
Bridging the Gap in Constraint-Based Design 

VELIZ Alejandro, MEDJDOUB Benachir and KOCATURK Tuba 
Design Directorate, School of the Built Environment, University of Salford, 
United Kingdom 
a.a.veliz@edu.salford.ac.uk, b.medjdoub@salford.ac.uk, 
t.kocaturk@salford.ac.uk 

Abstract. Mass customization is one of the most promising computational 
developments in the AEC industry. Despite recent advances in the production of 
research-based knowledge, the professional practices lack of a consistent and 
permanent technology adoption scheme and remain as a very resilient and 
fragmented industry. This work is a part of an ongoing research project 
developing guidelines for improving both physical and virtual modeling processes 
within an architectural design context. Here, we present a customizable model of 
a space layout explorer. The implementation of the user-driven solution-finding 
process is based on constraint technology embedded in Autodesk’s Revit® 2011 
macros tools, commonly used in the professional practice. The aim of this work is 
to demonstrate a practical use of a small constraint-based system on software of 
widespread use. Even though there is still a lack of building information, the 
model has already several applications in the definition a floor plan layout and in 
the comparison of several instances of the design solution in the 3D user view. 
User-driven modifications are not made directly through the 3D model, but 
through different explicit text tags that describe each parameter on 2D views -
although a real time 3D visualization of the model is also available-. The main 
findings are discussed as guidelines for further research on the end-user 
involvement on a "creative mass customization" scheme. Also, the 
implementation of visual aids such as text tags during the customization process 
can bridge some technical obstacles for the development of interfaces for 
constraint-based mass customization systems. Before the final discussion, some 
limitations on the use of this model are described. 

CAAD Futures 2011 : Designing Together, ULg, 2011 
© P. Leclercq, A. Heylighen and G. Martin (eds) 133 

mailto:a.a.veliz@edu.salford.ac.uk
mailto:b.medjdoub@salford.ac.uk
mailto:t.kocaturk@salford.ac.uk


A. VELIZ, B. MEDJDOUB and T. KOCATURK 

1. Introduction 

Despite the massiveness of some digital tools and methods during the 
architectural design process such as computer-aided drawing, 3d modelling and 
simulation analysis, it is also necessary to explore how to bridge the gap between 
a trend of emerging research-based knowledge and a very resilient industry : in 
1956 Gropius estimated a technology adoption span of 25 years [1], and more 
recently Larson [2] has quantified in 17 years the time that innovations take to 
find their way into the housing industry. The cause for the reality gap in CAAD 
[3, 4] has been described among other reasons, as a lack of collaboration between 
researchers and practitioners, and the failure of CAAD softwares in providing a 
full view of the design phenomenology. This gap has caused a non-standardized 
and low-innovative market [2], and a fragmented construction industry with 
difficulties to share and reuse knowledge [5]. 

Duarte [6] affirms that the quality of a house is directly related with the 
satisfaction of the end-user needs. So far, most of the times end-user needs have 
been translated into design information by using heterogeneous methods such as 
small scale models, color diagrams, mapping, polls, and the final solution is 
finally a designer’s interpretation on a try to accomplish as most requirements, as 
close as possible. In contrast with this, the ‘creative mass customization’ scheme 
[7] entails the user participation not just in the final stages of the productive 
chain, but also on the design, fabrication and assembly processes; end-user needs 
cause changes on the very early stage of the design process itself. As a response 
to this theoretical foundation, the concept of "One Size fits None" was arosed in 
[8] as a possible graphic-user interface that allows the implementation of mass 
customization tools in architectural design. 

When it comes to constraint-based design, a wide set of approaches have arisen 
from research, from constraint-based modeling and solution-finding engines, i.e. 
[9-12] to constraint-based checking of existing models in compliance to design 
regulations [13]. According to the roles for explicit knowledge described in [14], 
the use of research-based knowledge in organizations entails solving different 
types of problems, or connecting people with valuable or reusable knowledge. In 
this work, we introduce a first prototype of an ongoing research that will develop 
guidelines for improving both physical and virtual modeling processes within an 
architectural design context. There is evidence that a constraint-based method is 
not only linked with automated solution-finding design tools, but also allows 
human-computer interactions by involving end-users on the quest for solutions of 
specific design problems [11]. We review and describe used tools in 
constraint-based architectural design engines in Section 2. Implementation of a 
floor plan layout model made in Autodesk’s Revit 2011 is presented in Section 3. 
Before the discussion, the exploratory model is presented and its limitations are 
described in Section 4. 

