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Abstract 5 

Abstract 

Leishmaniasis is a worldwide disease prevalent in many tropical and sub tropical countries. 

Treatment of Leishmaniasis by chemotherapy is not wholly effective and is usually 

accompanied by unpleasant side effects. The development of an effective and inexpensive 

vaccine represents a practical way to control the disease, however at present no safe and 

effective vaccine is available.  

In the first part of the present study, the immunity induced by four different L. mexicana 

potential vaccines, including killed leishmania vaccine, Soluble L. mexicana Antigen 

(SLA), L. mexicana gp63 cDNA and CT26 tumour cells transfected with L. mexicana 

gp63, were compared.  

It was shown that DNA immunisation using L. mexicana gp63 generated the highest 

immunity to the parasite among the four tested vaccines where the killed leishmania 

vaccine and L. mexicana gp63 transfected CT26 tumour cells did not generate significant 

immunity.  

The efficacy of DNA immunisation by intramuscular injection or using gene gun, in 

generating immunity to leishmania was compared. Gene gun immunisation induced more 

immunity to the parasite and high levels of Th1 immune response, which were detected, 

one week after immunisation through determination of the IgG2a levels in blood serum. 

Gene gun immunisation also induced long-lasting CTL activity, which was detectable 

before and during the course of infection for up to 6 months. 

Immunogenicity of MHC class I restricted peptides derived from L. mexicana gp63 have 

been investigated. Using “SYFPEITHI” software, four peptides with high affinity to 

human HLA-A2 and four peptides with high affinity to mouse H2-Ld were predicted, 

synthesized and tested in HHD II and BALB/c mice respectively. Only three of the 

peptides predicted with high affinity to HLA-A2 were immunogenic but only two of them 

were likely to be naturally processed, however, none were protective in HHD II mice 

against leishmania infection. 

Purification and application of OX40L, a ligand for T-cell co-stimulatory receptor, was 

investigated in L. mexicana BALB/c model. In addition to purification by protein A 

sepharose, the murine OX40L-IgG fusion protein produced by B9B8E2 cells (cells 

transfected with OX40L and IgG) was successfully purified by two novel resins, MBI & 

MEP. The biological activity of the OX40L-IgG purified by MBI resin was significantly 

higher than that of MEP or protein A sepharose resins. Application of OX40L-IgG resulted 
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in healing of leishmania lesions or delaying in development of the lesions in leishmania-

infected mice.  
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Abbreviation 

ALM Autoclaved L. major 

alum Aluminium hydroxide 

APC Antigen Presenting Cells 

B8 HLA-A2 restricted peptide with sequence of LLVAALLAV 

BCA Bicinchoninic Acid Kit for Protein Determination 

BCG Bacillus Calmette-Guerin  

BSA Bovine Serum Albumin  

BT1 L. donovoni bioprotein transporter 

C constant region of T-cell receptors or immunoglobolins 

C1 HLA-A2 restricted peptide with sequence of RLSLGACGV 

C2 HLA-A2 restricted peptide with sequence of RLAAAGAAV 

CCIEP Counter Current Immunoelectrophoresis 

CFA Complete Freud’s Adjutant  

CL Cutaneous Leishmaniasis 

CLIP Class II-Associated Invariant-chain Peptide 

CM4 HLA-A2 restricted peptide with sequence of AAAGAAVTV 

CP L. mexicana Cystein Proteinase 

CTL Cytotoxic T Cells 

DAT Direct Agglutination Ttest 

DC Dendritic Cells 

ds double-stranded RNA 

ELISA Enzyme Linked Immunosorbent Assay 

FAST Fast Agglutination-Screening Test 

FC constant domain of antibodies  

FCS Fetal Calf Serum 

G418 Geneticin  

GBP Gene B Protein 

GCP Good Clinical Practice 

GLP Good Laboratory Practice 

GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor 

GMP Good Manufactory Practice 

gp63 Leishmania Zinc Metalloprotease 
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H2O2 Hydrogen Peroxide  

HASPB1 Recombinant Acylated Surface Protein B1  

HBr - Hypobromite 

HCIC Hydrophobic Charge Induction Chromatography  

HHD II HLA-A2 Transgenic Mice 

HLA Human Leukocyte Antigen 

HPLC High Performance Liquid Chromatography  

I.D.   Intradermal 

I.M.  Intramuscular 

I.V. Intravenous 

IFA Immunofluorescent Antibody 

IFA Incomplete Freud’s Adjuvant  

IFAT Indirect Flourcent Antibody Test 

IFN-γ Interferon-γ 

Ig Immunoglobulins  

IgG Immunoglobulin G 

IHA Indirect Haemagglutination test 

Ii  MHC class II-associated invariant chain 

LPG Lipophosphoglican 

LPS Lipopolysacaride 

LST Leishmanin Skin Test 

MBLectin Mannos-Binding Lectin 

MCL Mucocutaneous leishmaniasis 

MHC  Major Histocompatibility Complex 

MM1 mOX40-mIgG1  

NK Natural Killer cells 

NKT Natural Killer T cells 

NO Nitric Oxide  

O2
- Superoxide anion 

OCl - Hypochlorite 

OH* Hydroxil radical 

OX40L OX40 ligand 

PAMP Pathogen-Associated Molecular Pattern 
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PCR Polymerase Chain Reaction 

PKDL Post-Kala azar Dermal Leishmaniasis 

PMNS Polymorphonuclear Neutrophils 

PSA-2 Surface Antigen complex2 

PSI Pounds Square Inch 

PVP polyvinylpyrollidone  

S.C.  Subcutaneous  

SLA Soluble Leishmania Antigen 

TAP1 Transports Associated with antigen Processing1 

TAP2 Transports Associated with antigen Processing 2 

TBS-T TBS + 0.05% Tween 20 

TCR T-cell Receptor 

Th1 T helper1 

Th2 T helper2 

TLRS Toll-Like Receptors  

TNF Tumour Necrosis Factor 

TNFR Tumour Necrosis Factor Receptor 

V Variable region of T-cell receptors or antibodies 

VL Visceral Leishmaniasis 
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Chapter 1 Introduction 

 

1.1 Pathogens 

Robert Koch in late 19th century was first described micro-organisms as the cause of 

infectious diseases [Sonnichsen, 1982]. Now it is known that the majority of micro-

organisms are harmless and many of them are even beneficial and used in food industries 

and biotechnology. Only a small group of micro-organisms have properties to cause 

disease in mammalians, ”pathogens” [Somova & Pechurkin, 2005].  

The term of pathogen is derived from a Greek word "pathos", which means “birth of pain 

or suffering”. A simple definition for pathogens is given as organisms that can dominate 

the host’s defence mechanisms and induce deleterious changes in the host [Basset et al., 

2003] causing disease or illness to its host. Today pathogens are classified into four main 

categories; viruses, bacteria, fungi, and parasites. Viruses are obligate intracellular 

parasites, which can only replicate inside the living cells using the host cell’s metabolic 

machinery. Bacteria are single-cell micro organisms. Some bacteria are obligate pathogens 

that their lives are totally dependent on the host nutrients. Other pathogenic bacteria might 

have a free life in the environment; however, when they arrive into the host’s body they 

induce pathogenic effects in the host. Fungi are eukaryotic organisms which may be 

unicellular (yeast), multicellular or exist in both forms. Most pathogenic fungi are 

opportunistic pathogens. They can live freely in the environment and their host but only 

when the host’s immune system is weakened they can over grow and cause disease. 

Parasites are including two main groups, protozoan, and helmets.  

Helmets are multicellular and usually macroscopic, which may have a size between 3 

millimetres to 25 meters long. Many helmets can infect humans and animals causing 

serious disease or provoke allergic reactions by their persistent presence in host tissues. 

Protozoan parasites are unicellular eukaryotic organisms. Some of these parasites can live 

freely in the environment as well as inside the host but some are obligate parasitic 

organisms, which need to live for a part or whole their life cycle inside a mammalian host. 

These parasites often have several life cycle stages; having sexual and asexual 

reproduction in different stages. The completion of some protozoan parasites' life cycle 

depends upon the insect or arthropod vectors to transmit them from one host to another. 
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1.2 Immune system and Immunity to pathogens 

Our body is constantly exposed to pathogens in the environment and during infection. 

Pathogens are often sophisticated to cause disease in their hosts, however, majority of 

micro-organisms that daily encountered are detected and destroyed by the immune system 

within minutes or hours [Valiante et al., 2003]. The immune system, to defend against 

pathogens, has developed two main strategies, called innate and adaptive immune 

response. 

 
1.2.1 Innate immune system 

The innate immune system is the first line of immune defence, which does not rely on 

clonal expansion of antigen-specific effector cells and does not require prolonged 

induction phase. Although the innate immune system does not generate immunological 

memory, it can efficiently be activated immediately after a pathogenic invasion 

encountering and removing majority of pathogens and activating inflammatory 

mechanisms prior to the establishment of the infection. Therefore, only few among all 

pathogens, which enter the body, can cause disease [Valiante et al., 2003]. The innate 

immune system has many inhibitory properties against pathogens. The first line is the 

epithelia that acts as a physical barrier and comprise the skin and the epithelia surface of 

the internal organs, which called mucosal epithelia [Basset et al., 2003]. 

The cells engaged in the innate immune defence include epithelial cells, mast cells, 

phagocytic cells, such as macrophages and Polymorphonuclears, natural killer cells and 

dendritic cells [Basset et al., 2003]. 

 
1.2.1.1 Mononuclear and poly morphonuclear phagocytes 

Macrophages, which are usually considered as the first cells encountering the pathogens, 

are differentiated from monocytes. Monocytes circulate in the blood stream and when they 

migrate into the tissues, they differentiate to macrophages. Most of pathogenic micro-

organisms are immediately encountered by mononuclear phagocytes or “macrophages” 

that reside in tissues [Hume, 2006]. 

Polymorphonuclears including neutrophils are the second major family of phagocytes. 

They reinforce macrophages soon in the site of infection. Macrophages and neutrophils can 

recognize pathogens by means of their cell surface receptors. Ligation of these receptors 

leads to phagocytosis. Phagocytosis is an active process by which the phagocytes first 

recognize the microoganism and engulf it in a membrane-bound vesicle called phagosome. 
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In the next step the phagosome will be fused with one or more lysosomes creating a 

phagolysosome where the pathogen is attacked by lysosomal enzymes. In addition to 

lysosomal enzymes, macrophages and neutrophils also produce other toxic products, which 

help degradation of the engulfed pathogen. The main toxic product of macrophages and 

neutrophils is nitric oxide (NO). Superoxide anion (O2
-) and hydrogen peroxide (H2O2).  

Other products are also involved including the hydroxyl radical (OH*), the hypochlorite 

(OCl -) and hypobromite (HBr -) ions [Kobayashi et al., 2005; Mayer-Scholl et al., 2004; 

Raines et al., 2006]. 

 
1.2.1.2 Natural Killer Cells 

Natural killer cells (NK cells) are normally accounted as a part of innate immune system. 

They develop from the CD34(+) haematopoietic progenitor cells and then migrate into the 

blood stream [Freud et al., 2006]. NK cells are often larger than lymphocytes and are 

characterized by the expression of NK receptors such as NKp46, NKp30, NKp44 and 

NKG2D as well as the CD56 surface antigen and the lack of CD3 [Moretta & Moretta, 

2004; Smyth et al., 2001]. A subset of NK cells called natural killer T (NKT) cells 

constituting a subpopulation of lymphocytes expressing the NK receptors, CD56, CD3 and 

T-cell receptor (TCR) [Capone et al., 2003; Papamichail et al., 2004; Wajchman et al., 

2004]. The presence of NK/NKT cells is crucial in the host’s defence particularly against 

tumours and viral infection as they mainly act in early phases of immune response, before 

B cells and T cells generate an antigen-specific immunity [Papamichail et al., 2004]. The 

antigen recognition of NK cells is based on recognition of  up regulation or down 

regulation of self- proteins such as MHC molecules in infected cells[Raulet, 2004]. Down 

regulation of MHC class I molecules in infected cells is shown to be an indicator by which 

NK cells recognize the infected cells. The interaction of dedicated receptors on NK cells 

and MHC molecules on target cells regulates the NK cells activity [Andrews et al., 2005].  

The mechanisms of cytotoxicity applied by NK cells are similar to those of CD8+ T cells 

as they release cytotoxic granules such as perforin, which makes pores onto the target cell 

membrane or granzymes (trypsin, chymotrypsin, granulysin), which induce a programmed 

cell death via the surface of the target cells. NK cells also produce a set of Th1 and Th2 

cytokines including IFN-γ, TNF-α, TNF-β, IL-10 and GM-CSF. It has been shown that 

cytokines produced by other immune cells like macrophages or DCs can also activate NK 

cells mainly via IL-18, IFN-αβ, IL-15, IL-2 and IL-12 [Ferlazzo & Munz, 2004; 

Papamichail et al., 2004].  
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1.2.1.3 DC cells 

Dendritic cells (DC) were first described by Paul Langerhans in 1968. These cells are 

accounted as a part of innate immune system and can be derived from either or both of 

myeloid and lymphoid progenitors. They generate different sets of receptors (see 1.2.1.4) 

for recognizing different sets of antigens [Burgdorf et al., 2006; Kadowaki et al., 2001]. 

DCs are most professional antigen-presenting cells (see  1.2.2.1.1) acting as a bridge 

between the innate and adaptive immune system [McCormick et al., 2006]. The main 

known function for DCs is to present the antigen to T cells. Therefore, they take up and 

process the pathogen and carry it away to the local lymph node where they present and 

activate naïve T cells. The local lymph nodes are the last destination for DCs where they 

eventually die. The antigen uptake and presentation ability of DCs are being developed 

during a process called maturation. Maturation of DCs cause up-regulation of MHC class I, 

class II molecules and co-stimulatory molecules such as CD40, CD83, CD80, and CD86 

[Hoebe et al., 2004; Saalmuller, 2006; Villadangos et al., 2005]. 

The role of dendritic cells is particularly crucial in stimulation of T cell responses to 

viruses because not all viruses can induce co-stimulatory activities in other types of antigen 

presenting cells. Viruses bind to several molecules on the surface of dendritic cells and/or 

become engulfed but not destroyed by them. The viruses synthesize their particle using the 

DCs machinery and then the antigenic peptides of those viral proteins is presented to CD8+ 

T cells through MHC class I molecules [Yan et al., 2005]. 

 
1.2.1.4 Antigen recognition by cells of the innate immune system 

The recognition of antigens by the innate immune system is based upon the detection of 

limited conserved patterned molecule on pathogens called “pathogen-associated molecular 

pattern (PAMP)” by pattern recognition receptors [Janeway & Medzhitov, 2002]. 

Microoganisms normally bear repeating patterns of molecular structures on their surface 

membrane or their DNA, for example some bacteria express lipopolysacaride (LPS), 

lipoproteins, peptidoglycan, lipoarabinomannan and oligosaccharides on their cell 

membrane or may contain repeats of dinucleotide CpG in their DNA. Viruses, on the other 

hand, almost invariably bear double stranded RNA as a part of their life cycles [Akira, 

2006]. The innate immune cells including epithelial cells, macrophage-monocytes, 

granulocytes, mast cells and dendritic cells bear a series of receptor to recognize and bind 

to these PAMP; these receptors are sometimes called “pattern-recognition receptors”. Toll-
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like receptors, scavenger receptors, manose-binding lectin, which activate complement; 

macrophage mannose receptor on the surface of macrophages are examples of pattern 

recognition receptors [Basset et al., 2003; Hoebe et al., 2004; Hornung et al., 2002; Lund et 

al., 2004]. 

 

1.2.1.4.1  Toll-like receptors 

Toll-like receptors (TLRs) are a series of pattern recognition receptors expressed on the 

surface of monocytes/macrophages, dendritic cells, NK cells, B cells, neutrophils and at 

very low level on T cells that are used to recognize pathogens [Hayashi et al., 2003; 

Hornung et al., 2002]. Although the diversity of known TLRs in mammals is limited to 10, 

they still recognize a broad range of pathogens. The activation of these receptors leads to 

activation of both innate and adaptive immune responses through the induction of 

phagocytosis, and production of cytokines and chemokines. They also induce the up-

regulation of MHC molecules and co-stimulatory molecules such as B7.1 (CD80) and B7.2 

(CD86) [Iwasaki & Medzhitov, 2004; Takeda et al., 2003; Underhill & Ozinsky, 2002].  

Each TLR is dedicated to recognize a certain set of molecular proteins, for instance in 

mammals, TLR-4 on macrophages in association with CD14 acts as a receptor for LPS [da 

Silva Correia et al., 2001]. The TLR9 is a sensor for the unmethylated DNA. The TLR3, 

although evolutionarily distant from TLRs 7, 8, and 9, is a sensor for double-stranded (ds) 

RNA [Crozat & Beutler, 2004]. Recent experiments have shown that all TLRs may act as a 

unique concert with multiple binding properties to acquire maximum sensitivity and 

specificity. The location at which different TLRs are expressed also influences which 

molecules they are likely to encounter [Crozat & Beutler, 2004; Lund et al., 2004].  

 
1.2.1.5 Complement cascade 

Complement is a system of plasma proteins that interacts with pathogens to either destroy 

them or mark them for phagocytosis. Complement was first discovered by Jules Bordes as 

an effector arm of the antibody response, however, it is now accounted as a part of innate 

immune system and can be activated even in the absence of antibodies. The complement 

system is made up of more than 30 distinct plasma proteins that react one to another in a 

cascade to opsonise pathogens inducing a series of inflammatory responses at the site of 

infection [Endo et al., 2006]. 
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The complement system is activated through a triggered-enzyme cascade. In such a 

cascade, an active component enzyme generates by cleavage of its zymogene precursor. 

The active component in turn cleaves another zymogene precursor to its active form in the 

complement pathway. By this way, because of the amplification of each enzymatic 

reaction by another one, activation of a small number of complement proteins at the start of 

the complement pathway results in a rapid generation of a massive complement response.  

Complement can be activated on the surface of pathogens through three distinct ways; the 

classical pathway, mannose-binding lectin pathway (MBLectin) and the alternative 

pathway [Gal & Ambrus, 2001; Seelen et al., 2005]. The initiation of each pathway 

depends upon the type of antigen that complement is activated by but they converge to 

generate the same set of effector molecules.  

There are three effector mechanisms for complement action: First, complement system 

generates a huge amount of some of the activated complement proteins. These proteins can 

covalently bind to the surface of pathogens opsonising them to enhance engulfing by 

phagocytes, carrying receptors for complement proteins. Second, the small fragments of 

complement particles, because of their chemotactic properties, can recruit more of other 

phagocytes to the site of infections. Third, the terminal component of complement can 

create pores in the wall of certain bacteria to disrupt their membrane and damage them 

[Rus et al., 2005]. 

 
1.2.2 Adaptive immune system  

Due to the vast variation in the pathogen that individuals encounter in their life, the innate 

immune system needs to recognize or eradicate all of them, therefore, a more complicated 

system is needed to defend against each pathogen individually. This is called “adaptive 

immune system” and the pathogens that bypass the innate immune system are encountered 

and destroyed. The innate and adaptive immune systems are complementary to each other 

as the innate immune system has a crucial role in priming adaptive immune response; if the 

innate immune system fails to control the infection, it initiates an acquired immune 

response (Figure  1-1). The cells involved in the adaptive immune system consist mainly of 

T and B-lymphocytes, which have different properties in antigen recognition and effector 

function. However, there is a degree of overlapping between them as dendritic cells which 

are accounted as a part of the innate immune system (see  1.2.2.1.1), have a very important 

and crucial role in the initiation of adaptive immune response as antigen presenting cells 
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[Howard et al., 2004]. Besides, macrophages, under the control of lymphocytes, become 

more activated in destroying the pathogens (see  1.4.2). 

 
Figure  1-1 The interface between the innate and adaptive immune systems copied from [Hoebe et al., 
2004] with permission.  
The immune system has two arms the innate and adaptive, which are complementary. Antigens by passing 
the innate immune system, are presenting to the adaptive immune system by DCs to generate a specific 
immunity to the pathogen.  
 
 
 
 
1.2.2.1 Antigen recognition in adaptive immune system 

 

1.2.2.1.1 Antigen presenting cells 

In order to generate specific immunity against pathogens, T and B lymphocyte must 

recognize immunogenic antigens of pathogens and become activated. B cells can recognize 

Ags directly with their antibody receptors, which will be discussed later but T cells can 

only detect the pathogenic product where they are displayed along with a complex 

molecule called major histocompatibility complex (MHC) class I or class II molecule on 

the surface of the cell. However, a second stimulation is also needed for the activation of T 
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lymphocytes and it is provided through co-stimulatory molecules such as CD80, CD86 and 

CD40 on Antigen Presenting Cells (APC). Interaction of CD40 and its ligand on T cells up 

regulate the expression of  CD80/CD86 as well as the priming capacity of  APCs [Haase et 

al., 2004; Probst & van den Broek, 2005].  

Dendritic cells, macrophages and B lymphocytes were shown to efficiently take up the 

antigen and present them to T lymphocytes after folding up them with MHC molecules. 

These cells, which are called antigen-presenting cells (APC), can also express co-

stimulatory molecules, which are necessary for activation of T cells [Bryant & Ploegh, 

2004]. 

 

1.2.2.1.2  Major Histo compatibility Complex (MHC) molecules  

Major histo compatibility genes were first discovered when their role in the rejection of 

transplanted tissues became clear and the peptide-binding glycoproteins encoded by these 

genes are still known as the MHC molecules. The MHC genes in mouse are called H-2 

genes and located on chromosome 17. In human they are called leukocyte antigen (HLA) 

and located on a chromosome 6 [Chaplin, 2006; Goldmann et al., 2005]. 

The MHC molecules have been classified into two groups -MHC class I and class II- 

which are recognized by CD8+ and CD4+ T lymphocytes respectively [Kosor et al., 2003]. 

MHC class I and class II are completely different in structure, synthesis and expression 

pattern on cells. It has been shown that except red blood cells, central nervous system, 

fetotrophoblast, testis, and the anterior eye chamber all cells express the MHC class I 

[Ambagala et al., 2005; Ruckert et al., 1998] but the MHC class II molecules are only 

expressed on T cells, B cells, macrophages, dendritic cells, eosinophils and also thymic 

epithelial cell [Baecher-Allan et al., 2006; Jabrane-Ferrat et al., 2002; Padigel et al., 2006]. 

However, some other cells such as fibroblasts and epithelial cells but not trophoblasts, in 

the presence of IFN-γ, express MHC class II. B-lymphocytes loose the expression of these 

molecules on transformation to plasma cells [Buttice et al., 2006; Denning et al., 2000; 

Manz et al., 1998; Murphy et al., 2004].  

Two different polypeptide take part in the structural formation of the MHC class I 

molecule. The first part is a polymorphic polypeptide chain consisting of three parts - α1, 

α2 and α3 - and the second is a smaller polypeptide chain called β-microglobulin (Figure 

 1-2), which is not encoded by the MHC locus and its gene is located on chromosome 15. In 
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human three different genes are encoding for the HLA class I -α chain that make three 

subclasses of MHC class I called HLA –A , HLA-B, HLA-C [Chaplin, 2003].  

 
Figure  1-2: MHC class I molecule as described by x-ray crystallography taken from [Janeway & 
Travers, 2005]. 
 
Because of the extreme polymorphism in MHC molecules and the co-dominant expression 

of MHC gene products, there are variety of alleles in each subclass like HLA-A1, HLA-

A2. 

The MHC class II molecule consists of two chains, α and β. Both α and β chains span the 

cell membrane and are encoded by MHC genes. Each chain has two noncovalent domains 

(α1, α2 and β1, β2) (Figure  1-3). There are three types of MHC class II genes in human, 

HLA-DR, HLA-DP, HLA-DQ, and because of the polymorphism, each type has a variety 

of subtypes like HLA-DR1, HLA-DR2. In some cases there are two genes encoding the β-

chain in HLA-DR cluster that means the three types of HLA class II molecule can give rise 

to four [Chaplin, 2006]. 
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Because of the polygeny in MHC genes, each individual express three different types of 

MHC class I molecules and three or four types of MHC class II molecules and the 

polymorphicity of MHC also creates multiple variants of each gene in the population as a 

whole. Therefore, a wide range of peptides will be presented to T cells and the pathogens 

will have a lower chance to evade the immune system. 

 

 
Figure  1-3: MHC class II molecule as described by x-ray crystallography taken from [Janeway & 
Travers, 2005]. 
 

1.2.2.1.2.1 Antigen processing of MHC class I antigens  

It has been shown that the expression of empty MHC molecules (without bound peptide 

fragment) on the cell membrane, is unstable and binding to a peptide is stabilizing it. The 

peptide-binding cleft in MHC class II is far wider than class I. So that the peptides bound 

to MHC class II are longer- at least 13 amino acids- than those bound to class I, which are 

between 8-10 amino acids [Murugan & Dai, 2005; Schoenhals et al., 1999].  

Among intracellular pathogenic agents, viruses and certain bacteria use the cell machinery 

to reproduce in the cytosol or in the contiguous nuclear compartments whereas bacteria 
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and some intracellular parasites that are picked up by phagocytes live in the phagosome. 

All antigen fragments of proteins made up inside the cell bind to MHC class I molecules. It 

has been well demonstrated that the proteosome, a large multicatalytic protease complex, 

in cytoplasm is responsible for the degradation of most cytosolic proteins and the 

production of peptide fragments for MHC class I [Bouvier, 2003]. Because the MHC class 

I molecules are synthesised inside the endoplasmic reticulum, the peptide fraction are 

loaded on MHC class I molecule and transported to the cell surface. The peptide fragments 

are transported to the endoplasmic reticulum by transports associated with antigen 

processing-1 and 2 (TAP1 and TAP2). In the endoplasmic reticulum some accessory 

proteins -calexin, tapsin, ERP57, and TAP- with chaperon-like function, help in folding 

and assembly of MHC class I and the loading of a suitable peptide fragment. The 

completed MHC molecule and the bound peptide can now be transported to the cell surface 

(Figure  1-4). The bound peptide helps in stabilizing and maintenance of the MHC 

molecule on the cell surface [Bouvier, 2003; Diedrich et al., 2001].  

 

1.2.2.1.2.2 Antigen processing of MHC class II antigens  

Due to the pathogenic process, some other pathogenic agents like most of bacteria and 

intracellular parasites replicate in phagosomal cell compartments in phagocytes. Therefore, 

the proteins of these pathogens are surrounded by a vesicle membrane and are not 

accessible to the proteosome. Thus, the peptides of these proteins bind to MHC class II to 

be recognized by CD4+ T lymphocytes. All extra cellular proteins and the proteins 

recognized by B cells are also processed through this pathway [Silacci et al., 1994]. 

Endosomes containing the proteins or pathogens as they progress into the interior of the 

cell become increasingly acidic until they eventually fuse with lysosome. The proteins 

inside these vesicles undergo unfolding and disulphide reduction and are degraded into 

peptides by lysosomal protease enzymes, which have optimal activity at low pH of the 

phagosome [Robinson & Delvig, 2002]. 

The main function of the MHC class II molecules is to bind to the peptide fractions 

generated in intracellular vesicles carrying them onto the cell surface and present them to T 

lymphocytes. The biosynthesis of MHC class II molecules are carried out in the 

endoplasmic reticulum [Robinson & Delvig, 2002]. 

To prevent binding to an undesired peptide, and during the assembly of the MHC 

molecule, a protein called the MHC class II-associated invariant chain (Ii) binds to the 



Chapter 1/Introduction 25 

binding site of the newly constructed MHC class II molecules. This is followed by the 

dissociation and transportation of the completed assembly from the endoplasmic reticulum 

to an endosome and degredation of the invariant and membrane-associated fragments of Ii, 

which leaves a small fraction of Ii called class II-associated invariant-chain peptide (CLIP) 

on the binding site of the MHC class II. (Figure  1-4). Finally, the endosome containing the 

new constructed MHC class II is fused to an incoming endosomes containing degraded 

antigenic proteins. An  MHC class II-like molecule called HLA-DM in human and H-2M 

in mouse is responsible for catalizing the release of CLIP and the binding of a new peptide 

fragment. Thus, the antigenic peptide fragments bind to the MHC class II molecules and 

are transported to cell surface [Lee et al., 2006; Robinson & Delvig, 2002]. 

The empty MHC class II molecules like class I are unstable and they are rapidly degraded. 

In uninfected cells the MHC class II molecules are loaded by peptide fragments derived 

from self-proteins. It has been shown that some of peptide fragments derived from 

extracellular pathogens are presented by MHC class I. This process is called cross-priming 

or cross-presentation of antigens. However, the mechanism by which the peptides are 

loaded on the MHC class I molecules, is not very clear [Stoitzner et al., 2006; Tewari et al., 

2005]. 
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Figure  1-4: Antigen presenting procedure by MHC class I and class II. 
Intracellular antigens are expressed through the MHC class I and extra cellular antigens are expressed 
through the MHC class II molecules. Intracellular antigens are chopped by proteosome inside the cytoplasm 
and their peptides are transported to the reticulum endoplasmic through TAP1 and TAP2 molecules. In the 
reticulum endoplasmic the peptides are loaded on the MHC class I molecules and transported to the cell 
surface. For extra cellular antigens, the MHC class II molecules are assembled in the reticulum endoplasmic 
and move to the cytoplasm through Golgi particles. The Golgi particles containing the MHC classII are fused 
to the phagolysosomes containing degraded extra cellular proteins. Each MHC class II then binds to a 15 to 
22 mer peptide and move to the cell surface.  
 
 

1.2.2.1.3  T cell receptors   

T cells recognize the antigens displayed on the surface of other cells via the receptors they 

bear on their surface. Each T cell receptor, similar to that of B cells, consists of two 

polymers chains, α and β, which are linked together with a disulphide bond [Housset et al., 

1997]. In a minority of T cells, a different pair of polypeptides, γ and δ, make the receptor. 

Although the function of γ-δ T-cell receptor has not been entirely clarified, it seems that 

they have different antigenic recognition properties from the α-β type [Born et al., 2006; 

Mincheva-Nilsson, 2003]. 

Each T cell receptor has two parts: the first part is the variable region (V), which make the 

contact with the MHC-antigen complex and has a homology to the V part of 

immunogloubulims . The second is a constant region (C), which is attached to the cell 

membrane, with a homology to the constant domain of immunoglobulins. The V and C 

domains are linked together by a short hinge region containing a cystein residue that forms 

the interface disulphide bond. (Figure  1-5) [Housset et al., 1997]. 

In contrast to B-cell receptors (see  1.2.2.1.4), which interact directly to intact antigens, T-

cell receptors can only respond to processed antigens (peptides), which are bound and 

presented by major histocompatibility complex (MHC) molecules. In another word, T-cell 

receptors recognize peptide fragments only when they are sandwiched within  a MHC 

molecule [Hennecke & Wiley, 2002; Wang et al., 1998]. 

The interaction of T-cell receptors and MHC class I or II molecules does not stimulate T-

cells unless some other molecules so-called co-receptors or co-stimulatory molecules are 

engaged. In fact, co-stimulatory molecules interact with their ligand producing a 

complementary signal in T cells. The signals posed by co-stimulatory molecules complete 

the signals of T-cell receptors and lead to activating T lymphocytes. Thus, only APCs, 

which have co-stimulatory molecules on their surface, have the potential to activate T 

cells. The most known co-receptor molecules are CD4 on a subset of T cells, which 
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specifically binds to MHC class II molecules, and CD8+ molecules on the other subtype of 

T cells, which binds to MHC class I molecules [Julius et al., 1993]. The best characterised 

co-stimulatory molecules are CD80 (B7.1) and CD86 (B7.2) on APCs that bind to CD28 

on T cells and CD40 on APCs that binds to CD40 ligand (CD154) on T cells. CD3 is also a 

functional receptor that is necessary for signalling of T-cell receptors. It has been shown 

that T-cell receptors bind to the MHC molecules having expressed the antigen but without 

CD3, cannot signal the presence of the antigen they have recognised [Julius et al., 1993]. 

 
Figure  1-5: A schematic diagram of B-cell and T-cell receptors taken from [Janeway & Travers, 2005].  
B-cell receptors are similar to antibodies unless they are fixed on B-cell surface. B-cell receptors or 
antibodies are composed of two heavy, green, and two lights, yellow, chains. Each antibody consists of two 
domains. The constant domain (FC) is bound to the cell membrane variable domains, which have antigen-
binding sites capable of binding to the specified antigen. T-cell receptors are similar to antibodies but two 
chains with same size and one site for antigen binding. T-cell receptors can only recognise the antigen when 
it is expressed through MHC molecules. 
 

 

1.2.2.1.4  B-cell receptors/Immunoglobulins 

B cells are leukocytes defined by their production of the immunoglobulin (antigen-binding 

proteins) and represent approximately 15% of peripheral blood cells [Chaplin, 2006]. 

Immunoglobulins (Ig) or antibodies are proteins produced by B lymphocytes against 

antigens. These molecules are produced in vast specifities as almost each B cell produces 

the antibody with a single specifity. Antibodies are normally produced by terminally 

differentiated B cells called plasma cells. However, membrane-bound immunoglobulins on 

B cells act as the B-cell receptor. There are five classes, isotypes, of antibodies called IgD, 
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IgM, IgE, IgA and IgG, which are different in shape. Each Ig class is divided into a 

number subclasses; IgG into four subclasses, IgG1, IgG2, IgG3 and IgG4, and IgA into 

two subclasses, IgA1 and IgA2. The subclasses are named in order of their abundance in 

serum [Matousovic et al., 2006; Putnam, 1995; Toptygina et al., 2005]. The production of 

antibody can switch from one isotype to another one and CD40 on B cells as well as 

CD40L on T cells have a crucial role in isotype switching [He et al., 2003]. IgG is a large 

molecule of about 150 KD. Two heavy chains of 50KD each and two light chains of 25 

KD each contribute in the antibody structure. The antibody consists of two main parts: The 

variable region (V), which specifically binds to a part of the antigenic molecules and the 

constant domain (C), which binds to FC receptors on the immune cells [Edelman, 1994; 

Faber et al., 1998] (Figure  1-5). 

