variability in the HZ as a benthic invertebrate refuge during adverse hydrological conditions. Published data is used to develop a conceptual model from which behavioural responses to adverse conditions can be inferred from changes in depth distribution. Conclusions drawn highlight the importance of ensuring the ecological integrity of the HZ through sensitive management and rehabilitation activities.

78

79 Hydrological conditions as invertebrate stressors

80 Hydrological variability is a key influence on instream habitat heterogeneity (Poff and 81 Ward 1990; Monk et al. 2008) and has profound effects on invertebrate communities 82 (Statzner and Higler 1986; Konrad et al. 2008). In particular, hydrological extremes 83 (floods and streambed drying) can modify habitats and severely reduce both 84 invertebrate abundance and taxon richness, regardless of whether conditions are 85 unpredictable disturbance events (Resh et al. 1988; Death 2008; Sponseller et al. 86 2010) or occur within the typical flow regime (Poff 1992). In addition, low flows 87 represent relatively moderate hydraulic conditions but have marked effects on 88 instream communities due to reduced habitat availability (Wood and Petts 1999; 89 Suren et al. 2003a, b; Dewson et al. 2007a), increased population densities and biotic 90 interactions (Extence 1981; Malmqvist and Sackmann 1996), and changes in food 91 resources (Englund and Malmqvist 1996) and water quality (Wood et al. 2010). 92

93 Invertebrates survive adverse conditions through resistance (an ability to persist) 94 and/or resilience (an ability to recover afterwards; Webster et al. 1975; Lake and 95 Barmuta 1986). Whilst biota may have evolved adaptations that confer resistance 96 and/or resilience to predictable seasonal flow variation (Reice et al. 1990; Lytle and 97 Poff 2004), community resistance to both floods and drying is typically low (Miller 98 and Golladay 1996; Fritz and Dodds 2004). Despite this, invertebrates persist in 99 frequently disturbed systems, with communities typically proving highly resilient 100 (Miller and Golladay 1996; Kroon and Ludwig 2010). This resilience is facilitated by 101 adaptations, which may be morphological, physiological, life history related, or

behavioural (Townsend and Hildrew 1994; Lytle and Poff 2004; Watanabe 2006), the

103 latter involving use of physical habitat refuges (Lake 2000, 2011).

104

105 Instream habitat heterogeneity causes invertebrate distribution and persistence to vary 106 spatially (Robertson et al. 1995). Some habitats are refuges, where survival is 107 enhanced due to reduced adverse impacts (Sedell et al. 1990; Lancaster and Belyea 108 1997). A habitat's ability to act as a refuge depends on the disturbance. During high 109 flows, refuges are areas of low hydraulic stress, such as dead zones (Lancaster and 110 Hildrew 1993; Lancaster 1999), inundated floodplains (Townsend et al. 1997; 111 Matthaei and Townsend 2000), stable clasts (Cobb et al. 1992; Matthaei et al. 2000), 112 woody debris (Palmer et al. 1996) and marginal vegetation (Robinson et al. 2004; Fig. 113 1a). In contrast, drying refuges retain free water or high humidity (Humphries and 114 Baldwin 2003), for example crayfish burrows, woody debris, leaf packs, pools and spaces beneath large clasts (Boulton 1989; Boulton and Lake 2008; Stubbington et al. 115 2009a; Fig. 1b). There is therefore little overlap between high- and no-flow refuges, 116 117 and many occur sporadically. The HZ is a potential exception to this; it may retain 118 water after surface drying and may remain stable during floods (Boulton et al. 1998).

119

120 The hyporheic zone as a permanent habitat

121 The HZ is also a non-refugial habitat, with its location at the interface between surface122 and groundwater being reflected by the hyporheos, a fauna that comprises both

123 permanent and occasional contingents (Williams and Hynes 1974). Species of

- 124 permanent hyporheos complete their lifecycle in the HZ, and include a diverse
- assemblage of meiofauna (Dole-Olivier et al. 2000; Stead et al. 2004) and
- 126 groundwater specialists (Dole-Olivier and Marmonier 1992a; Robertson *et al.* 2009).
- 127 Occasional hyporheos move between benthic and hyporheic zones, this community
- being dominated by early-instar insect larvae (Williams 1984; Malard *et al.* 2001).
- 129

130 The physical habitat of the HZ is recognised as highly heterogeneous (Orghidan 1959,

131 2010), with several spatiotemporally variable parameters identified as influencing

- 132 hyporheic community composition. These influences relate primarily to hydrology,
- sediment characteristics and the biotic suitability of the hydrological medium (i.e.
- 134 water quality). The biotic effects of single habitat characteristics are often difficult to
- disentangle, due to both relationship complexity and the failure of many sampling

techniques to characterise the fine scale at which biota experience their environment
(Strayer *et al.* 1997; Storey and Williams 2004). Nonetheless, some relationships can
be stated with confidence, as described below.

139

140 *i)* Sediment composition

A critical influence on the hyporheic community is sediment composition, which 141 142 influences substrate porosity, permeability and interstitial architecture (Maridet et al. 1992; Schmid and Schmid-Araya 2010), and therefore determines the volume of 143 144 inhabitable space and the network of movement pathways between clasts. Coarse 145 substrata can support high-density diverse communities (Strayer et al. 1997), whilst meiofauna dominate sandy sediments (Malard et al. 2002), and a depauperate fauna 146 147 resides within a colmated HZ (Richards and Bacon 1994; Wood and Armitage 1997). Several studies have demonstrated negative correlations between community metrics 148 and the proportion of 'fine' sediment, variously defined as <150 µm (Richards and 149 150 Bacon 1994), 63 µm to 1 mm (Olsen and Townsend 2003) and <2 mm (Weigelhofer 151 and Waringer 2003). Sediment mobility is also important, with stable sediments 152 supporting richer faunas than those prone to erosion (Marmonier et al. 2010).

153

154 *ii*) *Hydrology*

The direction and strength of hydrologic exchange is a crucial variable, withcontrasting communities characterising upwelling and downwelling zones (Stanley

and Boulton 1993; Franken *et al.* 2001; Olsen and Townsend 2003). Hypogean taxa,

158 including microcrustaceans, Amphipoda and Isopoda, typically dominate upwelling

159 groundwater zones (Dole-Olivier and Marmonier 1992b; Claret *et al.* 1999;

160 Marmonier *et al.* 2010), which can elevate population densities and richness (Malard

161 *et al.* 2003a; Datry *et al.* 2007). In contrast, downwelling surface water favours

162 epigean occasional hyporheos, such as Ephemeroptera, Trichoptera and Coleoptera

163 (Boulton and Foster 1998; Franken *et al.* 2001), which can also boost abundance and

164 richness (Davy-Bowker *et al.* 2006). The influence of water movement along

165 hyporheic flowpaths on the distribution of hyporheos is reviewed in detail by Dole-

166 Olivier (2011).

167

Other hydrological influences on the hyporheos include flow velocities and flowpermanence. Hyporheic velocities may be negatively correlated with meiofauna

- abundance, a faunal group that typically lack adaptations to resist displacement
- 171 (Richardson 1992; Robertson et al. 1995). However, relationships between interstitial
- 172 flow and macroinvertebrate distribution are complex and poorly quantified (Wagner

and Bretschko 2002). Flow permanence also affects metrics including abundance,

- 174 richness and stability, with intermittent sites typified by a depauperate community of
- 175 desiccation resistant taxa (Datry *et al.* 2007). However, such relationships may be less
- apparent where drying occurs over small (sub-reach) areas or for short (days to
- 177 weeks) durations (Stubbington *et al.* 2011a).
- 178

179 *iii) Water quality*

180 Dissolved oxygen has been identified as an influential water quality variable.

- 181 Hyporheic concentrations are generally low compared with the surface stream and
- decrease with depth (Williams and Hynes 1974; Findlay 1995; Marmonier *et al.*
- 183 2010), reflecting penetration by oxygenated inputs (Fowler and Death 2001).
- 184 Concentrations are typically highest in zones supplied by oxygen-rich stream water
- 185 (Grimm and Fisher 1984; Jones et al. 1995), whilst groundwater inputs, slow
- 186 exchange rates and long residence times reduce availability (Findlay 1995; Olsen and
- 187 Townsend 2003; Marmonier *et al.* 2010; Fig. 2). Positive correlations between oxygen
- 188 concentrations and invertebrate abundance (Williams and Hynes 1974; Franken et al.
- 189 2001), taxon densities (Boulton and Stanley 1995), taxon richness (Boulton *et al.*
- 190 1997; Franken et al. 2001) and biomass (Strommer and Smock 1989) have been
- 191 documented. However, relationships may be weak (Strayer *et al.* 1997; Malard and
- 192 Hervant 1999), particularly in well-oxygenated sediments, indicating that oxygen is
- 193 only an important community determinant at low concentrations (Franken *et al.* 2001;
- 194 Olsen and Townsend 2003).
- 195
- Other potential influences on the invertebrate community include temperature, pH and
 nutrient concentrations (Boulton and Stanley 1995; Plenet *et al.* 1995; Davy-Bowker *et al.* 2006). However, relationships are typically complex and/or specific to certain
- 199 systems (Malard *et al.* 2003b) and will not be considered further.
- 200
- 201 *iv*) Relationships between sediment composition, hydrology and water quality
- 202 These habitat variables are interdependent and interact to determine HZ habitat
- 203 characteristics (Vervier *et al.* 1992; Fig. 2). Firstly, hydrologic exchange influences

204 benthic and hyporheic sediment characteristics. During base flow, upwelling 205 groundwater and high flow velocities may reduce siltation, whilst downwelling 206 surface water introduces sediment into interstices, particularly where velocities are 207 slow (Brunke and Gonser 1997; Fig. 2). Equally, sediment composition and porosity 208 influence hydrologic exchange, with fine sediments reducing the strength of exchange 209 whilst coarse substrata allow free water movement (Brunke 1999; Hancock 2002). Clogged sediments consequently receive a reduced oxygen supply whilst coarse 210 sediments are well-oxygenated if flow velocities are sufficient (Findlay 1995; Wu 211 212 2000). The direction of exchange also influences oxygen content, with downwelling 213 surface water typically being better oxygenated than upwelling groundwater (Grimm

and Fisher 1984; Valett 1993; Franken *et al.* 2001; Fig. 2).

215

The suitability of the HZ as a habitat for benthic invertebrates is therefore a trade-off, with no single set of conditions being ideal. Downwelling zones have hydrological and water quality benefits but interstitial space may be limited whereas the unclogged interstices of upwelling zones may be resource-poor (Fig. 2).

220

221 The hyporheic zone as a refuge

222 The potential for the HZ to provide a refuge for benthic invertebrates was recognised 223 by Orghidan (1959, 2010) following freezing in a surface stream. Other early 224 evidence of this refugial role was provided by Clifford (1966) and Williams and 225 Hynes (1974) who observed benthos in the HZ after surface drying and during a spate, 226 respectively; other seminal research is described by Dole-Olivier (2011). The 227 Hyporheic Refuge Hypothesis (HRH) was later formally stated by Palmer et al. 228 (1992). By moving into the HZ, it is proposed that benthic invertebrates increase their 229 probability of surviving an adverse condition in the surface stream. When conditions improve, refugees potentially recolonise benthic habitats from the HZ, thus 230 231 facilitating community recovery.

232

The adverse conditions from which benthic refugees may seek shelter include both

biotic and abiotic stresses. The HZ may be a protective nursery for early instar insect

larvae (Giberson and Hall 1988; Puig *et al.* 1990; Jacobi and Cary 1996) and also a

predation refuge for other vulnerable groups (e.g. moulting individuals; McGrath *et*

al. 2007). In addition, the HZ is a potential shelter from environmental conditions

including surface freezing (Orghidan 1959, 2010), low temperatures (Malard *et al.*

- 239 2001), high temperatures (Evans and Petts 1997; Wood *et al.* 2010) and pollution
- 240 (Jeffrey et al. 1986; Belaidi et al. 2004). Most research considering the HRH,

however, has focussed on the extremes of the hydrological continuum, namely floods

and streambed drying. During high flows, the HZ reduces displacement, since flow

velocities remain relatively slow and sediments relatively stable (Boulton *et al.* 2004).