134 



BRIDGING THE GAP IN CONSTRAINT-BASED DESIGN 

2. Bridging the gap 

Constraint-based design engines have been developed in several different 
softwares. Whilst some authors program their own engines, others take advantage 
of existing softwares’ embedded tools. Table 1 describes some tools and 
constraint-based systems previously used in architectural design-related research. 

Table 1. Tools and constraint-based systems created to assist different 
architectural design tasks and processes. 

REF. 

[9] 

[10] 

[11] 

[11] 

[12] 

[13] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

LANGUAGE / IMPLEMENTATION 

Jsolver - ECLiPSe / Microstation 3D 

Jsolver - ECLiPSe / Microstation 3D 

OPL / OPL Studio 

Xpresso / Cinema4D 

Xpresso / Cinema4D 

EXPRESS 

C++ 

EXPRESS 

PROLOG 

PROLOG 

VRML-Java-HTML 

Linear Programming 

Autodesk Revit 

Cameleon Model Designer 

C 

Mac Common Lisp 

SNOPT Solver 

C++ 

C++ 

APPLICATION 

Floorplan layout design problem 

Plant room design problem 

Bulk design problem 

Bulk Design Problem 

Sanitary core design problem 

IFC Checking 

Knowledge-based design method 

Definition / verification system 

Virtual environment prototype 

Space layout planning 

3D design environment 

Design support system 

Bulk design problem 

Customization process assistance 

Assembly modeling 

Construction Kit Builder 

3D modeling from images 

Design of parts 

Geometric constraint solver 

Evidently, there is a wide pool of available languages and tools to implement 
constraint-based design systems and constraint solvers. Despite this, their use in 
architectural practices is limited due to the lack of text-based programming skills 

135 



A. VELIZ, B. MEDJDOUB and T. KOCATURK 

in the architectural curricula. Some exceptions are made in [11], [12] and [21] 
where constraint-based systems were implemented on plaftorms that do not 
require previous knowledge in programming. Specifically, applications described 
in [11, 12] were built by using visual programming, a method whose 
implementation is becoming widespread. As an alternative to bridge a general 
lack of hard programming skills, the following model describes a space layout 
explorer using macros tools available in Autodesk’s Revit 2011. In accordance to 
Tab. 1, all previous space layout systems have used heavy programming to 
generate the floor plan solutions. 

3. The spatial layout design problem 

As a study case, a spatial layout explorer was built, based on a model for a typical 
apartment previously analyzed by Niemeijer et al [16]. In architectural design and 
planning, the space layout problems can be solved from several approaches. In 
this case, a predefined floor plan layout has been used to describe a user-driven 
variational behaviour for the enclosures of every space. Therefore, the spatial 
arrangement can be visualized as a result of the positioning and dimensioning of 
physical enclosures, not as an initial design condition. 

The general purpose of this contribution is to demonstrate the use of a simple 
constraint-based tool in a practical design exercise, guaranteeing that variations 
can be defined within a framework of fixed and variable conditions : 

• The floor plan has a fixed rectangular size of 1160 x 840 cm. 
• The model consists of 8 rectangular spaces plus a resulting space of irregular 

shape (Figure 1). Spaces are therefore understood as areas which are 
completely enclosed by walls, independently of their shape. 

• The sanitary cores (Spaces 2, 3, 7 and 8) have fixed sizes and positions on the 
floor plan and will not be considered for floor plan variations. 

• If the user determines a value outside the solution domain for the dimension 
in X and Y of any space, that enclosure will disappear. This fact not only 
proposes an opening of the amount of solutions, but also produces a variable 
amount of resulting spaces, and changes in the space topology arrangement. 

• Every wall has been simplified to a uniform thickness of 10 cm. 
• The model does not consider, by now, windows or doors opening operations. 