The secretion of antibodies is the result of activation of the humoral immune response. The 

main functions of antibodies are to protect the body from the extracellular pathogens and 

their products. Many of pathogenic agents multiply in extracellular spaces of the body and 

most of intracellular agents also use the extracellular spaces to move from cell to cell and 

spread in the body. 

Antibodies exert their effects against pathogens in three different ways: 1) via 

neutralization when they bind to bacteria, viruses or toxins to deny them access to infect 

and to induce damages to the susceptible cells [Hangartner et al., 2003]. 2) Via 

opsonisation when antibodies bind to the antigen coating their external surfaces. The 

opsonised pathogens are easily recognized by phagocytes through the FC receptors 

expressed on their surface, which bind to the FC part of the antibodies. 3) Via their 

distinctive role in activation of the complement [Boruchov et al., 2005], which results in 

the attraction and activation of complement proteins. The type of complement activation 

mechanism induced by the antibody depends upon the isotype and class of the antibody 

engaged. Complement proteins are also recognized by their receptors on the phagocytic 

cells. Complement components can recruit other immune cells like phagocytes to the site 

of infection (see  1.2.1.5). They also lyse certain types of microorganisms by forming pore 

on their cell membrane.  

 

1.2.2.2 CD4+ and CD8+ T cells in adaptive immune response  

T lymphocyles fall into two main groups with different effector function, which are 

distinguished by distinctive protein molecules, CD4 or CD8, expressed on their cell 
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membrane. CD8+ T cells interact with MHC class I and CD4+ T cells interact with MHC 

class II molecules and the presece of CD8 and CD4 is crucial for inter cellular interaction 

and activation. CD4+ T cells fall into two functional sub groups called T helper1 (Th1) and 

T helper2 (Th2). It has been shown that IL-12, IL-2 and IFN-γ have an essential role in 

Th1 pathway but IL-4, IL-5, IL-13 and IL-10 are involved in the Th2-type immune 

response [de Jong et al., 2005; Mackay, 2000]. 

Th1 and Th2 T cells are very different in function. The main function of Th2 cells is the 

activation of B cells to proliferate and differentiate to an effector plasma cells that produce 

antibodies whereas Th1 cells enhance the potency of macrophages to phagocytose and 

degrade the pathogen [Mack et al., 2005; Munder et al., 1999; Yun et al., 2003] (see 

 1.2.1.1). 

The mechanisms that determine the type of immune pathway, are not yet fully understood. 

However, it has been shown that toll-like receptors can have a role in deciding the immune 

response type; Th1 or Th2 pathways. Activation of a set of these receptors including 

TLR9, activated by interaction with CpG DNA, lead to Th1 pathway. In contrast, 

activation of other TLRs including TLR2 can lead to Th2 pathway [Chaplin, 2006; 

Redecke et al., 2004]. Furthermore, secretion of IL-4 in early phases of immune response 

lead to Th2 response but the lack of IL-4 can help estabilishing a Th1 immune response 

[Sacks & Noben-Trauth, 2002; Yun et al., 2003]. Nevertheless, T cells, during their 

activation, need to receive two different signals. The first signal is provided by T-cell 

receptors, which bind to MHC-peptide molecules and the second one comes through 

engagement of co-stimulatory molecules. Accumulating evidence supports the notion that 

co-stimulatory molecules play important roles in T cell activation, differentiation, survival 

and effector function. Activation of T cells without co-stimulation may lead to T cell 

anergy, T cell deletion or the development of immune tolerance. One of the best 

characterized co-stimulatory molecules expressed by T cells is CD28, which interacts with 

CD80 (B7.1) and CD86 (B7.2) on the membrane of APC [Freeman et al., 1993; Harding et 

al., 1992; Lenschow et al., 1996]. Other co-stimulatory molecules such as CD40 and OX40 

also play an important role in interaction of T lymphocytes with other immune cells. 

CD40, which mainly binds to CD154 on T cells, has a role in activation of T cells and B 

cells [Banchereau et al., 1994]. Interaction of OX40 and OX40L on APCs promotes 

activation of naive T cells with some IL-2 secretion and has synergy with B7-1. APCs co-

expressing OX40L with B7-1 induce large quantities of IL-2 and promoted proliferation 

compared to B7-1 alone. OX40/OX40L interactions act to prolong clonal expansion and 
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enhance effector cytokine secretion, and may be involved in promoting long-lived primary 

CD4 responses [Gramaglia et al., 1998]. In addition, there are accumulating evidences to 

suggest that the interference with co-stimulatory signals can modulate Th1/Th2 cytokine 

expression levels and immune deviation [Jankovic et al., 2004]. For instance, it has been 

shown that the interaction of CD28 or OX40 with their receptor/ligand , dependent on the 

dose of antigen, can promote either Th1 or Th2 immune response [Rogers & Croft, 2000].  

CD8+ T lymphocytes, which are called cytotoxic T cells (CTL) can recognize infected or 

abnormal cells that display the antigenic peptides on their surface through MHC class I.  

These cells will be killed by cytotoxic T cells through releasing lytic granules, which lyses 

the cells or inducing programmed cell death, apoptosis.  Moreover, cytotoxic T cells 

release a large amount of IFN-γ, TNF-α and TNF-β, which contribute in host defence 

[Ambagala et al., 2005]. IFN-γ directly inhibits viral replication and enhances the MHC 

class I expression and other mechanisms involved in peptide loading of the newly 

synthesized MHC class I proteins in infected cells [Zhang et al., 2002]. IFN-γ also enforces 

Th1 pathway by activating macrophages to kill the engulfed microorganism. TNF-α and 

TNF-β act in synergy with IFN-γ [Olleros et al., 2005; Romagnani, 2000; Saito & Nakano, 

1996].  

The potent activation of CD8+ cytotoxic T lymphocytes in killing the infected cells 

requires co-stimulation through interaction of B7 and other co-stimulatory molecules 

similar to those in CD4+ T cells and the presence of CD4+ T cells, which can recognize a 

related antigen on the surface of the same antigen-presenting cells [Serre et al., 2006]. 
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1.3 Leishmaniasis 

Leishmaniasis is a worldwide human and animal disease caused by a malaria-like parasite 

called Leishmania. First species of these parasites, named Leishmania donovoni, was 

described by Leishmon and Donovoni in 1905 [Herwaldt, 1999]. So far, approximately 30 

species of these parasites are known from which 20 species are pathogenic for human and 

canine [Ashford, 2000].  

 
1.3.1 Classification of leishmania species: 

As it appears from the name of some species of leishmania, the classification of leishmania 

parasites was first based upon the clinical, biological, geographical and epidemiological 

criteria. Now different methods are being used for the classification of these parasites 

including phenotypic, immunological and molecular methods. Isoenzyme analysis is one of 

the most sophisticated taxonomic techniques, which still remains as a standard technique 

for leishmania taxonomy [Cupolillo et al., 1994; Lainson & Shaw, 1989; Miles et al., 1980; 

Thomaz-Soccol et al., 2000]. 

Application of monoclonal antibodies is another technique, which is used to identify 

leishmania species, however, the specificity of the technique is not very high, which has 

made it less reliable [Falqueto et al., 2003; Grimaldi et al., 1987; Ilg et al., 1993]. 

Molecular biological methods including chromosomal rearrangements [Britto et al., 1998] 

and DNA-based methods have also been successfully applied for the characterization of 

leishmania isolates at a genus, species and even strain level. DNA-based methods are 

mainly applied by performing PCR and using leishmania specific genes such as beta-

tubulin that is present in all strains tested belonging to the Leishmania (Viannia) subgenus 

[Eisenberger & Jaffe, 1999; Luis et al., 2001; Noyes et al., 1996; Uliana et al., 1991]. 

Different classifications have been suggested for leishmania parasites. In one of the latest 

classifications proposed by Lainson & Shaw, the genus Leishmania has been classified as a 

member of the kingdom Protista; Sub-kingdom Protozoa; Phylum Sarcomastigophora; 

Sub-phylum Mastigophora; Class Zoomastigophora; Order Kinetoplastida; Sub-order 

Trypanosomatina; Family Tripanosomatidae.  

Based on the site of growth of the parasite in the midgut of the sandfly vector the genus 

Leishmania has been divided in two subgenera; Leishmania and Viannia [Lainson & Shaw, 

1987]. In subgenus Leishmania, promastigotes develop in the midgut and foregut, 

Suprapylaria, of the insect, which is called “suprapylarian development”, whereas their 

growth in the subgenus Viannia is restricted to the hindgut, “Peripylarian development” 
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[Correa et al., 2005]. Species of the subgenus Leishmania are devided into 3 clusters or 

complexes: Leishmania donovoni complex (L. donovoni, L. infantum, L. chagasi 

[American L. infantum], L. archibaldi); Leishmania tropica complex ( L. tropica, L. 

aethopica, L. major) and Leishmania mexicana complex (L. mexicana, L. amazonensis, L. 

pifanoi, L. garhami, L. venezuelensis). However, species of the subgenus Viannia are 

grouped in one Leishmania brasiliensis complex (L. guyanensis, L. naiffi, L. peruviana, L. 

panamensis and L. shawi) [Shaw, 1994].  

 
1.3.2 Leishmania life cycle 

Leishmania parasites life cycle has been reviewed by Hommel [Hommel, 1999]. In brief, 

leishmania parasites need to pass through two different hosts to complete their life cycle; 

mammalian host and the sandfly vector. 

 Mammalian hosts of leishmania are mainly the human and dog, although some other 

mammalian species occasionally are infected with the parasite. Basically, humans are the 

most sensitive host for leishmania parasites and others including wolves, rodents, foxes, 

jackals and dogs, gerbils and also humans serve as reservoirs [Britto et al., 1998; el-Hassan 

et al., 1995; Hommel, 1999; Lainson & Rangel, 2005]. The role of dogs in harbouring and 

transmitting the parasite to the vector and in turn to humans is much more important than 

other hosts due to its close relation and association with humans [Reithinger & Davies, 

1999]. 

The second host for leishmania parasites is the female blood sucking species of 

Phlebotomine sandfly (Figure  1-6 C), which carry, propagate and complete the life cycle of 

the parasite. The male sandflies feed on plants so that they cannot carry the parasite. Over 

40 species of genus Phlebotomus (sandflies) act as a vector for leishmania in the old world 

(Asia, Africa, Europe), while a further 30 species belong to genus Lutzemia sandflies take 

role in the epidemiology of the parasite in the new world (Americas)  [Dedet, 2005; Maroli 

& Khoury, 2004; Murray et al., 2005]. The feeding habit of the sandflies of each area 

mainly determines whether their main reservoir is humans or animals as some species are 

used to feeding on animals and some not [Hommel, 1999]. 

In the vector, the flagellar form, promastigotes, of the parasite lives extra cellularly (Figure 

 1-6 A). Virulent promastigotes express surface glycoprotein (gp63), lipophosphoglycan 

(LPG) and mannose receptors on their surface, which are crucial in their uptake by 

macrophages [Chakrabarty et al., 1996; Chakraborty et al., 2001; Chakraborty et al., 1998; 

Chaves et al., 2003]. 
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The sand fly becomes infected during feeding on the blood of the infected mammalian host 

or reservoir. Macrophages containing the parasite, are ingested by the fly and amastigotes 

transform to elongated motile promastigotes (10-12µM), which have a flagella on one 

pole. While inside the gut of the sandfly, promastigotes multiply by binary fission and then 

migrate in the alimentary tract of the sandfly passing through several stages of procyclic, 

nectomonad, haptomonad and mammal-infecting metacyclic. The whole process takes few 

days to complete [Awasthi et al., 2004; Bates, 1994b; Bates & Rogers, 2004; Killick-

Kendrick, 1990]. Metacyclic promastigotes move toward the oesophagus and salivary 

glands ready to transfer to the mammalian host. The vector saliva plays an important role 

in transmission of the parasite to the mamalian host by preventing the blood from clotting 

[Norsworthy et al., 2004]. During a blood meal bite of the vector, promastigotes are 

transferred to the mammalian host tissue to be easily picked up by macrophages, which act 

as the first line of the host’s immune defence. While inside the macrophages, 

promastigotes loose their flagella and become spherical in shape to be called amastigote 

(Figure  1-6 B). Amastigotes are normally between 2.5 to 5µM long and are contained 

within the parasitophagous of macrophages. Transformation into the amastigote form 

makes the parasite more resistant against the antimicrobial activity of the macrophage so 

that it can survive and multiply in the macrophage eventually destroying it. The released 

amastigotes are taken up by new macrophages and, ultimately, all the organs containing 

macrophages such as spleen, liver and bone marrow become infected. A new sand fly 

vector will become infected when it has bitten an infected mamalian host taking up the 

infected macrophages and, thus, the life cycle of the parasite continues (Figure  1-7) 

[Awasthi et al., 2004; Davies et al., 2003; Hommel, 1999]. 
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A:  B:  
 

 
C:  

Figure  1-6: A: Amastigotes of leishmania in mammalian host’s macrophages B: Flagellar 
promastigotes of leishmania parasite C: leishmania vectors.  Taken from [WHO, 2004]. 
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Figure  1-7: Life cycle of leishmania in its vertebrate and invertebrate hosts.  
Leishmania parasites need to pass through two different hosts, the mammalian host and the sandfly vector, to 
complete their life cycle. The sandfly become infected when it feeds from the blood of an infected 
mammalian host, which are either human or some species of animals. The promastigotes grow in the sandfly 
vector and go through a few stages until they become infective for the mammalian host (explained in the text). 
The infective promastigotes called metacyclics are transferred to the non-infected mammalian host during the 
next blood meal of the sandfly. Adapted from [Hommel, 1999]. 
 
 
1.3.3 Leishmaniasis: clinical manifestations 

Both sub-genera of genus Leishmania are infective and accounted as the causative agent of 

leishmaniasis [Rotureau, 2006]. According to the clinical spectrum of the disease, the 

human leishmaniasis has been classified into four main forms: 

Dermal cutaneous leishmaniasis: This form of leishmaniasis is mainly caused by L. major, 

L. mexicana and L. tropica (Table  1-1) producing skin lesions in any part of the body 

mainly in the face, arms and legs [Dowlati, 1996; Murray et al., 2005]. After the initial 

infection, in some cases the infection may remain subclinical. The incubation period varies 

between 1 to 12 months and after that it produces progressive papules, which usually 

ulcerate and secondary bacterial infection may be also involved. The typical ulcer is 

usually painless with a raised, indurated margin and necrotic centre. However, some 
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lesions may not ulcerate. The lesion size is varied from 0.5 to 3 cm diameter (Figure  1-8). 

There are no systemic symptoms such as fever, anaemia, spleen, and/or liver enlargement 

and most of lesions usually heal in a 3 to 12 month period without taking treatment but 

they leave scar [Calvopina et al., 2004; Hepburn, 2003; Weina et al., 2004]. 

 

 
Figure  1-8: Leishmania lesions in American solders serving in Iraq. 
Ranged from papular eruptions (left) to more classic erosive craters (center) and were sometimes surrounded 
by concentric desquamation (right). Adopted from [Weina et al., 2004] 
 
Diffuse cutaneous leishmaniasis: This form of the disease is a progressed form of 

Cutaneous leishmaniasis and mainly caused by the same species of the parasite. This form 

of the disease is difficult to treat due to disseminated lesions that resemble leprosy and do 

not heal spontaneously [Silveira et al., 2004; Weina et al., 2004].  

Mucocutaneous leishmaniasis (MCL): This form of leishmaniasis, which is called 

‘Espundia’ in South America, generates lesions in mucous membranes particularly in areas 

where mucous attach to the skin. It may affect the nasal mucosa, septum and turbinate, 

upper lip, pharynx, larynx and face causing dyspnoea, producing deformities and 

malfiguration in these areas (Figure  1-9) [Herwaldt, 1999; Murray et al., 2005]. MCL can 

be the result of the dissemination of cutaneous leishmaniasis to mucousal tissues caused by 

certain species such as L. braziliensis (Table  1-1) [Calvopina et al., 2004; Silveira et al., 

2004]. 

 Visceral leishmaniasis [Dumonteil et al.]: Visceral leishmaniasis also called ‘Kala Azar’ 

is always accompanied by systemic symptoms such as irregular fever, cough, weight loss, 

cachexia, hepatosplenomegaly, splenomegaly and anaemia. It is the most sever form of the 

disease and patients often die if they are not given health care. Visceral leishmaniasis is 

associated with  L. infantum and L. donovani in the Old World and L. amasonensis in the 

New World (Table  1-1). Unlike the cutaneous forms, visceral leishmaniasis involves only 

the internal organs and does not develop lesions on the skin during the course of disease, 

however, after the recovery, patients may develop a chronic form of cutaneous 

leishmaniasis called post-kala azar dermal leishmaniasis (PKDL) that requires long 

medical treatment [Awasthi et al., 2004; Herwaldt, 1999; Weina et al., 2004].  
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Figure  1-9: Malformation caused by Mucocutaneous leishmaniasis in face 

 
Species Geographic distribution Reservoir Clinical syndrome 
L.chagasi (New 
world) 

Mexico, Surinam, 
Brazil,Paraguay, Argentina, 
Venezuela, Brazil, Bolvia 

Canine  VL, CL, PKDL 

L. amazonensis 
(New World) 

Brazil, Costa Rica, Texas, 
Guyana, Peru, Bolvia, 
Venezuela  

Rodents, Marsupial  CL, VL, PKDL, 
MCL, DCL 

L. major-like 
Isolates (New world) 

Colombia, Panama, Venezuela  Canines CL, DCL 

L. mexicana (New 
world) 

Mexico, Guatemala, Texas, 
Costarica, Panama 

Forest Rodent CL, DCL 

L. major (Old world) Middle East, Indian 
Subcontinent, northwestern 
China, Africa  

Humans, rodents, 
mustelids, 
hedgehogs,rabbits  

CL 

L. tropica (Old 
world) 

Middle East, India, 
Mediterranean littoral, western 
Asiatic areas 

Canids and perhaps some 
rodent 

Dry cutaneous 
lesions 

L. donovani (Old 
world) 

Africa, India, East Asia primates, equids, rodents VL, PKDL 

VL, Visceral leishmaniasis; CL, cutaneous leishmaniasis; PKDL, post kala azar dermal leishmaniasis; 
MCL, mucocutaneous leishmaniasis; DCL, diffuse cutaneous leishmaniasis 

Table  1-1: Old and new world leishmania species and geographical distribution adopted from 
[Awasthi et al., 2004] 

 

1.3.4 Epidemiology of leishmaniasis 

Today, leishmaniasis is considered to be endemic in many countries (16 developed 

countries and 72 developing countries) on four continents. An estimated 12 million cases 

of leishmaniasis exist worldwide and a further 367 million are at the risk of acquiring the 
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disease. Moreover, an estimated number of 1.5 - 2 million new cases are occurring 

annually; 1 - 1.5 million cases of cutaneous leishmaniasis and 0.5 million cases of visceral 

leishmaniasis resulting in 75,000 deaths per year [Desjeux, 2004; Griekspoor et al., 1999; 

Kar, 1995; WHO, 2002a]. The geographical distribution of leishmaniasis is restricted to 

tropical and temperate regions and the living area of the sandfly in Asia, India, Africa and 

the Mediterranean (Old World) and Americas (New World) [Royer & Crowe, 2002]. 

Ninety percent of the cases with cutaneous forms of leishmaniasis occur in Afghanistan, 

Algeria, Brazil, Iran, Peru, Saudi Arabia and Syria, while ninety per cent of the visceral 

leishmaniasis cases are found in Bangladesh, Brazil, India, Nepal and Sudan (Figure  1-10) 

[Hepburn, 2003; WHO, 2002a].  

There is convincing evidence that the number of cases of leishmaniasis has been  

increasing in several areas of the world e.g. CL in Brazil (1998: 21800 cases; 1999: 30550 

cases; 2000: 35000 cases), CL in Kabul, Afghanistan (1994: 14200 cases, 1999: 200,000 

cases), and CL in Aleppo, Syria (1998: 3900 cases; 1999: 4700 cases; 2000: 5900 cases) 

[WHO, 2002a]. Visceral leishmaniasis has also caused large-scale epidemics with high 

case fatality. For instance, Western Upper Nile State in South Sudan experienced a major 

outbreak of visceral leishmaniasis between 1984 and 1994, which claimed 100,000 lives in 

a population of around 300,000 [Herwaldt, 1999]. This is thought to be due to the increase 

of risk factors such as man-made environmental changes which increase human exposure 

to the sand fly vector or the movement of susceptible populations into endemic areas, 

including large-scale migration of populations for economic reasons. Moreover since the 

parasite may survive for decades in asymptomatic infected people, who are of great 

importance for the transmission, the asymptomatic infected people can act as a reservoir 

which is the third risk factor for the disease [WHO, 2002b].              

It has been shown that AIDS patients are more sensitive to leishmania infection than 

healthy individuals as many of such new cases have been reported from 30 countries 

around the world (Figure  1-10). Epidemiological data reveal that the human leishmaniasis 

and HIV virus co-infection, especially among adults, has also been progressively 

increasing. Now, it is thought that 50% of all adult cases of visceral leishmaniasis are HIV-

positive. In south–western Europe, 1.5–9% of patients with AIDS are suffering from newly 

acquired or re-activated VL and the recorded number of cases has increased from about 

700 cases in 1995 to more than 1500 cases in 2001 [Puig & Pradinaud, 2003; WHO, 

2002a]. It has recently been shown that the conventional transmission of leishmania 

parasites among leishmania/HIV co-infected patients has changed where the parasite can 
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easily be transmitted between intravenous-drug users by needle sharing [Molina et al., 

2003]. A congenital transmission of visceral leishmaniasis has also been reported from an 

asymptomatic mother to her child [Meinecke et al., 1999]. 

 

 
Figure  1-10: Distribution of leishmaniasis and leishmania-HIV co-infection in the world [WHO, 
2000]. 

 

 

 

 

1.3.5 Control of leishmaniasis 

Depending upon the epidemiological studies in leishmania parasites, a number of strategies 

have been considered to control leishmaniasis. The current control strategies of 

leishmaniasis are based on early diagnosis, treatment and the control of vectors and 

reservoirs, however, early diagnosis and treatment strategies are considered are the most 

effective [WHO, 2004]. 

 
1.3.5.1 Control of vectors and reservoirs 

The best known strategy to control the vector-born diseases is to reduce or disrupt the man-

vector contact. There are attempts to control the sand fly reproduction by spreading 

insecticides and damaging their living places. Control by chemical reagents in some areas 

like India, Bangladesh or Nepal is the only choice and for that DDT is vastly being used 

[Alexander & Maroli, 2003; Kishore et al., 2006; Maroli & Khoury, 2004]. However, this 

is limited by cost and development of the poison resistant flies. Moreover, this strategy 

because of ecological effects of the chemicals, is not practical in some areas [Alexander & 
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Maroli, 2003; WHO, 2002a]. In areas, where dogs play as the main host or reservoir, 

killing the wild dogs in the area might be considered as an essential method [Reithinger & 

Davies, 1999; Reithinger & Davies, 2002].  

 
1.3.5.2 Chemotherapy in leishmaniasis 

Although chemotherapy is considered as the only available effective method for the 

treatment of leishmaniasis, there are various shortcomings for each drug currently in use. 

For instance, the anti-leishmania drugs are often toxic and usually accompanied by 

unpleasant side effects [Velez et al., 1997]. In addition, the drug-based treatment of 

leishmaniasis is expensive , which makes it unavailable for most of people especially in 

poor countries, and the parasites usually become resistant to chemotherapy following few 

times of administration [Griekspoor et al., 1999; Rosenthal & Marty, 2003; Sundar & 

Chatterjee, 2006; WHO, 2004].  

A limited number of drugs are available for treatment of leishmaniasis. Pentavalent 

antimony is an old known drug, which is still accounted as the first line of anti-leishmania 

drugs and the cornerstone of chemotherapy in leishmaniasis. The course of treatment by 

antimony is often long and lasted for a period of 3-4 months. A high level of drug 

resistance has been reported from endemic areas such as India [Hadighi et al., 2006; 

Murray, 2004; Singh, 2006; Sundar & Chatterjee, 2006]. Now, different products of 

antimony are available but the mechanisms by which antimonals act against leishmania is 

still unclear. However, it is thought that they target important biological activity of the 

parasite and affect a number of factors such as cytokines and T-cell subsets that have a 

significant  anti-leishmania role [Ouellette et al., 2004]. In spite of massive work that has 

been carried out in the past few years to reveal the mechanisms used by leishmania 

parasites to resist antimonals, they are still unclear [Singh, 2006]. Failed treatment may be 

accountable for making the parasite resist to the drug [Rojas et al., 2006]. 

Other available anti-leishmania drugs including Pentamidine, Amphotericin B and 

Miltefosine, which are accounted as the second line of chemotherapy [Singh et al., 2006; 

Sundar, 2001]. The efficacy of Pentamidine has been shown declining in India suggesting 

the possibility of the parasite resistance against the drug [Ouellette et al., 2004]. 

Amphotricin B is basically an anti fugal drug, which has also potency to leishmania. The 

highly effective dose of Amphotricine B is usually accompanied by sever side effects and 

that it remains as the drug of choice only in the areas, where the parasite is resistant to 

other drugs [Ouellette et al., 2004; Sundar, 2001]. The high cost of amphotricin B also 
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makes it unavailable for many patients [Sundar, 2001; Sundar & Chatterjee, 2006]. 

Miltefosine has shown a high affectivity against leishmania in a phase III trial in  adults 

and it can be considered as a break through in leishmania treatment [Jha et al., 1999; 

Sundar et al., 2002]. However, other aspect of this drug still needs to be investigated. Other 

drugs including metronidazole, ketoconazole, fluconazole, itraconazole and terbinafine 

were shown to have different range of effectiveness to leishmania in animal models and 

human clinical trials so that their efficacy still needs to be investigated [Alrajhi et al., 2002; 

Gangneux et al., 1999].  

 
1.3.6 Diagnosis of leishmaniasis: 

Diagnosis of leishmaniasis is dependent on a combination of clinical symptoms, 

parasitological detection, immunological tests and molecular techniques 

 
1.3.6.1 Clinical symptom 

A series of clinical manifestations can be seen in visceral leishmaniasis including long-

term unexplained fever, cachexia and hepatosplenomegaly. In cutaneous leishmaniasis 

changes on the skin are the most important symptom, which can lead to the diagnosis of 

the disease (see  1.3.3), however, all forms of the disease need to be confirmed by other 

diagnostic methods.  

 
1.3.6.2 Parasitological diagnosis 

In visceral leishmaniasis, the amastigote form can be easily detected by the microscopic 

examination of stained smear of aspirates derived from lymph nodes, bone marrow, liver, 

or spleen [Bhattacharya et al., 2006; Markle & Makhoul, 2004]. There is always a risk of 

haemorrhage and complication for splenic and liver aspiration, which is also painful and 

unpleasant for the patients [Osman et al., 1997]. In cutaneous leishmaniasis, the detection 

of amastigotes by microscopic methods is based on obtaining the smear from the skin 

lesion biopsy or other methods like biochemical or immunohistochemical tests. The 

aspirate can also be cultured for recovering the parasite [Markle & Makhoul, 2004]. The 

culture method is simple, cheap and relatively sensitive but suffers from its vulnerability to 

contamination. In addition, the culture method of the parasite is usually time consuming, 

which makes it not an ideal method for field use.  

In occult and sub-clinical infections, both direct microscopy and cultured-based methods 

have a low sensitivity and cannot distinguish between the amastigotes of different species, 
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so that, no species identification can be applied by these methods [Osman et al., 1997; 

Singh & Sivakumar, 2003]. In visceral leishmaniasis the sensitivity of the methods for the 

splenic aspirates are quite high (98%) but it is lower for other organs indicating a very high 

level of infection in splenic macrophages (Table  1-2) [Singh & Sivakumar, 2003].  

 
1.3.6.3 Immunological tests 

Immunological tests are based upon the detection of anti-leishmanial antibodies and 

leishmanial antigens and are useful in both individual diagnosis and epidemiological 

surveys. Serodiagnosis of the disease is sometimes accompanied by shortcomings due to 

antibody prevalence in endemic areas specially in post-infected cases, absence of antibody 

during the incubation period, or cross-reactivity with other pathogenes such as malaria, 

trypanosoma, schistosoma or leprosy [Kar, 1995]. A number of methods have been 

described for immunological test of leishmaniasis including Leishmanin Skin Test (LST), 

Indirect Flourcent Antibody Test (IFAT), Enzyme Linked Immunosorbent Assay (ELISA), 

Direct Agglutination Test (DAT), Indirect Haemagglutination test (IHA), Immunodiffusion 

test, Counter current immunoelectrophoresis (CCIEP), immunoblotting,  and antigen 

detection . 

 
 

Investigation Sensitivity Specifity 
Splenic aspirate smear 80 –98% 100% 
Splenic aspirate culture 70-98% 100% 
Bone marrow smear 60-85% 100% 
Bone marrow culture* 40-50% 100% 
Liver aspirate smear 50-75% 98% 
Lymphnode smear 40-50% 95% 
Buffy coate culture  0-30% 100% 
Complement fixation test 70-80% 60-73% 
Immunodiffusion test 60-75% 90-95% 
CCIEP test 80-90% 50-70% 
IHA test 73-75% 80-95% 
IFA test 55-96% 70-98% 
DAT 90-100% 80-95% 
ELISAs ** 36-100% 85-100% 
* Hampered by high contamination rate of the cultures. 
** Depending on the antigen used 

Table  1-2: Sensitivity and specificity of various laboratory tests used for visceral leishmaniasis adapted 
from [Singh & Sivakumar, 2003].   
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1.3.6.4 Molecular Techniques  

Recently, several molecular biological techniques have been developed for a more 

sensitive detection and identification of leishmania parasites [Bastrenta et al., 2002; Mary 

et al., 2004; Smyth et al., 1992]. The main approaches of nucleicacid-based detection is 

based on amplification techniques such as the polymerase chain reaction (PCR) for the 

detection of DNA, which allows sensitive, specific and fast detection of minute amounts of 

pathogen DNA. PCR is based on the amplification of a known, specific sequence of DNA 

using oligonucleotide primers (typically 20-mers), which specifically bind to the DNA 

flanking the region of interest. Then the target sequence is amplified using a heat-stable 

DNA polymerase. Recent studies have shown that kinetoplast minicircle is an ideal target 

DNA in leishmania parasite as there are 10,000 copies of the DNA per cell and its 

sequence is known for most of species [Aransay et al., 2000]. In visceral leishmaniasis, 

PCR has opened a new window for diagnosis of leishmaniasis using blood samples with 

high sensitivity, which is very simple to obtain compare to spleen and bonemarrow 

aspirates. The sensitivity of the test using blood samples is reported as 70-96% [Osman et 

al., 1997; Salotra et al., 2001]. In PKLD, PCR with either lymph node or skin aspirates is 

more sensitive than microscopy for the diagnosis [Osman et al., 1998]. The sensitivity of 

the test in PKLD patients is between 93.8-96%. The specifity of the test is 100%, which is 

even higher than ELISA [Faber et al., 2003; Salotra et al., 2003; Salotra et al., 2001]. In 

cutaneous and mucocutaneous leishmaniasis the test has also shown better sensitivity 

compared to other tests; up to 100% for CL and 86.4% for MCL [Disch et al., 2005; Faber 

et al., 2003]. 
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1.4 Immunity to leishmania 

 

1.4.1 Early mechanisms in immunity to leishmania 

 

1.4.1.1 Opsonisation and Immune adherence  

Opsonisation is accounted as the earliest phenomenon after the arrival of metacyclic 

promastigotes into the blood stream. Opsonisation is basically results from the interaction 

of leishmania and serum proteins leading to the covarage of the parasite by the serum 

proteins. The leishmania opsonisation takes place through different ways. Interaction of 

leishmania with natural antibodies is the main and most usual way for opsonisation of the 

parasite. It has been long known that sera of non-infected vertebrate have anti-leishmania 

antibodies [Nunes & Ramalho-Pinto, 1996; Puentes et al., 1988], which is independent to 

the parasite species [Rezai et al., 1975] that means non-infected vertebrates normally have 

a level of anti-trypanosomatid antibodies in their blood. The natural antibodies constitutes 

of natural IgM antibodies, which have cross reactivity with leishmania antigen. There are 

also evidence to suggest that some other serum proteins such as manan-binding lectin, C-

reactive protein and C3, the third protein in complement cascade, can take part in the 

opsonisation of the parasite [Culley et al., 1996; Green et al., 1994; Mosser & Brittingham, 

1997]. The time course of opsonisation is species independent and is approximatly 3 

minutes long and the most out come of opsonisation is the triggering of the complement 

cascade, which means the rapid opsonisation of the parasite (3 minutes) [Dominguez et al., 

2003]. 

In addition, it has been shown that human C3-opsonised promastigotes and human serum 

opsonised amastigotes bind to blood erythrocytes. So that, it is believed the immune 

adherence has a role in dissemination of the parasite in the host [Dominguez & Torano, 

1999]. Natural antibodies-coated parasites deposit C3 on their surface and C3 coated 

promastigotes adhere to erythrocytes. The adherence is the result of co-operation between 

CR1 receptors of erythrocytes and the very few C3b ligand on promastigotes [Chevalier & 

Kazatchkine, 1989; Dominguez & Torano, 1999]. The kinetic of the binding is extremely 

rapid, which takes 40 sec to complete and leads to transferring leishmania to receiver 

leukocytes for endocytosis to ensue. Polymorphonuclears have been shown to take role as 

principal receiver cells in the initial leishmania-host contact. Therefore they can help in 

dissociation of the promastigote-erythrocyte in the blood [Dominguez et al., 2003].  
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Leishmania-platelets immune adhesion is reported in non-primate vertebrate and dogs 

[Dominguez et al., 2003]. Thus, the immune adherence is a phenomenon, which occurs in 

early stages of leishmania infection in primate and non-primate mammals [Dominguez & 

Torano, 2001]. In primate, erythrocytes act as an inert shuttle to carry C3-opsonised 

promastigotes to phagocytes [Lindorfer et al., 2001] and there are studies indicating an 

anti-microbial role for platelets, however , the main role of platelets is remained unknown 

[Umekita et al., 1998]. Therefore, the main important function of immune adherence is to 

promote phagocytosis of opsonised immune complexes and microbes by professenal 

phagocytes. Hence, the immune adherence may facilitate the uptake of leishmania 

promastigotes by phagocytes. 