244 During drying, the HZ may retain free water, a necessity for most aquatic biota.

However, despite receiving more attention than other potential refuges, evidence for

the HRH remains equivocal during floods, drying, and low flows (Tables 1-3; Dole

- 247 Olivier 2011).
- 248

249 Types of evidence for the hyporheic refuge hypothesis

250 The HRH remains contentious, in part due to differing interpretations of what

251 constitutes refuge use. Therefore, before presenting the evidence itself, a conceptual

model (Fig. 3) will be used to assess these contrasting interpretations, and a definition

- 253 of acceptable evidence will be outlined.
- 254

255 *Evidence type 1: Presence of benthic invertebrates in the hyporheic zone*

256 Some studies have simply observed benthic invertebrates in the HZ during adverse

surface conditions, without knowledge of temporal change in depth distribution

258 (Imhof and Harrison 1981; Fenoglio *et al.* 2006). Others have noted that, despite

declining hyporheic abundance, a few benthic individuals persist in the HZ during

both drying (Griffith and Perry 1993; del Rosario and Resh 2000) and spates (Boulton

et al. 2004; Bruno et al. 2009). Such data provide no evidence of active shelter-

seeking behaviour, but demonstrate passive refuge inhabitation (Box 2, Fig. 3), which

- is also an important mechanism promoting invertebrate survival.
- 264

265 Evidence type 2: An increase in abundance in the hyporheic zone

266 Other studies have reported an increase in a benthic taxon's abundance in the HZ as

evidence of refuge use (Dole-Olivier and Marmonier 1992a; Marchant 1995; Dole-

268 Olivier *et al.* 1997). However, if densities concurrently increase in the benthic zone,

then the proportion of a population in the HZ may be unchanged or may decline,

- 270 indicating range extension but not shelter-seeking behaviour (Box 1, Fig. 3). Both
- floods and drying are, in fact, likely to decimate benthic populations (Hynes 1958;

- Wood and Armitage 2004; Death 2008) and even if benthic densities are unknown, an
- increase in the hyporheic proportion can often be assumed to accompany an increase
- in hyporheic abundance (Dole-Olivier and Marmonier 1992a; Clinton *et al.* 1996;
- 275 Dole-Olivier *et al.* 1997). In contrast, low flows may cause benthic population
- densities to increase as habitats contract (Extence 1981; Dewson et al. 2007b). In such
- cases, an increase in hyporheic abundance may be outweighed by rising benthic
- densities, causing the hyporheic proportion of a population to fall (Stubbington *et al.*
- 279 2011b). As such, only vertical range extension of the benthic population can be
- 280 inferred (Box 1, Fig. 3).
- 281

282 Evidence type 3: An increase in a population's hyporheic proportion

283 Other research has posited an increase in the hyporheic proportion of a taxon's total

284 (benthic + hyporheic) population as evidence for the HRH. However, an increase in

- proportion may accompany a reduction in hyporheic abundance, so long as the decline
- is of a lesser magnitude than occurs in the benthic zone (Giberson and Hall 1988;
- 287 Palmer et al. 1992; Olsen and Townsend 2005). Whilst survival may be enhanced for
- those animals in deeper sediments when a disturbance commences, such studies
- indicate passive refuge use (Box 2, Fig. 3), not active migrations.
- 290

291 Evidence type 4: Concurrent increases in hyporheic abundance and proportion

292 Evidence types 1-3 demonstrate that, regardless of how benthic abundance changes,

simultaneous increases in the hyporheic abundance and proportion of a population

provide the most convincing evidence of active migrations (Fig. 3). Such evidence is

required for refuge use to be considered 'active' in Tables 1-3.

296

297 The active-passive refuge distinction

The distinction between active and passive refuge use has long been recognised with reference to the HZ (Robertson *et al.* 1995; Robertson and Wood 2010) and other refuges (Ward 1989; Lake 2000). Robertson *et al.* (1995) described models of refuge use including a 'catastrophe avoided' model of active migration, and 'incomplete catastrophe' and 'refuge as habitat' models, in which refuge inhabitants are passively protected. Lancaster and Belyea (1997) refined these models, their 'directed flux

- between microhabitats' scheme equating to active refuge use whilst in their 'no flux'
- and 'undirected flux' models, passive refuge use reduces disturbance impacts.

Robertson and Wood (2010, p. 284) suggest that "as long as survivorship in the HZ is 306

307 [proportionally] higher than that in benthic habitats, then it will act as a refugium".

308 However, passive refuge use can have an even simpler condition attached: as long as

309 survival occurs in the HZ, it may promote invertebrate persistence.

310

311 Both active and passive movements may therefore promote invertebrate survival, for 312 example in downwelling zones during low-magnitude spates (Dole-Olivier et al. 1997). However, active refuge use increases the potential of the HZ to protect a 313 314 greater range of taxa during a greater range of disturbance types. Active migrations 315 are necessary, for example, during slow-onset drying events in which flow velocities 316 are insufficient to move macroinvertebrates, and during high-flow events in which the 317 direction of hydrologic exchange opposes migratory movements.

318

324

Despite the earlier models (Robertson et al. 1995; Lancaster and Belyea 1997; 319

Robertson and Wood 2010), inferring the behaviours behind refuge use from field or 320

321 experimental data remains problematic. To address this, the model presented in Fig. 3

322 provides a framework to guide interpretation of data collected during HRH research,

323 as outlined above. However, although Fig. 3 can be used to *infer* behaviour, the model

cannot distinguish between active migrants and refugees passively carried into the HZ 325 (Dole-Olivier et al. 1997; Lancaster and Belyea 1997). Indeed, whilst laboratory

experiments (Holomuzki and Biggs 2000) and field sampling campaigns (Palmer et 326

327 al. 1992) may provide compelling evidence of active migrations, conclusive proof of

328 whether individual movements are intentional or involuntary remains elusive. It is

329 theoretically possible that an increase in the hyporheic abundance and proportion of a

330 population may result entirely from passive displacement by downwelling water;

331 equally, a decrease in hyporheic abundance may mask active migrations of a few

individuals. As such, it is recognised that the changes in distribution taken as evidence 332

333 of refuge use may result from a combination of active and passive movements

334 (Robertson et al. 1995; Dole-Olivier et al. 1997; Lancaster 2000). Inferred behaviours

should therefore be considered as the dominant, but not the only, behaviours 335

336 influencing a population's distribution (Fig. 3).

337

338 Evidence for active use of the HZ refuge

339 *i*) *Refuge use during floods* It was the early observations of changes in invertebrate depth distributions after flood
events that sparked interest in the HZ as a refuge (Clifford 1966; Williams and Hynes
1974), and this has since been formalised in the Flood Refuge Hypothesis (Boulton *et al.* 2004). This hypothesis posits vertical migration as a behavioural response to an

- increase in flow velocity or other hydraulic stress (Boulton *et al.* 2004).
- 345 346

Section A), encompassing natural spates (Williams and Hynes 1974; Dole-Olivier and
Marmonier 1992a; Dole-Olivier *et al.* 1997), prolonged high flows (Marchant 1988,
1995), and their experimental equivalents (Holomuzki and Biggs 2000). Williams and

Evidence of active migrations has been reported by at least eight studies (Table 1,

350 Hynes (1974), for example, noted increased invertebrate abundance at and below 30

351 cm after a flood, accompanied by equivalent reductions in shallower sediments, whilst

total abundance remained stable. Supporting evidence from laboratory simulations is

provided by Holomuzki and Biggs (2000) who observed shifts in the depth

distribution of one mayfly, one snail and two caddisfly genera in response to short-

term, high-magnitude increases in discharge.

356

357 Other studies have found no evidence of active migrations during floods (Table 1, 358 Section B). In many cases, this has been attributed to inadequate habitat (e.g. 359 sediment-clogged interstices), substrate instability and/or upwelling water (Palmer et al. 1992; Dole-Olivier et al. 1997; Olsen and Townsend 2005). In other cases, 360 361 disturbance-related factors appear responsible, including rapid spate onset (Gayraud et al. 2000; Imbert and Perry 1999), and spate magnitude being too low to elicit a 362 363 response (Boulton et al. 2004) or high enough to mobilise HZ sediments and fauna 364 (Dole-Olivier et al. 1997; Stubbington et al. 2010). The importance of disturbance 365 characteristics is also demonstrated by events that reduce the abundance of permanent hyporheos (Dole-Olivier and Marmonier 1992a; Olsen and Townsend 2005; Hancock 366 367 2006). However, even when impacts are severe, benthic invertebrates are routinely present in HZ after a disturbance, albeit at low abundance (Table 1). This highlights 368 the importance of passive refuge use in promoting community resilience, with the few 369 370 survivors acting as potential recolonists of benthic sediments (Table 1, Section B). 371 Such recolonisation is particularly important if the HZ has come to support a higher 372 proportion of the total community (Giberson and Hall 1988; Stubbington et al. 2010). 373

374 *ii) Refuge use following streambed drying*

The HZ's potential as a refuge after streambed drying hinges on the availability of free water, or at least high humidity. The principal impetus for invertebrate migration is therefore to remain submerged, although stresses such as increasing surface water temperatures may also be involved (Wood *et al.* 2010).

379

380 Where free water is retained, changes in depth distribution have indicated that 381 invertebrates can actively follow the receding water table into deeper sediments 382 (Delucchi 1989; Clinton et al. 1996; Table 2, Section A). Many other studies have 383 found passive inhabitation to facilitate population persistence (Table 2, Section B), 384 with the diverse assemblage surviving in moist interstices including Isopoda, 385 Amphipoda (Clifford 1966), Trichoptera (Imhof and Harrison 1981), and adult 386 Coleoptera (Fenoglio et al. 2006). However, where the criterion of water availability is not fulfilled, the HZ fails as a refuge (Boulton and Stanley 1995). Therefore, whilst 387 research into the HZ flood refuge has always found a small proportion of benthos to 388 389 persist (Table 1), drying can eliminate virtually all benthic invertebrates, including 390 both active and passive refugees (Table 2, Section C). However, as these studies have 391 not considered dormant life stages present in dry sediments, community persistence 392 may have been underestimated (Stubbington et al. 2009a; T. Datry unpublished data). 393

394 Refugial capacity may be reduced during drying if fine sediments are deposited in 395 interstices as flow declines; sediment compaction and baking may then cause interstitial hypoxia (Gagneur and Chaoui-Boudghane 1991; Smock et al. 1994; 396 397 Belaidi et al. 2004). Such habitat characteristics are invariably held responsible for the 398 failure of the hyporheic refuge during drying events (Table 2), which, as gradual onset 399 disturbances (Lake 2000, 2003), favour a behavioural response. The quality of the HZ 400 refuge is, however, relative to other microhabitats, and vertical migrations may be 401 reduced if alternative refuges exist. Boulton (1989), for example, found more refugee 402 taxa and individuals in receding pools and nearby perennial waters than in the HZ of 403 intermittent streams.

404

405 *iii) Refuge use during low flows*

Few studies have considered use of the HZ refuge during low flows (Table 3), withrelatively benign hydrological conditions being a less obvious migration trigger.

408 However, James et al. (2008) hypothesized that vertical migrations would occur as 409 flow receded if habitat contraction forced invertebrates into a smaller area, thus 410 increasing biotic interactions. Such predictions are supported by observations that 411 mobile taxa such as the amphipod Gammarus pulex migrate into smaller interstices in 412 response to an increased risk of cannibalism (McGrath et al. 2007). However, only 413 Stubbington et al. (2011a, 2011b) have inferred refuge use during flow recession, with 414 G. pulex migrating into the HZ following habitat contraction and a concurrent increase in benthic densities (Table 3). In addition, Wood et al. (2010) noted active 415 416 migrations of G. pulex during low flows, these migrations being linked to thermal, but 417 not hydrological drivers. In other studies, surface sediments appear a preferable habitat, even if benthic population densities do increase (James et al. 2008; James and 418 419 Suren 2009).

420

421 Variability in the hyporheic refuge

The preceding discussion has identified use of the HZ refuge as very variable. Spatial

423 variability depends on habitat characteristics whilst temporal variability reflects

424 disturbance type. Additional variation is biotic; refuge use is restricted to certain taxa,

and although poorly understood, biotic interactions may also affect active migrations.

426

427 Spatial variability in the hyporheic refuge

428 Use of the hyporheic refuge is spatially variable, depending on the fulfilment of

429 certain environmental criteria (Townsend 1989; Lancaster and Belyea 1997;

430 Robertson and Wood 2010). Whilst refuges can promote population persistence at

431 multiple spatial scales (Townsend and Hildrew 1994; Robertson *et al.* 1995; Robson

432 *et al.* 2011), individual invertebrates always act at the smallest scales (Lancaster

433 2008), and patch-scale variation is therefore particularly relevant to refuge use. The

434 dependence of refuge use on the fulfilment of habitat-related criteria has been termed

435 "refugial effectiveness" (Robertson and Wood 2010) and "refugial potential"

436 (Stubbington *et al.* 2011b), the latter term recognising that sediments with suitable

437 characteristics may nonetheless not be used as a refuge (Fig. 4). The habitat

438 characteristics that influence the permanent hyporheos are also principal determinants

439 of refuge potential: hydrologic exchange and sediment characteristics, which are

440 interdependent and also influence water quality.

442 *i) Hydrologic exchange*

443 Despite recognition that downwelling zones promote refuge use during both high and 444 low flows, the vital features of infiltrating water have not been isolated, and several 445 factors may be relevant (Davy-Bowker et al. 2006). Movement of downwelling water 446 is assumed to facilitate active and passive transport of benthos into the HZ, and this assumption may be valid at high flow velocities (Dole-Olivier et al. 1997). However, 447 448 during flow recession, surface velocities may decline (Wright and Berrie 1987; Dewson et al. 2007a) and whilst rarely measured, velocities are probably even slower 449 450 in the HZ (Angradi and Hood 1998). Therefore, it is unlikely that upwelling water 451 prevents downwards migrations of mobile taxa during low flows.