However, existing commands in Autodesk’s Revit® 2011 allow the designer 
to easily create voids. The only voids in the model are located in the accesses 
of the sanitary cores and the main access. 

136 



BRIDGING THE GAP IN CONSTRAINT-BASED DESIGN 

Fig. 1. Original floor plan layout (edited to highlight spaces) and 
its corresponding space topology graph. 

Autodesk’s Revit® 2011 works based on families. A family can be roughly 
described as a set of elements -not necessarily geometries- with an associated set 
of parameters. Variations of these elements within a family are called "family 
types", and during this work are equivalent to instantiations of the design solution 
space. This model is composed by 2 families : the first one defines the geometries 
and its constraints, and the second is a family of tags used to explore the model by 
manipulating the modifiable values. Constraints have been previously described 
as written rules (Table 2) and then translated manually to the model by using the 
embedded macros tools, as follows : 

137 



A. VELIZ, B. MEDJDOUB and T. KOCATURK 

Table 2. Set of dimensional constraints for each space. Units correspond to [cm]. 

Space 1 

Space 2 

Space 3 

Space 4 

Space 5 

Space 6 

Space 7 

Space 8 

Space 9 

180 < Width < 600; Depth = 305 

Width = 230; Depth = 215 

Width = 230; Depth = 190 

90 < Width < 200; Depth = 405 

180 < Width < 400; Depth = 400 

180 < Width < 330; Depth = 447 

Width = 120; Depth = 93 

Width = 85; Depth = 93 

Resulting Space 

Constraints were made explicit during the floorplan design process, by adding 
user-driven text tags in the graphic-user interface, and a real-time 3D 
visualization of the building (Figure 2). Even though Autodesk’s Revit® 2011 has 
not got a generative design tool for finding every possible solution to a design 
problem, its capability of differentiating instances using family types allows the 
user to explore more than one design alternative in the same view, updating at the 
same time the building information for each solution. 

Fig. 2. Graphic-user interface. 

138 



BRIDGING THE GAP IN CONSTRAINT-BASED DESIGN 

4. Constraint model 

4.1. Constraint implementation 

Autodesk’s Revit® 2011 has not got an explicit constraint manager or visual 
programming interfaces. Constraints are implemented in the model by using 
conditional statements defined on its macros scripting environment by using the 
following syntax : 

Parameter=IF(Condition, Result-if-true, Result-if-false) 

This model considers a parameter and a solution domain interval defined by its 
minimum and maximum values. For example, every "Length" value is defined by 
a user-driven parameter "UserLength". Every value lower than the minimum 
value is automatically constrained to the minimum value "MinLength", and every 
value higher than the maximum value is constrained to the maximum value 
"MaxLength", i.e. the correct syntax for setting the minimum and maximum 
values of the boundaries of the solution domain for this "Length" parameter is : 

Length= IF(UserLength<MinLength, MinLength, IF(UserLength>MaxLength, 
MaxLength, UserLength)) 

Therefore, the syntaxes for describing the dimensions of the spaces are written 
as follows (Table 3) : 

Table 3. Syntaxes for constraining the dimensions of spaces. 
Units correspond to [cm]. 

Space 1 

LengthX 

UserLengthY 

MinLengthY 

MaxLengthY 

=> LengthY 

= 305 

= yE{R} 

= 180 

= 600 

= IF(UserLengthY<MinLengthY, MinLengthY, IF(UserLengthY> 
MaxLengthY, MaxLengthY, UserLengthY)) 

= IF({yE{R}}<180, 180, IF({yE{R}}>600, 600, {yE{R}})) 

Space 2 

LengthX 

LengthY 

= 215 

= 230 

139 



A. VELIZ, B. MEDJDOUB and T. KOCATURK 

Space 3 

LengthX 

LengthY 

= 190 

= 230 

Space 4 

LengthX 

UserLengthY 

MinLengthY 

MaxLengthY 

=> LengthY 

= 405 

= yE{R} 

= 90 

= 200 

= IF(UserLengthY<MinLengthY, MinLengthY, IF(UserLengthY> 
MaxLengthY, MaxLengthY, UserLengthY)) 