 
1.4.1.2 Complement 

The potency of cytotoxic effect of human serum against leishmania parasites has been 

previously identified [Dominguez et al., 2002] and the role of complement as the main 

non-cellular immune mechanism in leishmaniasis was thoroughly investigated. However, it 

has only recently been proven that complement has a complex function against the parasite 

by posing a strong defence line to the parasite’s survival before it enters a permissive 

phagocyte. The kinetic of complement activation in leishmania infections is not yet fully 

understood however, it has been shown that the process starts approximately 1 minutes 

after the parasite arrives into the blood stream and completes in 2.5 minutes [Mosser & 

Edelson, 1984]. These phenomena strongly supported by real time kinetoplast analysis, as 

90% of promastigotes were killed after 2.5 minutes of serum contact. For L. donovoni the 

lytic process induced by complement starts in 60 sec from serum contact and reaches 50% 

in 80 sec and most of the parasites are killed in 2.5 minutes [Dominguez et al., 2002]. 

Though, most of the studies at first was focused on the alternative complement pathway, it 

has now been shown that both classic and alternative pathways can be activated by 

leishmania parasites [Mosser et al., 1986] and the classic pathway accounts for 85% of 

complement activity. Thus, the classic pathway is relevant pathway in a kinetic 

quantitative term and this is confirmed using the sera of patients congenitally deficient in 

C1 or C2 complement factors [Dominguez et al., 2002].  

In leishmania infection, the classic pathway is normally triggered by natural antibodies in 

which 85% is triggered by IgM and 15-20% by IgG during the first course [Navin et al., 

1989]. However, it has also been shown that complement can be activated by antibody-

independent mechanism [Mosser et al., 1986]. The classic pathway rises up in 2-3 minutes 
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but the alternative pathway is activated there after and because most of studies measure the 

activation of complement in 15-30 minutes of the infection the activity of the classic 

pathway was first missed out [Puentes et al., 1989; Puentes et al., 1988]. Finally, 

deposition of C3b on the parasite, which can serve as C5 convertase, can lead to the 

activation of lytic complement cascade that kills the parasite. Besides, it has been shown 

that the survival of the parasite after the inoculation is limited. Sandflies normally take 

100-300 ηl blood meal and the number of parasites, which can be transmitted is roughly 

25-75. As the viability of promastigotes in contact to non-immune serum after 2.5 minutes 

is >25% and the number of macrophages/monocytes are roughly 7% of human blood 

leukocyte [Dominguez et al., 2003]. The success rate of inoculation is not known but most 

of inoculations might be aborted by innate immune system. 

 
 
1.4.2 Cellular mechanisms in immunity to leishmania 

 
1.4.2.1 Macrophages and their effector function in leishmania infection 

Macrophages are the main phagocytes, which take up leishmania parasites. These cells 

eradicate the parasite efficiently when they are activated by CD4+ T cells. Non-activated 

macrophages can not kill the parasite effectively and are used as the host cells by 

leishmania. In mammals, leishmania lives exclusively in macrophages, although the 

parasite lacks special properties to penetrate its host cells and therefore, its survival is 

totally dependent on phagocytosis by the macrophage. It has been shown that complement 

receptors 1 and 3 (CR1 &CR3) and C3b bind to leishmania promastigotes and help them 

be internalised by macrophages. CR1, with the help of the mannose/fucose receptor and 

surface glycoproteins such as gp63, has a major role in ligation of promastigotes to 

macrophages. For internalisation of amastigotes FCIg and CR3 might take a significant 

role [Chakrabarty et al., 1996; da Silva et al., 1988; Da Silva et al., 1989; Guy & 

Belosevic, 1993; Wilson & Pearson, 1986]. 

The activation of macrophage by T cells is the main mechanism leading to destruction of 

the engulfed parasite (see  1.2.2.2). IFN-γ is accounted as an essential cytokine produced by 

T cells for activation of macrophages to eliminate leishmania and IFN-γ knocked out mice 

can not resist L. major resulting in fatal infection [Swihart et al., 1995]. IL-12 produced by 

macrophages and DCs also plays an important role in immunity to leishmania through the 

interaction of CD40-CD40L [Campbell et al., 1996; Kato et al., 1996; Yamane et al., 
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1999]. This was clearly demonstrated in IL-12 knocked out mice where they failed to 

prevent leishmania infection [Taylor & Murray, 1997]. Activated macrophages also 

produce other cytokines like TNF-α, IL-6, IL-18 and IFN-γ [Awasthi et al., 2004]. Some 

cytokines like TNF-α synergises with IFN-γ in induction of NO production in vitro [Taylor 

& Murray, 1997]. Administration of TNF-α to susceptible infected mice was shown help 

to terminate the course of disease. Blocking TNF in vivo by passively administering anti-

TNF antibodies exacerbated the course of L. major infection [Liew et al., 1990; Titus et al., 

1989]. Administration of other cytokines after infection like IL-2, IL-7, IL-4 and IL-18 

induced synergy to IFN-γ in activating the macrophages [Belosevic et al., 1990; Bogdan et 

al., 1991; Gessner et al., 1993; Tapia et al., 2003]. Instead administration of IL-4 before 

infection, abrogates the activation of macrophages [Heinzel et al., 1989; Leal et al., 1993]. 

The macrophage-destroying mechanisms, presumably mediated by toxic mediators, are to 

some extent effective against on leishmania. The main mediators acting against the parasite 

in macrophages are toxic mediators of oxygen including superoxide anion (O-2), hydrogen 

peroxide (H2O2) and nitric oxide (NO). Production of nitric oxide (NO) is the main 

sophisticated pathway to make macrophages resistant to the parasite. It has been shown 

that inhibition of production of NO from iNO render macrophages unable to resist to 

leishmania. Administration of NO inhibitors abrogates the ability of macrophages to resist 

leishmania [Assreuy et al., 1994; Awasthi et al., 2004; Evans et al., 1993; Green et al., 

1990].  

 
1.4.2.2 Role of neutrophils in leishmania infection 

Neutrophils (PMNS) in leishmania infection normally function as the primary effector or 

phagocytic cells. They are the first cells migrating to the site of infection to phagocyte 

leishmania parasites and perhaps demonstrate a lethal effect on them. Although the anti-

microbial activity of PMNSs is some time effective against the parasite [Chang, 1981; 

Pearson & Steigbigel, 1981], the parasite usually survive in PMNSs, which help the 

parasite escaping the complement function [Laufs et al., 2002]. There are studies 

suggesting a role for PMNSs in generating Th2 immune response [Tacchini-Cottier et al., 

2000]. PMNS-secrete chemokine-like IL-8 and leishmania chemokine factor  to bring more 

neutrophils to the site of infection . It has been reported that infection with L. major 

induces production of MIP-2 and KC (two functional murine homologues of IL-8) in the 

skin at the site of infection [Awasthi et al., 2004]. 
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Because of the short life-span of PMNSs (6-10 h in circulation), which is usually ended by 

apoptosis [Squier et al., 1995] and phagocytosis by macrophages, neutrophils are actually 

helping leishmania to enter macrophages. However, leishmania can increase neutrophils’ 

life span by delaying apoptosis for 2-3 days [Aga et al., 2002]. apoptotic PMNSs are 

recognised by phosphatidylserine expressed on their surface [Fadok et al., 1992]. Ingestion 

of apoptotic leishmania infected PMNSs, does not activate the antimicrobial mechanisms 

of the macrophage against leishmania. Therefore, infection of PMNSs makes a smooth 

way for leishmania to enter macrophages. 

PMNSs seem to present a contradiction function. It has been shown that 47% of peripheral 

human neutrophils express CD28, which on ligation induce IFN-γ and T-cell chemotactic 

factors indicating the role of neutrophils in initiating of adaptive immune response. In 

addition, it has been shown that IFN-γ promotes the macrophage activity for processing 

and presentation of antigens to T cells. Thus, neutrophils indirectly can induce the 

initiation of adaptive immunity against leishmania [Awasthi et al., 2004]. 

 
1.4.2.3 Role of CD4+ T lymphocytes in immunity to leishmania 

T cells are the main cells responsible for generating specific immune responses against 

pathogens (see  1.2.2.2) including leishmania parasites. It has been shown that resistance to 

leishmania can be transferred from one mouse to another by transferring specific CD4+ T 

cells [Holaday et al., 1991; Moll et al., 1988]. There is convincing evidence, in mammalian 

hosts, to suggest that the immunity against leishmania parasites relies on generating a 

cellular immune (Th1) response. This is clearly demonstrated by the genetic predisposition 

of susceptibility to L. major infection in mice, which correlates with the domination of IL-

4-driven Th2 response and resistance is linked to an IL-12-driven, interferon-γ (IFN-γ)-

dominated Th1 response that promotes healing and parasite clearance respectively [Sacks 

& Noben-Trauth, 2002]. This is fully described in non-healing BALB/c and self-healing 

C57 mice where they express transcripts for IL-4 and IFN-γ respectively [Locksley et al., 

1987]. IL-12 has a major role in the development of Th1 immune response. This has been 

shown using transgenic mice where T-cell receptors were specifically characterised for 

peptides derived from ovalbumin. In this model it was shown that dendritic cells were 

capable of induction and clonal expansion of T cells but they were unable to induce 

differentiation of T cells toward Th1 or Th2 without the addition of IL-4 or IL-12 

respectively [Macatonia et al., 1993]. In other experiments, IL-12- deficient genetically 

resistant mice and susceptible BALB/c mice both developed a strong Th2 response with 
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high levels of IL-4 mRNA and low levels of IFN-gamma mRNA in CD4+ T cells [Mattner 

et al., 1996]. In addition, in vivo administration of neutralisation anti IL-12 during a 

leishmania infection, made resistant mice more susceptible to leishmania [Hondowicz et 

al., 1997]. Endogenous IL-12 plays a decisive and crutial role in leishmania infection 

[Murray, 1997]. It has been reported that unresponsiveness of T cells to IL-12 in BALB/c 

mice was the main cause of lack of Th1 immune response and IL-12 receptors and 

responsiveness are suppressed by IL-4 [Himmelrich et al., 1998; Launois et al., 1997; 

Macatonia et al., 1993]. In BALB/c mouse model, it has also been revealed that during 

early stages of L. major infection (detected in 4 days) there is a mixture of Th1/Th2 

immune response. IFN-γ is variable in different strains but strikingly IL-4 was produced in 

all of the examined mice that fully generated Th2 immune response. Administration of 

anti-CD4 and anti-IL-4 antibodies resulted in healing of the lesions indicating the crucial 

role of IL-4 and T cell, which produce IL-4 [Locksley et al., 1993; Uzonna & Bretscher, 

2001].  

Further observations suggested that the Th1 suppression role of IL-4 was under the control 

of IL-2 suggesting IL-2 as the leishmania susceptibility factor [Heinzel et al., 1993; Louis 

et al., 1998]. Moreover, other studies showed a dual role for IL-4 in L. major infection, 

which has been shown to be dependent upon the phase of response and the antigen-

presenting cells [Biedermann et al., 2001]. IL-10 is another cytokine that may affect 

susceptibility to leishmania infection [Kane & Mosser, 2001]. It has also been reported that 

blocking of IL-10 using anti-IL-10 in L. major infection further reduced the succeptibility 

of IL-4 receptor α gene deficient mice [Noben-Trauth et al., 2003]. Administration of anti-

IL-10 cure the leishmania infection [Belkaid et al., 2001]. The role of T-regulatory (CD4+ 

CD25+) cell or T reg cells in leishmania infection has recently been investigated. T reg 

cells effectively suppress the effector activity of other T lymphocytes against self-antigens 

as well as foreign antigens. It has been reported that in leishmania infection T reg cells 

might play a regulatory role in generation of immunity to the parasite by producing IL-10 

[Campos-Neto, 2005]. There are also studies suggesting immunosuppressive roles for IL-

13 and TGF-β in immunity to leishmania, which correlates with a suppression of IL-12 and 

IFN-γ expression [Li et al., 1999; Matthews et al., 2000].  

It has been shown that administration of IFN-γ as single dose or sustained delivery cannot 

shift Th2 immune response to Th1 to stop BALB/c mice developing progressive lesion or 

alter the course of infection. This suggest that the role of IFN-γ in maintaining Th1 
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immune response is independent and early production of IL-4 and IL-10 is not due to lack 

of IFN-γ [Awasthi et al., 2004]. The role of other types of CD4+ T cells such as Th-17 

cells in immunity to leishmania is not clear yet and needs to be investigated, howevere, 

they may play a positive role by their contribution in the production of IL-12. 

 
 
1.4.2.4 The role of CD8+ T cells in immunity to leishmania 

The role of CD8+ T cells in immunity against intracellular parasites was first reported in 

malaria by two independent groups in 1987 and 1988 [Schofield et al., 1987; Weiss et al., 

1988]. In subsequent years, the participation of CD8+ T cells was also described in 

immunity to other intracellular pathogens such as Toxoplasma gondii, Trypanosoma cruzi 

and Mycobacterium tuberculosis [Rodrigues et al., 2003; Serbina & Flynn, 2001]. 

In leishmania, the function of CD8+ T cells in generation of immunity has been undefined 

for many years and it still remains as a dark area in immunity to leishmania. Initial studies 

failed to indicate a role for CD8+ T lymphocytes [Erb et al., 1996; Huber et al., 1998]. 

However, later studies showed that the role of CD8+ T cells in pathogenesis and immunity 

to leishmania can be demonstrated under certain conditions. In studies reported by Belkaid 

[Belkaid et al., 2002], C57BL/6 mice with CD8+ T cell deficiencies, including mice 

without CD8 (CD8-/-)or treated with anti-CD8 mAb, failed to control the L. major infection 

following the inoculation of 100 metacyclic promastigotes into the ear dermis. Also, these 

animals demonstrated a severe and delayed dermal pathology when compared to wild-type 

animals. In this model of infection, reconstitution of resistance was achieved when both 

CD4+ and CD8+ T cells were adoptively transferred [Belkaid et al., 2002]. These results 

were in agreement with some previous studies where immune BALB/c mice rechallenged 

with L. major showed production of IFN-γ from CD8+ T cells [Muller et al., 1993], which 

was associated with the production of nitric oxide by macrophages [Stefani et al., 1994]. In 

addition, β2-microglobulin and perforin deficient mice primed with leishmania antigen 

failed to control the infection after a challenge with leishmania suggesting a role of CD8+ 

T cells [Colmenares et al., 2003].These results are supported by a number of studies 

demonstrating an effective role for CD8+ T cells in activating macrophages by secreting 

IFN-γ in leishmania infections [Bottrel et al., 2001; Colmenares et al., 2003; De Luca et 

al., 1999; Pompeu et al., 2001]. The cytolytic activity of CD+ 8 T cells in leishmania 

infection has also been investigated. It has been shown that CD8+ T lymphocytes are 

highly cytolytic in vitro against leishmania-infected macrophages [Brodskyn et al., 1997]. 
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In conclusion, it is believed that CD8+ T cells take a significant part in immunity against 

leishmania [De Luca et al., 1999; Rodrigues et al., 2003]. It is likely that the presence of 

CD4+ T cells and their contribution is necessary for the activation of CD8+ T cells 

[Colmenares et al., 2003; Erb et al., 1996] and CD8+ T cells function as effectors by 

posing a direct cytotoxic activity to infected macrophages or by releasing IFN-γ to activate 

them against the parasite. CD8+ T cells may also contribute in the long-last immunity to 

leishmania [Awasthi et al., 2004]. Nevertheless, the importance of CD8+ T cells in 

immunity to leishmania is far from being clear and remains to be further elucidated.  

 
1.4.2.5 The role of other lymphocytes in immunity to leishmania 

The role of other NK cells and γ/δ T cells in immunity to leishmania is not fully 

understood. It was reported that the course of leishmaniasis caused by L. tropica in Beige 

mice lacking NK activity with the background of C57 mice, was similar to that of normal 

C57 mice but they failed to control L. donovoni [Kirkpatrick & Farrell, 1982]. In another 

study, it was shown that NK cells induced early IFN-γ dependent protective response in 

resistent C3H/HeN mice against L. major compared to diminished activity of NK cells in 

susceptible BALB/c mice [Scharton & Scott, 1993], suggesting a role for these cells in 

resistance to leishmania. Also, in C57BL/6 resistant mice, depletion of NK cells before the 

infection induced marked exacerbation in local tissue swelling and increased the number of 

parasites in the lesions which was accompanied by less IFN-γ production in the first two 

weeks of infection [Laskay et al., 1993]. Neutralization of IL-12 by anti IL-12 antibodies 

has also led to abrogating the protective role of NK cells in C57 mice [Scharton-Kersten et 

al., 1995] indicating the role of IL-12 in early production of IFN-γ by NKs, which mediates 

Th1 immune response. It has been shown that BALB/c mice lack early NK cell response 

after L. major infection due to simultaneous production of IL-12 inhibitor factor like IL-4, 

IL-10 and TGF-β. This indicates that early NK immune response is lacking in the 

susceptible BALB/c mice, which may be due to presence of inhibitory factors like IL-10 

and IL-4 [Scharton-Kersten et al., 1995]. 

An in vitro studies on γ/δ T cells have demonstrated a marked increase in contact of these 

celld with leishmania parasites [Saha et al., 1999], however, expansion of  γ/δ T cells in 

vivo was shown to be mediated through Th2 cytokines and activation of Th2 lymphocytes 

results in the expansion of γ/δ T cells [Rosat et al., 1995] 
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1.4.3 Immune evasion by leishmania  

After entering the macrophage, the parasite evades the proteolytic action of the 

macrophage and use the macrophage as a site to live and propagate. Two surface 

molecules of leishmania parasites, the gp63 surface protease and a lipophosphoglycan 

(LPG), have been implicated in the attachment and uptake of promastigotes by host cells. 

Interestingly, these proteins complement the effect of each other in the immune evasion 

mechanism. During the initial stages of the infection of the macrophage with L. donovoni, 

LPG promotes the intracellular survival of promastigotes by inhibiting the fusion of the 

parasite –containing phagosome with the lysosomes [Desjardins & Descoteaux, 1997]. 

LPG also blocks the oxidative burst of the macrophage via inhibition of protein kinase C 

[Giorgione et al., 1996]. In the phagolysosome form, gp63 acts to protect the parasite by 

inhibiting chemotaxis and the degradative phagolysosmal enzymes [Sorensen et al., 1994]. 

In addition, the parasite transformation inside the macrophage from the promastigote to 

amastigote makes it more resistance against the low pH of the phagolysosome because 

amastigotes are metabolically more active in an acid than the neutral environment 

[Zambrano-Villa et al., 2002]. The parasite also promotes its survival inside the 

macrophage by preventing apoptosis, antigen presentation procedure and responsiveness to 

cytokines [Moore & Matlashewski, 1994]. For instance, leishmania inhibits the expression 

of the MHC class II molecules so in turn it decreases peptide presentation by macrophage 

[Reiner et al., 1987]. Similarly, gp63 from L. major and L. donovoni cleaves CD4 

molecules on T cells interfering with the stabilisation of the interaction between antigen-

presenting cells and T helper cells. Besides, amastigotes internalize and degrade class II 

MHC molecules as well as down regulate the expression of co-stimulatory molecules such 

as B7-1 [De Souza Leao et al., 1995; Kaye et al., 1994]. Leishmania also induces the 

release of PGE2 and TGF-β, which inhibit macrophage. The other evading system of 

leishmania parasites is to control the response of infected macrophages through its LPG by 

down regulating the expression of the TNF-α receptor and inhibiting the chemotaxis of 

neatrophiles and monocytes [Zambrano-Villa et al., 2002]. The mechanism developed by 

the parasite to evade complement could be among the most sophisticated ones that used by 

parasites to evade immunity. Promastigotes of leishmania, probably due to high expression 

of LPG molecule in their surface can resist the complement complex C5-C9. gp63 can also 

process to protect the parasite from complement through the proteolytic conversion of  C3b 

to C3bi on the parasite surface and leishmania protein kinases can phosphorylate some 

complement components such as C3, C5 and C9 thus blocking both pathways of activation 
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[Brittingham et al., 1995; Puentes et al., 1990; Zambrano-Villa et al., 2002]. Another 

strategy for leishmania to evade the immune system is suppressing IL-12 transcription 

gene. Because IL-12 is a major promoter of IFN-γ production, its suppression can, in turn, 

inhibit the IFN-γ production, which provide a survival advantage to the parasite 

[Zambrano-Villa et al., 2002]. 

 

 

1.5 Leishmania vaccines 

The complexity of host-leishmania parasite interaction demands a high level of basic 

knowledge coupled with clinical research to pave the way for designing and production of 

an effective vaccine against the parasite. For production of each vaccine utmost attention 

must be paid to assure safety, reproducibility and efficacy. Each vaccine has to meet 

several criteria to be counted as a safe and effective vaccine. The requirements are 

including Good Laboratory Practice (GLP), Good Manufactory Practice (GMP) and Good 

Clinical Practice (GCP) [Khamesipour et al., 2006]. To assure safety each vaccine, during 

its development, needs to pass through 5 stages, discovery, pre-clinical development, 

clinical development, registration and post-marketing evaluation [Khamesipour et al., 

2006]. 

Different strategies have been considered to develop an effective vaccine for leishmaniasis 

but according to WHO’s report, there is not a wholly effective vaccine available for 

leishmania parasites yet although different preventive or even therapeutic vaccines are 

currently is under investigation [Coler & Reed, 2005; Machado-Pinto et al., 2002]. 

 
1.5.1 Killed leishmania Vaccine 

Several studies have been carried out to prove the immunogenicity of killed leishmania 

parasite. The earliest attempt to construct a killed leishmania vaccine for leishmania took 

place in 1940s in Brazil. After that in 1970s, a killed vaccine composed of 5 isolates of 4 

different species was developed by Mayrink. Later, this was simplified to contain only 

killed L. amazonensis and used for vaccination in Colombia and Equador and was also 

used as an adjuvant for chemotherapy in Brazil [Khamesipour et al., 2006]. Later a vaccine 

made up of autoclaved L. mexicana together  with BCG was introduced for 

immunotherapy and immunochemotherapy [Convit et al., 1987]. It has also been 

confirmed that using killed parasite can act as an adjuvant and helps in reducing the dose 

of anti-leishmanial drugs used for treatment of leishmania patients [Machado-Pinto et al., 
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2002]. In Venezuela, autoclaved L. mexicana is now used to treat leishmaniasis [Convit et 

al., 2003]. In Equador, two injections of a killed vaccine composed of L. mexicana and L. 

amazonensis together with BCG resulted in 73% protection in Ecuadorian children 

[Armijos et al., 1998] however further studies did not confirm the result [Armijos et al., 

2004]. In Colombia testing this vaccine did not show much difference between vaccinated 

and non-vaccinated individuals in a double-blind placebo control efficacy study against 

natural infection [Velez et al., 2005]. In another attempt, it was tried to use autoclaved L. 

major (ALM) mixed with one tenth dose of BCG used for tuberculosis vaccine in non-

endemic area. Although, this vaccine was tested in Phase III field efficacy trials against 

cutaneous and visceral leishmaniasis, in a randomized double-blind trial in Sudan against 

VL and in some prospective studies in Iran against CL no significant protection was 

observed following the injection of the vaccine (ALM + BCG) against either VL or CL 

compared to BCG alone [Khalil et al., 2000; Sharifi et al., 1998]. The results indicated that 

the mixture was safe and induced leishmania Skin Test (LST) conversion with weak but 

measurable IFN-γ production. In the field only 16.5% of LST conversion was seen in 

anthroponotic areas of Bam, Iran. With two doses of the vaccine, 43% of LST converted 

volunteers showed immunity to VL in Sudan. There was no difference between one and 

three doses injection in prevention of CL [Khalil et al., 2000; Sharifi et al., 1998]. Using 

aluminium hydroxide (alum) as adjuvant in order to enhance the immunogenicity of the 

vaccine, better results were observed in monkeys and dogs. Thus, combination of alum 

precipitated ALM and BCG seems to be more optimistic in leishmania vaccine 

development [Khamesipour et al., 2006].  

Other studies showed protection to L. major in mice immunised with killed promastigotes 

or recombinant proteins plus IL-12 as an adjuvant but the mice lost protective immunity 

after 12 weeks [Sacks & Noben-Trauth, 2002]. However, in another study, ALM induced a 

higher level of protection in monkeys when combined with rIL-12 and alum as adjuvants. 

Further studies to test this combination are being carried out in Sudan and Iran [Dumonteil 

et al., 2001]. Oral vaccination with whole leishmania antigen has been tried as another 

strategy in mouse model; two oral doses with 100mg killed L. amasonensis whole antigens 

rendered BALB/C and C57BL/6 mice more resistant against subsequent infection with L. 

amasonensis. Orally vaccinated BALB/c mice with the killed leishmania vaccine were also 

protected against L. major infection [Pinto et al., 2003]. 
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1.5.2 Live leishmania Vaccines 

Using live leishmania parasite as a vaccine to prevent the possible future infection is called 

Leishmanization [Khamesipour et al., 2006]. Developing a potent vaccine based on 

inoculation of attenuated live leishmania parasites or Leishmanization has been considered 

as another strategy in the prevention of leishmaniasis. Since long time ago, it was clear that 

patients recovered from cutaneous leishmaniasis are resistant to re-infection. Thereafter 

some attempts were made to use live parasite derived from patients exudates to create self-

healing lesion in some parts of the body preventing future infection that may cause lesion 

on the face and other exposed parts of the body similar to the approach used in cow-pox 

vaccine [Sacks & Noben-Trauth, 2002]. In mouse models vaccination with radiation 

attenuated or virulent promastigotes has also resulted in better protection than that 

achieved by inoculation of immunogenic leishmania proteins such as gp63 [Rivier et al., 

1999]. There have been attempts in Iran and Israel for developing a live leishmania 

prophylactic vaccine for cutaneous leishmaniasis. No significant reduction is reported in a 

large prognosis study carried out in 1980s [Khamesipour et al., 2006].  

Basically, the live vaccine is of low cost and highly immunogenic but the main problem 

associated with this vaccine is the lack of standardization and quality control as the parasite 

looses infectivity in long in vitro culture. In addition, the vaccine produces lesions on the 

site of inoculation that may last between 3-13 months if left untreated by anti-leishmania 

drugs. Some live vaccines may cause chronic lesions that do not easily respond to 

chemotherapy [Khamesipour et al., 2006]. In mice, it has been shown that the parasite 

persists in the infected tissues for a long time after healing. Therefore, the application of 

the live parasite in HIV and other immonosuppressed patients and even in the populations 

at risk of HIV due to the possible recurrence of the infection is restricted [Aebischer et al., 

1993; Montalban et al., 1989]. 

 
1.5.2.1 Use of genetically modified parasite as a vaccine 

Genetically modification of the parasite is considered as a new strategy for application of 

live leishmania vaccination. Genetically modified parasites do not normally cause clinical 

symptoms but are able to induce immunity to the wild type parasite. Developing 

genetically modified leishmania is carried out either by mutagenesis and selections 

[Daneshvar et al., 2003] or gene targeting methods in which either a foreign gene is 

introduced into the parasite genome or by knocking out virulency genes [Joshi et al., 

1998]. In a different strategy it has been tried to introduce genes encoding proteins, which 
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are harmful for the parasite itself but not for the host upon the exposure of harmless 

products [Muyombwe et al., 1998; ten Asbroek et al., 1990]. For instance, introducing 

foreign genes to the parasite to make it more sensitive to particular drugs has recently been 

studied [Davoudi et al., 2005]. The results have revealed that the elimination of the parasite 

even as early as day 7 after infection can stimulate a high level of IFN-γ production leading 

to protection in mouse model, however, none of these products have yet reached clinical 

development studies. Some studies tried to knock out several genes in L. major and L. 

donovoni models. Dihydrofolate reductase knocked out L. major showed good protection 

in mice but not in monkeys where the results were disappointing [Khamesipour et al., 

2006; Titus et al., 1995; Veras et al., 1999]. In L. donovoni bioprotein transporter (BT1) 

and in L. mexicana cystein proteinase (CP) showed similar results in BALB/c mice [Frame 

et al., 2000; Papadopoulou et al., 2002]. In leishmania parasites, Centrin function as a 

calcium-binding cytoskeletal protein essential for centrosome duplication or segregation. It 

has been reported that certain knocked out mutants parasites show irregularity in their 

growth [Selvapandiyan et al., 2004; Selvapandiyan et al., 2001]. So, the Centrin-knocked 

out mutants of leishmania are considered as potential live vaccines and the 

immunogenicity of them is now under investigation in our lab [personal communication 

with Dr Nakhasi].  

 
1.5.3 Recombinant protein Vaccination 

Recently, recombinant proteins of leishmania species have been used to produce the 

immunity against different species of leishmania. Different proteins have been tested to be 

used as a vaccine including gp63, HASP-B1 and PSA-2, which are immunogenic and can 

develop varriable levels of immunity in different animal models. Gp63 in L. major is an 

extremely potent immunogenic protein compared to a standard protein (ovalbumin) and its 

injection even in salin induced significant protection. Injection of gp63 in saline, Complete 

Freud’s Adjutant (CFA), BCG and Corynebacterium parvum induced significant 

protection in BCA mice. Combination of gp63 and adjuvant resulted in different levels of 

protection depending upon the site of vaccination relative to that of the challenge infection. 

The vaccination in the tail close to the site of infection led to a stronger induction of 

immunity in mice [Rivier et al., 1999]. In addition, recombinant acylated surface protein 

B1 (HASPB1) of L. donovoni is able to confer protection against the experimental 

challenge. unlike soluble leishmania Ag + IL-12, rHASPB1 did not require adjuvant and 

was sophisticated to control the parasite burden in the spleen [Stager et al., 2000]. Surface 
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Antigen complex2 (PSA-2) showed potent immunogenicity but the level of immunity 

developed after vaccination was not good enough to protect the animals against challenge 

with the parasite [Handman et al., 1995a; Handman et al., 1995b].  

 
1.5.4 Peptide vaccination 

It is known that proteins taken by antigen presenting cells (APC) are cut into peptides and 

presented to T cells through MHC class I and II molecules. Therefore, finding a strong 

immunogenic peptide with high affinity to MHC class l or ll, which can be presented by 

APCs would be a feasible strategy for developing a novel vaccine against pathogeneses 

such as leishmania parasites. Many studies have been taken place to find an immunogen 

peptide, which can be used as a vaccine in leishmaniasis. Some of those peptides have 

been discussed in chapter 5.  

 
1.5.5 DNA vaccination in leishmania 

Genetic immunization is a newly developed approach in prevention and treatment of 

infectious diseases. In this method, DNA Plasmids encoding one or more proteins of the 

pathogen are directly introduced into host cells and decoded into the protein. So, specific 

cell mediated and /or humoral immune responses are elicited against the encoded protein. 

Effectiveness of DNA vaccination has been shown in different studies against tumour and 

intracellular parasites [Westermann et al., 2007; Zapata-Estrella et al., 2006]. In leishmania 

parasites, it has been demonstrated that immunization with plasmid DNA encoding single 

or multiple leishmania antigens is a particularly effective approach to generate strong and 

long-lasting protection against L. major. Using this approach for the leishmania 

vaccination to induce cell mediated immunity to L. major, DNA plasmid constructed with 

L. major gp63 gene (gp63-pcDNA3) were injected to BALB/c mice intradermally resulted 

in the protection of 30% of mice from leishmania infection. CD4+T cells from gp63-

pcDNA3-immunized mice proliferated and produced IFN-γ (but not IL-4) upon stimulation 

with freeze –thawed parasites indicating a Th1 response [Walker et al., 1998; Xu & Liew, 

1995]. In another study, the L. major gp63 gene was cloned into an eukaryotic expression 

plasmid pcDNAI with CMV or RSV promoters and administrated in BALB/c mice. 

Intramuscular injection of mice with 100 µg of the plasmid DNA induced a significant 

level of immunity in immunised mice compared to controls [Xu & Liew, 1994]. Similar 

results were achieved by cDNAs encoding L. mexicana gp63 in BALB/c mice when the 

mice were immunized with two i.m. injections of 100µg of plasmid DNA and challenged 
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by L. m. mexicana parasites in the footpad. The size of lesion indicated that the immunized 

mice were partially protected against the infection [Dumonteil et al., 2003]. In a 

comparative study, the immunogenicity of DNA plasmids encoding L. major LACK, PSA2, 

Gp63, LeIF and two newly identified p20 and Ribosomal like proteins, in addition to other 

truncated portions of the LACK antigen were compared. Neither of the DNA vaccine 

candidates was able to mount a full protection in BALB/c mice challenged with a highly 

virulent L. major strain. However, the most promising gene was LACK and it was more 

protective when it was used as a p24 truncated form [Ahmed et al., 2004]. In another study, 

L. m. mexicana gp63 and CPb, L. m. amazonensis gp46, and L. major LACK were 

compared. The results indicated that BALB/c mice immunised with plasmids VR012-

GP46, VR012-GP63 and VR1012-CPb were partially protected against L. mexicana 

infection, whereas VR1012-LACK had no effect [Dumonteil et al., 2000]. A DNA vaccine 

composed of leishmania Parasite Surface Antigen Complex 2, PSA-2 is also under 

investigation by Noormohammadi. The advantage of this antigen is being present in 

several leishmania species; it provides an opportunity to protect individuals against several 

forms of the disease.  It has been shown that PSA-2 DNA is immunogenic but surprisingly 

co-administration of IL-12 with PSA-2 DNA abrogates the immunogenicity 

[Noormohammadi et al., 2001].A further study about the potency and quality of the 

vaccine is being continued.  