452

453 However, water chemistry also varies depending on the direction of hydrologic

454 exchange. Downwelling water typically resembles surface water in terms of oxygen,

455 temperature, chemistry and organic matter content, whilst groundwater inputs have a

distinct chemistry and are often oxygen- and resource-poor (Brunke and Gonser 1997;

457 Datry et al. 2005, 2007). Such variables may influence migrations during low-

458 magnitude disturbances such as flow recession (Stubbington *et al.* 2011b), but are of

459 secondary importance to habitat stability during spates and to free water after drying.

460 Equally, whilst the presence of free water may suffice for tolerant taxa and during

short drying events (Williams and Hynes 1974; Danielopol 1989), as dry phase

462 duration increases, long residence times and the absence of surface inputs affect water

463 quality, with consequences for the survival of an increasing proportion of the

464 community. Upwelling zones providing high-quality groundwater inputs may

therefore have the highest refugial potential during drying events (Dole-Olivier 2011).

466 Dole-Olivier (2011) provides greater detail on hydrological variables influencing

- 467 refuge use.
- 468

469 *ii) Sediment characteristics*

470 No refuge use is possible without connectivity between the HZ and the surface

471 stream, hence the central role of sediment composition in determining refuge

potential. The most fundamental requirement is that a HZ exists, which is not the case

473 in channels with impermeable strata (White 1993; Dole-Olivier 2011). The size of the

474 HZ is also important and hyporheic sediments may be limited in spatial extent, as in

475 many headwater streams (Stubbington *et al.* 2009a; Chester and Robson 2011).

476 Regardless of spatial extent, shallower sediments are more likely to be encountered by

477 migrants (Williams and Hynes 1974; Marmonier et al. 2010), but the availability of

478 deeper layers potentially increases survival due to reduced scour at high flows, and

479 increased water availability after surface drying.

480

481 Once the basic criterion of a sufficiently voluminous HZ is met, then the same 482 characteristics that support a speciose hyporheos also encourage refuge use, with 483 coarse-grained, porous sediments facilitating both active and passive movements. The 484 detrimental effects of fine sediment may, however, be exacerbated by a disturbance. 485 Firstly, during spates, finer sediments are more easily mobilised, thus displacing any 486 resident refugees (Palmer et al. 1992; Olsen and Townsend 2005). Equally, during 487 drying, fine sediments may form a surficial crust which separates the HZ from 488 atmospheric oxygen inputs and restricts invertebrate movements (Gagneur and

489 Chaoui-Boudghane 1991; Belaidi et al. 2004).

490

491 *Temporal variability in the hyporheic refuge*

492 Whilst the refugial role of the HZ depends in part on its stability, it is nonetheless a 493 temporally dynamic habitat (Stanford and Ward 1993). Many determinants of refuge 494 potential may be altered by the conditions triggering refuge use, especially high flows. 495 If the effects of bed-mobilising floods extend into the HZ, refugial potential may be severely compromised (Matthaei et al. 1999; Wondzell and Swanson 1999); equally, 496 497 sediment deposition may bury refugees, providing additional protection during a 498 disturbance but impeding later recolonisation of the surface (Olsen et al. 2010). In the 499 longer term, sediments reworked by high flows may have higher or lower fine 500 sediment content (McKenzie-Smith et al. 2006; Olsen et al. 2010), influencing their 501 refugial potential during future events. The direction and strength of hydrologic 502 exchange may also be altered by changes in surface flow and disturbance-related 503 changes in sediment composition (Baker and Vervier 2004; Boulton et al. 2004). 504

505 Despite this temporal variability in refuge potential, few studies have considered

506 changes in refuge use over extended periods. Notable exceptions include Dole-Olivier

507 and Marmonier (1992a) and Dole-Olivier et al. (1997), who considered a period of

508 base flow interrupted by multiple spates in a regulated channel. These studies

509 highlighted temporal variability in refuge use, with migrations depending on both

- spate amplitude and habitat features. Similarly, Wood *et al.* (2010) considered a 7-
- 511 month period of stable then declining discharge, finding evidence of active migrations
- 512 in response to increasing surface water temperatures, but not flow recession. In
- addition, Smock *et al.* (1994) and Stubbington *et al.* (2010) have considered refuge
- 514 use during consecutive, contrasting disturbances. Smock *et al.* (1994) recorded no
- refuge use during a storm or drying, due to hyporheic anoxia. In contrast, Stubbington
- 516 *et al.* (2010) observed migrations of *G. pulex* during a flow recession, the species'
- 517 hyporheic abundance then plummeting during a spate, thus demonstrating inter-
- 518 disturbance variability in refuge potential.
- 519

520 Spatiotemporal variability in biotic interactions

As well as being reduced by deteriorations in environmental quality relating to 521 522 disturbance onset, long-term survival in refuges may be limited by unfavourable biotic conditions that develop as a consequence of refuge use (Lancaster and Belyea 523 1997). In particular, any increase in population densities causes biotic interactions to 524 525 intensify, including competition for limited resources (such as space, food and oxygen) and predation (Lancaster 1996). Active refuge use involves movement into a 526 527 habitat that is usually less desirable than the benthic sediments, and increased biotic 528 interactions may further reduce the attractiveness of the HZ. Individual invertebrate 529 migrations may therefore be density-dependent as well as reflecting environmental 530 conditions. However, whilst increased predation has been observed in surface refuges 531 (Lancaster 1996), little evidence relates specifically to the HZ, and routine use of the 532 zone as a predation refuge by vulnerable life stages (Jacobi and Cary 1996; McGrath 533 et al. 2007) indicates that biotic pressures do not intensify significantly due to refugee 534 influxes. This may be due to interstitial space limiting hyporheic densities of larger 535 predatory macroinvertebrates (Franken et al. 2006), reductions in predation efficiency 536 in interstices (Schmid and Schmid-Araya 1997) and/or reduced predator activity in a 537 resource-limited habitat (Stubbington et al. 2009a; Robson et al. 2011).

538

539 Variability in benthic refugee taxa

540 Whilst evidence for the HRH relates to a diverse assemblage, active migrations are

- 541 often restricted to certain taxa (Table 4), indicating that morphological and/or
- 542 behavioural taxon-specific characteristics influence refuge use. Robertson and Wood
- 543 (2010) used the trait analysis of Poff *et al.* (2006) to identify features of active

544 migrants (Table 5). To assess the validity of this analysis, taxa identified as active 545 migrators (Table 4) are compared to proposed traits (Table 5). All migrant taxa share 546 one trait, *no attachments* (Table 5), suggesting this as a prerequisite for migration. 547 However, evidence of active migration has been observed in Simuliidae larvae (pers. 548 obs.), which attach to substrata using anal hooks. Simuliids can, however, move to the streambed using silk anchor threads and then use looping movements to enter the HZ 549 550 (Wotton 1979). No attachments is therefore not a prerequisite for refuge use, so long 551 as release can be achieved swiftly at the onset of a disturbance.

552

553 The trait burrowing habit indicates a predisposition towards interstitial inhabitation, 554 which would seem vital for vertical migration. Evidence of refuge use in taxa lacking 555 this trait is restricted to the caddisfly larvae of Leptoceridae (which Holomuzki and 556 Biggs (2000) note as equally likely to remain on the surface as migrate) and 557 Hydropsychidae and Polycentropodidae, regarding which Dole-Olivier and 558 Marmonier (1992a) provide no details. The trait high crawling rate indicates a 559 capacity to respond quickly at disturbance onset, which may be crucial during spates. 560 Accordingly, two of three taxa lacking this trait (Gammarus, Leptophlebiidae) are 561 instead strong swimmers, and some chironomids are also capable of vigorous 562 movement to enter preferred habitats (Palmer et al. 1992; Armitage et al. 1995). This 563 trait should therefore be broadened to high movement rate, because locomotory mode is less important than mobility (Claret et al. 1999); equally, this feature may be of 564 565 little relevance during slow-onset events. Following migration, the trait depositional 566 *rheophily* implies adaptation to sediment-depositing habitats, which the HZ may be 567 during any hydrological disturbance. Eight of nine burrowing taxa also exhibited this 568 trait, whilst chloroperlid stonefly nymphs did not; this taxon prefers erosional zones 569 and its burrowing, and thus refuge use, may occur only in coarse gravels (Baumann et 570 al. 1977).

571

Two morphological traits are suggested by Robertson and Wood (2010) as migrant attributes: *small size at maturity* (<9 mm) and *vermiform shape*. However, only four migrant taxa may be small when mature, with late instar Ephemeroptera, Plecoptera and Trichoptera (EPT) and *Gammarus* reaching sizes that could inhibit interstitial inhabitation (Robertson and Wood 2010). Indeed, HZ residents are typically small, irrespective of the ultimate size a taxon achieves (Cooling and Boulton 1993; Malard *et al.* 2003b). Size *at maturity* is therefore less important than the occurrence of small
instars within the life cycle, so long as the time taken to reach maturity exceeds
disturbance duration. Maximum size will also relate to pore-size distribution, and will
be influenced by morphology and behaviour, including the capacity to alter pore sizes
through physical activity (Claret *et al.* 1999).

583

584 The trait *vermiform shape* is also only partly supported (Table 5), with flattened, 585 blunt, robust, and/or streamlined forms also allowing HZ inhabitation. Williams and 586 Hynes (1974) suggested two morphologies as suiting the HZ: long and flexible, to 587 move between grains, and blunt and well-protected, to bludgeon past them. 588 *Vermiform* should thus be replaced by a rather general attribute: *morphologically* 589 suited. Even then, morphological features of some migrants, such as mayflies with 590 delicate gills, appear ill-suited to the HZ (Marchant 1988), emphasizing the influence 591 of habitat characteristics on taxon-specific refuge use. Gilled EPT are also amongst 592 refugees limiting support for the trait *tegument respiration*; mode of gas exchange

- does not appear to influence refuge use.
- 594

595 Relationships between spatial, temporal and taxonomic variability

For any individual inhabiting the benthic zone, migration into the HZ at disturbance
onset is concurrently determined by factors in the four categories discussed: habitat
characteristics, disturbance features, biotic interactions and migrant traits (Fig. 4).
First, the HZ must provide an adequate habitat, with sufficient interstitial space,

600 favourable water quality and adequate resources, as well as acceptably low biotic

601 interactions (C1, Fig. 4). Second, disturbance characteristics must be conducive to

602 refuge use, for example having a gradual onset, and not causing biotic risks to

603 increase to intolerable levels in the HZ (C2, Fig. 4). Third, the invertebrate itself must

- be inclined to migrate in response to disturbance triggers (C3, Fig. 4); suitable habitat
- and disturbance characteristics do not automatically elicit a response.
- 606

All three criteria must be fulfilled for any individual to actively migrate (Fig. 4). For

608 example, the HZ habitat may be suitable and disturbance characteristics may favour a

response, but a taxon may employ an alternative survival strategy, such as entrance

- 610 into the drift (Perry and Perry 1986) or use of other refuges (Boulton 1989; Cooling
- and Boulton 1993; Rempel *et al.* 1999). Alternatively, a taxon known to migrate may

- be prevented from moving into suitable habitat by a disturbance characteristic, such as
- 613 rapid onset (Imbert and Perry 1999; Gayraud *et al.* 2000; Stubbington *et al.* 2011b).
- 614 This same potential refugee's vertical migration may be thwarted during a slow-onset
- disturbance by an inappropriate habitat feature (Olsen and Townsend 2005); features
- 616 of importance and tolerance thresholds will differ between taxa.
- 617

Fig. 4 can be used to predict refuge use by a particular taxon if habitat and disturbance characteristics are known. However, whilst an initial migration can be predicted, HZ habitat quality may change as a disturbance progresses. In particular, water quality and resource availability may decline during drying events, with oxygen becoming limited as hyporheic water residence times increase. Therefore, an initial migration is only the first step in exploiting the HZ refuge (Dole-Olivier in press), and does not guarantee long-term survival.

625

626 Directions for future research

627 Whilst recent research has continued to ask if the HZ is a refuge, the variable nature 628 of refuge use means that the answer is never clear-cut. The HZ can be a refuge, but 629 only for certain taxa, if the habitat fulfils their requirements, and if the disturbance has 630 certain characteristics. This complexity of determinants leaves many questions 631 concerning the occurrence of migrations remain unanswered, and further research is 632 needed to elucidate the habitat characteristics that allow refuge use in particular taxa. 633 In particular, Dole-Olivier (2011) argues that future research should seek to 634 characterise hydrologic exchange patterns in greater detail to clarify the influence of

upwelling and downwelling water on refuge use.

635 636

637 For the model presented in Fig. 3 to be employed as a framework for the inference of invertebrate behaviour, essential criteria for future research into the HRH include the 638 639 collection of paired benthic-hyporheic samples (e.g. Belaidi et al. 2004; Wood et al. 640 2010; Stubbington et al. 2011b) using non-destructive methods which allow repeated 641 collection of quantitative samples from the same locations during a temporal sequence 642 (Stubbington et al. 2009b). Variation in sampling efficiency between methods should 643 be recognised (Fraser and Williams 1997; Scarsbrook and Halliday 2002; Kibichii et 644 al. 2009), but the model remains valid where benthic and hyporheic sampling

techniques differ, so long as each is employed consistently. Such studies will providevaluable information to guide the rehabilitation of impacted systems.