= IF({yE{R}}<90, 90, IF({yE{R}}>200, 200, {yE{R}})) 

Space 5 

LengthX 

UserLengthY 

MinLengthY 

MaxLengthY 

=> LengthY 

= 400 

= yE{R} 

= 180 

= 400 

= IF(UserLengthY<MinLengthY, MinLengthY, IF(UserLengthY> 
MaxLengthY, MaxLengthY, UserLengthY)) 

= IF({yG{R}}<180, 180, IF({yG{R}}>400, 400, {yG{R}})) 

140 



BRIDGING THE GAP IN CONSTRAINT-BASED DESIGN 

Space 6 

LengthX 

UserLengthY 

MinLengthY 

MaxLengthY 

=> LengthY 

= 447 

= yE{R} 

= 180 

= 330 

= IF(UserLengthY<MinLengthY, MinLengthY, IF(UserLengthY> 
MaxLengthY, MaxLengthY, UserLengthY)) 

= IF({yE{R}}<180, 180, IF({yE{R}}>330, 330, {yE{R}})) 

Space 7 

LengthX 

LengthY 

= 93 

= 120 

Space 8 

LengthX 

LengthY 

= 93 

= 85 

In addition to that, minimum and maximum values can be programmed as the 
result of sequential operations. Its modification is also calculated in real time but 
requires bigger processing and graphic capabilities. 

This rudimentary definition allows only establishing minimum and maximum 
values, but despite this the complete data structure can be described by using this 
syntax. A bigger challenge is the constraint management, as Autodesk’s Revit® 
2011 does not have a unique interface for its management or visualization, and 
every constraint must be programmed independently. 

4.2. Constraint satisfaction 

The main task during the solution finding process is to satisfy every constraint 
simultaneously. Conversely, in our model constraint satisfaction is directly linked 
with the conditional visualization of some physical elements, so different 
alternatives can be explored even though some constraints are not satisfied. For 
this specific model, boolean statements are used to hide/unhide physical 
enclosures whilst the user-driven inputs are outside the solution domain for each 
constraint, i.e. for hiding or unhiding a wall based on its length, the correct syntax 
for the "WallVisibility" parameter is : 

141 



A. VELIZ, B. MEDJDOUB and T. KOCATURK 

WallVisibility= UserLength>MaxLenght 

This feature can be roughly considered as a disjunctive constraint. The addition 
or elimination of enclosures could be interpreted as disjunctions of the 
solution-finding process, therefore the solution topology changes. 

4.3. User-driven variations 

User-editable tags are based on a "Tag" Family that makes explicit the modifiable 
parameters in the Floorplan view. By clicking on each tag, the user can easily 
modify the parameters on the Floorplan and the 3D View simultaneously 
(Figures 3 and 4). By using this feature, different design solutions can be 
modified independently in the same user view. Each solution is an instance of the 
solution domain, and consists on the combination of 2 family types : geometries 
and tags. 

Fig. 3. Three different instances of the problem solution in the same user view. 

142 



BRIDGING THE GAP IN CONSTRAINT-BASED DESIGN 

Fig. 4. Four different instances of the spatial layout explorer with the 
corresponding topology graphs. The nodes that correspond to 

the sanitary cores have been drawn in a fixed position. 

143 



A. VELIZ, B. MEDJDOUB and T. KOCATURK 

4.4. Limitations 

The aim of this model is to demonstrate that a basic constraint-based system can 
be implemented on commonly used software, with no need of hard text-based 
programming. However, we have identified some limitations both during the 
programming and the design exploration processes : 
• There is no explicit visualization and management of the constraint system or 

the data structure of the design problem, for example, as topology graphs or 
visual programming interfaces. This requires an excellent previous 
understanding of the design problem and the parameters which are involved 
on the solution finding process. 

• This model has 19 variables -including the visibility constraints-, and 12 
constant parameters. Even though a "barrier of complexity" has not been 
defined yet, the amount of information and required processing is already 
high, and additional variables may turn the model inefficient or difficult to 
manipulate. 

• A particular feature of this model is that constraints are applied on the 
dimension and position of physical enclosures, therefore the spatial 
configuration is not an initial condition but a result of the design exploration. 