DNA vaccines are inexpensive, simple to use and easy to produce. It is also possible and 

managable to put different genes in one plasmid construct [Almeida et al., 2002]. These 

vaccines can target both MHC class I and II molecules and the immunogenic protein can, 

therefore, be presented through both of them that enhances the efficacy of the vaccine, 

which is important for leishmania vaccination as; both CD4+ and CD8+ T cells take role in 

immunity to leishmania [Gurunathan et al., 2000a]. Moreover, these vaccines produce a 

long-term production of immunogenic protein, which is similar to the natural infection 

leading to long memory [Scott et al., 2004]. 

 
 

1.6 Animal models in leishmania studies 

Due to the ethical issues related to studies performed on human, leishmania studies directly 

in humans are cumbersome. Therefore, there is a crucial need for the development of 

animal models for leishmania studies. Animal models are expected to mimic the 

pathological features and immunological responses observed in humans when exposed to a 



Chapter 1/Introduction 59 

variety of leishmania species. with different pathogenic characteristics. Many experimental 

models have been developed, each with specific features, but none accurately reproduces 

what happens in humans [Garg & Dube, 2006].  

In cutaneous leishmaniasis, L. enriettii infection of guinea pigs was the first model to be 

well characterized. Guinea pigs develop T-cell responses to parasite antigens within 2 

weeks of infection, and the lesions heal within about 10 weeks. A major attraction of this 

animal model is the fact that the host-parasite combination is a natural one and that the 

disease pattern is similar to that observed in human cutaneous leishmaniasis caused by L. 

major [Handman, 2001]. Due to difficulties associated with the guinea pig animal models, 

this model is now replaced with inbred mouse animal models. However, the spectrum of 

disease manifestations observed in human leishmaniasis is not perfectly mimicked in the 

laboratory by infection of different inbred strains of mice. BALB/c mice are highly 

susceptible; upon infection with L. major, they develop skin ulcers, which expand and 

metastasize, leading to death. C57BL/6 and CBA/N mice are more resistant, develop small 

lesions which cure in 10 to 12 weeks, and are resistant to reinfection. Most other strains of 

mice are intermediate in susceptibility[Handman, 2001].  

For visceral leishmaniasis, several attempts were made in the past to use small rodents for 

L. donovani infection. These include hamster (European, Chinese and Syrian), mouse 

(BALB/c, NMRI, DBA/1, C57BL/6), rat, mastomys, squirrel, gerbil etc. Of the various 

animals tried, BALB/c mice and Syrian golden hamsters are the commonest and currently 

used animal models for drug and vaccine testing against VL. [Hommel et al., 1995]. The 

golden hamster was used in one of the early animal models for the study of visceral 

leishmaniasis. Infection with L. donovani causes visceral leishmaniasis, which might lead 

to death in human. Anaemia, hyperglobulinemia, and cachexia are aspects of the human 

disease mimicked in the hamster, making it a useful tool for the characterization of 

molecules and mechanisms involved in the pathogenesis [Hommel et al., 1995]. However, 

in recent years, the interest in the hamster animal model has waned and this model is now 

used preferably as a source of L. donovani amastigotes. The passage through hamsters 

seems to be a required life cycle stage for infection of mice, which are currently accounted 

as the preferred animal models for visceral leishmaniasis (Table  1-3). 

The mouse model reproduces many aspects of the human disease, including a range of 

susceptibility states depending on the strain of mouse used. Although the mouse model is 

useful in many ways, it must be remembered that the mouse model for leishmaniasis is just 

a model and that the mechanisms of pathogenesis and immunity may be a little different in 
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humans and extrapolation from mouse to human requires much care [Kelso, 1995; Kelso, 

1998] due to the different circumstances in human leishmaniasis. For instance, under 

natural conditions, the infected sandfly deposits a few hundred metacyclic promastigotes 

into the dermis of the host, whereas experimental infections are usually induced by 

subcutaneous (s.c.) or intravenous (i.v.) injection of millions of promastigotes grown under 

in vitro conditions or amastigotes recovered from cutaneous lesions or infected spleens 

[Garg & Dube, 2006]. In addition, the immune responses following infection of inbred 

mouse strains with viscerotropic leishmania species, such as L. donovani, L. chagasi or L. 

infantum, are similar to those observed in the L. major mouse model. However, BALB/c 

mice do not appear to exhibit a similarly high susceptibility to these parasites, since 

intravenous injection of visceral leishmania species results in a self-healing of chronic 

infection. Furthermore, cytokine phenotypes elicited by viscerotropic leishmania in this 

mouse model are not typical of a Th2-type response [Lehmann et al., 2000]. Therefore, it is 

believed that BALB/c mouse model for VL is considered to be a good model since the 

infection progresses for the first few weeks and then controlled by the host immune 

response [Murray et al., 1987]. The other difficulty with the mouse as a model for human 

visceral leishmaniasis is the need to inject amastigotes intravenously in order to induce a 

reproducible pattern of colonization of the liver and spleen. This route of administration 

does not mimic the natural infection by the sandfly. In addition, there is no evidence of 

wasting, as in the human disease, hence the infection is chronic but not fatal [Ahmed et al., 

2003]. Dog has also been reported as suitable animal model for visceral leishmaniasis in 

which relevant immunological studies and vaccine development could be performed. With 

the recent cloning of several dog genes encoding cytokines and immunologically important 

cell markers, as well as the development of monoclonal antibodies to these molecules, 

there is hope for a more sustained exploitation of this excellent animal model.[Garg & 

Dube, 2006; Handman, 2001]. 

In visceral leishmaniasis, the mouse model is mainly comparable to self-controlled 

oligosymptomatic cases and therefore it is useful for the study of the protective immune 

response. On the other hand, a more suitable model to study the progressive disease is the 

hamster, which infected with L. donovani or L. chagasi that develop a disease similar to 

human progressive visceral leishmaniasis with hepatosplenomegaly, hypoalbuminaemia, 

hypergammaglobulinaemia, and pancytopenia. Therefore, this model is mainly used to 

study the mechanisms of immunosuppression [Rodrigues Junior et al., 1992]. Due  to the 

close phylogenic relation of primates to humans, leishmania infected monkey model using 
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Aotus trivirgatus (owl monkeys) and Saimir sciureus (Squirrel monkeys) has also been 

used for tertiary preclinical testing of vaccines for visceral leishmaniasis [Chapman & 

Hanson, 1981; Chapman et al., 1983].  

 

Animal/strains  
 

Parasite  Route of 
inoculation 

Characteristics 

Mouse: 
 

BALB/b 
BALB/c 
C57BL/6 

L. chagasi 
L. donovani 
L. infantum 

i.v 
i.d 
 s.c 

-Self curing to non healing type 
-Th1/Th2 response 
-All immunological reagents are available 
-Good model for dissecting protective immune 
response 

Hamster: 
 

Golden 
Chinese 

L. chagasi 
L. donovani 
L. infantum 

s.c 
i.p 
i.c 

-Progressive fatal infection 
-Severe immunosuppression (Th2 response) 
-Reagents for T-cell response not available 
-Good experimental model for initial vaccine trial 

Dog: 
 

Stray 
Beagle 
Mongrel 

L. infantum 
L. chagasi 

i.v 
i.d 

-Natural reservoir (not in India) 
-Subclinical/asymptomatic to progressive fatal infection 
-Immunosuppression (Th2 response)-Reagents for 
cytokine response not available-Good secondary model 
for pre clinical vaccine trial 

Monkey: 
 

Owl 
Squirrel 
Vervet 
Langurs 

L. donovani i.v. 
i.d 

-Sub clinical to fulminating progressive fatal infection 
-Severe immunosuppression (Th2 response) 
-All immunological reagents are available 
-Good secondary model for pre clinical vaccine trial but 
difficult to use due to cost, handling and immunological 
black boxes 

i.v., intravenous; i.d., intradermal; s.c., subcutaneous; i.p., intraperitonial; i.c., intracardial 
Table  1-3: Experimental models used for vaccine trials against visceral leishmaniasis (VL) [Garg & 
Dube, 2006] 
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1.7 Aim of the study 

The role of CD8+ T cells in immunity to leishmania has not yet fully understood and most 

of previous studies have assessed CD8+ T cells involvement by measuring proliferation or 

the secretion of IFN-γ by these cells. The main objective of this study is to develop a 

mouse model to assess CTL responses to leishmania vaccine candidates by developing a 

cytotoxicity assay using tumour cells transfected with leishmania antigen as a surrogate 

target cells. This model will be also used to evaluate the contribution of CD4 T cells and 

APC in immunity against leshmania infection. Two mouse models will be used in this 

study including the conventional BALB/c, and transgenic HHDII models.  

DNA immunization is a newly developed approach in leishmania vaccination. In this 

method DNA encoding an immunogenic protein is directly introduced to the host cells to 

generate immunity to the parasite. DNA vaccines are effective and simple to use, and it has 

been shown that alteration of the method of inoculation can alter the immunity induced by 

the vaccine. In this study, the efficacy of DNA vaccine in BALB/c mouse model will be 

evaluated by two DNA immunisation methods (administration by intramuscular or gene 

gun) using leishmania gp63 DNA plasmid construct.  

Dendritic cells are the most professional antigen presenting cells, which may have 

important roles in immunity to leishmania. Using DCs as adjuvant to enhance immunity to 

leishmania is a novel approach in leishmania vaccine investigation. This study is proposed 

to investigate the role of DCs in immunity against leishmania infection. The 

immunogenicity of DCs alone or loaded with lesihmanai antigen(s) will be tested in 

BALB/c mouse model against infection with lesihmanai parasite. The potency of DCs in 

induction of Th1/Th2 or CTL immune response will also be determined. 

Peptide-based vaccine is a promising approach in vaccine development. In this study the 

web-based software “SYFPEITHI” will be used to select potential immunogenic peptides 

from leishmania gp63 antigen to be tested in BALB/C and HHDII mice. Immunogenicity 

will be determined by immunisation and in vitro immunological assays. 

OX40 is an important co-stimulatory receptor expressed on T cells. Interaction of OX40 

and OX40L on APC induces T-cell activity, which results in a higher immune response. In 

this study the potency of recombinant OX40L molecule in up- or down-regulation of 

immunity against leishmania in BALB/c mouse model will be investigated. Co-

administration of OX40L and the leishmania vaccine candidates will also be tested. In 

order to produce the OX40L, protocols for purification of OX40L from B9B8E2 cell 
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culture supernatant will be established and optimized using different buffers, gels and 

methods of purification. 



Chapter 2/Materials and Methods 64 

Chapter 2 Materials and methods 

 
2.1 Cells & Animals 

 
2.1.1 Cells 

Various cell lines used in this study are described below 

Name Description Media Source 

CT-26 
N-methylurethane-induced 
BALB/c murine colon 
carcinoma 

DMEM+10% FCS 
Prof Ian Hart (St 
Thomas Hospital) 

A20 Murine B cell lymphoma 
RPMI 1640+2 mM L-
glutamine 

ATCC 

RMA/S-A2 Transgenic lymphoblastoid 
RPMI 1640+2 mM L-
glutamine+10% FCS+G418 

Dr. F Lemonnier 
(Institut Pasteur, Paris) 

T2 Human Lymphoblastoid 
RPMI 1640+2 mM L-
glutamine +G41810% FCS 

Dr. F Lemonnier 
(Institut Pasteur, Paris) 

B9B8E2 

Chinese Hamster Ovary cell 
line transfected with the 
murine OX40L and IgG 
plasmids 

DMEM medium 
supplemented with 15 mg/ml 
MSX, 1% glutamine 
synthetase (GS) and 10% 
Bio-FCS (FCS without 
bovine IgG). 

Xenova plc, 
(Cambridge, UK) 

 

Table  2-1: Cell Lines and their descriptions 

 
 
2.1.2 Generation of DCs 

BM-DC were generated as described by Inaba and coworkers with some modifications 

[Inaba et al., 1992]. Briefly, hind limbs of naïve BALB/c mice were collected and all 

muscle was removed using scalpel and tweezers. After cutting the ends of the bone, bone-

marrow cells were flushed out media and harvested. The bone marrow cells were then 

centrifuged and resuspended in 1ml BM-DC media, counted and plated at 1×106 cells per 

well/ml with 100ng/ml of mGM-CSF (X63 supernatant). The cells were then incubated 

overnight at 37○ C, 5% CO2. On day 2 and day 4, non-adherent cells were washed out by 

gently replacing 700µl of media with fresh DC media containing GM-CSF. On day 6, BM-

DC were replated and split into two groups. The first group (test) were pulsed with 

10µg/ml SLA and the second group was used as control. Control and test groups were 

pulsed 4-6 hours later by 1µg/ml LPS to induce maturation. The following day, BM-DCs 

were washed in serum free RPMI 1640 media, counted and injected intradermally at 2×106 

per mouse or used as target cells in standard 4-hour cytotoxicity assay.  
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2.1.3 Leishmania parasites 

L. mexicana promastigotes strain Hd18 were kindly gifted by Dr. Varley, the London 

School of Hygiene and Tropical Medicine (LSHTM), and cultured in Schneider media 

(Sigma) supplemented with 10% FCS at 25 ºC as described by [Bates, 1994a]. 

 

2.1.4 Animals 

HLA-A2 transgenic (HHDII) mice, a generous gift from Dr. F Lemonnier (Institute 

Pasteur, Paris) were housed and bred at the Nottingham Trent University. 

BALB/c mice were purchased from the Harlan Olac (Oxon, UK) housed and bred at the 

Nottingham Trent University. All animals were handled in accordance with the Home 

Office Codes of Practice for the housing and care of animals. 

 
 
2.2 Preparation of Reagents 

 
2.2.1 Peptides 

A list of the peptides used in this study are shown in Table  2-2. The peptides were predicted 

by SYFPETHI web-based software and synthesised by Alta Bioscience.  

 
Gene Sequence Abbreviation Class I Score 

L. major gp63 LLVAALLAV B8 HLA-A2 28 

L. mexicana/ major gp63 RLAAAGAAV C2 HLA-A2 25 

L. major gp63 RLSLGACGV C1 HLA-A2 23 

L. mexicana/major gp63 AAAGAAVTV CM4 HLA-A2 24 

L. mexicana/major gp63 YYTALTMAI A3 H2-Kd 21 

L. mexicana/major gp63 DYTNCTPGL A4 H2-Kd 20 

L. mexicana/major gp63 VPNVRGKNF A5 H2-Ld 22 

L. mexicana/major gp63 ASLLPFNVF A6 H2-Ld 21 

Table  2-2: Predicted peptides from Leishmania gp63 proteins by Web-based software “SYFPEITI”.  

 
 
2.2.2 Preparation of SLA (Soluble Leishmania Antigen) 

The L. mexicana SLA was prepared according to procedure previously described by 

Dumonteil [Dumonteil et al., 2003]. Briefly, late log phase L. mexicana promastigotes 

were washed 4 times in PBS and resuspended in 100mM Tris buffer, pH 7.3 containing 

1mM EDTA, 0.5mM PMSF (Sigma) and 2.5g/ml Leupeptin (Sigma). The parasites were 

lysed by sonication and the lysate was centrifuged at 13000rpm for 20 minutes. The 
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supernatant was centrifuged again for 4 h at 39,000rpm, and then was dialysed against 5 

litters of cold PBS overnight with continuous agitation and several changes of the PBS. 

The lysate was sterilised by passing through 22µm filters (Sartorius).  

 
2.2.3 Tumour Cell Lysate Preparation 

Cells were harvested and washed twice in ice cold PBS by centrifugation at 400 rpm for 3 

minutes at 4°C. The cell pellet was resuspended in 500µl of lysing buffer (150mM NaCl, 

50mM  Tris-Base pH 8.0, 5mM EDTA, 1% v/v IGEPAL CA-630, 0.5% w/v sodium 

deoxycholate, 0.1% w/v SDS, 1mM benzamidine, 0.1mM PMSF, 1mM sodium ortho-

vanadate, 1mM sodium azide) and the tubes were agitated for 30 minutes at 4°C. The tubes 

were then allowed to stand on ice for one hour followed by centrifugation at 14000 rpm at 

4°C for 30 minutes. Supernatants were transferred to fresh eppendorfs and stored at –20°C 

until analysed by protein assay and SDS-PAGE. 

 
2.2.4 Coating of gold particles by DNA 

DNA was coated onto 1.0 Micron gold particles (Biorad, Hemel Hempstead, Hertfordshire, 

UK) using manufacturers’ instruction and administered by Helios Gene Gun (Biorad). 

Breifly, 200 µl of spermidine was added to 16.6 µg of gold in a 1.5ml epindorf. 36µg of 

DNA was added followed by sonication. 200 µl of 1M calcium chloride was added to the 

DNA-Spermidine solution followed by incubation at room temperature for 10 minutes. 

Tubes were centrifuged at 13,000 rpm for 1 minute and gold particles resuspended in dry 

ethanol (Sigma). After repeating the above step 2 more times, particles were resuspended 

in 0.025mg/ml of polyvinylpyrollidone (PVP) in dry ethanol. During these steps, the 

plastic tubing was dried using nitrogen for 15-20 minutes using nitrogen gas. The 

resuspended gold particles were loaded into the dried tubing using a syringe and the tubing 

was placed on the roller/dryer (Biorad) followed by incubation for 15 minutes. The PVP-

dry ethanol was gently removed using the syringe and the tube was rotated on the roller 

along with nitrogen gas being passed through it for 5 minutes. Bullets were then cut using 

guillotine and stored at 4ºC until used for immunisation. 
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2.3 FACS Analysis  

 
2.3.1 BM-DC phenotyping  

5×105 per tube DCs were harvested for FACS analysis. Cells were washed twice in PBS + 

0.1%BSA + 0.02%NaN3. Rat anti-mouse CD80, Macrophage/Monocyte marker (F4/80), 

DEC205, I-A (murine class II) and CD45, and hamster anti-mouse CD11c monoclonal 

antibodies were added. Appropriate isotype controls were used in each experiment. The 

cells were incubated on ice for 30 minutes with primary antibodies. Cells were then 

washed twice in PBS + 0.1%BSA + 0.02%NaN3 and incubated for 30 minutes on ice with 

FITC coupled goat anti-rat IgG or goat anti-hamster IgG as secondary antibodies as 

appropriate. Finally the cells were washed in PBS + 0.1%BSA + 0.02%NaN3 and 

resuspended in 500µl of sheath fluid, and analysed by FACS. 

 

2.3.2 Detection of L. mexicana  gp63 Protein in Transfected CT26 Cells 

The method used was as explained in section  2.3.1 with the exception of using rabbit anti L. 

mexicana gp63 (gifted by Dr Brad McGwire, The Ohio State University) and FITC 

conjugated goat anti-rabbit antibodies (DAKO). 

 
 

2.4 DNA Preparation 

 
2.4.1 Preparation of L. mexicana  cDNA 

CMV promoter VR1012 L. mexicana gp63 DNA was bulked up by transformation of E. 

coli followed by purification using Quia-gen EndoFree plasmid purification Maxi Prep 

Kits and all the products were evaluated by UV spectrophotometer at 260 and 280nm. The 

ratio OD260/OD280 was always more than 1.7. The construct was also sequenced by 

MWG-Biotech using the primers shown in Table  2-3 and checked for mismatches against 

the sequence obtained from the gene bank. 

 
 
2.4.2 PCR Amplification 

PCR was performed on a DNA Thermal cycler (Thermo Hybaid, USA). Primers were 

supplied by Sigma Genosys (UK). All the primers used for screening mGAPDH and L. 

mexicana gp63 genes are shown in Table  2-3. For amplification by PCR, 1µl of cDNA was 
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mixed with 5 µl of 10x PCR buffer, 0.8 µl each of 10mM dNTP, 20 pM each of primer 

solutions, 1.25 unit of thermostable Taq polymerase (Bioline), 1.5 mM MgCl2 (Bioline), 

and water to a final volume of 50 µl. PCR was initiated by a melting step at 95˚ C lasting 

for 5 minutes, followed by 33 cycles of denaturation at 95˚ C for 1 minute, annealing at 58˚ 

C for and extension at 72˚ C for 45 sec. It was followed by a final extension step at 72˚ C 

for 5 minutes. PCR products were visualized using a 1.5% (wt/vol) agarose gel containing 

1 µg/ml of ethidium bromide (BDH Laboratories, UK). 

 
Application Name Sequence 

mGAPDH Forward 5’-ACTCCACTCACGGCAAATTC-3’ 
Used for screening GAPDH 

mGAPDH Reverse 5’-CCTTCCACAATGCCAAAGTT-3’ 

L. mexicana Forward 5’-ACATCCTCACCGACGAGAAG-3’ Used for screening or 

sequencing L. mexicana gp63 L. mexicana Reverse 5’-CTTGAAGTCGCCACAGATCA-3’ 

L. mexicana Forward 5’-GCTGCAACAGCTTGGAGTATC-3’  Used only for sequencing L. 

mexicana gp63 L. mexicana Forward 5’-GATACTACACCGCCCTGTGC-3’ 

Table  2-3: Primers used for PCR, screening or sequencing of mouse GAPDH and L. mexicana gp63 

 
 
2.4.3 Detection of L. mexicana  gp63 gene by RT-PCR 

The presence of the L. mexicana gp63 gene in the stable transfected CT26 tumour cells 

was screened by RT-PCR.  

Total RNA was isolated from the cells using RNA STAT-60 (AMS Biotechnology, UK) 

following manufacturer’s instructions. Briefly, CT26 L. mexicana gp63 were cultured in 

T25 tissue culture flasks. 1ml of RNA-STAT60 was added to the cell culture after 

discarding the media and incubated at room temperature for 5 minutes. The solution was 

transferred to a 1.5ml epindorf and 0.2ml of Chloroform was added and the homogenate 

was shaken vigorously for 60 seconds and then left at room temperature for 3 minutes. 

Samples were then centrifuged at 14,000 rpm for 10 minutes. The aqueous phase was 

transferred to a fresh eppendorf and 0.5 ml of isopropanol was added. Samples were 

incubated at room temperature for 8 minutes followed by centrifugation at 14,000 rpm for 

15 minutes. Supernatant was discarded and RNA pellet was washed with 75% ethanol. 

RNA pellet was then dried and resuspended in molecular grade water and the 

concentration and purity of the RNA was measured on UV spectrophotometer. RNA was 

then reverse transcribed into cDNA as follow. 2µg of RNA was taken in an eppendorf 

along with 0.5µg of oligo (dT15) primer. Tubes were heated at 70˚C for 5 minutes and then 

placed on ice. The following mixture was then added to the tube. 
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5 µl of 5x Reaction Buffer 

1 µl of dNTPs (12.5 mM) 

25 units rRNasin Ribonuclease Inhibitor 

200 units of M-MLV Reverse Transcriptase. 

Nuclease free water was then added to make the final volume to 25 µl. Contents of the tube 

were gently mixed and heated at 39.2˚C for 80 minutes followed by cooling on ice and 

heating at 95˚C for 5 minutes and then storing them at -20˚C. The reverse transcribed RNA 

was used as template for PCR amplification to screen the presence of L. mexicana gp63 

gene. 

  
2.4.4 Preparation of VR1012 empty vector 

VR1012 L. mexicana gp63 vector was digested by EcoR I restriction enzyme and run onto 

the gel agarose. The heavier band corresponding to the molecular weight of the empty 

vector was then cut and the DNA was extracted by DNA extraction kit (GeneFlow) with 

accordance to the manufacturer’s protocol. Two sides of the cut vector were ligated 

together by ligation enzyme (promega). The ligation was set up by adding 0.5µl ligation 

enzyme, 1µl buffer and 6.5µl water to 2µl DNA (adjusted at 10µl). The ligated DNA was 

incubated at 4 ºC overnight. The empty vector was reproduced by transforming E coli and 

extracting the DNA from the bacteria.   

 
2.4.5 Gene sub-cloning 

VR1012 L. mexicana gp63 and pcDNA vector were digested by EcoRI restriction enzyme 

and the digested products were run onto the gel agarose. L. mexicana gp63 and pcDNA3 

bands were cut and the DNAs were extracted from the gel. Two ends of the EcoRI cut 

pcDNA3 vector were dephosphorylated using alkaline phosphatase (Promega). The 

dephosphorylated pcDNA3 vector and the L. mexicana gp63 DNA were ligated together as 

explained in section  2.4.4 with the exception of using 6.5µl L. mexicana gp63 instead of 

water. The direction of the gene in the vector was checked by cutting the new construct 

(pcDNA3 L. mexicana gp63) by Not I restriction enzyme.  
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2.5 Transfection of CT26 tumour cells with L. mexicana gp63 

“CTLX” 

2.5.1 Antibiotic sensitivity assay 

1× 106/well CT26 tumour cells were cultured in 24-well plates in presence of a serial 

concentration of Geneticin (G418) from 50 to 900µg/ml; wells for each concentration of 

the antibiotic were put in duplicate. The cells were incubated at 37 ºC with 0.5 CO2 for 10 

days. The lower concentration of the antibiotic in which all the CT26 tumour cell died in 7-

10 day was chosen (500µg/ml). 

 
2.5.2 Transfection of CT26 

CT26 tumour cells were transfected with pcDNA3 L. mexicana gp63 using lipofectamine 

2000 (Invitrogen) according to the manufacture’s instruction for adherent cells with slight 

modifications. Briefly, CT26 tumour cells were cultured at 1× 106 per well in 24-well 

plates; to produce 90% confluence on the day of transfection. Lipofectamine 2000 and 

pcDNA3 L. mexicana gp63 were diluted in serum free DMEM media at 2µl/50µl and 

0.8µg/50µl respectively and incubated at room temperature for 5 minutes. The diluted 

lipofectamine 2000 and DNA were mixed together and incubated again for 20-30 minutes 

at room temperature. The CT26 cell culture supernatant was gently removed and the DNA-

lipofectamine mixture was gently added followed by 4-6 hours incubation at 37 ºC with 

0.5% CO2. 1ml/well DMEM media complemented with 10% FCS was added.  The media 

was replaced 16-24 hours later with a fresh media containing 500µg/ml G418.  

 
 
2.6 Western Blotting 

 
2.6.1 Protein Assay 

An approximate total protein was measured using Sigma Bicinchoninic Acid Protein Assay 

Kit (BCA) according to the manufacturer protocol. Briefly, 25µl per well of the sample 

(SLA) and the standard proteins were mixed in duplicate in 96-well plates (Biorad). A 

serial dilution of 1mg/ml BSA in lysate buffer was used as standard. Reagents A and B 

were mixed in the ratio of 50:1 and 200µl of the mixture was added per well. The plate was 

wrapped in the foil and incubated at 37 ºC for 30 minutes to develop the reaction and then 

the plate was read at 570nm on a Spectrophotometer (Tecan).  
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2.6.2 SDS-PAGE and Membrane transfer 

The gel tank was assembled according to the instruction and resolving gel 10% (1165µl 

Acrylamide/bis, 875 µl Tris 1.5 M HCl pH 8.8, 1460 µl H2O option 4, 35µl Ammonium 

Presulphate 10%, 3.5 µl TEMED) was prepared and poured into the cassette. The gel was 

left until solidified. The 4% stacking gel (15% (v/v) acrylamide /bis, 25% 0.5M Tris HCL 

pH6.8, 60% dH20 plus 0.1% (v/v) TEMED and 1% (v/v) 10% ammonium persulfate) was 

added on top of the resolving gel and the comb was inserted in it. To prepare the samples, 

33µl of 1x reducing sample buffer was added to 100µl of each sample and heated to 95C 

for 5 minutes. 10-30µg of samples was run at 90V through the stacking gel and 120V 

through the resolving gel. Standard protein (Protomarker) was used to asses the molecular 

weight of the sample proteins. After running the samples throughout the gels, the resolving 

gel was incubated in transfer buffer (48mM tris, 39mM glycine, 200ml methanol, 800ml 

water) for 5 minutes and then proteins were transferred onto the Bio-trace membrane 

(nitrocellulose membrane) at 13V for 30 minutes through a semi-dry transfer system using 

trans-blot machine (Biorad) according to manufacturer instructions. 

 
2.6.3 Western Blotting 

Detection of leishmania gp63: Membranes were stained with Ponceau S, and the standard 

protein lane was cut from the rest of the membrane. The membrane was blocked overnight 

in TBS + 0.05% Tween 20 (TBS-T) + 5% Marvel milk powder at 4°C under constant 

agitation. The primary antibody (rabbit anti L. mexicana gp63, a gift from Dr Brad 

McGwire The Ohio State University) was then added at 1:1000 dilution in TBS + 0.05% 

Tween 20 + 5% Marvel milk powder and incubated for 1 hr at room temperature with 

vigorous shaking. After washing the membrane 3 times for 15 minutes in TBS-T at room 

temperature, the secondary antibody (HRP conjugated goat anti rabbit IgG (Biorad)) was 

added to the membrane at a 1: 2000 dilution in 5% milk-TBS-T and incubated for 1 hour at 

room temperature with vigorous shaking.  

Detection of OX40L:  Similar approach was used to detect OX40L by western blotting. Rat 

anti mouse OX40L and HRP coupled rabbit anti rat IgG antibodies were used.  

The membrane was then washed 4 times for 15 minutes at room temperature in TBS-T, 

and revealed using ECL chemioluminescence kit (Amersham). Hyperfilm ECL 

(Amersham) films were used to detect the luminescence.  
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2.7 Immunisation/Infection protocols 

 
2.7.1 Animal infection with leishmania parasite 

Groups of 6 BALB/c and HHD II mice were injected with 2×106 and 1×107 log phase L. 

mexicana in vitro culture in a volume of 50µl/mouse, respectively. Mice were injected 

intradermally at the back about 1cm from the tail base. The progression of the lesions was 

monitored regularly twice a week. The lesion diameter was measured by a calliper and  

surface area was calculated by the equation of πr2.  Mice were sacrificed at 10-12 weeks or 

even earlier if the lesion size was excessive.  

 
2.7.2 Immunisation of mice with killed leishmania parasites 

In vitro cultures of L. mexicana promastigotes log phase were autoclaved at 121ºC under 

the pressure of 15 PSI for 20 minutes. Groups of 6 female BALB/c mice were immunised 

S.C. with 2×106 autoclaved L. mexicana admixed with the same volume of IFA.  The 

immunisation was carried out twice at two weeks interval. The control group was injected 

with PBS. Two weeks later, the mice were challenged I.D. with 2× 106 L. mexicana 

promastigote. The mice were monitored regularly twice a week. 

 
2.7.3 Immunisation of mice with SLA 

Two groups of 6 BALB/c mice were immunised S.C. with 100µg SLA in 50µl mixed with 

50µl IFA (total volume of 100µl per mouse) or 100µl PBS twice at 2 weeks interval. Two 

weeks later, all mice were challenged with 2×106 L. mexicana promastigotes. The mice 

were monitored regularly twice a week. 

  

2.7.4 Immunisation with DCs pulsed with SLA 

Two groups of 6 female BALB/c mice were either immunised with 2×106 SLA-pulsed or 

control DCs. A third group of 3 mice was injected with PBS and used as additional control. 

All mice were injected intradermally twice at two weeks interval. Two weeks later all mice 

were challenged with 2× 106 late log phase L. mexicana promastigotes and monitored 

regularly twice a week. 

 
2.7.5 I.M. Immunisation with L. mexicana  gp63 cDNA 

Two groups of 6 female BALB/c mice were selected. The first group was injected I.M. 

with 100µg/mouse L. mexicana gp63 plasmid DNA (VR1012 vector). The second group 
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was injected with the empty vector or, in some experiments, with PBS. The mice were 

injected twice on day 0 and 14 intramuscularly in hind leg muscles. On day 28, mice were 

challenged with 2× 106 log-phase L. mexicana promastigotes and then were monitored 

regularly twice a week for at least two months. 

 
2.7.6 Gene gun immunisation with L. mexicana  gp63 cDNA  

1µg per mouse of L. mexicana gp63 plasmid DNA (VR1012) coated on gold particles was 

administered to a shaved area of the abdominal skin of BALB/c mice by gene gun (Biorad) 

on day 0 and 14. The control group was given 1µg of the empty vector coated on gold 

particles or injected with PBS. All mice were challenged with 2× 106 log-phase L. 

mexicana promastigote on day 28, and were monitored regularly.  

 
2.7.7 Immunisation with CT26 L. mexicana  gp63 

Three groups of BALB/c mice were injected S.C. with 5×105 irradiated (15000 rads) CT26 

L. mexicana cells, non-transfected CT26 tumour cells or PBS on days 0, 14 and 28. Mice 

were challenged I.D. with 2× 106 log phase L. mexicana promastigotes and then were 

monitored twice a week. 

 

2.7.8 Immunisation to test CTL activity of immunogenic peptides 

HHD II mice: 100µg of the peptide, 140µg of HAP-B as helper peptide and 50µl IFA were 

transferred to an epindrof. PBS was added in a total volume of 100µl per mouse. The 

injection was given at the base of the tail. Mice were sacrificed one week after the 

immunisation and their splenocytes were used in standard 4-hour cytotoxicity assay. 

BALB/c mice: Peptides were prepared similar to those of HHDII mice with the exception 

of using a 15 mer peptide derived from bovine albumin with the sequence of 

ISQAVHAAHAEINEAGR as helper peptide. Mice were injected twice two weeks apart at 

the base of the tail and one week after the second immunisation they were sacrificed and 

their splenocytes were tested for CTL activity.  

 
 
2.7.9 Immunisation to test for endogenous processing of 

immunogenic peptides 

Three rounds of immunisations at one week interval were undertaken for immunisation of 

mice with gold particles coated with L. mexicana gp63 cDNA using the gene gun (Biorad). 
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In certain experiments, mice were injected with 100 µg L. mexicana gp63 cDNA two times 

at two weeks interval.  

 
 
2.7.10  Immunisation to test CTL activity induced by L. mexicana  

gp63 cDNA or DCs pulsed with SLA 

BALB/c mice were immunised twice at two weeks interval with L. mexicana gp63 cDNA 

by gene gun. Mice were sacrificed two weeks following the 2nd immunisation and spleens 

were collected and splenocytes were tested for CTL activity. For immunisation of mice 

with DCs pulsed with SLA, DC cells generated as outlined in part  2.1.2. One dose of 

2×106 SLA loaded matured DC was administered per mouse and mice were sacrificed two 

weeks later.  