647

648 Other pertinent questions relate to the long-term prospects of migrants. As the HZ 649 remains connected to non-refugial areas when a disturbance ends, there is scope for 650 benthic recolonisation. Accordingly, shifts from shallow to deeper layers and 651 subsequent return to the original depth distribution have been observed in response to 652 both spates (Williams and Hynes 1974; Dole-Olivier et al. 1997) and flow-related 653 temperature changes (Wood et al. 2010). Such apparent shifts in migration direction 654 highlight the importance of active migrations. However, experimental work is needed 655 to confirm that individual vertical migrations are reversed, and that the HZ is a true, 656 not a transient, refuge (Dole-Olivier 2011).

657 658

known how this direction of exchange affects refugees attempting to exit the HZ 659 660 (Dole-Olivier et al. 1997; Stubbington et al. 2011b). Hyporheic flowpaths are spatio-661 temporally variable and occur at multiple spatial scales (Jones and Holmes 1996; 662 Montgomery and Buffington 1997; Dole-Olivier 2011), and both spatial and temporal 663 changes in exchange direction may facilitate the return of migrants to the surface. 664 Such pathways may be particularly important in redistributing passive refugees, for 665 which the HZ is otherwise a trap (Marmonier and Creuzé des Châtelliers 1991). The 666 active-passive distinction is thus highly relevant to long-term refugee survival.

In particular, whilst downwelling water may facilitate initial refuge use, it is not

667

668 Implications for river management and restoration

669 A refugial habitat is one of many contributions the HZ makes to stream ecosystem 670 functioning. This role may become increasingly important, given predictions of 671 climatic shifts involving increased drought and flood severity (IPCC 2007; Larned et 672 al. 2010; Aldous et al. 2011). However, anthropogenic deposition of fine sediment and channel modifications that reduce geomorphological complexity threaten the HZ 673 674 refuge, by impeding hydrologic exchange and blocking the interstitial pathways upon 675 which refuge use depends (Hancock 2002; Kondolf et al. 2006). The HZ therefore 676 requires protection through environmental policy and legislative instruments such as 677 the European Union Water Framework Directive (WFD; CEC 2000). The WFD 678 requires a holistic approach to catchment management, including integrated

- 679 management of groundwater and surface waters (Environment Agency 2002, 2009),
- but does not explicitly consider the HZ. Indeed, in Europe and elsewhere the
- ecological integrity of the HZ is rarely addressed by either monitoring programmes or
- rehabilitation schemes (Boulton 2007; Kasahara *et al.* 2009; Tomlinson and Boulton
- 2010; but see Kasahara and Hill 2006a, 2006b, 2007). There is therefore scope for
- regulators to ensure meaningful implementation of legislation to maximise ecological
- 685 benefits for total river ecosystems.
- 686

687 Rehabilitation schemes are typically focussed on the surface stream (Bannister et al. 688 2005; Boulton 2007), and whilst such efforts may benefit the subsurface (Boulton et 689 al. 2010), hydrologic exchange must also be targeted if the HZ refuge is to be 690 safeguarded (Jansson et al. 2007; Boulton 2007; Hester and Gooseff 2010). To date, 691 HZ-specific rehabilitation has involved increasing geomorphological complexity, for 692 example by introducing wood into streams (Kasahara and Hill 2006a, 2006b; Mika et 693 al. 2008). Such schemes promote hydrologic exchange (Kasahara and Hill 2006b), 694 and patterns of exchange (an upwelling zone shortly downstream of a downwelling 695 zone) may favour HZ refuge use and subsequent benthic recolonisation (Boulton 696 2007). Such schemes potentially have only localised effects, but since refuge use is 697 patch-specific in heterogeneous habitats, localised refugial hot-spots may support 698 enough individuals for subsequent recruitment and recolonisation of the surface 699 (Robertson et al. 1995). Nonetheless, the HZ is a refuge only for certain taxa in 700 certain circumstances, and rehabilitation schemes should therefore aim to create 701 heterogeneous habitats incorporating a suite of potential refuges (Fig. 1).

702

703 Acknowledgements

I thank Paul Wood, Thibault Datry and two reviewers, whose insightful comments
greatly improved earlier versions of this manuscript. Thanks also to Ian Reid for his
support and guidance during this research. The foundations for this review were laid
whilst the author was in receipt of a Loughborough University Faculty Studentship.

- 708
- 709 References

Aldous, A., Fitzsimons, J., Richter, B., and Bach, L. (2011). Droughts, floods and

- 711 freshwater ecosystems: evaluating climate change impacts and developing adaptation
- 712 strategies. *Marine and Freshwater Research* **62**, 223-231.

713	
714	Angradi, T., and Hood, R. (1998). An application of the plaster dissolution method for
715	quantifying water velocity in the shallow hyporheic zone of an Appalachian stream
716	system. Freshwater Biology 39 , 301–315.
717	
718	Armitage, P. D., Cranston, P. S, and Pinder, L. C. V. (1995). 'The Chironomidae:
719	Biology and Ecology of Non-biting Midges'. (Chapman and Hall: London, UK.)
720	
721	Baker, M. A., and Vervier, P. (2004). Hydrological variability, organic matter supply
722	and denitrification in the Garonne River ecosystem. Freshwater Biology 49, 181-190.
723	
724	Bannister, N., Mant, J., and Janes, M. (2005). A review of catchment scale river
725	restoration projects in the UK. The River Restoration Centre, Report - December
726	2005, Silsoe, UK.
727	
728	Baumann, R. W., Gaufin, A. R., and Surdick, R. F. (1977). The stoneflies (Plecoptera)
729	of the Rocky Mountains. Memoirs of the American Entomological Society 31, 1-208.
730	
731	Belaidi, N., Taleb, A., and Gagneur, J. (2004). Composition and dynamics of
732	hyporheic and surface fauna in relation to the management of a polluted reservoir.
733	International Journal of Limnology 40, 237-248.
734	
735	Boulton, A. J. (1989). Over-summering refuges of aquatic macroinvertebrates in two
736	intermittent streams in central Victoria. Transactions of the Royal Society of South
737	Australia 113, 23-34.
738	
739	Boulton, A. J. (2007). Hyporheic rehabilitation in rivers: restoring vertical
740	connectivity. Freshwater Biology 52, 632-650
741	
742	Boulton, A. J., and Foster, J. G. (1998). Effects of buried leaf litter and vertical
743	hydrologic exchange on hyporheic water chemistry and fauna in a gravel-bed river in
744	northern New South Wales, Australia. Freshwater Biology 40, 229-243.
745	

746	Boulton, A. J., and Lake, P. S. (2008). Effects of drought on stream insects and its
747	ecological consequences. In 'Aquatic Insects: Challenges to Populations'. (Eds J.
748	Lancaster and R. A. Briers.) pp. 81-102. (CAB International: Wallingford, UK.)
749	
750	Boulton, A. J., and Stanley, E. H. (1995). Hyporheic processes during flooding and
751	drying in a Sonoran Desert stream. II. Faunal dynamics. Archiv für Hydrobiologie
752	134 , 27-52.
753	
754	Boulton, A. J., Stanley, E. H., Fisher, S. G., and Lake, P. S. (1992). Over-summering
755	strategies of macro-invertebrates in intermittent streams in Australia and Arizona. In
756	'Aquatic Ecosystems in Semi-arid Regions: Implications for Resource Management'.
757	(Eds R. D. Robarts and M. L. Bothwell.) pp. 227-37. (National Hydrological Research
758	Institute Symposium Series 7, Environment Canada: Saskatoon, Canada.)
759	
760	Boulton, A. J., Scarsbrook, M. R., Quinn, J. M., and Burrell, G. P. (1997). Land-use
761	effects on the hyporheic ecology of five small streams near Hamilton, New Zealand.
762	New Zealand Journal of Marine and Freshwater Research 31, 609-622.
763	
764	Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., and Valett, H. M. (1998).
765	The functional significance of the hyporheic zone in streams and rivers. Annual
766	Review of Ecology and Systematics 29, 59-81.
767	
768	Boulton, A. J., Harvey, M., and Proctor, H. (2004). Of spates and species: responses
769	by interstitial water mites to simulated spates in a subtropical Australian river. Applied
770	and Experimental Acarology 34 , 149-169.
771	
772	Boulton, A. J., Datry, T., Kasahara, T., Mutz, M., and Stanford, J. A. (2010). Ecology
773	and management of the hyporheic zone: stream-groundwater interactions of running
774	waters and their floodplains. Journal of the North American Benthological Society 29,
775	26-40.
776	
777	Brunke, M. (1999). Colmation and depth filtration within streambeds: retention of
778	particles in hyporheic interstices. International Review of Hydrobiology 84, 99-117.
779	

780	Brunke, M., and Gonser, T. (1997). The ecological significance of exchange processes
781	between rivers and groundwater. Freshwater Biology 37, 1-33.
782	
783	Bruno, M. C., Maiolini, B., Carolli, M., and Silveri, L. (2009). Impact of
784	hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy).
785	International Journal of Limnology 45, 157-170.
786	
787	Chester, E. T., and Robson, B. J. (2011). Drought refuges, spatial scale and
788	recolonisation by invertebrates in non-perennial streams. Freshwater Biology
789	(earlyview).
790	
791	Claret, C., Marmonier, P., Dole-Olivier, M-J., Creuzé des Châtelliers, M., Boulton, A.
792	J., and Castella, E. (1999). A functional classification of interstitial invertebrates:
793	supplementing measures of biodiversity using species traits and habitat affinities.
794	Archiv für Hydrobiologie 145, 385-403.
795	
796	Clifford, H. F. (1966). The ecology of invertebrates in an intermittent stream.
797	Investigations of Indiana Lakes and Streams 7, 57-98.
798	
799	Clinton, S. M., Grimm, N. B., and Fisher, S. G. (1996). Response of a hyporheic
800	invertebrate assemblage to drying disturbance in a desert stream. Journal of the North
801	American Benthological Society 15, 700-712.
802	
803	Cobb, D. G., Galloway, T. D., and Flanagan, J. F. (1992). Effects of discharge and
804	substrate stability on density and species composition of stream insects. Canadian
805	Journal of Fisheries and Aquatic Sciences 49, 1788-1795.
806	
807	Cooling, M. P., and Boulton, A. J. (1993). Aspects of the hyporheic zone below the
808	terminus of a South Australian arid-zone stream. Australian Journal of Marine and
809	Freshwater Research 44, 411-426.
810	
811	Council of the European Community (CEC) (2000). Directive 2000/60/EC of the
812	European Parliament and of the Council of 23 October 2000 establishing a framework
813	for Community action in the field of water policy. Official Journal of the

814	European	Communities,	L327/1,	23.10.2000.
-----	----------	--------------	---------	-------------

ο	1	E
о	т	Э.

816 Covich, A. P., Crowl, T. A., and Scatena, F. N. (2003). Effects of extreme low flows

- 817 on freshwater shrimps in a perennial tropical stream. *Freshwater Biology* **48**, 1199-
- 818 819

1206.

- 820 Danielopol, D. L. (1989). Groundwater fauna associated with riverine aquifers.
- *Journal of the North American Benthological Society* **8**, 18-35.
- 822
- B23 Datry, T., Malard, F., and Gibert, J. (2005). Responses of invertebrate assemblages to
- 824 increased groundwater recharge rates in a phreatic aquifer. *Journal of the North*
- 825 American Benthological Society 24, 461-477.
- 826
- Datry, T., Larned, S. T., and Scarsbrook, M. R. (2007). Responses of hyporheic
- 828 invertebrate assemblages to large-scale variation in flow permanence and surface-
- subsurface exchange. *Freshwater Biology* **52**, 1452-1462.
- 830
- B31 Davy-Bowker, J., Sweeting, W., Wright, N., Clarke, R. T., and Arnott, S. (2006). The
- distribution of benthic and hyporheic macroinvertebrates from the heads and tails of
 riffles. *Hydrobiologia* 563, 109-123.
- 834
- B35 Death, R. G. (2008). The effects of floods on aquatic invertebrate communities. In
- 836 'Aquatic Insects: Challenges to Populations'. (Eds J. Lancaster and R. A. Briers.) pp.
- 837 103-121. (CAB International: Wallingford, UK.)
- 838
- 839 Del Rosario, R. B., and Resh, V. H. (2000). Invertebrates in intermittent and perennial
- streams: is the hyporheic zone a refuge from drying? *Journal of the North American*
- 841 Benthological Society 19, 680-696
- 842
- 843 Delucchi, C. M. (1989). Movement patterns of invertebrates in temporary and
- permanent streams. *Oecologia* **78**, 199-207.
- 845

846	Dewson, Z	S.,	James, A.	Β.	W.,	and Death,	R.	G.	(2007a)	. A	review	of the	e
-----	-----------	-----	-----------	----	-----	------------	----	----	---------	-----	--------	--------	---