• The openness of the solution space allows redefining the initial conditions of 
the design problem by changing the amount of spaces and its topological 
arrangement. This turns difficult to systematize the solution finding process. 

5. Discussion and further work 

The macros technology embedded in Autodesk’s Revit 2011 used in this context 
allows the user to participate directly on a project development as a solution 
finder during early stages of the design process. Despite this, some training is 
required to implement more consistent solutions based in building restrictions, the 
formulation of disjunctive/conjunctive constraints, and to systematize the solution 
finding process. The building information of the model is provided by the 
software’s capabilities, as well as the generation of the technical documentation 
for different design solutions. 

The three most interesting features of this model are : 1) the capability of 
exploring more than one design solution in the same user view. This feature 
places this model as an intermediate point between the automated generative 
design engines that allow the designer to visualize every possible solution, and 
the one-at-the-time visualization of design outcomes, i.e. Grasshopper; 2) the 
introduction of an alternative for a friendly graphic-user interface not just for end 

144 



BRIDGING THE GAP IN CONSTRAINT-BASED DESIGN 

users, but also for designers. According to Franke and Piller [28], the "main part 
of the interaction between the user and the productive system takes place during 
the configuration process". In this case, the configuration software is the feedback 
tool itself. Finally, the third feature is 3) the possibility of arranging spaces of 
irregular shapes by using the visibility commands, increasing the amount of 
possible variations. This automatically avoids to over-constraint the model and 
"dead ends" can be hardly found during the solution finding process. These three 
findings may lead to partially bridge the gap between the explicit knowledge from 
research and the industry. 

Further research work is focused on the development of guidelines for 
improving modeling processes in architectural design, concerning both virtual and 
physical models. The presented model is purely virtual and describes some 
advantages of this realm : a fast instantiation and exploration, and its dialog with 
other virtual tools for the completion of the design process i.e. the generation of 
building documentation. 

6. Acknowledgements 

This work is part of the first author doctoral research at the University of Salford. 
This research is supported by the "Graduate Teaching Assistantship" program. 

References 

1. Gropius, W. (1956). The scope of total architecture. Allen and Unwin Ltd. 
2. Larson, K. (2000). The home of the future. A+U 361(Oct 2000). 
3. Sousa, J.P. & Duarte, J.P. (2005). Digital Desires, Material Realities : Perceiving the 

technological gap. In J.P. Duarte (Ed.) Proceedings of the eCAADe 2005 Conference : 
Digital Design : The Quest for New Paradigms. Sept 21-24, Technical University of 
Lisbon, Portugal. 

4. Turk, Z. (2001). The reasons for reality gap in CAAD. In H Penttila (Ed.) Proceedings 
of the eCAADe 2001 Conference : Architectural Information Management. Aug 
29-31, Helsinki University of Technology, Finland. 

5. Dave, B. & Koskela, L. (2009). Collaborative knowledge management – A 
construction case study. Automation in Construction 18(2009) : 894-902. 

6. Duarte, J.P. (2005). A discursive grammar for customizing mass housing : the case of 
Siza’s houses of Malagueira. Automation in Construction 14 : 265-275. 

7. Gero, J. & Sosa, R. (2008). Complexity measures as a basis for mass customization of 
novel designs. Environment and Planning B : Planning and Design 35(1) : 3-15. 

8. Niemeijer, R.A., de Vries, B. & Beetz, J. (2009). One Size Fits None – A user 
interface for constraint-based design. In Proceedings of the ACADIA09 Conference : 
reForm() – Building a Better Tomorrow. Oct 22-25, Chicago, Illinois, United States. 

145 



A. VELIZ, B. MEDJDOUB and T. KOCATURK 

9. Medjdoub, B. & Yannou, B. (2000). Separating topology and geometry in space 
planning. Computer-Aided Design 32 : 39-61. 

10. Medjdoub, B., Richens, P. & Barnard, N. (2002). Generation of variational standard 
plant room solutions. Automation in Construction 12 : 155-166. 