  
 
 
2.8 CTL Assay 

 
2.8.1 LPS Blast  

Between 2-3 days prior to the removal of spleens from immunised mice, naïve splenocytes 

were cultured at 1.5× 106 cells/ml in 40ml T cell media containing 25µg/ml LPS and 

7µg/ml dextran sulphate in a T75 culture flask and incubated at 370C, 5%CO2. On the day 

of isolation of immunised mice splenocytes, LPS treated naïve splenocytes were irradiated 

at 3000rads for 4 minutes. Cells were washed and pulsed with 100µg/ml of relevant or 

irrelevant peptides separately for at least 1 hour. Cells were then washed, counted and 

added to culture plates containing splenocytes from immunised mice at 5 ×  105 /well.  

 
2.8.2 In vitro  generation of CTLs 

One week after the last immunisation, spleens were harvested from the immunized mice 

and single cell suspensions were prepared in sterile conditions Cells were flushed out from 

the spleens by serum-free RPMI 1640 media using a 25-G needle and 10 ml syringe. The 

remaining splenic sac was cut and digested with 500µl of enzyme cocktail (1.6mg/ml 

collagenase and 0.1%DNAase in serum free medium (Sigma-Aldrich, Dorset, UK) at 37°C 

in 5%CO2 for 1 hour (parenchymal fraction). The spleen tissue was disrupted by pipetting 

and the cells were also collected. All cells were centrifuged at 1500rpm for 3 minutes and 

resuspended in CTL media (RPMI 1640 supplemented with 1% L-glutamine, 10%FCS, 
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20mM HEPES buffer, 50µM 2-Mercapto Ethanol, 50U/ml penicillin, 50µg streptomycin 

and 0.25µg/ml fungizone). The cells were counted using white cell counting fluid (0.6% 

acetic acid in distilled water) and 0.1%Trypan Blue, and plated in a 24 well plate at 2.5 ×  

106 cells/500µl/well. 5 ×  105 /500µl irradiated and peptide pulsed LPS blasts were added 

to the splenocytes to make a final volume of 1ml in each well of 24 well plate. 

Supernatants were collected usually on day 3 and 5 for cytokine testing. In certain 

experiments SLA was used instead of peptide to stimulate CTL activity in vitro. 

 
2.8.3 Chromium Release Standard 4-hour Cytotoxicity Assay 

On day 5 of in vitro stimulation, splenocytes were harvested, washed twice in serum free 

medium, counted and resuspended in CTL media and used as the effecter cells. Target cells 

(RMA/S-A2 or T2 for HHD II mice & CT-26 or A20 for BALB/c mice) were also 

harvested, washed and labelled with chromium-51 (Amersham,UK) followed by 1h 

incubation at 37°C. The labelled cells were then pulsed with relevant and irrelevant 

peptides separately and incubated for 1 hour at 37°C. In certain experiments L. mexicana 

gp63 transfected CT26 tumour cells or SLA pulsed DCs were used as targets for CTL 

assay. A standard 4 hour Cr release assay was performed and the specific cytotoxicity was 

determined using the following formulae. 

( )
( ) 100

 release sspontaneou- release maximum

release sspontaneoureleasealexperiment
tycytotoxicipercentage ×−=  

 
2.9 Antibody/Cytokine Response 

 
2.9.1 Detection of anti-leishmania IgG2a and IgG1 isotype antibodies   

After immunisation as described in part  2.7, mice were regularly bled for 7 times at a week 

interval starting a week after the last immunisation. The blood samples were harvested and 

span at 2000rpm for 10 minutes. The serum was collected and stored at -20 until tested for 

specific immunoglobulin IgG1 and IgG2a using ELISA. Serum samples from 9 naïve mice 

were used for control.  L. mexicana Soluble Antigen (SLA) 1µg/well was coated on the flat 

bottom 96-well plates (Biorad) and incubated overnight at room temp. After 4 times wash 

with PBS, the plates were blocked with block buffer (1% BSA, 5% sucrose in PBS with 

0.05 NaN3) for 1hour. Plates were washed 4 times with PBS and 1:100 dilution of the 

serum samples in dilution reagent (1% BSA, 0.05% Tween 20 in 20mM Trizma base, 

150mM NaCl, pH 7.2-7.4) was added in duplicate followed by 2h incubation at room temp 
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and 4 times washes with PBS. Rabbit anti-mouse IgG1 or IgG2a (Serotech) was added at 

1:1000 followed by 1hour incubation at room temp and 4 times washes. HRP conjugated 

goat anti-rabbit antibody at 1:1000 dilution was added and the plates were stored at room 

temp for 1h followed by 4 times washes. 50µl of HRP substrate (DAKO) was added and 

kept at room temp for 20minutes for reaction development. 2.5M H2SO4 was added to 

stop the reaction and the OD was measured at 570 nm by spectrophotometer.  

 
2.9.2 Cytokine Assays (IFN-γ & IL-4) 

Splenocytes were prepared as outlined above in section  2.8.2. 1 ml of the supernatant was 

collected and stored at -20C until required. Cytokine analysis for IFN-γ and IL-4 using the 

ELISA kits (R&D Systems, Abingdon, UK) was performed according to the 

manufacturer’s protocols.  

 
2.9.3 Effect of L. mexicana  infection on the expression of MHC class I 

DCs were cultured as described in section  2.1.2. The cells were split into two groups. The 

first group was infected with ten times of the number of DCs L. mexicana promastigotes. 

Both groups were then pulsed with LPS after 4-6 hours. The expression of the MHC class I 

molecules in the infected and non-infected DC cells was analysed by FACS using mouse 

anti-mouse H2-Ld and FITC coupled rat anti-mouse (DAKO) antibodies.  

 
 
2.10 OX40L: Purification/Application 

 
2.10.1  Cells culture supernatant preparation 

B9B8E2 cells were cultured in DMEM media supplemented with 1% glutamine synthetase 

(GS), 15 mg/ml L-methionine sulfoximine (MSX) and 10% Bio-FCS for 2-3 weeks. The 

cell culture supernatant was collected, passed through the 0/20µm filter and kept at -80 ْC 

until required. The OX40L fusion protein present in the supernatant was separated and 

purified using the antibody purification columns. 

 
2.10.2  MBI column 

MBI column (Biosepra) was used for OX40L-IgG fusion protein purification. The column 

was packed with 2mls of MBI resin To optimise the conditions of the loading buffer, 

sodium acetate 100µM and sodium acetate 100µM + NaCl 150µM at a set of pH from 4 to 

6.5 were used. To set the pH of the column, before loading the OX40L sample, the column 
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was washed by the loading buffer. 2ml of the B9B8E2 cell culture supernatant was mixed 

up with the same quantity of loading buffer and the pH was adjusted to that of the loading 

buffer. After loading the sample the column was washed with the loading buffer. Finally 

the OX40L was eluted by tris buffer at pH 9. Similarly, the conditions of elution buffer 

were optimised. Sodium acetate at pH 4 was used as loading buffer and tris buffer at a set 

of pH from 7 to 10.5 were used as elution buffer. 

 
2.10.3  MEP column 

The column was packed with 2mls of MEP resin and the sample was loaded onto the 

column as described for MBI column. 50mM Tris buffer pH 8.0 was used for loading the 

samples and the elution was undertaken using 50mM sodium acetate pH 6.0, 5.8, 5.6, 5.4, 

5.2, 5.0, 4.7, 4.5, 4.3, 4.0 and 3.0.  

 
2.10.4  Protein A sepharose column: 

Protein A sepharose column (Amersham Biosciences) was used to purify the OX40L-IgG 

fusion protein. First the column was washed by PBS at pH 7 and then samples were 

loaded. To remove all unbound proteins, the column was washed by PBS again. The 

column was then eluted by tris/glycin buffer at pH 3.  

 
2.10.5  Application of OX40L 

Purified samples were checked for OX40L by western blotting. Samples were then 

dialysed against 3-5 litres PBS at 4 ºC over night with vigorous agitation and a few 

changes in the PBS using the dialysing tubing. In certain cases the samples were 

concentrated by putting them in dialysing tubes, which were placed in propylene glycol. 

For sterilization, the samples were  passed through 0.2µm filters.  

500µg of the OX40L was injected I.P to groups of 10 female BALB/c mice 3 and 7 days 

following S.C. implantation of 2×104 CT26 tumour cells on their right flank. The mice 

were monitored regularly twice a week and the mice were killed when the tumour size 

exceeded 1 cubic centimetre. For application of OX40L against leishmania, similar 

protocol was used with exception of using 2×106 L. mexicana.  
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Chapter 3 Protection studies of vaccines against L. 

mexicana  

 
3.1 Introduction 

 
3.1.1 New strategies in leishmania vaccination 

Vaccination is one of the most feasible and cost effective methods for the control of 

infectious diseases [Andre, 2003]. It is now believed that via vaccination some of disabling 

and lethal diseases like poliomyelitis and measles will be eradicated, with large number of 

children lives being saved by vaccination annually around the world [Andre, 2003].  

Intracellular pathogens such as Leishmania spp, Mycobacterium tuberculosis, 

Mycobacterium leprae, Listeria monocytogenes, Salmonella typhimurium, Toxoplasma 

gondii and Trypanosoma cruzi cause diseases, which have a major impact on public health. 

Despite of the massive progress occurred in the basic knowledge of immunology, we still 

relatively little know of the mechanisms of the immune system that are involved in 

immunity to intracellular pathogens. The ability to survive and multiply within 

macrophages is a feature of intracellular pathogens that makes their pathogenesis even 

more complicated [Alexander et al., 1999].  

Leishmania species are obligate intracellular parasites of the macrophage-dendritic cell 

lineage. Although the first species of leishmania parasite was known more than 100 years 

ago [Herwaldt, 1999], construction of an effective vaccine against the parasite has not yet 

been achieved [Selvapandiyan et al., 2006]. As Leishmania parasite lives intracellularly, in 

macrophages, the humoral immune system cannot be of great help in immunity and 

therefore the vaccine-developing strategies must involve the cellular immunity and direct 

the immune response towards the Th1 immune pathway. Due to the complexity of the 

mechanisms involved in the immunity to Leishmania, different vaccine strategies have 

been proposed. The first generation of leishmania vaccines was based upon using live 

parasites, “Leishmanization” and autoclaved-killed leishmania alone or with the addition 

of adjuvants such as Bacillus Calmette-Guerin (BCG) [Khalil et al., 2000; Khamesipour et 

al., 2006; Momeni et al., 1999].  

In the second generation of leishmania vaccines, because of the new advances in cell 

biology, most of efforts were shifted to purified or recombinant parasite antigens, DNA 

vaccines [Selvapandiyan et al., 2006] and recently DCs.  
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3.1.2 DNA Vaccination 

DNA vaccination is the latest method of immunisation implicated in leishmania 

vaccination, shown to have potential to induce immunity to leishmania in mice [Sjolander 

et al., 1998]. In this method, DNA sequences that encode a Leishmania antigens are spliced 

into an expression vector, which is administered to the host cells to promote the production 

of leishmania protein [Gurunathan et al., 2000a; Gurunathan et al., 2000c]. The DNA can 

be administered by injection, in vivo electroporation or gene gun. It is thought that the 

method of immunisation affects the nature of the immune response induced by the encoded 

antigen, however, this requires further investigation. The gene gun is one of the most 

advanced methods for the application of recombinant DNA vaccines. The gene gun was 

first designed by a horticultural scientist “John C. Sandford” in late 1980s for transforming 

plant cells and has found recent application in animal models. This method involves 

“shooting” heavy metal particles coated with plasmid DNA encoding a particular gene to 

target host cells. The gene of interest is first cloned into a suitable plasmid “vector”, then, 

the DNA is bound to the heavy metal particles. Different heavy metals like tungsten, silver 

or gold can be used; however, gold is preferred because it carries the coated DNA into the 

cells without being toxic for them. In this method, the heavy metal functions as a shuttle to 

carry the plasmid DNA into the cells. Shooting gold particles coated with DNA directly 

penetrates the cell membrane into the cytoplasm and even the nucleus and bypasses the 

endosomal pathway/compartment releasing the DNA, which encodes the desirable protein 

[Niidome & Huang, 2002].  

Gene gun has successfully been applied in DNA vaccination to generate immunity to 

pathogens such as leishmania and trypanosome [Li et al., 2004; Sakai et al., 2000] and is 

also considered for human application. 

 
3.1.3 DCs in immunisation against leishmania 

Dendritic cells, as professional antigen presenting cells, play a crucial role in immunity to 

leishmania. DCs initiate the adaptive immune response by phagocyting the leishmania 

parasite and processing their antigens, and present processed MHC-associated peptides to 

the lymphocytes. There are studies suggesting that a number of different subsets of DCs 

exist: CD11c+ DCs have bias to Th1 immune response and are involved in cross 

presentation of the intracellular microbial antigens through MHC class I and activate 

cytotoxic T lymphocytes [Jung et al., 2002]. There is also a possible role for subsets of 
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DCs in directing the immune response towards either Th1 or Th2 following the encounter 

of an infectious agent, which may determine whether the host will resist or succumb to that 

infection [Ahuja et al., 1999].  

In recent studies, DCs have been demonstrated as potent candidates for immunotherapy of 

Leishmaniasis suggesting a new approach of immunisation/therapy by using DCs primed 

with the antigens. In order to elicit Ag-specific protective immune responses, DCs are first 

primed with relevant antigens in vitro and then injected to the animals. This has 

successfully been used in studies against tumour. It has been shown that loading DCs with 

anti-tumour antigens protected mice from tumour growth [Tegerstedt et al., 2007]. Also, 

DCs pulsed with lysate derived from tumour cells infected with vaccinia virus encoding 

IL-2 gene (DC-IL-2VCO) produced safe and effective immune responses in a murine CC-

36 colon adenocarcinoma model [Jack et al., 2007]. 

In leishmania vaccination the potency and effectiveness of DC-based vaccines has been 

shown in both immunotherapy and chemotherapy [Ahuja et al., 1999; Berberich et al., 

2003; Ghosh et al., 2003]. The cytokine profile of mice after DC-based vaccination has 

demonstrated a shift toward a Th1-type response in which IL-12 has a critical role 

[Berberich et al., 2003] and because DCs exposed to L. major readily produce IL-12, it 

may further increase the feasibility of using the DC-based vaccines [Moll & Berberich, 

2001]. In addition, there are reports showing that DCs might play a contradicting role 

depending on the antigen and when pulsed with certain peptides they can promote a Th1 or 

Th2 immune response, exacerbating the disease [Tsagozis et al., 2004]. It has also been 

reported that adjuvants such as CpG may help in generating Th1-type immunity by DCs 

but the initiation of a protective Th1 cell response in vivo may be dependent on the ability 

of DCs in producing  IL-12 [Ramirez-Pineda et al., 2004]. Therefore, the potency of DC 

based vaccine for different leishmania antigens varies and requires further investigation. 
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3.2 Results 

 
3.2.1 Animal Models to study L. mexicana  

The first part of this study was devoted to establish a leishmania mouse model, which 

could be used in vaccine studies.  

 
3.2.1.1 Conventional BALB/c mouse model 

In order to study the manifestation spectrum of cutaneous leishmaniasis caused by L. 

mexicana in the inbred BALB/c mouse and establish the animal model, 2×106 in vitro 

cultured L. mexicana promastigotes in log growth phase were injected intradermally on the 

back of BALB/c mice about 1cm from the tail base. The inoculated mice were monitored 

regularly and the lesions produced by the parasite were compared with control mice 

injected with PBS, which remained free of lesions. 

The incubation period was varied from 2 weeks to 2 months and almost all the inoculated 

mice developed lesion. The lesions in BALB/c mice were constantly progressive (Figure 

 3-1A); they were circular and usually raised from the skin base with tick edges (Figure 

 3-1B). 
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Figure  3-1: Progression of L. mexicana infection in BALB/c mice.  
A group of 6 BALB/c mice were injected with 2×106 log phase L. mexicana promastigotes in vitro culture. 
The progression of lesions was monitored regularly twice a week. A: lesion progression curve in BALB/c 
mouse model. The graph represents 3 independent experiments. Bars represent the standard deviation n=3. B: 
Cutenaous leishmania in BALB/c mice 
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3.2.1.2 HLA-A2 transgenic (HHDII) mouse model 

HLA-A2 transgenic (HHDII) mice have a C57 genetic background with the substitution of 

mouse H-2MHC class I with human HLA-A2 gene. Although the HHD II transgenic 

mouse model has been reported in Trypanosoma [Garcia et al., 2003], to the best of our 

knowledge, this is the first study,which used this mouse model in leishmania vaccine 

studies. To study the course of cutaneous leishmaniasis caused by L. mexicana in these 

mice, and whether the expression of human MHC class I molecule has any impact on the 

resistance of these mice to this parasite, naïve HHDII mice were injected intradermally at 

the back with 1× 107 log phase L. mexicana in vitro culture. The progression and 

regression of the lesion were monitored regularly twice a week and compared with 

controls, which were injected with PBS.  

The results indicated that the course of cutaneous leishmaniasis in HHDII mice is similar 

to that of their background C57B1/6; These mice are resistant to leishmania and their 

lesions slowly healed after 6 weeks [Beil et al., 1992]. Between 50 to 100% of mice 

showed lesions. The incubation period usually varied from 2 to 4 weeks. The size of the 

lesion was often smaller than that observed in BALB/c mice (Figure  3-2). Almost in all 

cases, after a period of progression, the lesions healed and finally disappeared leaving 

behind a small scar. However, when mice were injected with 2×107 parasites, the lesions 

grew quicker but the course of the disease was still similar. 

The results show that the presence of human MHC class I (HLA-A2) in this mouse model 

(HHD II) did not affect the course of cutaneous leishmaniasis caused by L. mexicana.  
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Figure  3-2: Progression of L. mexicana infection in HHD II transgenic mice.  
1× 107 log phase L. mexicana promastigote in vitro culture were injected I.D. at the back of HHD II 
transgenic mice. The mice were monitored regularly twice a week. The graph represents 4 independent 
experiments. Bars represent the standard deviation n=6. 
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3.2.2 Protection induced by killed leishmania parasite vaccine 

To evaluate the efficacy of using killed leishmania parasites in generating immunity to 

challenge, 2×106 autoclaved L. mexicana mixed with the Incomplete Freund's Adjuvant 

(IFA) were injected S.C. at the base of the tail of BALB/c mice (see materials and 

methods). After two immunisations, the mice were challenged with 2× 106 log growth 

phase L. mexicana promastigotes. No significant difference in the average of lesion sizes 

was observed between test (immunised) and control (injected with PBS) groups (Figure 

 3-3). 
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Figure  3-3: Protection induced by immunisation with autoclaved L. mexicana.   
2× 106 autoclaved L. mexicana mixed with IFA were injected subcutaneously into groups of 6 female 
BALB/c mice twice at two weeks interval. The control group were injected with PBS. The mice were 
challenged with 2×106 L. mexicana promastigote intradermally two weeks after the last immunisation. The 
challenged mice and control groups were monitored regularly. The graph represents 2 independent 
experiments. Bars represent the standard deviation n=6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P-value 0.321505 
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3.2.3 Protection studies of Soluble Leishmania Antigen (SLA) 

 
3.2.3.1 Preparation of SLA 

The SLA was also checked for the presence of L. mexicana gp63 protein by western 

blotting using anti-L. mexicana gp63 antibodies (Figure  3-4). A control cell preparation of 

CT26 tumour cells was used as a non-specific antigen/protein control. 
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Figure  3-4: Detection of L. mexicana gp63 in SLA. 
L. mexicana parasites were washed 4 times in PBS and then lysed in lysate buffer and sonicated. The SLA 
was analysed for L. mexicana gp63 by western blotting using anti L. mexicana gp63 antibodies. 
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3.2.3.2 Protection induced by Soluble Leishmania Antigen (SLA) 

To investigate the ability of SLA to protect the animals from leishmania infection, a series 

of experiments were performed using test and control groups of leishmania sensitive 

BALB/c mice.  The test group was injected with 100µg of L. mexicana SLA and IFA as 

adjuvant and the control group was injected with PBS. The results showed that two S.C. 

injections of SLA+IFA did not significantly decrease the size of the leishmania lesion 

compared to controls, althoght lesion progression was slower in the immunised group 

(Figure  3-5). 
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Figure  3-5: Protection induced by SLA admixed with IFA in BALB/c mice. 
Tow groups of 6 BALB/c mice were immunised S.C. with 100µg +IFA or PBS twice at 2 weeks interval. 
Two weeks later mice were challenged with 2×106 L. mexicana promastigotes. The mice were monitored 
regularly and average of the surface of the lesions was measured. Student t test was used to statistically 
analyse the data. The graph represents 3 independent experiments. Bars represent the standard deviation n=6. 
 
 
 
 
 
 
 
 
 
 
 

P-value 0.214 
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3.2.3.3 Protection induced by Dendritic Cells (DC) loaded with SLA  

The effect of immunisation with dendritic cells loaded with SLA was investigated against 

infection with leishmania parasite. Bone-marrow cells were obtained from BALB/c mouse, 

and cultured with GM-CSF for 6 days with gentle washes every two days (see materials 

and methods). On day 6, DCs were replated at 1×106/ml and split into two groups. One 

group (test) was treated with the SLA at a concentration of 10µg/ml and after 4-6 hours 

they were also pulsed with 1µg/ml LPS to mature. The second DC group (control) was 

only pulsed with LPS. On day 7, 2×106 DCs per mouse were injected I.D. into groups of 

BALB/c mice. A third group of BALB/c mice were injected with PBS and used as an 

additional control. DCs phenotype was determined with a number of Abs and FACS 

analysis (Figure  3-6). Mice were immunised twice at two weeks interval and then 

challenged with 2× 106 L. mexicana promastigotes. No protection but exacerbation of 

lesions was observed however the lesion exacerbation was not significant (Figure  3-7). 

 

 

 
A: DEC205 B: F4/80 C: MHC Class II  D: CD40 
 

 
 

 

E: CD11c F: CD45R G: CD80 
Figure  3-6 : DC phenotypic analysis.  
Bone marrow cells obtained from BALB/c mice were cultured in presence of GM-CSF for 6 days with gentle 
wash every two days. On day 6 the DCs were treated with SLA (10-15µg/ml) and after 4-6h they were pulsed 
with LPS 1µg/ml to mature. On day 7 the cells were split into a number of groups stained with Abs and 
phenotyped by FACS analysis. Red line: control; Black line: test.  
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Figure  3-7: Protection induced by DCs loaded with SLA in BALB/c mice. 
Bone-marrow cells derived from BALB/c mice were cultured with GM-CSF for 7 days. One day before 
immunisation, they were loaded with 10-15µg/ml SLA and pulsed with LPS 1µg/ml (see materials and 
methods). On day 7 DCs were phenotyped and then, 2×106 of each DC preparation was administered in a 
group of 6 BALB/c mice intradermally twice at two weeks interval. A control group of 3 mice were injected 
with PBS. Mice were challenged with 2× 106 L. mexicana promastigotes two weeks after the last 
immunisation. The mice were monitored regularly. Student t-test was used to analyse the data. The graph 
represents 3 independent experiments. Bars represent the standard deviation n=6. 
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3.2.4 Protection induced by L. mexicana  gp63 cDNA 

Leishmania gp63 is a known immunogenic protein of Leishmania parasites but its role in 

CTL mediated immunity has not yet been determined. To assess the immunogenicity of L. 

mexicana gp63, the L. mexicana gp63 gene cloned into VR1012 plasmid vector, a gift 

from Dr Dumonteil Laboratorio de Parasitología Yucatan Mexico [Dumonteil et al., 2003],  

was used in this investigation (Figure  3-8).  

 

 
Figure  3-8: Map representing VR1012 plasmid vector containing L. mexicana gp63 gene (gift from 
Dumonteil [Dumonteil et al., 2003]) 
 
 
3.2.4.1 Confirmation and bulking of L. mexicana gp63 construct 

The VR1012 plasmid containing L. mexicana gp63 DNA was bulked up using standard 

protocols (Materials & Methods) and PCR amplification was performed to confirm the 

presence of L. mexicana gp63 gene in the construct (Figure  3-9). Forward and reverse 

primers with the sequences of  5’-ACATCCTCACCGACGAGAAG-3’ and 5’-

CTTGAAGTCGCCACAGATCA-3’ respectively were designed by a web-based software 

“Primer3” based on the sequence of the gene obtained from the gene bank and used in the 

PCR process.  
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Figure  3-9: Confirmation of the existence of L. mexicana gp63 in VR1012 construct by PCR.  
VR1012 L. mexicana gp63 was reproduced by transformation of E. coli followed by phenol chlorophorm 
precipitation using Quia-gen EndoFree plasmid purification Maxi Prep Kits and the presence of L. mexicana 
gp63 was confirmed by PCR amplification using 5’-ACATCCTCACCGACGAGAAG-3’ forward and 5’-
CTTGAAGTCGCCACAGATCA-3’ reverse primers. The primers are expected to produce 180bp bands. 
 
To determine the sequence of the L. mexicana gp63 gene, four primers including the 

primers used for the PCR amplification and two new designed primers with the sequence 

of 5’-GCTGCAACAGCTTGGAGTATC-3’ and 5’-GATACTACACCGCCCTGTGC-3’, 

were applied to complete the sequencing (Figure  3-10 and Figure  3-11).  
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atgcccgtcgacagcagcagcacgcaccggcaccgctgcgtcgccgcgcgcctggtgcgcctcgcggctgccggcgccgca

gtcaccgtcgctgtcggcaccgcggccgcgtgggcacacgccggtgcgccccagcaccgctgcatccacgacgcgatgcagg

cccgcgtgctgcagtcggtggcggctcagcgcatggctcccagcgcggtgtccgcggtgggcctgccgtacgtgtccgtggtcc

ccgtcgagaacgccagcaccctcgactactcgctatcggacagcacgtcgcccggtgttgtgcgcgccgcgaactggggcgcg

ctgcgcatcgccgtctccgccgaagacctcaccgaccccgcctaccactgcgctcgtgttgggcagcgcgtcaacaaccacgcc

ggcgacaccgtcacctgcaccgccgaggacatcctcaccgacgagaagcgcgacaccctcgtcaagcacctcgtcccgcag

gcgctgcagctgcacagggagcgcctgaaggtgcggcaggtgcagggcaagtggaaggtgacgggcatggcggacg

tgatctgtggcgacttcaaggtgccgccggagcacatcacggaaggcgtgaccaacaccgacttcgtgctgta

cgtcgcctccgtgccgagcgaggagagtgtgctggcgtgggccacgacctgccaggtgttccctgacggccac

ccagccgtcggcgtcatcaacatccccgcggcgaacattgcgtcgcggtacgaccagctcgtcacgcgtgtcg

tcacgcacgagatggcgcacgcgctgggcttcagcggcacattctttggggccgtcggcatcgtgcaagaggt

gccgcacgttcgcggcaaggactttaatgtgtcggtgatcaccagcagcacggtggtggcgaaggcgcgtgag

cagtacggctgcaacagcttggagtatctggagattgaggaccagggcggtgcgggctccgccgggtcgcata

tcaagatgcgcaacgccaaggacgagctcatggcgcctgccgcatctgccgggtactacaccgccctgaccat

ggccgtcttccaggacctcggcttctaccaggcggacttcagcaaggccgaggagatgccgtggggccggaac

gtcggctgcgccttcctcagcgagaagtgcatggcgaagaacgtcacgaagtggccggcgatgttctgcaatg

agagtgcggccaccatacggtgccccaccgaccgtctgagagtcggaacttgtggtataacagcatacaatac

ttcgttggcgacgtactggcagtacttcaccaatgcgtccctcgggggctactcgccattcctggactactgc

ccgtttgttgttggctacaggaatggctcgtgcaatcaggatgcgtcgacgacaccggaccttctcgctgcgt

tcaacgtcttctccgaggccgcgcggtgcatcgatggcgccttcacgccgaagaacagaaccgctgcggatgg

atactacaccgccctgtgcgccaacgtgaagtgcgacacggccacgcgcacgtacagcgtccaggtgcgcggc

agcaacggctacgccaactgcacgccgggcctcagagttaagttgagcagcgtgagcgacgccttcgagaagg

gcggctacgtcacgtgcccgccgtacgtggaggtgtgccagggcaacgtcaaagctgccaaggactttgcagg

cgacaccgacagctccagcagcgccgatgacgctgccgacaaagaggcgatgcagcggtggagtgacaggatg

gccgccttggctactgcgacgacgctgctgctaggaatggtgctctctctcatggcactcctcgtggtgcggc

tactccttaccagctccccctggtgctgctgcagactgggggggctcccgacgtga 

 
Figure  3-10: The sequence of L. mexicana gp63 gene. 
The sequence of 5’-ACATCCTCACCGACGAGAAG-3’ , 5’-GCTGCAACAGCTTGGAGTATC-3’, 5’-
GATACTACACCGCCCTGTGC-3’forward and 5’-CTTGAAGTCGCCACAGATCA-3’ reverse primers are 
shown in bold. Start and stop codones are shown in blue. 
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Figure  3-11: The chromatography of L. mexicana gp63 gene sequencing produced by MWG Biotech 
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3.2.4.2 Construction of VR1012 empty vector  

In order to produce a VR1012 empty vector to be used as a negative control in the 

protection studies, the L. mexicana gp63 gene was cut and removed from this vector 

(Figure  3-8). The L. mexicana gp63 gene was cut out from the vector by digestion with 

EcoRI restriction enzyme and the product was run into the agarose gel (Figure  3-12 A). 

The band related to the vector was extracted from the gel. Both free ends of the vector that 

resulted from digestion with EcoR I were then ligated to each other by ligase enzyme 

(Figure  3-12 B). The absence of the gp63 gene in the empty vector was confirmed by 

sequencing the empty vector using primers specific for the gp63 gene or the vector. The 

sequencing confirmed the lack of L. mexicana gp63 in the VR1012 vector. 
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Figure  3-12 : Production of VR1012 empty vector. 
A: Cutting VR1012 L. mexicana gp63 by EcoRI restriction enzyme 1- standard DNA ladder; 2- VR1012 L. 
mexicana gp63 with the size of 7414bp (control) the above band is a linear form of DNA; 3- VR1012 L. 
mexicana gp63 cut by EcoR I (4900bp) and L. mexicana gp63 (2500bp) B: Producing VR1012 empty vector; 
1- standard DNA ladder; 2- VR1012 L. mexicana gp63 (control) 7414bp; 3, 4- VR1012 empty vector 2500bp 
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3.2.4.3 Immunisation with L. mexicana gp63 cDNA via I.M. injection 

To assess the immunogenicity of L. mexicana gp63 cDNA, 100µg of L. mexicana gp63 

cDNA (VR1012 vector) was administered to BALB/c mice by I.M. injection into the leg 

triceps muscle. The immunisation was carried out twice two weeks apart, and two weeks 

after the last immunisation, the mice were challenged with 2 ×  106 L. mexicana 

promastigotes in vitro culture.  

 The results revealed that intramuscular injection of L. mexicana gp63 cDNA induced 

partial but significant protection since 2 out of 6 (33%) of the immunised mice remained 

lesion free (Figure  3-13). Immunisation with VR1012 empty vector did not protect the 

mice against challenge with live promastigotes (data not shown). 
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Figure  3-13 : Protection induced by intramuscular injection of L. mexicana gp63 cDNA vector 
(VR1012). 
Two groups of 6 female BALB/c mice were used. The first group was injected with 100µg of L. mexicana 
gp63 plasmid DNA (VR1012 vector). The second group was injected with PBS. The mice were injected I.M. 
twice on day 0 and 14 in the triceps muscle of the leg and on day 28 were challenged with 2×106 log-phase 
L. mexicana promastigotes. Mice were monitored regularly. The graph represents 3 independent experiments. 
Bars represent the standard deviation n=6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lesion free mice: 2/6 
(33%) 

P value 0.0065 
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3.2.4.4 Immunisation with L. mexicana gp63 cDNA via gene gun 

The gene gun was used in this study to immunise BALB/c mice (6mice per group) with L. 

mexicana gp63 cDNA. 1µg of L. mexicana gp63 cDNA (VR1012) coated on gold particles 

(see Materials & Methods) was administered by gene gun into a shaved area of the 

abdomen. A control group of 6 mice was administered with gold particles coated with 

empty plasmid by gene gun. The mice were immunised twice two weeks apart and the 

immunised mice were monitored regularly following the challenge with the parasite. The 

results showed that a significant protection was induced by immunisation with 1µg L. 

mexicana gp63 cDNA using the gene gun; 66% (4 out of 6) of the immunised mice 

remained free of lesion (Figure  3-14). 
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Figure  3-14 : Gene gun immunisation with L. mexicana gp63 cDNA. 
1µg per mouse of L. mexicana gp63 plasmid DNA (VR1012) coated on gold particles was introduced to a 
shaved area of abdomenal skin of BALB/c mice by gene gun on day 0 and 14. The control group was given 
1µg empty vector coated on gold particles. The mice were challenged with 2×  106 log-phase L. mexicana 
promastigote on day 28, and were monitored regularly. The graph represents 3 independent experiments. 
Bars represent the standard deviation n=6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lesion free mice: 4/6 
( 66%) 

P-value 0.0001 
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3.2.5 Immunisation with CT26 tumour cells transfected with L. 

mexicana  gp63 cDNA 

To evaluate the efficacy of the leishmania gp63 recombinant protein in generating 

immunity to Leishmania when it is being produced and expressed by host cells, CT26 

tumour cells were transfected with L. mexicana gp63 (see chapter 4). A group of 6 

BALB/c mice were immunised subcutaneously with 5×105 irradiated CT26 L. mexicana 

gp63 tumour cells. Another 2 control groups of 6 mice were injected either with irradiated 

CT26 tumour cells or PBS. Two immunisations were given on day 0 and 14, and on day 28 

all mice were challenged with 2×106 log-phase L. mexicana promastigotes. The results 

clearly demonstrated that no protection against L. mexicana was observed following 

immunisation with CT26 L. mexicana gp63 when compared with control group given PBS 

(Figure  3-15). However, immunisation with irradiated non-transfected CT26 tumour cells 

(control group) exacerbated leishmania lesions. 
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Figure  3-15: The immunogenicity of L. mexicana gp63 recombinant protein expressed by CT26 
tumour cells in BALB/c mice.  
Three groups of 6 BALB/c mice were used. The first group was subcutaneously immunised with 5×105 
irradiated CT26 L. mexicana gp63 tumour cells. The second group was injected with irradiated CT26 tumour 
cells and the third group was injected with PBS. Two immunisations were given at two weeks interval and 
challenged two weeks later with 2× 106 log-phase L. mexicana promastigotes. The mice were monitored 
twice a week. The graph represents 3 independent experiments. Bars represent the standard deviation n=6. P-
value for groups of mice immunised with L. mexicana gp63 transfected CT26 and PBS was 0.215. 
 