- 847 consequences of decreased flow for instream habitat and macroinvertebrates. *Journal*
- 848 *of the North American Benthological Society* **26**, 401-415.
- 849
- B50 Dewson, Z. S., James, A. B. W., and Death, R. G. (2007b). Invertebrate responses to
- 851 short-term water abstraction in small New Zealand streams. *Freshwater Biology* **52**,
- 852 357-369.
- 853
- Dole-Olivier, M-J. (2011). The hyporheic refuge hypothesis reconsidered: a review of
- hydrological aspects. *Marine and Freshwater Research* **62**, 1281-1302.
- 856
- 857 Dole-Olivier, M-J., and Marmonier, P. (1992a). Effects of spates on the vertical
- distribution of the interstitial community. *Hydrobiologia* **230**, 49-61.
- 859
- B60 Dole-Olivier, M-J., and Marmonier, P. (1992b). Patch distribution of interstitial
- 861 communities: prevailing factors. *Freshwater Biology* 27, 177-191.
- 862
- B63 Dole-Olivier, M-J., Marmonier, P., and Beffy, J. L. (1997). Response of invertebrates
 to lotic disturbance: is the hyporheic zone a patchy refugium? *Freshwater Biology* 37,
 257-276.
- 866
- B67 Dole-Olivier, M-J., Galassi, D. M. P., Marmonier, P., and Creuzé des Châtelliers, M.
 (2000). The biology and ecology of lotic microcrustaceans. *Freshwater Biology* 44,
 63-91.
- 870
- 871 Domagalski, J. L., Phillips, S. P., Bayless, E. R., Zamora, C., Kendall, C., Wildman,
- 872 R. A., and Hering, J. G. (2008). Influences of the unsaturated, saturated, and riparian
- zones on the transport of nitrate near the Merced River, California,
- 874 USA. *Hydrogeology Journal* **16**, 675–690.
- 875
- 876 Englund, G., and Malmqvist, B. (1996). Effects of flow regulations, habitat area and
- 877 isolation on the macroinvertebrate fauna of rapids in north Swedish rivers. *Regulated*
- 878 *Rivers: Research and Management* **12**, 433-445.
- 879

880	Environment Agency (2002). The Water Framework Directive: guiding principles on
881	the technical requirements. Environment Agency, Technical Report, Bristol, UK.
882	
883	Environment Agency (2009). The hyporheic handbook: a handbook on the
884	groundwater-surface water interface and hyporheic zone for environment managers.
885	Environment Agency, Science Report SC050070, Bristol, UK.
886	
887	Evans, E. C., and Petts, G. E. (1997). Hyporheic temperature patterns within riffles.
888	Hydrological Sciences Journal 42, 199-213.
889	
890	Extence, C. (1981). The effect of drought on benthic invertebrate communities in a
891	lowland river. Hydrobiologia 83, 217-224.
892	
893	Fenoglio, S., Bo, T., and Bosi, G. (2006). Deep interstitial habitat as a refuge for
894	Agabus paludosus (Fabricus) (Coleoptera: Dytiscidae) during summer droughts. The
895	Coleopterists Bulletin 60, 37-41.
896	
897	Findlay, S. (1995). Importance of surface-subsurface exchange in stream ecosystems:
898	the hyporheic zone. Limnology and Oceanography 40, 159-164.
899	
900	Fowler, R. T., and Death, R. G. (2001). The effect of environmental stability on
901	hyporheic community structure. Hydrobiologia 445, 85-95.
902	
903	Franken, R. J. M., Storey, R. G., and Williams, D. D. (2001). Biological, chemical
904	and physical characteristics of downwelling and upwelling zones in the hyporheic
905	zone of a north-temperate stream. Hydrobiologia 444, 183-195.
906	
907	Franken, R. J. M., Batten, S., Beijer, J. A. J., Gardeniers, J. J. P., Scheffer, M., and
908	Peeters, E. T. H. M. (2006). Effects of interstitial refugia and current velocity on
909	growth of the amphipod Gammarus pulex Linnaeus. Journal of the North American
910	Benthological Society 25, 656-663.
911	
912	Fraser, B. G., and Williams, D. D. (1997). Accuracy and precision in sampling

913 hyporheic fauna. *Canadian Journal of Fisheries and Aquatic Sciences* **54**, 1135-1141.

914	
915	Fritz, K. M., and Dodds, W. K. (2004). Resistance and resilience of macroinvertebrate
916	assemblages to drying and flood in a tall prairie grass system. Hydrobiologia 527, 99-
917	112.
918	
919	Gagneur, J., and Chaoui-Boudghane, C. (1991). Sur le role du milieu hyporhéique
920	pendant l'assèchement des oueds de l'Ouest Algérien. Stygologia 6, 77-89.
921	
922	Gandy, C. J., Smith, J. W. N., and Jarvis, A. P. (2007). Attenuation of mining-derived
923	pollutants in the hyporheic zone: A review. Journal of the Total Environment 373,
924	435-446.
925	
926	Gayraud, S., Philippe, M., and Maridet, L. (2000). The response of benthic
927	macroinvertebrates to artificial disturbance: drift or vertical movement in the gravel
928	bed of two sub-alpine streams? Archiv für Hydrobiologie 147, 431-446.
929	
930	Giberson, D. J., and Hall, R. J. (1988). Seasonal variation in faunal distribution within
931	the sediments of a Canadian Shield stream, with emphasis on responses to spring
932	floods. Canadian Journal of Fisheries and Aquatic Sciences 45, 1994-2002.
933	
934	Griffith, M. B., and Perry, S. A. (1993). The distribution of macroinvertebrates in the
935	hyporheic zone of two small Appalachian headwater streams. Archiv für
936	<i>Hydrobiologie</i> 126 , 373-384.
937	
938	Grimm, N. B., and Fisher, S. G. (1984). Exchange between interstitial and surface
939	water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111,
940	219-228.
941	
942	Hancock, P. J. (2002). Human Impacts on the stream-groundwater exchange zone.
943	Environmental Management 29, 763-781.
944	
945	Hancock, P. J. (2006). The response of hyporheic invertebrate communities to a large
946	flood in the Hunter River, New South Wales. Hydrobiologia 568, 255-262.
947	

948	Hester, E. T., and Gooseff, M. N. (2010). Moving beyond the banks: hyporheic
949	restoration is fundamental to restoring ecological services and functions of streams.
950	Environmental Science & Technology 44, 1521-1525.
951	
952	Holomuzki, J. R., and Biggs, B. J. F. (2000). Taxon-specific responses to high-flow
953	disturbance in streams: implications for population persistence. Journal of the North
954	American Benthological Society 19, 670-679.
955	
956	Humphries, P., and Baldwin, D. S. (2003). Drought and aquatic ecosystems: an
957	introduction. Freshwater Biology 48, 1141-1146.
958	
959	Hynes, H. B. N. (1958). The effect of drought on the fauna of a small mountain
960	stream in Wales. Verhandlungen der Internationalen Vereinigung für Theoretische
961	und Angewandte Limnologie 8, 826-833.
962	
963	Imbert, J. B., and Perry, J. A. (1999). Invertebrate responses to stepwise and abrupt
964	increases in non-scouring flow: the role of refugia. Archiv für Hydrobiologie 146,
965	167-187.
966	
967	Imhof, J. G. A., and Harrison, A. D. (1981). Survival of Diplectrona modesta Banks
968	(Trichoptera: Hydropsychidae) during short periods of desiccation. Hydrobiologia 77,
969	61-63.
970	
971	IPCC (Intergovernmental Panel on Climate Change). (2007). Climate change 2007—
972	the physical science basis. Contribution of Working Group I to the Fourth Assessment
973	Report of the IPCC, Cambridge University Press, Cambridge, UK.
974	
975	Jacobi, G. Z., and Cary, S. J. (1996). Winter stoneflies (Plecoptera) in seasonal
976	habitats in New Mexico, USA. Journal of the North American Benthological Society
977	15 , 690-699.
978	
979	James, A. B. W., and Suren, A. M. (2009). The response of invertebrates to a gradient
980	of flow reduction – an instream channel study in a New Zealand lowland river.
981	<i>Freshwater Biology</i> 54 , 2225-2242.

982	
983	James, A. B. W., Dewson, Z. S., and Death, R. G. (2008). Do stream
984	macroinvertebrates use instream refugia in response to severe short-term flow
985	reduction in New Zealand streams? Freshwater Biology 53, 1316-1334.
986	
987	Jansson, R., Nilsson, C., and Malmqvist, B. (2007). Restoring freshwater ecosystems
988	in riverine landscapes: the roles of connectivity and recovery processes. Freshwater
989	<i>Biology</i> 52 , 589-596.
990	
991	Jeffrey, K. A., Beamish, F. W. H., Ferguson, S. C., Kolton, R. J., and MacMahon, P.
992	D. (1986). Effects of the lampricide, 3-trifluoromethyl-4-nitrophenol (TFM) on the
993	macroinvertebrates within the hyporheic region of a small stream. Hydrobiologia 134,
994	43-51.
995	
996	Jones, J. B., and Holmes, R. M. (1996). Surface-subsurface interactions in stream
997	ecosystems. Trends in Ecology and Evolution 11, 239-242.
998	
999	Jones, J. B., Fisher, S. G., and Grimm, N. B. (1995). Vertical hydrologic exchange
1000	and ecosystem metabolism in a Sonoran Desert stream. Ecology 76, 942-952.
1001	
1002	Kasahara T., and Hill A.R. (2006a). Effects of riffle-step restoration on hyporheic
1003	zone chemistry in N-rich lowland streams. Canadian Journal of Fisheries and
1004	Aquatic Sciences 63, 120–133.
1005	
1006	Kasahara T., and Hill A.R. (2006b). Hyporheic exchange flows induced by
1007	constructed riffles and steps in lowland streams in southern Ontario,
1008	Canada. <i>Hydrological Processes</i> 20 , 4287–4305.
1009	
1010	Kasahara T., and Hill A.R. (2007). Instream restoration: Its effects on lateral stream-
1011	subsurface water exchange in urban and agricultural streams in Southern Ontario.
1012	<i>River Research and Applications</i> 23, 801-814

1014	Kasahara, T., Datry, T., Mutz, M., and Boulton, A. J. (2009). Treating causes not
1015	symptoms: restoration of surface-groundwater interactions in rivers. Marine and
1016	Freshwater Research 60, 976-982.
1017	
1018	Kibichii, S., Baars, J. R., and Kelly-Quinn, M. (2009). Optimising sample volume and
1019	replicates using the Bou-Rouch method for the rapid assessment of hyporheic fauna.
1020	Marine and Freshwater Research 60, 83-96.
1021	
1022	Kondolf, G. M., Boulton, A. J., O'Daniel, S., Poole, G. C., Rahel, F. J., Stanley, E. H.,
1023	Wohl, E., Bång, A., Carlstrom, J., Cristoni, C., Huber, H., Koljonen, S., Louhi, P., and
1024	Nakamura, K. (2006). Process-based ecological river restoration: visualising three-
1025	dimensional connectivity and dynamic vectors to recover lost linkages. Ecology and
1026	Society 11, 5 [online].
1027	
1028	Konrad, C. P., Brasher, A. M. D., and May, J. T. (2008). Assessing streamflow
1029	characteristics as limiting factors on benthic invertebrate assemblages in streams
1030	across the western United States. Freshwater Biology 53, 1983-1998.
1031	
1032	Krause, S., Hannah, D. M., Fleckenstein, J. H., Heppell, C. M., Kaeser, D., Pickup,
1033	R., Pinay, G., Robertson, A., and Wood, P. J. (2011). Inter-disciplinary perspectives
1034	on processes in the hyporheic zone. Ecohydrology 4, 481–499.
1035	
1036	Kroon, F. J., and Ludwig, J. A. (2010). Response and recovery of fish and
1037	invertebrate assemblages following flooding in five tributaries of a sub-tropical river.
1038	Marine and Freshwater Research 61, 86-96.
1039	
1040	Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the
1041	North American Benthological Society 19, 573-592.
1042	
1043	Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters.
1044	Freshwater Biology 48, 1161-1172.
1045	
1046	Lake, P. S. (2011). 'Drought and Aquatic Systems: Effects and Responses' (John
1047	Wiley & Sons Ltd: Chichester.)

1048	
1049	Lake, P. S., and Barmuta, L. A. (1986). Stream benthic communities: persistent
1050	presumptions and current speculations. In 'Limnology in Australia'. (Eds P. De
1051	Deckker and W. D. Williams.) pp. 263-276. (CSIRO: Melbourne, Australia and Dr.
1052	W. Junk Publishers: Dordrecht, The Netherlands.)
1053	
1054	Lancaster, J. (1996). Scaling the effects of predation and disturbance in a patchy
1055	environment. Oecologia 107, 321-331.
1056	
1057	Lancaster, J. (1999). Small-scale movements of lotic macroinvertebrates with
1058	variations in flow. Freshwater Biology 41, 605-619.
1059	
1060	Lancaster, J. (2000). Geometric scaling of microhabitat patches and their efficacy as
1061	refugia during disturbance. Journal of Animal Ecology 69, 442-457.
1062	
1063	Lancaster, J. (2008). Movement and dispersion of insects in stream channels: what
1064	role does flow play? In 'Aquatic Insects: Challenges to Populations'. (Eds J.
1065	Lancaster and R. A. Briers.) pp. 139-157. (CAB International: Wallingford, UK.)
1066	
1067	Lancaster, J., and Belyea, L. R. (1997). Nested hierarchies and scale-dependence of
1068	mechanisms of flow refugium use. Journal of the North American Benthological
1069	<i>Society</i> 16 , 221-238.
1070	
1071	Lancaster, J., and Hildrew, A. G. (1993). Flow refugia and the microdistribution of
1072	lotic invertebrates. Journal of the North American Benthological Society 12, 385-393.
1073	
1074	Larned, S. T., Datry, T., Arscott, D. B., and Tockner, K. (2010). Emerging concepts in
1075	temporary-river ecology. Freshwater Biology 55, 717-738.
1076	
1077	Lytle, D. A., and Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in
1078	Ecology and Evolution 19, 94-100.
1079	
1080	Malard, F., and Hervant, F. (1999). Oxygen supply and the adaptations of animals in
1081	groundwater. Freshwater Biology 41, 1-30.