11. Donath, D. & Gonzalez, L.F. (2008). Constraint-based design in participatory housing 
planning. International Journal of Architectural Computing 6(1) : 97-117. 

12. Veliz, A., Gonzalez, L.F. & Barros, L.P. (2008). Design the componentes construtivos 
usando um metodo de desenho baseado nas restricoes (Design of constructive 
components using a constraint-based method). Pesquisa em Arquitectura e Construcao 
1(3). 

13. Niemeijer, R.A., de Vries, B. & Beetz, J. (2009). Check Mate : Automatic constraint 
checking of IFC models. In A. Dikbas, E. Ergen & H. Giritli (Eds.). CIB W78 : 
Managing IT in Construction, London, CRC Press, pp. 479-486. 

14. Smith, E.A. (2001). The role of tacit and explicit knowledge in the workplace. Journal 
of Knowledge Management 5(4) : 311-321. 

15. Lee, J.Y. & Kim, K. (1996). Geometric reasoning for knowledge-based parametric 
design using graph representation. Computer-Aided Design 26(10) : 831-841. 

16. Niemeijer, R.A., de Bries, B. & Best, J. (2008). Identifying technical obstacles for a 
constraint-based mass customization system. In H.J.P. Timmermans & B. de Vries 
(Eds.). Design & Decision Support Systems in Architecture and Urban Planning. 
Eindhoven. 

17. Calderon, C. & Cavazza, M. (2001). Intelligent Virtual Environment for Building 
Design. In Proceedings of the 5th World Multi-Conference on Systemics, Cybernetics 
and Informatics. Jul 22-25. 

18. Damski, J.C. & Gero, J. (1997). An evolutionary approach to generating 
constraint-based space layout topologies. In R. Junge (Ed.). Proceedings of the CAAD 
Futures 1997 Conference. Kluwer, Dordrecht. 

19. Eggink, D., Gross, M.D. & Do, E. (2001). Smart Objects : Constraints and Behaviours 
in a 3D design environment. In H. Penttila (Ed.). Proceedings of the eCAADe 2001 
Conference : Architectural Information Management. Aug 29-31, Helsinki University 
of Technology, Finland. 

20. de Vries, B., Jessurun, A.J. & Kelleners, R.H.M.C. (2000). Using 3D geometric 
constraints in architectural design support systems. In Proceedings of the 8th 

International Conference in Central Europe in Computer Graphics, Visualization and 
Interactive Digital Media. Feb 7-10, University of West Bohemia, Czech Republic. 

21. Donath, D. & Lobos, D. (2008). Massing study support. In Proceedings of the 
eCAADe 2008 Conference : Architecture in Computro. Sept 17-20, Antwerpen, 
Belgium. 

22. Aldanondo, M., Hadj-Hamou, K., Moynard, G. & Lamothe, J. (2003). Mass 
customization and configuration : Requirement analysis and constraint-based 
modeling propositions. Integrated Computer-Aided Engineering 10 : 177-189. 

23. Anantha, R., Kramer, G. & Crawford, R. (1996). Assembly modelling by geometric 
constraint satisfaction. Computer-Aided Design 28(9) : 707-722. 

24. Gross, M. (1996). Elements that follow your rules : Constraint-based CAD layout. In 
Proceedings of the ACADIA’96 Conference, Tucson, AZ. 

146 



BRIDGING THE GAP IN CONSTRAINT-BASED DESIGN 

25. Farenzena, M. & Fusiello, A. (2009). Stabilizing 3D modeling with geometric 
constraints propagation. Computer Vision and Image Understanding 113(2009) : 
1147-1157. 

26. Feng, C.X. & Kusiak, A. (1995). Constraint-based design of parts. Computer-Aided 
Design 27(5) : 343-352. 

27. Bouma, W., Fudos, I. & Hoffmann, C. (1995). A geometric constraint solver. 
Computer-Aided Design 27(6) : 487-501. 

28. Franke, N. & Piller, F. (2002). Configuration toolkits for mass customization – Setting 
a research agenda. Arbeitsbericht Nr. 33 (Okt. 2002) des Lehrstuhls für Allgemeine 
und Industrielle Betriebswirtschaftslehre der Technischen Universität München. 

147 