 

P-value for groups 
test and PBS 
=0.215  
 
P-value for groups 
test and control 
CT26 = 0.006 
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3.3 Discussion  

 
3.3.1 Protection using autoclaved L. mexicana  

Intracellular parasites are now accounted as a major health problem in the world. 

Developing vaccines for intracellular parasites has always been a goal for immunologists 

as relatively a certain amount is known about the interaction of these parasites with their 

host. Leishmania as an intracellular parasite presents a distinct interaction of intracellular 

parasites with the host. It is well known that leishmania patients develop a long-lasting 

immunity after recovery from the disease [Khamesipour et al., 2006]. This clearly 

rationalizes the attempts towards developing an effective vaccine to Leishmania parasites 

and different strategies have been implicated to develop potent leishmania vaccines. The 

use of autoclaved killed parasites to generate immunity to leishmania was one of the 

earliest strategies investigated for leishmania vaccination, which has been used for the 

prevention and treatment of leishmania patients [Convit et al., 2004; Khamesipour et al., 

2006]. Using this approach of vaccination has always been produced contradictory results, 

since no protection was reported by some researchers using autoclaved leishmania 

parasites [De Luca et al., 1999; Velez et al., 2000; Velez et al., 2005]. Administration of 

adjuvants such as BCG, Aluminum Hydroxide (Alum) or both has been shown to be 

effective in enhancing the immunogenicity of killed leishmania parasites 

[Alimohammadian et al., 2002; Dube et al., 1998]. Other adjuvants such as IL-12 has also 

been tested in mouse models, which resulted in better protection by using Autoclaved L. 

major (ALM) + IL-12 followed by ALM + BCG [Michel et al., 2006]. In contrast, other 

studies reported no protection from immunisation with autoclaved parasites and BCG 

[Armijos et al., 2004; Khalil et al., 2000; Momeni et al., 1999; Sharifi et al., 1998]. This 

could be due to the differences in the method of immunisation, or the population tested. 

Recent studies have suggested for better outcome using a mixture of BCG and Alum as 

adjuvant [Khalil et al., 2006; Misra et al., 2001]. Nevertheless, in our studies, IFA was 

used as adjuvant to enhance the immunogenicity of the autoclaved parasite. IFA is a 

known adjuvant and has already been used in leishmania vaccination in combination with 

leishmania soluble antigen [Gabaglia et al., 2004; Sharma et al., 2006]. 

Our results clearly show that little protection was achieved by administration of autoclaved 

L. mexicana promastigotes plus IFA in BALB/c mice. Therefore, the application of IFA 

did not enhance the immunogenicity of autoclaved Leishmania in this mouse model.  
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3.3.2 Application using SLA in protection studies 

The immunity induced by Soluble Leishmania Antigen has generated interest among 

leishmania researchers. In a study by Sharma [Sharma et al., 2006] L. donovani 

promastigote soluble antigens were encapsulated in non-phosphatidylcholine liposomes 

derived from E. coli lipids elicited a protective immune response against experimental 

visceral leishmaniasis. In another study, Immunization with soluble leishmania antigen in 

IFA plus Ad5IL-12 vector induced protection in BALB/c mice against L. major infection 

[Gabaglia et al., 2004]. 

In the present study, we examined the immunogenicity of L. mexicana soluble antigen in 

two modes of immunisation in protection investigation in BALB/c mouse model. In the 

first approach, two injections of BALB/c mice with 100µg/mouse of SLA mixed with 

100µg/mouse of IFA did not significantly prevented L. mexicana infection. However, 

administration of SLA induced detectable levels of Th1 and Th2 immune responses (see 

chapter 4) indicating the existence of immunogenic proteins in this preparation, which 

provokes immunity to Leishmania. Therefore, the identification of these immunogenic 

proteins and using them in potential vaccines as well as developing new methods for 

vaccine administration to enhance immunogenicity are future areas for leishmania vaccine 

investigation. 

The second approach tested was the application of DCs loaded with SLA. DCs have been 

shown to be a potent adjuvant in leishmania vaccination [Moll & Berberich, 2001] and 

their potency in the generation of immunity to intracellular pathogens is dependent on the 

production of IL-12, which results in shifting the immune response toward Th1-type. It has 

been shown that the protective potential of DCs pulsed with a given Leishmania Ag 

correlated with the level of their IL-12 expression [Berberich et al., 2003]. In a similar 

study, animals receiving DCs pulsed with L. donovoni soluble antigen either before or 

following infection had 1-3 log lower parasite burdens as well as enhancement of the 

parasite-specific IFN-γ response. The number of live parasites in the liver of mice was 

further reduced by vaccination with DCs transfected with IL-12 gene and loaded with SLA 

and the parasitological response was associated with a nearly normal liver histology [Ahuja 

et al., 1999].  

Our results showed that immunisation with DCs pulsed with SLA obtained from L. 

mexicana did not protect BALB/c mice from leishmania infection. This was in contrast 

with the results obtained by Moll in which DCs pulsed by SLA protected BALB/c mice 

from L. major infection [Moll & Berberich, 2001]. The discrepancy could be due to the 
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difference between the species of leishmania used. However, other results (see chapter 4) 

showed that DCs pulsed with SLA were potent in generating CTL activity and inducing a 

mixed Th1/Th2 immune response. Further studies are required to clarify the role of DCs in 

these immune responses in protection against the infection. 

 
3.3.3 DNA immunisation  

DNA immunisation is a method that has recently been used in leishmania vaccination. 

Different studies using different genes have shown the potency of this method in 

generating immunity to Leishmania [Kedzierski et al., 2006; Tewary et al., 2006]. Gp63 is 

an immunogenic protein in Leishmania pariasites. It has been shown that administration of 

DNA encoding leishmania gp63 protein can generate immunity and partially protect 

BALB/c mice from the infection [Dumonteil et al., 2003; Walker et al., 1998]. 

It has been shown that the modification of the method of DNA administration, such as the 

application of heterologous prime-boost protocol enhances the efficacy of DNA vaccine 

[Stober et al., 2007]. In a study by Rafati, the potential protection of an immunogenic gene 

called SPase from L. major was evaluated using three different vaccination strategies 

(DNA/DNA, Protein/Protein and DNA/Protein) against L. major infection. The results 

indicated that the DNA/DNA strategy gave more effective protection than the other two 

approaches [Rafati et al., 2006]. Application of gene gun has recently been implicated in 

leishmania DNA immunisation [Sakai et al., 2000]. Here we compared two different 

methods of DNA immunisation based on the DNA/DNA strategy in BALB/c mice. In the 

first method of immunisation, mice were immunised with 100µg of L. mexicana gp63 

cDNA construct intramuscularly and in the second one, 1µg of the same construct coated 

on gold particles was administered I.D. by gene gun. 

Both methods of immunisation induced significant protection in immunised mice, 

confirming the results obtained by Dumonteil [Dumonteil et al., 2003]. Although for gene 

gun immunisation, the amount of the DNA applied was far less than that used for 

intramuscularly injection, the protection obtained by gene gun immunisation was much 

better, where 66% of immunised mice were free of lesions compared with 33% given 

intramuscular immunisation. The results, may for the first time, confirm the capability of 

gene gun immunisation in enhancing the immunogenicity of DNA opening a new window 

of opportunity in leishmania vaccine research.  
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3.3.4 Protection using gp63 recombinant protein expressed by CT26 

tumour cells 

Leishmania gp63 protein is shown to be immunogenic in BALB/c but cannot fully protect 

mice from Leishmania infection. Different strategies have been implicated to enhance the 

immunogenicity of this protein by applying different adjuvant or using different methods 

of immunisation [Berberich et al., 2003; Jaafari et al., 2006; Papadopoulou et al., 1998]. 

In order to investigate the possibility of enhancement of the immunogenicity of this 

protein, BALB/c mice were immunised with CT26 tumour cells, which were in vitro 

transfected with pcDNA3 L. mexicana gp63 plasmid DNA (expression of L. mexicana 

gp63 protein is given in chapter 4). The results indicated that little protection was achieved 

using this method of immunisation, where 0.5×106 CT26 L. mexicana gp63 expressing 

tumour cells were implanted subcutaneously into immunised mice; as these cells were 

irradiated, they had little chance to reproduce gp63 protein in vivo and perhaps the amount 

of gp63 protein expressed by the cells was not sufficient to protect the mice from the 

infection. The size of lesions in mice immunised with CT26 L. mexicana gp63 was similar 

to that of mice injected with PBS. Surprisingly the other group of control mice injected 

with normal CT26 tumour cells showed larger lesions (P-value 0.006). one possibility is 

that in these mice, the application of tumour cell antigen diverts the immune system toward 

non-leishmania antigens that could reduce the immune response to leishmania parasites. 
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Chapter 4 CTL Activity and Antibody responses in L. 

mexicana  infection 

 
 
4.1 Introduction 

 
4.1.1 Immune response to intracellular pathogens vaccination 

In infections caused by intracellular pathogens, due to the complexity associated with these 

pathogens, both innate and adaptive systems normally become involved. In adaptive 

immunity, although both humoral and cellular mechanisms are involved in immunity to 

these pathogens, the domination of one response over the other depends upon the life cycle 

and pathogenicity of the infectious agent. As most of intracellular pathogens spend one 

stage of their life cycle in the macrophage host cells [Alexander et al., 1999], it is believed 

that a cellular immunity based on releasing IL-12 and IFN-γ cytokines has an essential role 

in generating immunity to these pathogens. For instance, in Trypanosoma parasites, 

immune mice produce high levels of IFN-γ and low levels of IL-4 compatible with Th1 

immune responses while non immune mice do not [Guinazu et al., 2004]. The transfer of 

Ag-specific Th1 cells but not Th2 cells protects non-immune mice from a lethal infection 

with T. cruzi [Kumar & Tarleton, 2001]. In acute stages of malaria the production of Th1 

cytokines are dominant whereas, in the chronic stages the level of Th2 cytokines is higher 

[Su & Stevenson, 2002]. Therefore, it is believed that for generating a sufficient immunity 

to malaria, a vaccine should target the pre-erythrocytic stages of the parasites when the 

parasite is hidden inside the hepatocytes and induce a cell immune response, which is 

potent to irradicate the parasite [Todryk & Walther, 2005]. 

In leishmania infection, the presence of antibodies might facilitate the entry of parasite to 

host cells. This normally functions in favour of the parasite than the host and helps the 

parasite survive in the mammalian host. In addition, when the parasites lodge inside the 

macrophage, antibodies are ineffective unless the parasite is released from the macrophage. 

Instead, the role of Th1 immune response in immunity to Leishmania appears crucial and 

the lack of IL-4 and IL-10 in the initial steps of the immune response plays important roles 

in diverting the immune system to the Th1 immune response [Sacks & Noben-Trauth, 

2002]. However, recent studies indicated a diversity in immunity to different species of 

Leishmania suggesting an important role for Th2 immune response in visceral 

leishmaniasis [Selvapandiyan et al., 2006], which requires further investigation. 
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To assess the Th1/Th2-type immune response induced by a given antigen, a model system 

is required by which pure Th1 or Th2 immune responses can be evaluated. No lymphocyte 

surface marker is yet known to exclusively differentiate T-cell sub-types secreting different 

types of cytokines [Sjolander et al., 1998]. The method that is currently being used to 

evaluate Th1/Th2 immune responses is to measure the production of subclass antibodies 

stimulated by either of immune pathways. In mouse, Th1-like immune responses are 

associated with a strong antibody production of IgG2a, IgG2b and IgG3 subclasses. The 

Th2-like immune responses characterized by the production of large amounts of IgG1 and 

IgE [Germann et al., 1995; Su & Stevenson, 2002]. 

 
4.1.2 Leishmania gp63 proteins 

A Leishmania zinc-metaloproteinase called gp63 or leishmanolysin is a characterised 

protein of leishmania species. The natural substrate for this proteinase is not yet known. 

The optimum pH for activation of gp63 appears to be dependent on the nature of the 

substrate used for the in vitro assay [Seay et al., 1996]. The molecular weight of this 

enzyme is 63KDa and there are some variation in the protein sequences in different species 

[Seay et al., 1996]. Although gp63 is normally found in high density on the surface of 

promastigotes [Corradin et al., 2002], there is evidence to suggest that leishmania 

promastigotes produce more than one isoform of gp63 [McGwire et al., 2002]. 

Promastigotes release proteolyticaly active forms of gp63 by cleaving the gp63 from the 

cell surface or releasing a soluble form of gp63 directly from inside the cell [Jaffe & 

Dwyer, 2003]. Amastigotes also release the soluble intracellular isoform of gp63. The 

soluble isoform produced by the amastigotes and promastigotes of some Leishmania 

species are at lower levels than the promastigote surface enzyme [Corradin et al., 2002]. 

During the transformation of promastigotes to amastigotes in macrophages, changes may 

occur in the expression pattern of gp63. In a study on L. chagasi, it has been revealed that 

gp63 proteins are encoded by three different classes of genes. Using a human macrophage 

cell line “U937”, providing an in vitro model of phagocytosis, it was shown that there were 

three gp63 isoforms active in amastigotes [Streit et al., 1996]. In L. mexicana 

promastigotes the surface protease gp63 is amphiphilic and comprises approximately 1% 

of the cellular proteins. In contrast, in amastigotes the gp63-related proteins are 

predominantly hydrophilic and constitutes 0.1% of the cellular protein, mainly located in 

the lumen of the extended lysosomes (megasomes) [Bahr et al., 1993].  
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Despite extensive investigation, the role of gp63 in physiology and infectivity of the 

parasite [Corradin et al., 2002] and its function in insect vectors is still not clear [Sadlova 

et al., 2006]. It has been revealed that gp63 might have an important role in the initial 

stages of leishmania infection by inhibiting the chemotaxis of both neutrophils and 

monocytes [Sorensen et al., 1994]. Using genetically modified L. amasonensis, which were 

expressing gp63 proteins at lower levels, it has been shown that the down regulation of 

gp63 increases the extra cellular lysis of the parasite by complement in vivo and reduces 

the infection of macrophages resulting in a Th1-type immune response [Thiakaki et al., 

2006]. gp63 also has an important role in the parasite’s evading system (see chapter1). 

Moreover, gp63 plays a crucial role in protecting parasites from the killing and degradative 

activities of macrophages by preferentially accessing macrophages via CR3 and CR1; the 

signals produced by these receptors inhibits the macrophage respiratory burst. gp63 has 

also been associated with suppression of the oxidative burst and its protease activity 

protects the parasite from lysosomal cytolysis and degradation [Alexander et al., 1999; 

Seay et al., 1996]. There are studies suggesting that gp63 may function as a receptor for 

macrophages and is implicated in the attachment and uptake of promastigotes by the host 

cells [Handman et al., 1990]. There is also evidence that gp63 accelerates the phagocytic 

process by increasing the cell membrane motility and macrophage ruffling activity [Coelho 

Neto et al., 2005]. In a previous study the expression of gp63 was down regulated by 20-50 

fold in attenuated parasites and was associated with failure in survival of the parasite in the 

macrophage phagosomes [Seay et al., 1996]. 

The immunogenicity of leishmania gp63 has been shown in different studies by several 

research groups [Lopez et al., 1991; Russell & Alexander, 1988]. To improve the 

immunogenicity of leishmania gp63, different adjuvants and different methods of 

immunisation including the use of recombinant gp63 protein, DNA immunisation and 

peptide immunisation have been implicated [Awasthi et al., 2004]. The protective 

immunity generated by gp63 in vaccinated mice was indicated by reduced inflammation 

and suppressed lesions after experimental challenge [Thiakaki et al., 2006]. In the first part 

of this chapter, the CTL activity induced by L. mexicana gp63 cDNA and SLA is 

explained. In the next parts, the role of leishmania infection in down regulation of MHC 

class I, and also antibody responses induced by different leishmania vaccines will be 

discussed.  
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4.2 Results  

 
4.2.1 CTL activity induced by immunisation with gp63 cDNA construct 

Standard (4hr 51Cr release) cytotoxicity assay was used in this study to measure the CTL 

activity in mice immunised with L. mexicana gp63 cDNA (VR1012 plasmid) construct 

(map shown in chapter 3). 

 
4.2.1.1 Preparation of CTL targets expressing L. mexicana gp63 protein 

To prepare L. mexicana gp63 specific cell target to use in standard 4-hour cytotoxicity 

assay, the L. mexicana gp63 gene was cloned into pcDNA3 plasmid vector and transfected 

into CT26 tumour cells (see section  4.2.1.2). 

 
4.2.1.1.1 Gene cloning of L. mexicana gp63 into pcDNA3 

Prior to transfection of CT26 tumour cells with L. mexicana gp63, it was essential to clone 

the gp63 gene into pcDNA3 vector, which contained a mammalian selection antibiotic 

gene (Figure  4-1). L. mexicana gp63 was first cut from both sides by EcoRI restriction 

enzyme off the VR1012 vector (Figure  4-2). pcDNA3 vector was also cut using the same 

restriction enzyme. Then, the L. mexicana gp63 gene and the digested vector were ligated 

using a DNA ligase enzyme. 

 
Figure  4-1 : Map of pcDNA3 vector used to transfect CT26 tumour cells with L. mexicana gp63 
[Invitrogen web site]. 
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Figure  4-2: Digestion of VR1012 L. mexicana gp63 and pcDNA3 vector with EcoRI restriction enzyme.  
Lanes 1-standard DNA, 2-VR1012 L. mexicana gp63 cut by EcoRI restriction enzyme (VR1012 vector 
4800bp and L. mexicana gp63 25bp), 3-VR1012 L. mexicana gp63 (uncut, 7414bp), 4-pcDNA3 vector cut by 
EcoRI restriction enzyme (54000bp), 5-pcDNA3 vector (uncut, 54000bp). 
 

The presence of the L. mexicana gp63 gene in pcDNA3 vector was first determined by 

restriction enzyme digestion (Figure  4-3) and then by PCR amplification using 5’-

ACATCCTCACCGACGAGAAG-3’ forward and 5’-CTTGAAGTCGCCACAGATCA-3’ 

reverse primers (Figure  4-4).  Moreover, to ensure the sub-cloned gene is completed and 

no mismatches happened during the cloning procedure the whole gene (1900bp) was 

sequenced. 
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Figure  4-3: Detection of L. mexicana gp63 in pcDNA3 expression vector. 
After ligation of L. mexicana gp63 gene and pcDNA3 vector, XLblu Ecoli were transformed by pcDNA3 L. 
mexicana gp63, plated and cultured in presence of Ampicilin. A number of single colonies were cultured 
separately and pcDNA3 L. mexicana gp63 was extracted from each colony separately. The presence of the 
gene was confirmed by cutting the gene using EcoRI restriction enzyme. 1:standard DNA 2:VR1012 L. 
mexicana gp63 3, 5, 7 and 8:pcDNA3 L. mexicana gp63 4: empty pcDNA3 vector 
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Figure  4-4: Detection of L. mexicana gp63 in pcDNA3 vector by PCR amplification. 
The presence of L. mexicana gp63 in the new construct was confirmed by PCR amplification using 5’-
ACATCCTCACCGACGAGAAG-3’ forward and 5’-CTTGAAGTCGCCACAGATCA-3’ revese primers. 
1:Standard DNA 2:VR1012 L. mexicana gp63 3-5:pcDNA3 L. mexicana gp63 (the primers are expected to 
produce 180bp bands) 
 
 
 
 
4.2.1.2 Transformation of CT26 tumour cells by L. mexicana gp63 

 
4.2.1.2.1 Antibiotic sensitivity Assay 
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Prior to the transfection, the sensitivity of CT26 tumour cells to Geneticin (G418) was 

tested. Different doses rang from 200µg/ml to 850µg/mlof the antibiotic were applied in 

which the dose of 500µg/ml was effective enough to kill all the cells within 10 days. So, 

Geneticin at 500 µg/ml was used for selection and culture of transfected cells. 

 
4.2.1.2.2 Transfection of CT26 cells  

CT26 tumour cells were transfected with pcDNA3 L. mexicana gp63 plasmid construct 

using lipofectamine 2000 according to the manufacture’s instruction. The presence of the 

L. mexicana gp63 gene was first determined in the stable transfected cells by RT-PCR. For 

unexplained reasons, non-transfected CT26 cells always showed a faint band when it was 

tested with the primers (Figure  4-5). The expression of gp63 protein was also determind by 

FACS analysis and western-blotting using anti L. mexicana gp63 antibodies (Figure  4-6, 

Figure  4-7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 A: GAPDH B: gp63 
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Figure  4-5: Expression of L. mexicana gp63 gene in transfected CT26 tumour cells detected by RT-
PCR. 
A: Expression of mouse GAPDH (primers are expected to produce 400bp) 1: standard DNA 2: PCR negative 
control 3-5: transfected CT26 tumour cells 6:non-transfected CT26 cells (control) B: expression of L. 
mexicana gp63 in CT26 tumour cells (primers are expecte to produce 180bp) 1: standard DNA 2: VR1012 L. 
mexicana gp63 (control) 3: PCR negative control 4: non-transfected CT26 (control) 5-7: transfected CT26 
tumour cells  
 
 
A: Non-transfected CT26 cells B: Transfected CT26 cells 

  
Figure  4-6: Expression of L. mexicana gp63 protein detected by FACS analysis.  
The expression of L. mexicana gp63 protein was determined in CT26 transfected cells. CT26 L. mexicana 
gp63 (A) and non-transfected CT26 (B) were split equally into two tubes (test & control). The  tube (black 
curves) was stained with rabbit anti L. mexicana gp63 and FITC conjugated anti rabbit antiboddies. The 
control tube was only stained with the FITC conjugated anti rabbit antibody. Results (histogram B) clearly 
show the high level of the protein expression on the transfected cells. 
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Figure  4-7: Expression of L. mexicana gp63 protein in CT26 tumour cells transfected with L. mexicana 
gp63 construct.  
Transfected CT26 (L. mexicana gp63) and non-transfected CT26 cells (control) were lysed using lysate 
buffer. The cell lysates were run into the gel electrophoresis and the presence of L. mexicana gp63 protein 
was determined by western blotting analysis using rabbit anti-L. mexicana gp63  and HRP coupled goat anti-
rabbit antibodies (see materials and methods) 1: non-transfeted CT26 cell lysate 2: CT26 L. mexicana gp63 
cell lysate 
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4.2.2 Induction of CTL activity by immunisation with L. mexicana  gp63 

cDNA construct 

To evaluate the role of cytotoxic T cells in immunity to Leishmania, standard 4-hour 

cytotoxicity assay was used to assess the ability of L. mexicana gp63 cDNA to generate 

specific cytotoxic T lymphocytes. BALB/c mice were immunised twice at two weeks 

interval with L. mexicana gp63 cDNA by gene gun. Mice were sacrificed two weeks 

following the 2nd immunisation and spleens were collected. Splenocytes were harvested 

and cultured in vitro for 5 days together with blasts cells pulsed with LPS and SLA (SLA 

was shown to contain gp63 protein). On day 5, the splenocytes cells were used as effectors 

in standard 4-hour cytotoxicity assay against CT26 tumour cells transfected with L. 

mexicana gp63 (see materials and methods section CTL activity). 

The results clearly revealed that immunisation of mice with L. mexicana gp63 cDNA 

induces specific CTL activity against CT26 tumour cells expressing L. mexicana gp63 

(Figure  4-8A) and DCs loaded with SLA as targets; SLA was shown to contain gp63 (see 

chapter 3). The CTL activity demonstrated against DC targets was greater than that of 

CT26 L. mexicana gp63 (Figure  4-8B). The in vitro restimulation of CTLs by SLA loaded 

blast cells was crucial. It was shown that removing the in vitro restimulation of the 

splenocytes highly prevented the generation of CTL activity in immunised mice (Figure 

 4-8C) and levels was comparable with that of naïve mouse splenocytes restimulated in 

vitro by blast cells loaded with SLA (Figure  4-8D). In vitro depletion of CD8+ T cells by 

anti CD8 Ab and complement on day 5 significantly removed the CTL activity (Figure 

 4-8E) suggesting an effector role of CD8+ T cells in the CTL activity. 
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C: CTL Activity of Naïve Mice  D: CTL Activity in mice immunised with L. 
mexicana gp63 and restimulated with PBS 
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E: Effect of depletion of CD8+ T cells on CTL 
Activity in mice immunised with L. mexicana gp63 
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Figure  4-8: CTL activity induced by gene gun immunisation using L. mexicana gp63 cDNA. 
BALB/c mice were immunised twice with L. mexicana gp63 using the gene gun twice; on day 0 and 14. On 
day 28 mice were sacrificed and the splenocytes were cultured in vitro with blast cells pulsed with LPS and 
SLA for 5 days. On day 5 the cells were used as effector in standard 4-hour cytotoxicity assay. A: DNA 
immunised mice restimulated with blast cells+SLA tested against CT26 L. mexicana gp63 cells. B: DNA 
immunised mice restimulated with blast cells+SLA tested against DCs pulsed with SLA C: naive mice 
restimulated with blast cells+SLA tested against CT26 L. mexicana gp63 cells. D: DNA immunised mice 
restimulated with blast cells+PBS tested against CT26 L. mexicana gp63 cells. E: DNA immunised mice 
restimulated with blast cells+SLA CD8+ T cells depleted and tested against CT26 L. mexicana gp63 cells. 
The results represent 8 mice in 4 independent experiments. 
 
 
 
 
 
 
The persistence of CTL activity during the course of infection was also assessed by 

immunisation of BALB/c mice with L. mexicana cDNA using the gene gun followed by 
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challenging with 2× 106 L. mexicana promastigotes. After 4 months of immunisation, 

splenocytes from the immunised mice still showed a significant level of CTL activity 

compared with control mice injected with PBS and then challenged with 2× 106 of the 

parasite (Figure  4-9). This indicates that only immunisation but not infection induced CTL 

activity. 
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Figure  4-9: CTL activity in mice immunised with L. mexicana gp63 cDNA after being challenged with 
L. mexicana.  
BALB/c mice were immunised with L. mexicana gp63 cDNA using gene gun. A group of 3 naïve mice were 
used for control. The mice were challenged by 2×106 L. mexicana promastigotes. After 4 month of infection 
the mice were sacrificed and splenocytes were restimulated with blast cells + SLA and cultured for 5 days, 
and then were tested against CT26 L. mexicana gp63 in a standard 4-hour cytotoxicity assay. A: DNA 
immunised mouse B: naïve mice. The results represents 6 mice in 3 independent experiments. 
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4.2.2.1 CTL activity in mice immunised with L. mexicana Soluble 

Antigen (SLA) 

To assess the potency of SLA in inducing CTL activity, DCs were loaded with L. 

mexicana Soluble Antigen and injected into BALB/c mice intradermally at a dose of 

2×106 cells per mouse. One injection of 2×106 SLA loaded matured DC induced high 

level of CTL activity, when tested against DCs loaded with SLA in standard 4-hour 

cytotoxicity assay (Figure  4-10). 
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Figure  4-10: CTL activity in mice immunised with DCs pulsed with SLA.  
BALB/c mice were immunised I.D. with 2×106 DCs loaded with SLA per mouse. After two weeks the mice 
were sacrificed and their splenocytes were cultured cultured in vitro for 5 days together with blast cells 
pulsed with LPS and SLA. On day 5 they were used as effector cells in a standard 4-hour cytotoxicity assay 
against DCs pulsed with SLA. 
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4.2.3 Effect of leishmania infection on the expression of MHC class I 

The effect of leishmania infection on the expression of MHC class I at the cellular level 

was evaluated on bone marrow derived DCs infected with L. mexicana. In order to 

generate DCs, bone-marrow cells were cultured with GM-CSF for 6 days. On day 6 the 

cells were split into two groups. The first group of DCs were infected with L. mexicana at 

the ratio of 10 parasites to1 DC (Figure  4-11). The second group were treated with PBS. 

Both groups were also treated with LPS to induce maturation. Most parasites were shown 

to be taken up by DCs in the first few hours of the infection. On day 7 both groups of DCs 

were checked for the expression of MHC class I molecules on their surface using anti-

mouse H2-Ld antibody. 

Data obtained showed a down regulation of MHC class I molecules in leishmania infected 

DCs compared to controls (Figure  4-12A). Treatment of DCs with killed parasites or SLA 

failed to down regulate the expression of the MHC molecules (Figure  4-12B and C). In a 

time course study it was shown that the down regulation of the MHC molecules starts after 

3 hours of the infection and is complete in 24 hours (data not shown). The effect of 

leishmania infection on the expression of MHC class I at gene level in DCs is now under 

further investigation.  
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Figure  4-11: Infection of DCs with L. mexicana. 1- Leishmania promastigotes outside DCs 2-
Leishmania amastigotes inside DCs 
 

 
 

 
A: B: C: 
Figure  4-12: Expression of MHC class I molecules in leishmania infected DCs. 
Bone-marrow cells were cultured in presence of GM-CSF for 6 days with wash every 2 days. DCs were 
harvested and split into two groups. The first group were infected with 10 times number of leishmania to DCs 
for 24 hours. No parasite was added to the second group. Both groups were treated with 1µg/ml LPS. On day 
7 both groups were checked for the expression of MHC class I by FACS analysis using FITC conjugated 
examined MHC class I antibody. A:  non-infected DCs (red graph) show high expression of MHC class I 
where the expression of these molecules in Leishmania infected DCs (black graph) is highly down regulated. 
B: there is no difference between the expression of MHC I molecules on normal DC (red graph) and DCs 
infected with autoclaved parasite (black graph) C: the expression of the MHC I in normal DCs (red graph) is 
similar to that of DCs treated with SLA (black graph). 

4.2.4 Antibody responses to leishmania vaccines 

The potency of different immunisation strategies in inducing Th1/Th2-type immune 

response was assessed by measuring the level and the type of antibodies in leishmania 

sensitive BALB/c mice. In this study, the mice were immunised on day 0 and day 14 either 

with killed leishmania parasites, SLA, DCs pulsed with SLA, L. mexicana gp63 cDNA or 

CT26 L. mexicana gp63 cells, and bled weekly to determine the level of anti-leishmania 

isotype antibody associated with Th1 (IgG2α) or Th2 (IgG1) immune response. 

 
4.2.4.1 Immunisation with DNA or gp63 transfected CT26 cells 

To study the effect of the method of immunisation on “direction” of immune response, in a 

set of experiments, six groups of six female BALB/c mice were used. The first group was 

immunised with L. mexicana gp63 construct (VR1012) by injecting 100µg of the DNA 

intramuscularly. The second group was immunised with 1µg of the same construct using 

gene gun. The third group was immunised with empty plasmid vector (VR1012) by gene 

gun. The fourth group was immunised S.C. with 5× 105 irradiated L. mexicana gp63 

transfected CT26 tumour cells. The fifth group was injected S.C. with 5× 105 parental 

CT26 tumour cells (irradiated-nontransfected). The sixth group was injected with PBS. 

The immunisation was carried out on day 0 and 14, and one week after the second 
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immunisation, the mice were bled once a week regularly. Serum was separated and stored 

at -20 for antibody typing by ELISA to determine the level of anti-leishmania IgG2a and 

IgG1 isotype antibodies.  