1082	
1083	Malard, F., Lafont, M., Burgherr, P., and Ward, J. V. (2001). A comparison of
1084	longitudinal patterns in hyporheic and benthic oligochaete assemblages in a glacial
1085	river. Arctic, Antarctic, and Alpine Research 33, 457-466.
1086	
1087	Malard, F., Tockner, K., Dole-Olivier, M-J., and Ward, J. V. (2002). A landscape
1088	perspective of surface-subsurface hydrological exchanges in river corridors.
1089	Freshwater Biology 47, 621-640.
1090	
1091	Malard, F., Ferreira, D., Dolédec, S., and Ward, J. V. (2003a). Influence of
1092	groundwater upwelling on the distribution of the hyporheos in a headwater river flood
1093	plain. Archiv für Hydrobiologie 157, 89-116.
1094	
1095	Malard, F., Galassi, D., Lafont, M., Dolédec, S., and Ward, J. V. (2003b).
1096	Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river.
1097	Freshwater Biology 48, 1709-1725.
1098	
1099	Malcolm, I. A., Soulsby, C., Youngson, A. F., Hannah, D. M., McLaren, I. S., and
1100	Thorne, A. (2004). Hydrological influences on hyporheic water quality: implications
1101	for salmon egg survival. Hydrological Processes 18, 1543-1560.
1102	
1103	Malmqvist, B., and Sackmann, G. (1996). Changing risk of predation for a filter-
1104	feeding insect along a current velocity gradient. Oecologia 74, 396-403.
1105	
1106	Marchant, R. (1988). Vertical distribution of benthic invertebrates in the bed of the
1107	Thomson River, Victoria. Australian Journal of Marine and Freshwater Research 39,
1108	775-784.
1109	
1110	Marchant, R. (1995). Seasonal variation in the vertical distribution of hyporheic
1111	invertebrates in an Australian upland river. Archiv für Hydrobiologie 134, 441-457.
1112	
1113	Maridet, L., Wasson, J., and Philippe, M. (1992). Vertical distribution of fauna in the
1114	bed sediment of three running water sites: influence of physical and trophic factors.
1115	Regulated Rivers: Research and Management 7, 45–55.

1116	
1117	Marmonier, P., and Creuzé des Châtelliers, M. (1991). Effects of spates on interstitial
1118	assemblages of the Upper Rhône River. Importance of spatial heterogeneity.
1119	Hydrobiologia 210 , 243-251.
1120	
1121	Marmonier, P., Luczyszyn, H., Creuzé des Châtelliers, M., Landon, N., Claret, C., and
1122	Dole-Olivier, M-J. (2010). Hyporheic flowpaths and interstitial invertebrates
1123	associated with stable and eroded river sections: interactions between micro- and
1124	meso-scales. Fundamental and Applied Limnology 176, 303-317.
1125	
1126	Matthaei, C. D., and Townsend, C. R. (2000). Inundated floodplain gravels in a
1127	stream with an unstable bed: temporary shelter or true invertebrate refugium? New
1128	Zealand Journal of Marine and Freshwater Research 34, 147-156.
1129	
1130	Matthaei, C. D., Peacock, K. A., and Townsend, C. R. (1999). Scour and fill patterns
1131	in a New Zealand stream and potential implications for invertebrate refugia.
1132	Freshwater Biology 42, 41-57.
1133	
1134	Matthaei, C. D., Arbuckle, C. J., and Townsend, C. R. (2000). Stable surface stones as
1135	refugia for invertebrates during disturbance in a New Zealand stream. Journal of the
1136	North American Benthological Society 19, 82-93.
1137	
1138	McGrath, K. E., Peeters, E. T. H. M., Beijer, J. A. J., and Scheffer, M. (2007). Habitat
1139	mediated cannibalism and microhabitat restriction in the stream invertebrate
1140	Gammarus pulex. Hydrobiologia 589 , 155-164.
1141	
1142	McKenzie-Smith, F. J., Bunn, S. E., and House, A. P. N. (2006). Habitat dynamics in
1143	the bed sediments of an intermittent upland stream. Aquatic Sciences 68, 86-99.
1144	
1145	Mika, S., Boulton, A., Ryder, D., and Keating, D. 2008. Ecological function in rivers:
1146	Insights from crossdisciplinary science. In 'River Futures: An Integrative Scientific
1147	Approach to River Repair'. (Eds G. J. Brierley and K. A. Fryirs.) pp. 85-99. (Island
1148	Press: Washington, DC.)
1149	

1150	Miller, A. M., and Golladay, S. W. (1996). Effects of spates and drying on
1151	macroinvertebrate assemblages of an intermittent and a perennial prairie stream.
1152	Journal of the North American Benthological Society 15, 670-689.
1153	
1154	Monk, W. A., Wood, P. J., and Hannah, D. M. (2008). Examining the influence of
1155	flow regime variability on instream ecology. In: 'Hydroecology and Ecohydrology:
1156	Past, Present and Future'. (Eds P. J. Wood, D. M. Hannah and J. P. Sadler.) pp. 165-
1157	184. (John Wiley & Sons Ltd: Chichester, UK.)
1158	
1159	Montgomery, D. R., and Buffington, J. M. (1997). Channel-reach morphology in
1160	mountain drainage basins. Geological Society of America Bulletin 109, 596-611.
1161	
1162	Olsen, D. A., and Townsend, C. R. (2003). Hyporheic community composition in a
1163	gravel-bed stream: influence of vertical hydrological exchange, sediment structure
1164	and physicochemistry. Freshwater Biology 48, 1363-1378.
1165	
1166	Olsen, D. A., and Townsend, C. R. (2005). Flood effects on invertebrates, sediments
1167	and particulate organic matter in the hyporheic zone of a gravel-bed stream.
1168	Freshwater Biology 50, 839-853.
1169	
1170	Olsen, D. A., Matthaei, C. D., and Townsend, C. R. (2010). Effects of a depositional
1171	flood event on the hyporheos of a New Zealand stream. Fundamental and Applied
1172	<i>Limnology</i> 176 , 337-348.
1173	
1174	Orghidan, T. (1959). Ein neuer lebensraum des unterirdischen wassers, der
1175	hyporheische biotope. Archiv für Hydrobiologie 55, 392-414.
1176	
1177	Orghidan, T. (2010). A new habitat of subsurface waters: the hyporheic biotope.
1178	Fundamental and Applied Limnology 176, 291-302.
1179	
1180	Palmer, M. A., Bely, A. E., and Berg, K. E. (1992). Response of invertebrates to lotic
1181	disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89, 182-194.

1183	Palmer, M. A., Arensburger, P., Martin, A. P., and Denman, D. W. (1996).
1184	Disturbance and patch-specific responses: the interactive effects of woody debris and
1185	floods on lotic invertebrates. <i>Oecologia</i> 105 , 147-157.
1186	
1187	Perry, S. A., and Perry, W. B. (1986). Effects of experimental flow regulation on
1188	invertebrate drift and stranding in the Flathead and Kootenai Rivers, Montana, USA.
1189	<i>Hydrobiologia</i> 134 : 171-182.
1190	
1191	Plenet, S., Gibert, J., and Marmonier, P. (1995). Biotic and abiotic interactions
1192	between surface and interstitial systems in rivers. <i>Ecography</i> 18, 296-309.
1193	
1194	Poff, N. L. (1992). Why disturbances can be predictable: a perspective on the
1195	definition of disturbance in streams. Journal of the North American Benthological
1196	Society 11, 86-92.
1197	
1198	Poff, N. L., and Ward, J. V. (1990). Physical habitat template of lotic systems:
1199	recovery in the context of historical pattern of spatiotemporal heterogeneity.
1200	Environmental Management 14, 629-645.
1201	
1202	Poff, N. L., Olden, J. D., Vieira, N. K. M., Finn, D. S., Simmons, M. P., and
1203	Kondratieff, B. C. (2006). Functional trait niches of North American lotic insects:
1204	traits-based ecological applications in light of phylogenetic relationships. Journal of
1205	the North American Benthological Society 25 , 730-755.
1206	
1207	Poole, W. C., and Stewart, K. W. (1976). The vertical distribution of macrobenthos
1208	within the substratum of the Brazos River, Texas. Hydrobiologia 50, 151-160.
1209	
1210	Puig, M. A., Sabater, F., and Malo, J. (1990). Benthic and hyporheic faunas of
1211	mayflies and stoneflies in the Ter River basin (NE-Spain). In 'Mayflies and
1212	Stoneflies'. (Ed I. C. Campbell.) pp. 255-258 (Kluwer Academic Publishers:
1213	Dordrecht, The Netherlands.)
1214	

1215	Reice, S. R., Wissmar, R. C., and Naiman, R. J. (1990). Disturbance regimes,
1216	resilience, and recovery of animal communities and habitats in lotic ecosystems.
1217	Environmental Management 14, 647-659.
1218	
1219	Rempel, L. L., Richardson, J. S., and Healey, M. C. (1999). Flow refugia for benthic
1220	macroinvertebrates during flooding of a large river. Journal of the North American
1221	Benthological Society 18, 34-48.
1222	
1223	Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., Minshall, G. W.,
1224	Reice, S. R., Sheldon, A. L., Wallace, J. B., and Wissmar, R. C. (1988). The role of
1225	disturbance in stream ecology. Journal of the North American Benthological Society
1226	7, 433-455.
1227	
1228	Richards, C., and Bacon, K. L. (1994). Influence of fine sediment on
1229	macroinvertebrate colonization of surface and hyporheic stream substrates. Western
1230	North American Naturalist 54, 106-113.
1231	
1232	Richardson, W. B. (1992). Microcrustacea in flowing water: experimental
1233	analysis of washout times and a field test. Freshwater Biology 28, 217-230.
1234	
1235	Robertson, A. L., and Wood, P. J. (2010). Ecology of the hyporheic zone: origins, current
1236	knowledge and future directions. Fundamental and Applied Limnology 176, 279-289.
1237	
1238	Robertson, A. L., Lancaster, J., and Hildrew, A. G. (1995). Stream hydraulics and the
1239	distribution of microcrustacea: a role for refugia? Freshwater Biology 33, 469-484.
1240	
1241	Robertson, A. L., Smith, J. W. N., Johns, T., and Proudlove, G. S. (2009). The
1242	distribution and diversity of stygobites in Great Britain: an analysis to inform
1243	groundwater management. Quarterly Journal of Engineering Geology and Hydrogeology
1244	42 , 359-368.
1245	
1246	Robinson, C. T., Aebischer, S., and Uehlinger, U. (2004). Immediate and habitat-
1247	specific responses of macroinvertebrates to sequential, experimental floods. Journal
1248	of the North American Benthological Society 23, 853-867.

1249	
1250	Robson, B. J., Chester, E. T., and Austin, C. (2011) Why life history information matters:
1251	drought refuges and macroinvertebrate persistence in non-perennial streams subject to a
1252	drier climate. Marine and Freshwater Research 62, 801-810.
1253	
1254	Scarsbrook, M. R., and Halliday, J. (2002). Detecting patterns in hyporheic
1255	community structure: Does sampling method alter the story? New Zealand Journal of
1256	Marine and Freshwater Research 36 , 443-453.
1257	
1258	Schmid, P. E., and Schmid-Araya, J. M. (1997). Predation on meiobenthic
1259	assemblages: resource use of a tanypod guild (Chironomidae, Diptera) in a gravel
1260	stream. Freshwater Biology 38, 67 91.
1261	
1262	Schmid, P. E., and Schmid-Araya, J. M. (2010). Scale-dependent relations between
1263	bacteria, organic matter and invertebrates in a headwater stream. Fundamental and
1264	Applied Limnology 176, 365-375.
1265	
1266	Sedell, J. R., Reeves, G. H., Hauer, F. R., Stanford, J. A., and Hawkins, C. P. (1990).
1267	Role of refugia in recovery from disturbances: modern fragmented and disconnected
1268	river systems. Environmental Management 14, 711-724.
1269	
1270	Smock, L.A., Gladden, J. E., Riekenberg, J. L., Smith, L. C., and Black, C R. (1992).
1271	Lotic macroinvertebrate production in three dimensions: channel surface, hyporheic,
1272	and floodplain environments. Ecology 73, 876–886.
1273	
1274	Smock, L. A., Smith, L. C., Jones Jr, J. B., and Hooper, S. M. (1994). Effects of
1275	drought and a hurricane on a coastal headwater stream. Archiv für Hydrobiologie 131,
1276	25-38.
1277	
1278	Sponseller, R. A., Grimm, N. B., Boulton, A. J., and Sabo, J. L. (2010). Responses of
1279	macroinvertebrate communities to long-term flow variability in a Sonoran Desert
1280	stream. Global Change Biology 16, 2891-2900.
1281	

1282	Stanford, J. A., and Ward, J. V. (1993). An ecosystem perspective of alluvial rivers:
1283	connectivity and the hyporheic corridor. Journal of the North American Benthological
1284	<i>Society</i> 12 , 48-60.
1285	
1286	Stanley, E. H., and Boulton, A. J. (1993). Hydrology and the distribution of
1287	hyporheos: perspectives from a mesic river and a desert stream. Journal of the North
1288	American Benthological Society 12, 79-83.
1289	
1290	Stanley, E. H., Buschmann, D. L., Boulton, A. J., Grimm, N. B., and Fisher, S. G.
1291	(1994). Invertebrate resistance and resilience to intermittency in a desert stream.
1292	American Midland Naturalist 131, 288-300.
1293	
1294	Statzner, B., and Higler, B. (1986). Stream hydraulics as a major determinant of
1295	benthic invertebrate zonation patterns. Freshwater Biology 16, 127-139.
1296	
1297	Stead, T. K., Schmid-Araya, J. M., and Hildrew, A. G. (2004). The contribution of
1298	subsurface invertebrates to benthic density and biomass in a gravel stream. Archiv für
1299	<i>Hydrobiologie</i> 160 , 171-191.
1300	
1301	Storey, R. G., and Williams, D. D. (2004). Spatial responses of hyporheic
1302	invertebrates to seasonal changes in environmental parameters. Freshwater Biology
1303	49 , 1468-1486.
1304	
1305	Strayer, D. L., May, S. E., Nielsen, P., Wollheim, W., and Hausam, S. (1997).
1306	Oxygen, organic matter and sediment graulometry as controls on hyporheic animal
1307	communities. Archiv für Hydrobiologie 140, 131-144.
1308	
1309	Strommer, J. L., and Smock, L. A. (1989). Vertical distribution and abundance of
1310	invertebrates within the sandy substrate of a low-gradient headwater stream.
1311	Freshwater Biology 22, 263-274.
1312	
1313	Stubbington, R., Greenwood, A. M., Wood, P. J., Armitage, P. D., Gunn, J., and
1314	Robertson, A. L. (2009a). The response of perennial and temporary headwater stream
1315	invertebrate communities to hydrological extremes. Hydrobiologia 630, 299-312.

1316	
1317	Stubbington, R., Wood, P. J., and Boulton, A. J. (2009b). Low flow controls on
1318	benthic and hyporheic macroinvertebrate assemblages during supra-seasonal drought.
1319	Hydrological Processes 23, 2252-2263.
1320	
1321	Stubbington, R., Wood, P. J., and Reid, I. (2010). Contrasting use of hyporheic habitat
1322	by benthic invertebrates during spates and low flows. In 'Proceedings of the British
1323	Hydrological Society Third International Symposium, Newcastle, 19-23 July 2010'.
1324	(Ed C. Kirby.) pp. 1-6. (British Hydrological Society: London, UK).
1325	
1326	Stubbington, R., Wood, P. J., Reid, I., and Gunn, J. (2011a). Benthic and hyporheic
1327	invertebrate community responses to seasonal flow recession in a karst stream.
1328	<i>Ecohydrology</i> 4 , 500-511.
1329	
1330	Stubbington, R., Wood, P. J., and Reid, I. (2011b). Spatial variability in the hyporheic
1331	zone refugium of temporary streams. Aquatic Sciences: Research Across Boundaries,
1332	73 , 499-511.
1333	
1334	Suren, A. M., Biggs, B. J. F., Kilroy, C., and Bergey, L. (2003a). Benthic community
1335	dynamics during summer low-flows in two rivers of contrasting enrichment 1.
1336	Periphyton. New Zealand Journal of Marine and Freshwater Biology 37, 53-70.
1337	
1338	Suren, A. M., Biggs, B. J. F., Duncan, M. J., and Bergey, L. (2003b). Benthic
1339	community dynamics during summer low-flows in two rivers of contrasting
1340	enrichment 2. Invertebrates. New Zealand Journal of Marine and Freshwater
1341	<i>Research</i> 37 , 71-83.
1342	
1343	Tomlinson, M., and Boulton, A. J. (2010). Ecology and management of subsurface
1344	groundwater dependent ecosystems in Australia – a review. Marine and Freshwater
1345	<i>Research</i> 61 , 936-949.
1346	
1347	Townsend, C. R. (1989). The patch dynamics concept of stream community ecology.
1348	Journal of the North American Benthological Society 8, 36-50.
1349	

1350	Townsend, C. R., and Hildrew, A. G. (1994). Species traits in relation to a habitat
1351	template for river systems. Freshwater Biology 31, 265-276.
1352	
1353	Townsend, C. R., Scarsbrook, M. R., and Dolédec, S. (1997). The intermediate
1354	disturbance hypothesis, refugia, and biodiversity in streams. Limnology and
1355	<i>Oceanography</i> 42 , 938-949.
1356	
1357	Valett, H. M. (1993). Surface-hyporheic interactions in a Sonoran Desert stream:
1358 1359	hydrologic exchange and diel periodicity. <i>Hydrobiologia</i> 259 , 133-144.
1360	Vervier, P., Gibert, J., Marmonier, P., and Dole-Olivier, M- J. (1992). A perspective
1361	on the permeability of the surface freshwater-groundwater ecotone. Journal of the
1362	North American Benthological Society 11 , 93-102.
1363	
1364	Wagner, F. H., and Bretschko, G. (2002). Interstitial flow through preferential flow
1365	paths in the hyporheic zone of the Oberer Seebach, Austria. Aquatic Sciences:
1366	Research Across Boundaries 2002, 307-316.
1367	
1368	Ward, J. V. 1989. The four-dimensional nature of lotic ecosystems. Journal of the
1369	North American Benthological Society 8: 2-8.
1370	
1371	Watanabe, M. (2006). Anhydrobiosis in invertebrates. Applied Entomology and
1372	Zoology 41 , 15-31.
1373	
1374	Webster, J. R., Waide, J. B., and Patten, B. C. (1975). Nutrient recycling and stability
1375	of ecosystems. In 'Mineral Cycling in Southeastern Ecosystems'. (Eds F. G. Howell,
1376	J. B. Gentry and M. H. Smith.) pp. 1-27. (United States Energy Research and
1377	Development Administration: Washington, DC.)
1378	
1379	Weigelhofer, G., and Waringer, J. (2003). Vertical distribution of benthic
1380	macroinvertebrates in riffles versus deep runs with differing contents of fine
1381	sediments (Weidlingbach, Austria). International Review of Hydrobiology 88, 304-
1382	313.
1383	

1384	White, D. S. (1993). Perspectives on defining and delineating hyporheic zones.
1385	Journal of the North American Benthological Society 12, 61-69.
1386	
1387	Williams, D. D. (1984). The hyporheic zone as a habitat for aquatic insects and
1388	associated arthropods. In 'The Ecology of Aquatic Insects'. (Eds V. H. Resh and D.
1389	M. Rosenberg.) pp. 430-455 (Praeger: New York.)
1390	
1391	Williams, D. D., and Hynes, H. B. N. (1974). The occurrence of benthos deep in the
1392	substratum of a stream. Freshwater Biology 4, 233-256.
1393	
1394	Williams, D. D., Febria, C. M., and Wong, J. C. Y. (2010). Ecotonal and other
1395	properties of the hyporheic zone. Fundamental and Applied Limnology 176, 349-364.
1396	
1397	Wondzell, S. M., and Swanson, F. J. 1999. Floods, channel change, and the hyporheic
1398	zone. Water Resources Research 35, 555-567.
1399	
1400	Wood, P. J., and Armitage, P. D. (1997). Biological effects of fine sediment in the
1401	lotic environment. Environmental Management 21, 203-217.
1402	
1403	Wood, P. J., and Armitage, P. D. (2004). The response of the macroinvertebrate
1404	community to low-flow variability and supra-seasonal drought within a groundwater
1405	dominated stream. Archiv für Hydrobiologie 161, 1-20.
1406	
1407	Wood, P. J., and Petts, G. E. (1999). The influence of drought on chalk stream
1408	macroinvertebrates. Hydrological Processes 13, 387-399.
1409	
1410	Wood, P. J., Boulton, A. J., Little, S., and Stubbington R. (2010). Is the hyporheic
1411	zone a refugium for macroinvertebrates during severe low flow conditions?
1412	Fundamental and Applied Limnology 176, 377-390.
1413	
1414	Wotton, R. S. (1979). The influence of a lake on the distribution of blackfly species
1415	(Diptera: Simuliidae) along a river. Oikos 32, 368-372.
1416	

1417	Wright, J. F., and Berrie, A. D. (1987). Ecological effects of groundwater pumping
1418	and a natural drought on the upper reaches of a chalk stream. Regulated Rivers:
1419	Research and Management 1, 145-160.
1420	
1421	Wright-Stow, A. E., Collier, K. J., and Smith, B. J. (2006). Hyporheic production is
1422	substantially greater then benthic production for a common New Zealand caddisfly.
1423	<i>Hydrobiologia</i> 560 , 295-310.
1424	
1425	Wu, F. C. (2000). Modeling embryo survival affected by sediment deposition into
1426	salmonid spawning gravels: application to flushing flow prescriptions. Water
1427	<i>Resources Research</i> 36 , 1595-1603.
1428	
1429	Young, B., Norris, R., and Sheldon, F. (in press). Is the hyporheic zone a refuge for

1430 macroinvertebrates in drying perennial streams? *Marine and Freshwater Research*.

- 1431 Table 1: Evidence of active and passive use of the hyporheic refuge by benthic invertebrate taxa during high flows (modified from Robertson
- 1432 and Wood 2010).
- 1433 Evidence of active refuge use is provided by concurrent increases in the HZ abundance and proportion of a population; the proportion is inferred
- 1434 from observed or assumed changes in BZ abundance; evidence of passive refuge use is provided by the occurrence of benthic invertebrates in the
- 1435 HZ. HZ = hyporheic zone; BZ = benthic zone; EPT = Ephemeroptera, Plecoptera and Trichoptera.

Section A. Studies providing evidence of active refuge use				
Site description / location	Evidence	Explanation for lack of migrations	Reference	
Riffle in headwaters of Speed River, Canada	Peak abundance of benthos at greater depth 1 day after spate; concurrent decrease in BZ abundance	-	Williams and Hynes 1974	
Three forested sites, Thomson River, Victoria, Australia	Abundance of benthos lower at 0-10 cm and higher at 10- 30 cm during high flows (at 1 of 3 sites)	-	Marchant 1988	
Bypassed section of River Rhône River, France	More benthos (EPT, chironomids, flatworms) at 50 cm after spate, at upwelling sites	-	Marmonier and Creuzé des Châtelliers 1991	
Bypassed section of River Rhône River, France	Benthos (<i>Gammarus</i> , ostracods) abundance increased in deeper sediments 1 day after spate, then decreased	-	Dole-Olivier and Marmonier 1992	
Sand-bottomed stream, Virginia, USA	Rotifer abundance increased in HZ and decreased in BZ after flood.	-	Palmer et al 1992	
Upland sites, Acheron River, Victoria, Australia	Chironomid, elmid, mite and copepod (but not EPT) abundance higher in HZ (10-30 cm) in high flow months.	-	Marchant 1995	
Bypassed section of Rhône River, France	<i>Gammarus</i> and chironomids at greater depths after small / medium spates in downwelling zones	-	Dole-Olivier et al. 1997	
Experimental flow tank	Hydrobiidae, Leptophlebiidae and Leptoceridae occurred in deeper layers during experimental flow increases	-	Holomuzki and Biggs 2000	

Section B. Studies providing evidence of passive refuge use

Site description / location	Evidence	Explanation for lack of migrations	Reference
Uniform riffle, Brazos River, Texas, USA	Increased HZ proportion of benthos (hydropsychids, elmid larvae, leptophlebiids); HZ abundance not known	None stated; active migrations possible	Poole and Stewart 1976
Pool-riffle downstream lake outflow, Ontario, Canada	HZ simuliid abundance stable during spate whilst BZ abundance declined. Other taxa present at low density.	Other refuges used (stable substrates)	Giberson and Hall 1988
Bypassed section of River Rhône River, France	Increase in HZ proportion but reduced HZ abundance for chironomids, oligochaetes and copepods after spate	Sandy substrate; "wash out" effect	Marmonier and Creuzé des Châtelliers 1991
Upland sites, Acheron River, Victoria, Australia	Evidence of active migrations (Section A) not observed during 1 of 2 high flow events	Possibly sediment compaction	Marchant 1995
Bypassed section of Rhône River, France	Little or no increase in HZ abundance of benthos after small/medium spates in upwelling zones	Stable hydrology	Dole-Olivier et al. 1997
Bypassed section of Rhône River, France	Benthos drifted rather than entering the HZ during high magnitude floods in downwelling zones	Spate magnitude; mobile substrate	Dole-Olivier et al. 1997
Gravel-bed experimental streams, USA	Non-significant increase in HZ abundance following abrupt/stepped flow increases	Rapid onset/ low spate magnitude	Imbert and Perry 1999
Cobble-bed sub-Alpine stream, France	Densities of benthos were stable in HZ before and after an experimental flow increase	Rapid spate onset	Gayraud <i>et al.</i> 2000
Subtropical river, Australia	Benthic mite abundance stable in HZ before and after experimental spates	Low spate magnitude	Boulton <i>et al.</i> 2004
Kye Burn, New Zealand	HZ abundance of all benthos lower after spate, but reduction in BZ abundance greater	Fine sediments	Olsen and Townsend 2005
Alpine stream, Italy	Hyporheic abundance/diversity of benthos reduced at hydropeaking-impacted sites	Disturbance frequency	Bruno <i>et al</i> . 2009
Second order karst stream, England	HZ abundance of benthos lower after spate, but reduction in BZ abundance greater	Mobile sediments/ rapid spate onset	Stubbington et al. 2010

1438 Table 2: Evidence of active, passive, minimal and no use of the hyporheic zone as a refuge by benthic invertebrates during streambed drying

- 1439 (modified from Wood *et al.* 2010).
- 1440 See Table 1 caption for additional details.