The results clearly demonstrated a sharp increase of IgG2a in the mice immunised with L. 

mexicana gp63 construct by gene gun as early as 7 days after the immunisation, which 

slightly decreased afterward and remained at that level during the course of experiment. On 

the other hand, immunisation with the same construct by I.M. injection slightly increased 

the serum level of IgG2a on day 14 and peaked 6-7 weeks following immunisation. A very 

low level of IgG2a was observed throughout the experiment in mice immunised with CT26 

cells transfected with gp63 construct or empty vector (Figure  4-13). This clearly indicates a 

strong Th1-type immune response to gene gun immunisation compare to other methods of 

immunisation. The results also showed that the gene gun immunisation induced an increase 

in the level of IgG1 after day 14 similar to that obtained by immunisation with the empty 

vector whereas intramuscular injection of the DNA and immunisation with L. mexicana 

gp63 transfected CT26 cells induced increases of IgG1 after four and five weeks of 

immunisation respectively (Figure  4-13). The IgG2a/IgG1 antibody responses 

demonstrates a complex Th1/Th2 immune response in all methods of immunisation 

including the gene gun immunisation, however, VR1012 vector may play a role in the 

increase of the IgG1.  
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Figure  4-13: Th1/Th2 direction of immune response in mice immunised with DNA and transfected 
tumour cells. 
Leishmania sensitive BALB/c mice were immunised with L. mexicana gp63 cDNA using the gene gun or 
intramuscularly injection of the DNA. A control group was also immunised with the empty vector. Mice 
were also immunised with 0.5×106 CT26 L. mexicana gp63 tumour cells (CTLX) alone or together with the 
same number of non-transfected CT26 (CTLX Co). Control mice were also injected with PBS. All groups of 
mice were immunised twice at two week interval. After one week of the second immunisation, mice were 
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bled regularly every 7 days and blood samples were collected. ELISA was implicated to determine IgG2a 
and IgG1 isotype antibodies against SLA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.4.2 Immunisation with SLA or autoclaved Leishmania parasites 

In similar experiments to those described in  4.2.4.1, groups of BALB/c mice were 

immunised S.C. with 2× 106/mouse autoclaved L. mexicana or 100µg/mouse SLA (see 

materials and methods) mixed with the same volume of IFA. The level of anti-leishmania 

IgG1 and IgG2a isotype antibodies in the serum of the immunised and control mice were 

determined by ELISA. Immunisation with L. mexicana soluble antigen (SLA) resulted in 

high levels of IgG1, in comparison to that induced by autoclaved parasites. The level of 

IgG2a induced by immunisation with SLA was lower than that of IgG1 during the course 

of study (Figure  4-14). Immunisation with autoclaved Leishmania parasites resulted in 

lower levels of IgG1 and IgG2a compared with that induced by SLA. The IgG1 was only 

detected 5 weeks after immunisation with autoclaved parasite (Figure  4-14).  
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Figure  4-14: Th1/Th2 immune response in mice immunised with autoclaved Leishmania or SLA. 
BALB/c mice were immunised with either 2× 106/mouse autoclaved L. mexicana or 100µg/mouse SLA 
mixed with 100µg/mouse IFA on day 0 and day 14. A group of control mice were injected with PBS. Serum 
samples were collected every 7 days after the second immunisation. The level of IgG1 and IgG2a was 
determined by ELISA and SLA as the antigen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.4.3 Antibody responses in mice immunised with DCs pulsed with SLA 

To determine the type “direction” of the immune response following immunisation with of 

DCs pulsed with SLA, groups of 6 BALB/c mice were either immunised I.D. with 2×106 

DCs loaded with SLA, or control DCs or PBS. DCs were prepared from bone marrow cells 

and loaded with10µg/ml SLA. 1µg/ml LPS was also added to induce DC maturation (see 

materials and methods). Two weeks after the second immunisation, all mice were bled to 

determine the level of total IgG, IgG1 and IgG2a isotypes. The results clearly showed 

significant increase in levels of total IgG, IgG1 and IgG2a in test groups compared with 

controls (Figure  4-15) indicating a rise of both Th1 and Th2-type antibody response in the 

immunised mice.  
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Figure  4-15: Ab responses in mice immunised with DCs loaded with SLA.  
Groups of 6 BALB/c mice were immunised S.C. either with 2×106/mouse DCs alone or pulsed with SLA 
(see materials and meethods) on day 0 and day 14. On day 28 serum samples were collected and analysed by 
ELISA to determine the level of IgG, IgG1 and IgG2a. Data were analysed by student t-test. *  p> 0.05, **  
p>0.01, ***  p>0.001. 
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4.3 Discussion 

 
4.3.1 CTL activity induced by L. mexicana  gp63 and SLA 

The role of CD8+ T cells in immunity to Leishmania parasites is not yet fully established. 

There are studies demonstrating that Leishmania patients show high proportions of 

leishmania-reactive CD8+ T cells [Da-Cruz et al., 1994] and it is thought that that CD8+ T 

cells help raise immunity to Leishmania in two different ways. These cells release a large 

amount of IFN-γ that in turn promotes a Th1 immune response to activate macrophages 

against the parasite. Also, activated CD8+T cells can kill macrophages, which are invaded 

by the parasite (see chapter 1) and it has been shown that DNA and DC-based vaccines 

elicit CD8 immune response [Gruber et al., 2007; Kamath et al., 1999]. 

In the present study, the role of CTL T cells in the immunity induced by L. mexicana gp63 

and SLA was investigated. The results revealed that immunisation of mice with L. 

mexicana gp63 elicited significant CTL activity in BALB/c mice as demonstrated against 

CT26 tumour cell, which were already transfected with the relevant gene and tested for the 

expression of L. mexicana gp63 protein. Similar results were also obtained when DCs were 

transfected with L. mexicana gp63 cDNA and used as target cells (data not shown). When 

CTLs were tested against DCs pulsed with SLA (containing gp63 protein), they exhibited 

strong activity against targets demonstrating that DCs successfully processed and 

expressed the gp63 protein. In vitro re-stimulation with SLA had a crucial role in inducing 

CTL activity as splenocytes from mice immunised with L. mexicana cDNA or DC’s 

transfected with L. mexicana gp63 cDNA without in vitro re-stimulation did not generate 

CTL activity, indicating the importance of boosting vaccination in leishmania 

immunisation. In this animal model, T cells derived from non-immunised, but leishmania 

infected mice did not have significant CTL activity confirming that the CTL activity was 

induced by the DNA immunisation not the infection, contrasting with results obtained in 

human studies [Da-Cruz et al., 2002; Da-Cruz et al., 1994]. Lack of CTL activity in 

leishmania infected BALB/c mice might be a reason for the susceptibility of these mice to 

the parasites, which requires further investigation. The CTL activity induced by the DNA 

immunisation was detectable after four months of immunisation and was similar to what 

has been reported in human patients with mucosal and cutaneous leishmaniasis before and 

after cure [Da-Cruz et al., 2002]. 

CTL activity was also detected in mice immunised with DCs loaded with SLA. The mice 

showed a high level of CTL activity against DCs loaded with SLA. The CTL activity 
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induced by SLA was much higher than that of mice immunised with L. mexicana gp63 

cDNA indicating the presence of other immunogenic proteins in the SLA.  

 
4.3.2 Antibody responses to leishmania vaccines 

It has been shown that the immunity to Leishmania is mainly based upon the induction of a 

Th1-type immune response. Therefore, the type of the immune response induced by a 

given vaccine has a direct impact on the resistance to the parasite [Awasthi et al., 2004; 

Sacks & Noben-Trauth, 2002]. It is thought that different parameters including the nature 

of antigen, type of the adjuvant and the method of immunisation influence the direction of 

immune response toward either Th1 or Th2 [Liu et al., 2005; Saldarriaga et al., 2006].  

In the present study we sought to define the type of the immune response induced by a 

single antigen “L. mexicana gp63” or a cocktail of antigens “L. mexicana soluble antigens” 

using different methods of immunisation. The type of immune response was determined by 

establishing the level of IgG2a and IgG1 antibody subtypes in the blood serum that 

represent the Th1 or Th2-type immune response respectively. 

L. mexicana gp63 cDNA was administered by three different methods; intramuscular 

injection, by gene gun using gold particles or by the administration of CT26 tumour cells 

transfected with L. mexicana gp63.  

It has been reported that the mode of administration of the DNA vaccine can influence the 

type of immune response induced by the vaccine. Intramuscular injection of DNA was one 

of the first method described for gene immunisation [Wolff et al., 1990], which has been 

reported to lead the immune response toward Th1 type while application of gene gun using 

gold particles bombardment recruits inflammatory cells and leads to Th2 immune response 

[Feltquate et al., 1997; Liu et al., 2005]. Application of adjuvants such as IL-12 or CpG 

motif as Th1 immune response enhancers in DNA vaccination has also been reported [Liu 

et al., 2005; Schirmbeck & Reimann, 2001], wich may shift the direction of the immune 

response induced by gene gun immunisation from Th2 towards Th1 [Zhou et al., 2003]. 

Some studies indicated that the Th2 induction of gene gun is not due to the decreased 

amount of DNA used in gene gun immunisation [Weiss et al., 2002] but due to the nature 

of the antigen, which strongly influences whether a Th1 or Th2 immune response is 

induced [Aberle et al., 1999].  

 To the best of our knowledge, this study, for the first time, investigated the benefit of 

using gene gun DNA immunisation in leishmania mouse model. In addition, the potency of 

I.M. injection of DNA versus gene gun immunisation in generating immunity against 
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leishmania was compared. Intramuscular injection of L. mexicana gp63 cDNA resulted in a 

Th1-type immune response and that was compatible with other studies, however, the 

results obtained from the gene gun immunisation was in contrast with the previous studies 

[Liu et al., 2005], where gene gun immunisation had led to Th2 immune responses. Mice 

injected intramuscularly with 100µg DNA induced high levels of IgG2a isotype antibody, 

which gradually increased during the course of the experiment and at 7 weeks it reached 

the level comparable with gene gun immunisation, which was obtained at week 1. The 

levels of IgG1 for the intramuscular injection of the DNA remained low during the course 

of experiments. In contrast, administration of 1µg of the DNA by gene gun in BALB/c 

mice induced a sharp rise of IgG2a, which was detected one week after immunisation. The 

level of IgG1 was quite low for two weeks and slightly increased afterward. 

Immunisation of mice with CT26 tumour cells transfected with L. mexicana gp63 failed to 

produce high levels of IgG2a at any time point during the course of the experiments. IgG1 

levels were low for the first 5 weeks and gradually rose and levelled with that of the gene 

gun immunisation at week 7. The reason for using a transfected cell line to generate 

immunity to Leishmania was its similarity to the leishmania infection. In leishmania 

infection, the macrophage takes up the parasite cell expressing the gp63 protein. In this 

model, macrophages also phagocytose irradiated tumour cells, which express the 

leishmania protein. However, this model still requires further investigation. 

Administration of SLA with IFA induced a high level of IgG1 and less IgG2a, however, 

both antibodies increased during the course of the experiments. The kinetic responses of 

the antibody isotypes in the  serum revealed mixed Th1/Th2 immune responses, which 

might be due to the presence of several immunogenic antigens in the SLA. The effect of 

IFA in directing the immune response towards Th1 or Th2 was not determined in the 

study. DC-based vaccine potency in producing antibodies has already been shown in HIV 

vaccine studies [Gruber et al., 2007]. Application of DCs loaded with SLA resulted in 

similar profile of IgG2a and IgG1 isotype antibodies to that induced by SLA. Levels of 

antibodies in control groups injected with DCs alone or PBS could be due to the cross 

reactivity of natural antibodies, which detected by the secondary antibody in ELISA; the 

presence of natural antibodies cross reacting with leishmania parasites was already 

reported in pigs, rats, mice, hamsters, gerbils and humans [Nunes & Ramalho-Pinto, 1996; 

Schmunis & Herman, 1970]. 
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Chapter 5 Identification of Immunogenic MHC class I 

epitopes of leishmania gp63 

 
 
5.1 Introduction 

 
5.1.1 Peptides as a new vaccine approach 

The ultimate objective of developing vaccines against pathogens is inducing potent, 

specific and protective immunity in the host. In order to generate an effective immunity, 

different strategies have been developed and investigated where some approaches generate 

more potent immunity to a particular pathogen than others. The “conventional” vaccines 

were usually based on using whole pathogens either live or killed. Although these vaccines 

are effective against some pathogens, they are in general ineffective against a considerable 

number of other pathogens. Therefore, emphasise is now focused on using a single 

antigenic protein of pathogens in order to induce specific immunity, which in turn 

protective against the pathogen.  

Immunogenic proteins of pathogens taken up by APCs are cleaved up into peptides, which 

are presented to either CD8+ or CD4+ T lymphocytes through MHC class I or II 

respectively [Chaplin, 2006]. Thus finding a strong immunogenic T cell epitope to use as a 

vaccine is a feasible strategy for developing vaccines effective against the pathogen. There 

are two immunological-based methods to identify the immunogenic epitopes. First, direct 

identification of the epitopes presented by APCs by eluting the epitopes from the surface of 

the MHC molecules and sequencing the peptides using mass spectrometry [Bonner et al., 

2002; Lemmel et al., 2004] (direct immunology). Second, the affinity of the peptide motifs 

to MHC molecules is calculated by a computer algorithm and then their immunogenicity is 

confirmed by in vitro and in vivo immunological methods (indirect method or reverse 

immunology). Moreover, it should be more emphesised on natural processing of the 

immunogenic peptides by APCs and whether the immunogenic peptide has the potential to 

protect the host from infection. Based on information obtained from the processed peptides 

and using weight-matrix and algorithm methods, several data bases and software such as 

the novel Gibbs sampling approach [Nielsen et al., 2004], SVMHC [Donnes & Elofsson, 

2002] and SYFPEITHI [Rammensee et al., 1999] have been developed to predict the 

peptides binding with high affinity to MHC class I or II from the protein sequences in 

human and other species of animals. SYFPEITHI is one of the most popular web-based 
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data bases, which are designed by The University of Tubingen for prediction algorithms of 

peptide/MHC interaction (www.syfpeithi.de) [Pelte et al., 2004]. Although several studies 

have been conducted based on SYFPEITHI and several epitopes of different antigens have 

been identified so far, it is believed that the immunogenicity of the predicted peptides still 

needs to be determined by immunological methods [Pelte et al., 2004].  

 
5.1.2 Peptide immunisation 

The potency of peptide subunit vaccines have been shown by generating immunity to 

cancers or pathogens. In melanoma, this approach has been successfully used and led to the 

testing of some of the peptide vaccines in clinical trials. In studies on patients with 

localized prostate cancer, it was shown that the peptide vaccination was safe and well 

tolerated with no major adverse effects. Increased CTL response and the anti-peptide IgG 

titre were also observed post-vaccination [Noguchi et al., 2007; van der Bruggen et al., 

1994]. In contrast, in another trial study, melanoma patients immunised with 3 peptides: 

MART-1(26-35) (ELAGIGILTV), tyrosinase(368-376) (YMDGTMSQV), and gp100(209-

217) (IMQVPFSV), admixed with tetanus toxoid and GM-CSF did not show significant 

immunity to the tumour nor raised IFN-γ [Bins et al., 2007]. The discrepancy might be due 

to the nature of the antigens used and the nature of the disease. Loading DCs with 

immunogenic peptides can also generate immunity by expanding  Ag-specific CD8+ T 

cells even in advanced stage IV melanoma patients [Schuler-Thurner et al., 2000].  

Peptide vaccines have also been used to generate immunity against pathogens. A 

recombinant subunit vaccine based on the insertion of a 27-amino acid sequence from 

Omp31 to the N-terminus of Brucella enzyme lumazine synthase (BLS) induced protection 

against Brocella ovis similar to that of the Rev.1 vaccine, inducing a strong peptide and 

BLS-specific humoral, Th1 and cytotoxic T-cell responses [Cassataro et al., 2007]. Also, 

inoculation of a synthetic peptide derived from Eimeria acervulina and Eimeria tenella 

antigens homogenized in IFA induced a high level of antibody and cellular responses 

associated with partial cross-species protection against challenge with sporulated oocysts 

of the parasites [Talebi & Mulcahy, 2005]. In a malaria vaccine study, the use of a 42 kDa 

fragment and a 19 kDa subfragment of C-terminal Plasmodium falciparum merozoite 

surface protein induced specific antibodies, although a better protection was achieved by 

administration of the 42 kDa fragment [Hui & Hashimoto, 2007]. Similar results were also 

obtained by application of Plasmodium falciparum merozoite surface protein 1(MSP1) at 

the site of MSP1-42 and MSP1-19 [Yuen et al., 2007]. It was also shown that an anti-HIV 
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lipopeptide vaccine injected to HIV-uninfected and HIV-1 chronically infected patient 

volunteers was well tolerated and able to induce a specific CD4+ and CD8+ T cell 

responses [Gahery et al., 2006]. The use of peptide is also a new approach that has been 

investigated in leishmania vaccination. Many studies have been carried out to identify 

immunogenic peptides, which can be used as a vaccine in leishmaniasis. Some of the 

leishmania identified immunogenic peptides are listed in Table  5-1. 

The main shortcoming towards peptide vaccination is their limited immunogenicity. 

Therefore, different adjuvants, including IFA and alum, have been used to enhance the 

immunogenicity of the vaccine [McAnally et al., 2001; Valmori et al., 2003]. In one study, 

mice immunised with an ovalbumin peptide and polyinosinic-polycytidylic as an adjuvant 

combined with anti-CD137 rendered a massive functional and IFN-γ producing CD8+ T 

cell memory pool in lymphoid and non-lymphoid tissues for more than a year in which the 

adjuvant played an essential role [Myers et al., 2006]. Recently, a ceramic core based 

nanodecoy system was used as delivery vehicles, resulting in higher immunity compare to 

the conventional adjuvant alum [Goyal et al., 2006].  

In present study, we sought to identify the MHC class I epitopes derived from L. mexicana 

gp63 to be used as vaccine to generate immunity to L. mexicana. 

 

Protein Model Sequence Tests References 

Gp63 BALB/c 
A single synthetic 
T cell epitope 
(PT3) (16 mer) 

 long-lasting 
protection 

[Spitzer et al., 
1999] 

Gp63 
in BALB/c, 
C57BL/6, and 
CBA 

15mer peptides Th1 response 
[Soares et al., 
1994] 
 

Gp63 CBA 467-482 (15 mer) 
Significant 
protection 

[Frankenburg et al., 
1996] 

recombina
nt KMP-
11 plus 
six 20-mer 

Human (HLA 
DRB1* 04 
volunteers) 

DEEFNKKNQEQ
NAKFFADKP (20 
mer) 
And  
FKHKFAELLEQQ
KAAQYPSK (20 
mer) 

T-cell proliferation 
and cytokine 
production 

[Delgado et al., 
2003] 

GP63 CBA 
161-167 and 158-
167 (7 & 10 mer) 

T-cell proliferation [Yang et al., 1993] 

PSA-2 C3H/He 
recombinant PSA-2 
polypeptide 

N/A 
[Handman et al., 
1995b] 

Table  5-1: Immunogene peptide of Leishmania candidates for vaccine 
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5.2 Results 

 
5.2.1 Identification of MHC class I immunogenic peptides derived from 

leishmania gp63 protein in HHD II transgenic mice 

It has already been shown that leishmania gp63 is an immunogenic protein capable of 

inducing cytotoxic T-cell activity (see chapter 4). In present study, we attempted to 

identify immunogenic MHC class I peptides derived from leishmania gp63 protein (Table 

 5-2 & Table  5-3). The web-based software “SYFPEITHI” (Table  5-5) was used to predict 

the immunogenic peptides with high affinity to human HLA-A2.1 or mouse MHC H2-Ld 

or H2-Kd molecules. 

 
MPVDSSSTHRHRCVAARLVRLAAAGAAVTVAVGTAAAWAHAGAPQHRCIHD AMQARVLQ

VAAQRMAPSAVSAVGLPYVSVVPVENASTLDYSLSDSTSPGVVRAANWGALRIAVSAEDLT

DPAYHCARVGQRVNNHAGDTVTCTAEDILTDEKRDTLVKHLVPQALQLHRERLKVRQVQG

KWKVTGMADVICGDFKVPPEHITEGVTNTDFVLYVASVPSEESVLAWATTCQVFPDGHPAV

GVINIPAANIASRYDQLVTRVVTHEMAHALGFSGTFFGAVGIVQEVPHVRGKDFNVSVITSST

VVAKAREQYGCNSLEYLEIEDQGGAGSAGSHIKMRNAKDELMAPAASAGYYTALTMAVFQ

DLGFYQADFSKAEEMPWGRNVGCAFLSEKCMAKNVTKWPAMFCNESAATIRCPTDRLRVG

TCGITAYNTSLATYWQYFTNASLGGYSPFLDYCPFVVGYRNGSCNQDASTTPDLLAAFNVFS

EAARCIDGAFTPKNRTAADGYYTALCANVKCDTATRTYSVQVRGSNGYANCTPGLRVKLSS

VSDAFEKGGYVTCPPYVEVCQGNVKAAKDFAGDTDSSSSADDAADKEAMQRWSDRMAAL

ATATTLLLGMVLSLMALLVVRLLLTSSPWCCCRLGGLPT*X 

Table  5-2: Sequences of L. mexicana gp63 protein (gene bank ref X64394) 

 
 
MSVDSSSTHRRRCVAARLVRLAAAGAAVTVAVGTAAAWAHAGALQHRCVHD AMQARVR

QSVADHHKAPGAVSAVGLPYVTLDAAHTAAAADPRPGSARSVVRDVNWGALRIAVSTEDL

TDPAYHCARVGQHVKDHAGAIVTCTAEDILTNEKRDILVKHLIPQAVQLHT ERLKVQQVQG

KWKVTDMVGDICGDFKVPQAHITEGFSNTDFVMYVASVPSEEGVLAWATTCQTFSDGHPA

VGVINIPAANIASRYDQLVTRVVTHEMAHALGFSGPFFEDARIVANVPNVRGKNFDVPVINSS

TAVAKAREQYGCDTLEYLEVEDQGGAGSAGSHIKMRNAQDELMAPAAAAGYYTALTMAIF

QDLGFYQADFSKAEVMPWGQNAGCAFLTNKCMEQSVTQWPAMFCNESEDAIRCPTSRLSL

GACGVTRHPGLPPYWQYFTDPSLAGVSAFMDYCPVVVPYSDGSCTQRASEAHASLLPFNVF

SDAARCIDGAFRPKATDGIVKSYAGLCANVQCDTATRTYSVQVHGSNDYTNCTPGLRVELS

TVSNAFEGGGYITCPPYVEVCQGNVQAAKDGGNTAAGRRGPRAAATALLVAALLAVAL 

Table  5-3: Sequences of L. major gp63 protein (gene bank re Y00647) 
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 sequence1       MPVDSSSTHRHRCVAARLVRLAAAGAAVTVAVGTAAAWAHAGAPQHRCIHDAMQARVLQ- 
 sequence2       MSVDSSSTHRRRCVAARLVRLAAAGAAVTVAVGTAAAWAHAGALQHRCVHDAMQARVRQS 
                 *.********:******************************** ****:******** *  
  
 sequence1       VAAQRMAPSAVSAVGLPYVSVVPVENASTLDYSLSDSTSPGVVRAANWGALRIAVSAEDL 
 sequence2       VADHHKAPGAVSAVGLPYVTLDAAHTAAAADPRPGSARS--VVRDVNWGALRIAVSTEDL 
                 ** :: **.**********:: ....*:: *   ..: *  *** .**********:*** 
  
 sequence1       TDPAYHCARVGQRVNNHAGDTVTCTAEDILTDEKRDTLVKHLVPQALQLHRERLKVRQVQ 
 sequence2       TDPAYHCARVGQHVKDHAGAIVTCTAEDILTNEKRDILVKHLIPQAVQLHTERLKVQQVQ 
                 ************:*::***  **********:**** *****:***:*** *****:*** 
  
 sequence1       GKWKVTGMADVICGDFKVPPEHITEGVTNTDFVLYVASVPSEESVLAWATTCQVFPDGHP 
 sequence2       GKWKVTDMVGDICGDFKVPQAHITEGFSNTDFVMYVASVPSEEGVLAWATTCQTFSDGHP 
                 ******.*.. ********  *****.:*****:*********.*********.*.**** 
  
 sequence1       AVGVINIPAANIASRYDQLVTRVVTHEMAHALGFSGTFFGAVGIVQEVPHVRGKDFNVSV 
 sequence2       AVGVINIPAANIASRYDQLVTRVVTHEMAHALGFSGPFFEDARIVANVPNVRGKNFDVPV 
                 ************************************.**  . ** :**:****:*:*.* 
  
 sequence1       ITSSTVVAKAREQYGCNSLEYLEIEDQGGAGSAGSHIKMRNAKDELMAPAASAGYYTALT 
 sequence2       INSSTAVAKAREQYGCDTLEYLEVEDQGGAGSAGSHIKMRNAQDELMAPAAAAGYYTALT 
                 *.***.**********::*****:******************:********:******** 
  
 sequence1       MAVFQDLGFYQADFSKAEEMPWGRNVGCAFLSEKCMAKNVTKWPAMFCNESAATIRCPTD 
 sequence2       MAIFQDLGFYQADFSKAEVMPWGQNAGCAFLTNKCMEQSVTQWPAMFCNESEDAIRCPTS 
                 **:*************** ****:*.*****::*** :.**:*********  :*****. 
  
 sequence1       RLRVGTCGITAYNTSLATYWQYFTNASLGGYSPFLDYCPFVVGYRNGSCNQDASTTPDLL 
 sequence2       RLSLGACGVTRH-PGLPPYWQYFTDPSLAGVSAFMDYCPVVVPYSDGSCTQRASEAHASL 
                 ** :*:**:* : ..*..******:.**.* *.*:****.** * :***.* ** :   * 
  
 sequence1       AAFNVFSEAARCIDGAFTPKNRTAADGYYTALCANVKCDTATRTYSVQVRGSNGYANCTP 
 sequence2       LPFNVFSDAARCIDGAFRPKATDGIVKSYAGLCANVQCDTATRTYSVQVHGSNDYTNCTP 
                  .*****:********* **   .    *:.*****:************:***.*:**** 
  
 sequence1       GLRVKLSSVSDAFEKGGYVTCPPYVEVCQGNVKAAKDFAGDTDSSSSADDAADKEAMQRW 
 sequence2       GLRVELSTVSNAFEGGGYITCPPYVEVCQGNVQAAKD-GGNTAAG--------------- 
                 ****:**:**:*** ***:*************:**** .*:* :.                
  
 sequence1       SDRMAALATATTLLLGMVLSLMALLVVRLLLTSSPWCCCRLGGLPTX 
 sequence2       --RRGPRAAATALLV------AALLAVAL------------------ 
                   * .. *:**:**:       ***.* *    

Table  5-4: Sequence alignment of L. mexicana and L. major gp63 proteins. Sequence1: L. mexicana 
gp63; Sequence2: L. major gp63 
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Peptide Position Sequence score 

592 L L V A A L L A V 28 
159 H L  I P Q A V Q L  26 
20 R L  A A A G A A V 25 
22 A A A G A A V T V 24 
412 A I  R C P T S R L  23 
419 R L  S L G A C G V 23 
13 C V A A R L V R L  22 
66 K A P G A V S A V 22 
110 R I  A V S T E D L  22 
73 A V G L P Y V T L  21 
71 V S A V G L P Y V 20 
96 S A R S V V R D V 20 
148 L T N E K R D I L  20 
24 A G A A V T V A V 19 
147 I L  T N E K R D I  19 
36 A A W A H A G A L  18 

Table  5-5: Predicted peptides with high affinity to HLA-A2 molecules.  
The protein sequences of L. major gp63 were pasted onto to SYFPEITHI software and the peptides with high 
affinity to HLA-A2 molecules were predicted. Peptides with a higher score have more affinity to HLA-A2 
molecules. Peptides used in immunogenicity studies are underlined. 
 
 
5.2.2 Peptide vaccination in HLA-A2.1 transgenic mice 

Peptides from gp63 proteins of L. major  and L. mexicana were selected for HLA-A2.1 

class I molecules by using the prediction web-based software “SYFPEITHI” and their 

immunogenicity was determined in HLA-A2.1 transgenic (HHDII) mice. 

Prior to the peptide immunisation, the efficacy of the CTL experimental protocol was 

confirmed by immunisation with the PAP135 peptide as the positive control. PAP135 

(sequence: ILLWQPIPV) is an immunogenic peptide derived from prostatic acid 

phospatase, a protein associated with prostate cancer and the immunogenicity of which has 

previously been shown in HHDII mice [Machlenkin et al., 2005]. The results clearly 

showed that one immunisation with 100 µg PAP135 plus IFA adjuvant and helper peptide 

(see Materials and Methods) resulted in a high specific killing of target cells by effecter 

cells generated from cultured splenocytes in presence of APCs pulsed with PAP135 

peptide (Figure  5-1).  
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Figure  5-1: Immunogenicity of PAP135 tested in HHDII transgenic mice. 
HHDII mice were immunized S.C. with 100µg of PAP135 peptide at the base of tail. One week later spleens 
were harvested, processed and splenocytes were cultured for 5 days with APCs pulsed with PAP135 peptide 
or non relevant P53 peptide separately. On day 5 the splenocytes were used as effector cells in standard 4-
hour cytotoxicity assay against RMAS-A2 cell targets pulsed with relevant PAP135 and irrelevant P53 
peptides.  
 
 
The results were confirmed by assays to determine the levels of IFN-γ and IL-4. The 

amount of IFN-γ in samples collected from splenocytes of the immunised mice cultured 

with APC pulsed with relevant peptide (Test) was significantly higher than those pulsed 

with irrelevant peptide (control). No significant IL-4 (a key cytokine in activation of Th2 

pathway) levels were detected (Figure  5-2). 
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Figure  5-2: IFN-γ and IL-4 production by splenocytes from HHDII mice immunised with PAP135. 
The supernatants from splenocytes cultured with APCs pulsed with PAP135 and irrelevant peptide P53 were 
collected on the day 2 and 5. The samples were stored at -20 until required. IFN-γ and IL-4 were measured 
using commercial kits according to manufacture’s instruction (see materials and methods). The experiments 
repeated three times, obtaining similar results on each occasion. P-value for the level of IFN-γ between test 
and control was 0.012075 
 
 

PAP 135 peptide/IFN-γ PAP 135 peptide/IL-4 

Pvalue 0.0002665 
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5.2.2.1 Immunogenicity of L. major/L. mexicana gp63 peptides predicted 

for HLA-A2.1 in HHDII mice 

The immunogenicity of four peptides predicted for HLA-A2.1 selected from leishmania 

gp63 proteins of different species of leishmania parasites (Table  5-6), were tested for 

immunogenicity in HHDII transgenic mice; a summary of the results are shown in Table 

 5-7 and Figure  5-3. Mice were immunised once with 100µg of each peptide together with 

100µg of IFA adjuvant and helper peptide, which were administered S.C. at the base of the 

tail (see materials and methods). Two peptides (C2 and B8) were highly immunogenic and 

the immunogenicity of the third one (CM4) was less but still significant (P=0.001) in 

comparison with an irrelevant peptide. The fourth peptide (C1) showed very weak 

immunogenicity. Boosting with a second immunization did not improve the 

immunogenicity of the C1 peptide. In vitro depletion of CD8+ T cells inhibited the 

cytotoxicity indicating a role of CD8+ T cells as mediators of cytotoxicity (data not 

shown). 

 
 
 
 Leishmania species 

Peptide code major mexicana donovani infantum aethiopica chagasi tropica 

B8 + - + + - + - 

C2 + + + + + + + 

CM4 + + - + + - + 

Table  5-6: Presence of immunogenic peptides in Leishmania species 

 
 
 
 

NO Peptide Sequence Gene Mouse Score Positive results 

1 C2 RLAAAGAAV gp63 HHDII 25 4/5 

2 CM4 AAAGAAVTV gp63 HHDII 24 2/3 

3 B8 LLVAALLAV gp63 HHDII 28 5/5 

4 C1 RLSLGACGV gp63 HHDII 23 1/5 

Table  5-7:  Summary of the immunogenicity of gp63 HLA-A2 restricted peptides in HHDII mice 
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A: Immunogenicity of B8 in HHDII mouse B: Immunogenicity of C2 in HHDII mouse 
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C: Immunogenicity of CM4 in HHDII mouse D: Immunogenicity of C1 in HHDII mouse 
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Figure  5-3: Immunogenicity of B8, C2 and C1 peptides in HHDII mice. 
Four peptides of leishmania gp63 proteins were predicted for HLA-A2.1 using SYFPEITHI web-based 
software. 100µg of each peptide was injected S.C. at the base of tail of HHDII mice together with the helper 
peptide and IFA adjuvant. A week after the immunisation, spleens were harvested and splenocytes were 
cultured with spleen blast cells pulsed with relevant and irrelevant P53 peptides for 5 days. On day 5 the cells 
were used as effectors against target cells “RMAS-A2” pulsed with relevant and irrelevant P53 peptides 
using standard 4-hour cytotoxicity assay. Results of peptides B8, CM4 & C2 are representative of 
immunogenic peptides while peptide C1 represents a poor immunogenic peptide.  
 
 
 
 
 
 
 
 
 
 
 
 

P-value 0.0001 
P-value 0.003 

P-value 0.001 
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5.2.2.2 Cytokine Production of Splenocytes of HHDII mice Immunised 

with gp63 peptides 

The cytokine assays to detect IFN-γ and IL-4, were conducted on supernatants collected 

from immunised mouse splenocytes cultured for 2 & 5 days, in order to confirm the 

immunogenicity of C2, CM4, B8 and C1 peptides. The results are shown in Figure  5-4. 

For the highly immunogenic peptides (B8 & C2) the amount of IFN-γ detected in 

supernatants of splenocytes cultured with APCs pulsed with the relevant peptide was 

significantly higher than those cultured with blast cells (derived from mouse splenocytes) 

pulsed with the irrelevant peptide. For CM4 and C1, there was no significant difference in 

IFN-γ levels for splenocytes cultured with relevant compared to those cultured with 

irrelevant peptides. No significant IL-4 levels were detected for any of the peptides (Figure 

 5-4). 
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Figure  5-4: IFN-γ and IL-4 production by splenocytes cultured with relevant and irrelevant peptides. 
HHDII mice were immunized with the predicted peptides of gp63 and their splenocytes were cultured with 
splenocytes blast cells pulsed with the relevant peptides and an irrelevant peptide, P53”217” or PAP135, for 
5 days. The supernatants were collected on day 2 and 5 and tested for IFN-γ and IL-4 using a commercial kit 
according to manufacture’s instruction. Student t-test was used to statistically analyse the results and P-value 
for the level of IFN-γ between test and control for peptides C2 and B8 was 0.015 and 0.009 respectively.  
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5.2.3 Peptide vaccination in the BALB /c mouse model 

To determine the efficacy of peptide vaccination in BALB/C mice, a 9 mere H2-Ld 

restricted peptide named TPH with the sequence of “TPHPARIGL” derived from β-

galactosidase [Ali et al., 2004a; Saren et al., 2002], was used for immunisation (see 

Materials and Methods). Also, four peptides derived from L. major gp63 protein, “A3, A4, 

A5 and A6”, predicted for MHC-class I H2-Ld and H2-Kd (Table  5-8) were assessed in 

Balb/c mice. Each mouse received two immunisations on days 0 and 7, and then the mice 

were sacrificed for standard 4-hour cytotoxicity assay on day 14. The results clearly show 

that immunisation with some peptides induced low but significant levels of cytotoxicity 

against targets pulsed with the corresponding peptide (Figure  5-5). The frequency of 

positive results for TPH was quite low (Table  5-8). 

Administration of mouse CpG or altering the time intervals of immunisation failed to 

increase the immunogenicity of the predicted peptides and no significant increase of IFN-γ 

or IL-4 cytokines was observed when the immunised mice splenocytes were cultured with 

blast cells pulsed with the relevant peptides (data not shown).  