Section A. Studies providing evidence of active refuge use				
Site description and location	Evidence	Explanation for lack of migrations	Reference	
Temporary stream, New York, USA	Directional cages traps indicate migration of chloroperlids and leptophlebiids into HZ of riffles	-	Delucchi 1989	
Intermittent desert stream, Arizona, USA	Abundance of permanent hyporheos decreased at 30 and 50 cm and increased at 1 m as water table fell	-	Clinton <i>et al</i> . 1996	

Section B. Studies providing evidence of passive refuge use

Site description and location	Evidence	Explanation for lack of migrations	Reference
Intermittent stream, Indiana, USA	Isopods, amphipods and coleopterans present in moist interstitial spaces	Migrations not studied	Clifford 1966
2 intermittent creeks, Ontario, Canada	Chironomids, oligochaetes, amphipods, coleopterans and others recolonised surface sediments from HZ	Not studied; may have occurred	Williams 1977
Intermittent headwater stream, Ontario, Canada	Hydropsychids, rhyacophilids and nemouriids observed in moist interstices after surface drying	None suggested	Imhof and Harrison 1981
Intermittent streams, Australia	A few taxa (1 isopod, oligochaete, flatworm, mite, and leptophlebiid) occurred in the HZ of a dry stream	High streambed temperature	Boulton 1989
Intermittent wadi headwaters, Algeria	A few benthic taxa survived the dry phase at low abundance in the HZ	Compaction/baking of fine sediments	Gagneur and Chaoui- Boudghane 1991
Intermittent streams, Arizona, USA and Australia	35-69 % of benthic taxa present in HZ during dry phase	Migrations not studied	Boulton <i>et al</i> . 1992
Arid-zone intermittent stream, Australia	Benthos including mites, EPT, chironomids and simuliids found in HZ below dry streambed	-	Cooling and Boulton 1993

2 nd order Appalachian headwater streams, USA	Suggested that 2 stonefly genera more abundant in deeper HZ layers due to earlier drying	-	Griffith and Perry 1993
2 intermittent creeks, California, USA	Abundance of most temporary hyporheos decreased in the HZ during the dry phase	Water lost from HZ above 0.6 m	Del Rosario and Resh 2000
Sub-Alpine river, Italy	<i>Agabus paludosus</i> (Dytiscidae: Coleoptera) present in deep sediments during the dry phase	Migrations not studied	Fenoglio <i>et al</i> . 2006
Intermittent lowland stream, England	Abundance of benthos in BZ and HZ decreased after repeated short-term drying	Fine sediment, water loss/ hypoxia	Stubbington <i>et al</i> . 2012
Normally perennial 5 th order river, SE Australia	Oligochaetes, dipterans, a hydroptilid, mites, elmids and dytiscids present in HZ after surface drying	Migrations not studied	Young <i>et al</i> . in press

Section C. Studies providing minimal or no evidence of refuge use

Site description and location	Evidence (lack thereof)	Explanation for no refuge use	Reference	
Headwater stream, coastal forest, South Carolina, USA	No active invertebrates present after flow ceased	Anoxia/dry, sandy substrate	Smock <i>et al</i> . 1994	
Sycamore Creek, intermittent Sonoran desert stream, USA	Ceratopogonids abundant at 0-10 cm immediately after flow resumption	Hypoxia/small interstices	Stanley <i>et al</i> . 1994	
Sycamore Creek, intermittent Sonoran desert stream, USA	Very few benthic taxa survive dry phase in HZ	HZ dried	Boulton and Stanley 1995	
Regulated intermittent wadi, NW Algeria	Very few benthic invertebrates present in HZ during dry phase	Baking of fine sediments; anoxia	Belaidi <i>et al</i> . 2004	
Normally perennial 5 th order river, SE Australia	Virtually no active invertebrates present in the HZ during dry phase	HZ dried to depth of 0.4 m	Young <i>et al</i> . in press	

1441

1443 Table 3: Evidence of active and passive use of the hyporheic refuge by benthic invertebrates during reduced flows (modified from Wood *et al.*

1444 2010).

1445 See Table 1 caption for additional details.

Site description / location	Evidence	Explanation for lack of migrations	Reference
Lowland chalk stream, England	Decreased BZ abundance/increased HZ abundance of benthos linked to temperature, not discharge	-	Stubbington <i>et al</i> ., 2009; Wood <i>et al.</i> 2010
Two small limestone streams, England	Increase in HZ abundance and HZ proportion observed for <i>Gammarus</i> at downwelling sites	-	Stubbington <i>et al</i> . 2011; Stubbington <i>et al</i> . 2012

Section B. Studies providing evidence of passive refuge use

Site description / location	Evidence	Explanation for lack of migration	Reference		
Three small cobble-bottom streams, North Island, New Zealand	Benthos present in HZ; vertical distribution similar before and after 88-96 % flow reductions	BZ preferable	James <i>et al.</i> 2008		
Experimental channels in a New Zealand lowland river	15 % of benthos present in HZ both before and after 25- 98 % flow reductions	Stable submerged area; BZ preferable	James and Suren 2009		
Two small limestone streams, England	HZ abundance stable whilst BZ abundance increased for <i>Gammarus</i> at upwelling site	Water movement/ water chemistry	Stubbington <i>et al.</i> 2011; Stubbington <i>et al</i> . 2012		
Normally perennial 5 th order river, SE Australia	Many taxa present in HZ at sites with 80% bed exposure, but assemblage similar to that at sites with greater flow	BZ preferable	Young <i>et al.</i> in press		

- 1446 Table 4: Taxon-specific evidence of active migrations by benthic macroinvertebrate
- 1447 into the hyporheic zone. Studies noting active migrations identified using Tables 1-3;

Class	Taxon	Active migrator?	References
Tricladida	Planariidae	Yes	Marmonier and Creuzé des Châtelliers 1997
Gastropoda	Potamopyrgus	Yes	Holomuzki and Biggs 2000
Amphipoda	Gammarus	Yes	Dole-Olivier and Marmonier 1992; Dole- Olivier <i>et al.</i> 1997; Wood <i>et al.</i> 2010; Stubbington <i>et al.</i> 2012
		No	Dole-Olivier <i>et al</i> . 1997 Gayraud <i>et al</i> . 2000
Ephemerop-	Not specified	Yes	Marmonier and Creuzé des Châtelliers 1997
tera		No	Marchant 1995; Gayraud <i>et al.</i> 2000 (Heptageniidae)
	Leptophlebiidae	Yes	Delucchi 1989; Holomuzki and Biggs 2000
Plecoptera	Not specified	Yes	Marmonier and Creuzé des Châtelliers 199
		No	Marchant 1995
	Chloroperlidae	Yes	Delucchi 1989; Dole-Olivier and Marmonier 1992
	Leuctridae	Yes	Dole-Olivier and Marmonier 1992
Trichoptera	Not specified	Yes	Marmonier and Creuzé des Châtelliers 199
		No	Marchant 1995
	Hydropsychidae	Yes	Dole-Olivier and Marmonier 1992
	Leptoceridae	Yes	Holomuzki and Biggs 2000
	Polycentropodidae	Yes	Dole-Olivier and Marmonier 1992
	Sericostomatidae	Yes	Holomuzki and Biggs 2000
Coleoptera	Elmidae larvae	Yes	Marchant 1988; Dole-Olivier and Marmonie 1992; Marchant 1995
Diptera	Chironomidae	Yes	Marchant 1988, 1995; Dole-Olivier <i>et al</i> . 1997
		No	Gayraud et al. 2000

1448 only taxa recorded as actively migrating by some studies are noted.

1449

1450

- 1452 Table 5: Evidence for proposed traits of taxa identified as active migrants
- 1453 Traits proposed by Robertson and Wood (2010). Active migrants identified in Table
- 1454 4. Trait assignment requires some, not all, members of a taxon to have the trait.

			Pro	bosed	traits o	f active	e migra	ints	
		No attachments	Burrowing habit	Depositional rheophily	High crawling rate	Small (<9 mm) at maturity	Tegument respiration	Vermiform shape	Total traits (max. 7)
	Chironomidae	\checkmark	\checkmark	✓	×	✓	✓	\checkmark	6
Ś	Planariidae	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	6
rant	Potamopyrgus	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	5
mig	Elmidae (larvae)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	5
ive.	Gammarus	\checkmark	\checkmark	\checkmark	×	×	×	×	3
Taxa identified as active migrants	Chloroperlidae	\checkmark	\checkmark	×	\checkmark	×	×	×	3
	Leuctridae	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	3
	Leptoceridae	\checkmark	×	\checkmark	\checkmark	×	×	×	3
	Sericostomatidae	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	3
	Hydropsychidae	\checkmark	×	×	\checkmark	×	×	×	2
	Leptophlebiidae	\checkmark	\checkmark	\checkmark	×	×	×	×	2
	Polycentropodidae	\checkmark	×	×	\checkmark	×	×	×	2
	Total taxa (max. 12)	12	9	9	8	4	2	2	

1457	Fig. 1. Conceptualisation of the hyporheic zone as one of a suite of invertebrate
1458	refuges available during (a) high flows, and (b) streambed drying. Gammarus pulex
1459	(Crustacea: Amphipoda) is depicted (not to scale), as a representative benthic
1460	invertebrate.
1461	
1462	Fig. 2. Interactions between sediment characteristics, hydrologic exchange (HE), flow
1463	velocity and dissolved oxygen concentrations in the hyporheic zone. Italics indicate
1464	high refuge potential.
1465	
1466	Fig. 3. Behaviour inferred from changes in absolute and relative abundance of benthic
1467	and hyporheic invertebrates. $HZ =$ hyporheic zone; $BZ =$ benthic zone. Examples:
1468	¹ Stubbington et al. 2011, 2012; ² Pers. obs., River Glen (Lincolnshire, UK) during
1469	habitat contraction; ³ Stubbington <i>et al.</i> 2012; ⁴ James <i>et al.</i> 2008; ⁵ Williams and Hynes
1470	1974, Marchant 1988, Wood et al. 2010; ⁶ Giberson and Hall 1988, Palmer et al.
1471	1992, James and Suren 2009; ^{7, 8, 9} No known examples.
1472	
1473	Fig. 4. Flow chart for predicting use of the hyporheic zone (HZ) as a refuge. C1-3
1474	indicate three criteria that must be met for active refuge use to occur.
1475 1476	
1477	

Fig. 1. Conceptualisation of the hyporheic zone as one of a suite of invertebrate refuges available during (a) high flows, and (b) streambed drying. *Gammarus pulex* (Crustacea: Amphipoda) is depicted (not to scale), as a representative benthic invertebrate.

Fig. 2. Interactions between sediment characteristics, hydrologic exchange (HE), flow velocity and dissolved oxygen concentrations in the hyporheic zone. Italics indicate high refuge potential.

Fig. 3. Behaviour inferred from changes in absolute and relative abundance of benthic and hyporheic invertebrates. HZ = hyporheic zone; BZ = benthic zone. Examples: ¹Stubbington *et al.* 2011, 2012; ²Pers. obs., River Glen (Lincolnshire, UK) during habitat contraction; ³Stubbington *et al.* 2012; ⁴James *et al.* 2008; ⁵Williams and Hynes 1974, Marchant 1988, Wood *et al.* 2010; ⁶ Giberson and Hall 1988, Palmer *et al.* 1992, James and Suren 2009; ^{7, 8, 9}No known examples.

Fig. 4. Flow chart for predicting use of the hyporheic zone (HZ) as a refuge. C1-3 $\,$

indicate three criteria that must be met for active refuge use to occur.