 
 
 

NO Peptide Sequence Gene Mouse Score Results 

1 TPH TPHPARIGL β-galactosidase BALB/c 25 12/29 

2 A3 YYTALTMAI gp63 BALB/c 21 0/3 

3 A4 DYTNCTPGL gp63 BALB/c 20 0/4 

4 A5 VPNVRGKNF gp63 BALB/c 22 0/2 

5 A6 ASLLPFNVF gp63 BALB/c 21 0/4 

Table  5-8: Immunogenicity of L. major gp63 peptides predicted for mouse MHC class I  
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C: Immunogenicity of A5 D: Immunogenicity of A6 
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Figure  5-5: The immunogenicity of TPH and L. major gp63 peptides in BALB/c mice.  
BALB/c mice were immunised twice at a week interval with 100µg of appropriate peptide together with the 
helper peptide and adjuvant (see materials and methods) S.C. at the base of tail. A week after the last 
immunization, spleens were harvested and splenocytes were cultured with APCs pulsed with relevant and 
irrelevant “SPSYVYHQF” peptides for 5 days. On day 5 splenocytes were used as effectors in standard 4-
hour cytotoxicity assay against targets pulsed with relevant and irrelevant peptides. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P-Value 0.002 
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5.2.4 Natural processing of the immunogenic class I peptides derived 

from leishmania gp63  

An immunogenic peptide, to be used as a vaccine, needs to be naturally processed via the 

MHC class I in which the protein is first cleaved into peptides by the proteosome and then 

the peptide is expressed through MHC class I molecules. 

DNA immunisation by I.M. injection and gene gun were performed to test the natural 

processing of the gp63 derived immunogenic peptides. Two plasmid constructs L. 

mexicana gp63 cDNA & L. major gp63 cDNA were used for immunisation by the gene 

gun (HHD II & BALB/c). After 3 immunisations at 1 week intervals, mice were killed and 

the splenocytes were flushed out and cultured with APCs pulsed with the relevant peptide 

for 5 days. On day 5 the splenocytes were used as effectors in cytotoxic assays using 

tumour target cells pulsed with the relevant peptides as targets (RMAS for C2, CM4, B8 & 

C1 and A20 for A3, A4, A5 & A6) (see materials and methods). The results indicated that 

none of the peptides showed immunogenicity when mice immunised by gene gun using 

chromium release assay (figure  5-6). 

The supernatant collected from the splenocyte cell culture were analysed for IFN-γ and IL-

4. No significant difference was observed between the level of IFN-γ or IL-4 in splenocyte 

cell culture supernatants cultured with APCs pulsed with relevant peptides (A3, A4, A5 & 

A6 for BALB/c and C2, CM4 & B8 for HHD II mice) and the irrelevant peptide (TPH for 

BALB/c & P53,264 for HHD II)(data not shown). 
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Figure  5-6: Assessment of natural processing of immunogenic peptides tested in HHD II mice.  
HHD II mice were immunised by the gene gun with L. major/L. mexicana gp63 three times. After a week of 
the last immunisation mice were killed and the CTL activity was determined by standard 4-hour cytotoxicity 
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assay. Graphs represent 6 immunised mice for each peptide tested in three independent experiments. A:  
mouse immunised with C2 peptide B: mouse immunised with CM4 peptide 
The natural processing of C2 and CM4 (HLA-A2 peptides/HHD II) was also assessed by 

intramuscular injection of DNA. Mice were injected I.M. with 100µg L. mexicana gp63 

cDNA twice at two weeks interval. After two weeks of the last immunisation, mice were 

sacrificed and tested for the CTL activity as with that of gene gun immunisation. The 

results showed CTL activity in 1/6 immunised mice detected by standard 4-hour 

cytotoxicity assay for C2 (Figure  5-7). 
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Figure  5-7: Immunogenicity of C2 and CM4 peptides by intramuscularly DNA immunisation. 
BALB/c mice were intramuscularly injected with 100µg L. mexicana gp63 cDNA twice. Two weeks after the 
last immunisation they were killed and the splenocytes were cultured with APCs pulsed with C2 and CM4 
peptides for 5 days. On day 5, the splenocytes were used as effectors in standard 4-hour cytotoxicity assay 
against tumour cells pulsed with the relevant peptides. Only 1 out of 6 mice showed immunogenicity against 
targets pulsed with C2 peptide. A:  mouse immunised with C2 peptide B: mouse immunised with CM4 
peptide 
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The supernatants collected from immunised mice cultured splenocytes were tested for the 

presence of IFN-γ and IL-4. In contrast to the results of the cytotoxicity assay, there was a 

significant increase in the level of IFN-γ but not IL-4 in the supernatants of splenocytes 

obtained from the immunised mice when they were cultured with LPS blast cells pulsed 

with both C2 and CM4 peptides (Figure  5-8).  
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Figure  5-8: IFN-γ production of splenocytes from HHD II mice immunised with gp63 cDNA and 
stimulated with relevant and irrelevant peptides.  
Supernatants collected from the culture of the splenocytes were tested for IFN-γ by ELISA using the 
commercial kit according to the manufacture’s instructions. The graph represents three independent 
experiments and p value < 0.05, 0.01, 0.001 accounts for ٭٭ ,٭, and ٭٭٭ respectively. 
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5.2.5 Protection induced by immunisation with C2 peptide in HHDII 

mice  

HHDII mice were immunised twice at two weeks intervals with 100 µg of the C2 peptide 

(seq RLAAAGAAV). After two weeks of the last immunisation, mice were challenged 

with 1×107  log phase of L. mexicana. Mice were monitored for lesion development for at 

least 2 months. Two control groups of mice were used one injected with PBS and the other 

with an irrelevant peptide p53/246. The results showed no significant protection induced 

by immunisation with C2 peptide compared with controls (data not shown). 
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5.3 Discussion 

5.3.1 Peptide immunization in HHDII mice 

Peptide immunisation is a new vaccination approach that has not yet fully investigated in 

leishmania vaccination. Gp63, a leishmania antigen, has been postulated as a promising 

candidates for Leishmania peptide-subunit vaccine. In a study by Spitzer [Spitzer et al., 

1999] a 16-mer synthetic peptide with the sequence of YDQLVTRVVTHEMAHA derived 

from L. major gp63, induced a detectable immunity in BALB/c mice. On the other hand, 

there are many studies, including our own, which have demonstrated immunogenicity and 

CTL stimulation of gp63 proteins in leishmania (see chapter 1) and that CD8+ T cells 

appear to have an important role in immunity to leishmania (see chapter 4). Therefore, it is 

appropriate to identify the MHC calss I restricted CTL epitopes that can be used as vaccine 

to leishmania either alone or in combination with other immunogenic or therapeutic agents.  

This study for the first time reports the identification of immunogenic MHC class I 

restricted epitopes from leishmania gp63 protein in both HLA-A2 transgenic (HHD II) and 

conventional BALB/c mouse models using reverse immunology. In order to identify 

immunogenic epitopes, which are presented through MHC class I molecules, the web-

based software “SYFPEITHI” [Hundemer et al., 2006; Mishra & Sinha, 2006; Rammensee 

et al., 1999] was used to predict the immunogenic peptides for both models. The 

immunogenicity of the predicted peptides was determined by using a number of in vivo and 

in vitro immunological tests [Pelte et al., 2004]. Due to the ethical difficulties associated 

with studies on human subjects, HHD II mice were used to determine the immunogenicity 

of the peptides predicted for human HLA-A2.1 molecules. HLA-A2.1 transgenic (HHDII) 

mice have been described as a powerful model to study human immune responses in vivo 

[Firat et al., 1999; Hundemer et al., 2006; Ramage et al., 2004; van der Bruggen et al., 

1994]. These mice model have already been used to study Tripanozoma cruzi in humans 

[Garcia et al., 2003] and the results obtained are inline with those of the present study. 

Using L. major gp63 sequences, four of nine mer peptides named C2, CM4, B8 and C1 

(RLAAAGAAV, AAAGAAVTV, LLVAALLAV and RLSLGACGV) wer e predicted to 

have affinity to HLA-A2.1 molecules and were tested for immunogenicity in HHD II 

transgenic mice. Three peptides (C2, B8 and CM4) induced CTL activity in the immunised 

mice, however, the CTL activity induced by CM4 was weaker. The fourth peptide (C1) 

was non-immunogenic and produced weak CTL activity. Injection of C2 and B8 together 

(the two high immunogenic peptides) failed to induce strong CTL activity against targets 
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pulsed with either of the peptides in standard 4-hour cytotoxicity assay (data not shown) 

indicating the diversity of the immune response against two different immunogenic 

peptides. In order to obtain potent CTL activity during in vitro culture, the splenocytes 

were restimulated with APCs pulsed with the relevant peptide (see materials and methods). 

Either re-stimulation with no peptide or restimulation (with relevant peptides) without 

using APCs, failed to stimulate CTL activity indicating the importance of APCs in 

enhancing the CTL activity.  

IFN-γ secreted by T cells has been shown to be essential for the development of Th1 

responses and it has been used as a marker for the existence of the CTL activity, while IL-4 

on the other hand indicates the bias immunity towards the Th2 pathway [Delespesse et al., 

1998]. The level of IFN-γ produced by splenocytes from mice immunized with 

immunogenic leishmania gp63 peptides (B8, CM4 & C2) cultured with APCs pulsed with 

relevant peptides confirmed its role in the activation of Th1 pathway and/or CTL 

responses. Immunization with the C1 peptide failed to produce a significant level of IFN-γ. 

The lack of IL-4 secretion may indicate down regulation or the absence of Th2 responses 

in this model.  

To determine the natural processing of the immunogenic peptides, DNA immunisation was 

performed using two methods; gene gun and intramuscular injection of the DNA, both 

were shown to induce protection against challenge with live parasites (see chapter 3). L. 

mexicana gp63 cDNA construct was used to immunise for peptides C2 & CM4 and L. 

major gp63 cDNA for B8 and C1. Immunisation of HHD II mice by the gene gun and 

restimulation the splenocytes with APCs pulsed with the immunogenic peptides failed to 

generate CTL activity, as measured by either standard 4-hour cytotoxicity assay or the 

production of IFN-γ in the splenocytes culture supernatants. In contrast, the splenocytes of 

mice immunised by I.M. injection of cDNA restimulated with splenocyte LPS blasts 

pulsed with C2 or CM4 produced high levels of IFN-γ compare to those restimulated with 

APCs pulsed with an irrelevant peptide. In addition, a low frequency of CTL activity was 

detected by standard 4-hour cytotoxicity assay only for C2 peptide (1 out of 6 mice). The 

results indicate that these peptides may be naturally processed but the cytotoxicity assay is 

not sensitive enough to detect the immune responses, which are detectable by IFN-γ 

ELISA.  

The potency of I.M. injection of DNA in inducing CTL activity was inline with other 

studies, which reported CTL activity induced by S.C. injection of ß-gal plasmid DNA in 

BALB/c mouse model [Gurunathan et al., 1998]. 
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5.3.2 Peptide immunization in BALB/c mice 

To develop a peptide-based vaccination model in BALB/c mice, which are sensitive to 

Leishmania parasites [Soares et al., 1994], an immunogenic 9-mer peptide “TPHPARIGL” 

derived from β-galactosidase protein and four peptides derived from gp63 with the high 

affinity to H2-Ld and H2-Kd (identified by SYFPEITHI software) were tested in BALB/c 

mice. Although TPH has shown strong immunogenicity when BALB/c mice were 

immunized with a Disabled Infectious Single Cycle Herpes Simplex Virus (DISC-HSV) 

virus encoding β-galactosidase protein followed by in vitro restimulation with TPH [Ali et 

al., 2004a], immunisation with this peptide and adjuvant induced a low, but detectable, 

immune response (CTL activity) in 41% of immunised mice. Co-injection of DISC virus, 

CpG or Titer Max as adjuvants did not enhance the immunogenicity of the TPH peptide 

(data not shown). In addition, increasing the frequency of immunisation up to 3 times did 

not alter the immunogenicity of this peptide (data not shown). Increasing the frequency of 

in vitro restimulation (see Materials and Methods) did not positively alter the 

immunogenicity of peptides. When instead of the adjuvant IFA, Titer Max was used as an 

adjuvant and the splenocytes were pulsed by the relevant peptide without APCs according 

to the protocol used by Anne Saren [Saren et al., 2002], no killing of target cells pulsed 

with relevant peptide was observed compared to those pulsed with an irrelevant peptide 

(data not shown). Immunisation with peptides predicted for mouse MHC class I (A3, A4, 

A5 & A6 with the sequences of YYTALTMAI, DYTNCTPGL, VPNVRGKNF & 

ASLLPFNVF respectively) showed only low levels of immunogenicity. This indicates that 

the BALB/c system is a poor model for peptide vaccination possibly due to the bias of the 

immune system to a Th2 response rather than Th1 [Sacks & Noben-Trauth, 2002]. 

Perhaps, the results also suggest that the computer-based prediction is more accurate for 

human than mouse MHC class I epitopes, since none of the mouse MHC class I predicted 

peptides were immunogenic whereas the protein itself could induce CTL activity in 

BALB/c mouse model (see chapter 4). 

Immunisation of HHDII mice with either C2 or CM4 peptides did not protect the mice 

from L. mexicana infection and the course of the disease in immunised mice was similar to 

that of the controls immunised with non-immunogenic peptide or PBS. This was in 

contrast with the results obtained by Spitzer in BALB/c mice using the 16-mer synthetic 

peptide with the sequence of YDQLVTRVVTHEMAHA derived from L. major gp63 

[Spitzer et al., 1999] where the synthetic peptide protected the infected mice against the 

disease for 10 months. Our results may indicate that the peptide as administered is 
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insufficient to protect mice from the infection and/or induce CTL activity. The generation 

of a Th1 response may be a requirement. 
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Chapter 6 OX40L: Purification and Application in 

leishmania 

 
 
6.1 Introduction 

 
6.1.1 OX40 and OX40L  

OX40 (CD134) is a membrane- associated glycoprotein, which is a member of the Tumour 

Necrosis Factor Receptor (TNFR) superfamily with molecular weight of 47000 – 51000. 

The OX40 ligand (OX40L), is a type Ⅱ transmembrane glycoprotein, which also belongs 

to the Tumour Necrosis Factor (TNF) super family [al-Shamkhani et al., 1996]. 

There are evidences to suggest different expression patterns for OX40 in different species. 

In rats, OX40 was only expressed on activated CD4+ T lymphocytes but in mouse, OX40 

is expressed on both activated CD4+ and CD8+ T cells [al-Shamkhani et al., 1996]. In 

human, OX40 expression is mainly restricted to CD4+ T cells [Durkop et al., 1995], 

however, a naturally soluble OX40 has also been identified in human serum [Taylor & 

Schwarz, 2001]. OX40L is preferentially expressed on activated B cells [Satake et al., 

2000], macrophages, DCs and endothelial cells at the site of inflammation. DCs express 

the OX40L constitutively (Figure  6-1) and the expression of this protein becomes further 

up regulated by LPS stimulation [Barrios et al., 2005; Brocker et al., 1999; Ohshima et al., 

1997; Satake et al., 2000; Souza et al., 1999].  

 
Figure  6-1: Interaction of OX40-OX40L on APC and activated T cells 
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6.1.2 Role of OX40 Ligand in immunity 

It has been shown that OX40 - OX40L engagement is capable of signalling both the cells 

on which they are expressed and has a positive regulatory effect on division, survival, 

effecter function and the number of T cells at the peak of immune responses. This 

interaction induces a strong co-stimulatory signal, which promotes the activation and 

memory development of T cells [Gramaglia et al., 2000; Ohshima et al., 1997]. The 

interaction of OX40 - OX40L has a direct role in adhesion of vascular endothelial cells and 

T cells [Imura et al., 1996]. In early cognate interaction between B and T cells, OX40 - 

OX40L engagement also triggers an OX40L reverse signal that enhances IgG production 

of B cells and promotes the maturation of DCs as evidenced by increase expression of 

CD80, CD86, CD83 and CD115 [Ohshima et al., 1997; Wang et al., 2004]. It has also been 

shown that the engagement of OX40L on antigen presenting cells stimulate naïve T cells to 

differentiate into Th2 [Tanaka et al., 2000]. Furthermore, OX40 on activated naive human 

T cells increases their expression of IL-4, IL-5 and IL-13 [Delespesse et al., 1999; 

Ohshima et al., 1998]. On the other hand recent studies have demonstrated that OX40L 

promotes Th1 immune responses and down regulates the activity of CD4+ CD25+ T reg 

cells [Vu et al., 2007]. In studies carried out by Ito et al [Ito et al., 2006], it was reported 

that OX40L completely inhibited the generation of IL-10-producing Th1 cells from naive 

and memory CD4+ T cells. In other studies, ligation of OX40L on activated DCs enhanced 

their cytokine production (TNF-alpha, IL-12 p40, IL-1 beta, and IL-6) and increased 

CD80, CD86, CD54, and CD40 expression [Ohshima et al., 1997]. The role of OX40L in 

enhancement of CTL activity in a mouse tumour model has been shown by Ali et al [Ali et 

al., 2004b]. Dannull has also shown that the transfection of human DCs with OX40L 

mRNA effectively enhances the CTL activity and Th1 polarization of naive CD4+ T cells 

[Dannull et al., 2005]. Other studies suggest a possible function of OX40L / OX40, 

through T cell-T cell interaction inducing CTL activity and/or a reactivation of memory T 

cells in viral infections and cancers [Takasawa et al., 2001]. 

The potency of OX40L to enhance the immunogenicity of potential vaccines against 

leishmania is not yet fully investigated. Few studies have been carried out to determine the 

role of OX40-OX40L interaction in the immune response raised against parasitic 

infections. Some studies have stated that a down regulation of Th2-type immune response 

by blocking OX40-OX40L interaction using anti-OX40L mAb, which renders a 

therapeutic effect on the  disease [Akiba et al., 2000], however, other studies are to show 

that administration of OX40L enhances the immunity against the parasite [Zubairi et al., 
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2004]. Nevertheless, determination of the OX40L potential to be used in combination with 

vaccines or anti-leishmanial drugs is a new objective in leishmania research and needs 

more investigation. 

The main objective of this study was to determine the effect of administration of OX40L in 

L. mexicana cutaneous infection and the potency of this protein in enhancing the 

immunogenicity of leishmania potential vaccines. OX40L-IgG fusion protein was 

produced and purified from transfected B9B8E2 cells. B9B8E2 cells are hamster kidney 

cells transfected with both mouse OX40L and mouse IgG1 capable to produce and release 

mouse OX40L-IgG fusion protein in the cell culture supernatant. For purification of 

OX40L-IgG from B9B8E2 culture supernatants, two novel resins named MBI and MEP 

were used. It is now clear that the main purpose of protein purification is the isolation of 

the given protein with maximum yield and highest purity while the protein holds its 

chemical and biological integrity. As proteins have different structures and different 

characteristics, the method of purification varies. Many studies have been carried out to 

develop methods by which proteins can be purified with a high yield and several methods 

have yet been developed. Most of protein purification methods are based on differences in 

the biochemical properties such as overall charge, size, and hydrophobicity between the 

protein of interest and the contaminants. Some of the common methods used for 

purification of proteins are, precipitation with ammonium sulfate (NH4)2SO4, 

ultracentrifugation and chromatographic methods. The basic procedure in chromatography 

relies on separating the protein passage through a column packed with different resins, 

which can interact with the protein of interest. These resins normally consist of a ligand, 

which binds to the protein of interest, the matrix, which is a solid phase to immobilize the 

ligand by covalent bonds and a spacer arm, which is normally included in-between the 

matrix and the ligand to encourage binding where the small size of the ligand prevents free 

access to proteins in the solvent [Weimer et al., 2000]. Based upon the interaction of the 

protein with the resins of the column, the chromatographic methods are divided into size 

exclusion chromatography (Gel filtration), affinity chromatography, ion exchange 

chromatography and Hydrophobic Charge Induction Chromatography (HCIC). MBI and 

MEP resins are among resins that work with ion exchange while Protein A sepharose 

works based on affinity chromatography.  

In this study, the purification conditions of B9B8E2 cell produced OX40L-IgG for both 

MBI and MEP resins were first optimised and then the biological activity of the OX40L 

purified by these resins was compared with that of protein A sepharose resin. Finally, the 
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therapeutic effects of MM1 (the OX40L produced by Xenova) and the MBI purified 

OX40L on L. mexicana cucaneous infection were investigated. 
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6.2  Results 

6.2.1 Optimisation and purification of mouse OX40L-IgG by MBI resin 

The structure of 2-mercapto-5-benzimidazole sulfonic acid is based upon the presence of a 

heterocyclic, a sulphur atom and an aromatic ring supporting a strong acidic group, which 

is negatively charged over the whole range of working pH (Figure  6-2). According to the 

information presented by the manufacturer, antibodies are adsorbed to the resin in 

physiological ionic strength whereas the elution occurs at bufferic pHs. 

 

  
Figure  6-2: Structure of the MBI Ligand (Adapted from MBI Hypercel product note).  
MBI ligand has a sulfonate group present on the aromatic ring.   
 

 
 
Particle size 80-100µm 

Dynamic binding capacity for hu IgG 20-40 mg/ml 

Ligand 2-mercapto-5-benzimidazole sulfonic acid 

Working pH Adsorption: pH 5.0-5.5 

Elution:       pH 8.0-9.5 

Cleaning pH 3-14 

Pressure resistance < 44 psi 

Typical working pressure < 14psi 

Table  6-1: Key features of MBI Hypercel (Adapted from MBI Hypercel product note). 

 

 

The OX40L-IgG producing cell line (B9B8E2) was cultured according to the protocol 

supplied by Xenova plc (see materials and methods). Briefly, the cell culture media was 

renewed every 5 to 7 days and the supernatants were collected and kept in –80 until 

required. MBI, a novel resin designed for purification of antibody, was used to purify 

OX40L-IgG from the B9B8E2 cell supernatant. To optimise the purification conditions, 

sodium acetate buffer and sodium acetate buffer plus NaCl at pH 4, 4.5, 5, 5.2, 5.5, 6 or 6.5 

were used as loading buffers and tris buffer at pH 9 was used for elution. Fractions were 

collected and total protein was determined by measuring absorbance at 280nm using 

spectrophotometer (Figure  6-3) and also for selected fractions using BCA kit (see materials 
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and methods). The presence of OX40L was determined in all fractions by dot blotting and 

the concentration of OX40L was marked as + to +++ according to the size of spots (Table 

 6-2). The highest level of total protein was obtained in elution fractions when the samples 

were loaded at pH 4 (Figure  6-3). There was no significant difference between sodium 

acetate and sodium acetate plus NaCl at 280nm absorbance; however, the amount of 

protein in the eluting fractions was slightly higher in the presence of NaCl (Table  6-2). 

 

 

 

 

Buffer: Sodium Acetate Buffer: Sodium Acetate+NaCl 

Loading 

pH 
4 

Elution 

Fraction

s 

10, 11 
Loading 

pH 
4 

Elution 

Fractions 
11, 12 

Fraction 
Protein 

mg/ml 

Fractio

n 

 

Dot 

Blotting 

Results 

Fraction 
Protein 

mg/ml 
Fraction 

Dot Blotting 

Results 

1 0.120419 1 - 2 0.120013 3 - 

2 0.119877 2 - 5 0.169938 4 - 

5 0.159926 4 - 10 0.124884 5 - 

7 0.153432 6 - 12 0.469833 8 - 

9 0.19754 10 +++   11 +++ 

10 0.458671 11 ++   12 +++ 

11 0.134625       

Table  6-2: Total protein and detection of OX40L in sample fractions purified by MBI resin 
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Figure  6-3: Fraction absorption at 280nm for samples loaded at pH4 using sodium acetate or sodium 
acetate+ NaCl for loading buffer.  
2 ml of B9B8E2 cell culture supernatant was mixed up with same volume of 100mM sodium acetate or 
100mM sodium acetate + 150mM NaCl at a set of pHs from 4 to 6.5. After loading the samples, the OX40L 
was eluted with Tris buffer at pH 9. All samples were collected in fractions of 6ml. the absorbance of 
fractions was measured at 280nm by spectrophotometer.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To confirm the presence of OX40L-IgG in the fractions and determine the purity of the 

samples, selected fractions were probed with anti-mouse OX40L, anti-mouse IgG and 
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bovine IgG antibodies using western blotting. mOX40-mIgG1 (MM1) produced by 

Xenova plc was used as positive control (Figure  6-4). 

 
A: Probed by anti mouse OX40L antibody  
 
 
 
 
50 KD 
 
22 KD 
  

   1   2     3       4      5    6    7   8   9  

1- Unpurified sample  
2, 3- Loading fractions (sodium 
acetate pH=4) 
4, 5- Elution fractions (tris pH 
9.5)  
6, 7- Loading fractions (sodium 
acetate + NaCl pH=4) 
8, 9- Elution fractions (tris pH 
9.5)  

B: probed by anti mouse IgG antibody  
 
 
 
 
50 KD 
 
22 KD 
  

1   2    3      4     5     6     7     8    9  
 

1- Unpurified sample  
2, 3- Loading fractions (sodium 
acetate pH=4) 
4, 5- Elution fractions (tris pH 
9.5)  
6, 7- Loading fractions (sodium 
acetate + NaCl pH=4) 
8, 9- Elution fractions (tris pH 
9.5)  

C: probed by anti bovine IgG antibody  
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1- Unpurified sample  
2- Loading fractions (sodium 
acetate pH=4) 
3- Elution fractions (tris pH 9.5) 
4- Loading fractions (sodium 
acetate + NaCl pH=4) 
5- Elution fractions (tris pH 9.5)  
6- MM1 
 

Figure  6-4: Detection of OX40L purified by MBI resin using western blotting. 
B0B8E2 cell culture supernatants were collected and purified by MBI resin. The presence of OX40L was 
detected in the sample fractions collected during loading and elution phases by gel electrophoresis and using 
anti-mouse OX40L antibodies. The presence of mouse IgG and bovine IgG were also determined by using 
anti-mouse or bovine IgG antibodies. 
 
 
 
 
 To optimise the pH for the elution buffer, Tris buffer at pH 7, 7.5, 8, 8.5, 9, 9.5 and 10 was 

used together with sodium acetate plus NaCl at pH 4 as loading buffer. The results clearly 
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showed that increasing the pH of the elution buffer from 7 to 10 increased the total protein 

in the eluted fractions. The highest protein measurement was for the fractions eluted at pH 

9.5, which was finally selected as the optimum elution pH (Figure  6-5).  
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Figure  6-5: Total protein of sample fractions evaluated by protein assay or measuring the absorbance 
at 280 nm. 
2 ml of B9B8E2 cell culture supernatant was mixed up with same volume of 100mM sodium acetate buffer 
containing 150mM NaCl and the pH was adjusted at 4. The OX40L was eluted with Tris buffer at a set of 
pHs from 7 to 10. All samples were collected in fractions of 6ml. A)The total protein was assessed by BCA 
kit according to the manufacturer’s instructions. B) Absorbance was also measured at 280nm by 
spectrophotometer.   
 
 
 
 
 
 
 
 
 
Due to the presence of FCS in the cell culture media of B9B8E2 cells, the sample fractions 

loaded at pH 4 and pH 5.2 were collected and checked for bovine serum albumin (BSA) by 

western blotting. The results clearly showed that the amount of BSA as detected by 
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western blotting in the elution fraction was much higher at pH 4 in comparison to pH 5.2 

(Figure  6-6).   
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Figure  6-6: Detection of BSA in OX40L samples purified by MBI resin at pH 4 and pH 5.2.  
B9B8E2 cell culture supernatants were purified by MBI resin. The samples were loaded at a set of pH from 4 
to 7 and eluted at pH 9.5. The purified samples were analysed for BSA by western blotting using anti-BSA 
antibodies. 
 

 

 

 

 

 

 

 

 

 

 

6.2.2 Purification of mouse OX40L-IgG fusion protein by MEP Hypercel 

resin 

The structure of 4-mecapto-ethyl-pyridine is based on the presence of a pyridine ring 

Figure  6-7. MEP is attached to a hydrophilic matrix through a hydrophobic spacer arm. The 
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hydrophobic spacer arm provides enhanced selectivity for the adsorption of antibodies. The 

presence of a pyridine ring is also shown to enhance antibody selectivity [Bak & Thomas, 

2007; Mowry et al., 2004]. MEP has an isoelectric pH point of 4.8 and hence un-charged in 

neutral conditions. The resin becomes positively charged when the pH is below 5 due to 

repulsive forces between the resin and the positively charged antibody. Pyridine rings 

associated with sulphur atoms are relatively well documented as being able to separate 

immunoglobulins from complex mixtures such as serum proteins [Nopper et al., 1989]. 

The main properties of the MEP resin is shown in Table  6-3. 

 

 

 
 

Figure  6-7: Structure of the MEP Ligand (Adapted from MEP Hypercel product note). 

 

 

 

Particle size 80-100µm 

Dynamic binding capacity for hu IgG ≥ 20mg/ml 

Ligand 4-Mercapto-Ethyl-Pyridine 

Ligand density 70-125µmol/ml  

Working pH 3-12 

Cleaning pH 3-14 

Pressure resistance < 44 psi 

Typical working pressure <14 psi 

Table  6-3: Key features of MEP Hypercel (Adapted from MEP Hypercel product note). 

 

To optimize the conditions of MEP resin for purification of the OX40L-IgG fusion protein, 

a constant pH 8 for loading and a set of pHs of 6.0, 5.8, 5.6, 5.4, 5.2, 5.0, 4.7, 4.5, 4.3, 4.0 

and 3.0 for elution were applied (see materials and methods). Because in MEP resin 

different proteins are eluted at different pHs, elution buffers at different pHs were applied 

continuously in decreased order from high to low. The flow of each buffer pH was 

continued until the absorbance at 280nm was stabled at 0.01 (Figure  6-8). All fractions 

were collected and tested for OX40L by western blotting using anti mOX40L antibodies. 

The western blotting results clearly showed that the OX40L-IgG fusion protein bound to 

MEP resin starts eluting at pH below 5, which peaked at pH 4.5 (Figure  6-10). 
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Figure  6-8: Optimisation of elution pH for purification of  mouse OX40L-Ig fusion protein by MEP 
resin. 
2 ml B9B8E2 cell culture supernatant was mixed with the same volume of 50mM tris buffer and adjusted at 
pH 8. After loading the sample, the loading buffer was run continuously until the absorbance at 280 was 
stabled at 0.01. Elution buffer (50mM sodium acetate) at a set of pH was applied for elution. 1: pH 8.0, 2 to 
11: pH 6.0, 5.8, 5.6, 5.4, 5.2, 5.0, 4.7, 4.5, 4.3, 4.0 and 3.0 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the second step to confirm the conditions of the purification, the samples were loaded at 

pH 8. Then, the resin was eluted, after washing with the loading buffer, with the elution 

buffers of pH 5, 4.5 and 3 continuously (Figure  6-9). Using this method the OX40L-IgG 

fusion protein was successfully purified at pH 4.5. The presence of OX40L in the elution 
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fractions was confirmed by western blotting using anti-OX40L antibodies (Figure  6-10A). 

To evaluate the purity of the OX40L, the MEP purified samples were also checked for the 

presence of mouse IgG, bovine IgG and bovine albumin (Figure  6-10B, C, D). 
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Figure  6-9: Improved method of purification of OX40L-IgG by MEP resin. 
B9B8E2 cell culture supernatants were mixed up with same volume of the loading buffer (50mM tris buffer 
ph 8) and then loaded onto MEP resin after adjusting the pH to 8. The column was washed with the loading 
buffer until the absorbance at 280 was stabled at 0.01. The column was first eluted with the elution buffer 
(50mM sodium acetate pH) at pH 5 followed by pH 4.5 and pH 3.   
 

 

 

 

 

 

 

 

 

 

 

 

A: OX40L purified by MEP resin probed by anti-OX40L antibody 

Loading fraction pH 8 
pH 5 

pH 4.5 

pH 3 
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Figure  6-10: Detection of OX40L, mouse IgG, bovine IgG and BSA in samples purified by MEP resin. 
B9B8E2 cell culture supernatants were loaded at pH 8 (see Materials and Methods) and eluted at ph 5, 4.5 
and 3 continuously. The presence of OX40L, mouse IgG, bovine IgG and BSA was checked in the fractions 
by western blotting using relevant antibodies. 
 

 

 

 

 

 

 

6.2.3 Purification of OX40L-IgG fusion protein by protein A sepharose 

resin 

As a standard method for purification of antibodies, Protein A Sepharose column was used 

to purify the OX40L-IgG fusion protein from the B9B8E2cell culture supernatant (Figure 

 6-11). B9B8E2 cell supernatant was loaded on the column at pH 7, washed with PBS and 
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eluted at pH 3 (see Materials and Methods). The fractions were analysed for the presence 

of OX40L by western blotting and compare with that of Xenova OX40L (Figure  6-12). 

The results clearly showed that purification was affected by the stringency and washing 

speed between the loading and elution (data not shown). Therefore, loading time, 

stringency of wash and elution were modified to optimise conditions for OX40L 

purification (data not shown). 

 
 
 
 

0.0

50.0

100.0% Buffer B

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

-50.0

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

00:00:00 00:30:00 01:00:00

Fractions

Hr:Min:Sec mS/cmAU  
       1             2     3    4 
 

1. washing with PBS 

2. Loading sample 

3. PBS wash after loading 

4. Eluting OX40L with Tris/ 

glycine pH3 

 

Figure  6-11: OX40L purification using Protein A Sepharose Column.  
Protein A sepharose resin was washed with PBS and B9B8E2 cell culture supernatants were loaded onto the 
column. The column was given another PBS wash to remove all unbound proteins. The OX40L bound to the 
column was then eluted with tris/glycin at pH 3.  
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Figure  6-12: Purification of OX40L-IgG with protein A sepharose.  
B9B8E2 cell supernatants were purified by protein A sepharose resin (see materials and methods). Alteration 
of the time or speed of the wash between loading and elution largely affected the concentration of the OX40L 
in the purified samples A: The OX40L-IgG (MM1) fusion protein purified by Xenova plc; B: in house 
experiment 1- Positive control, 2- MM1, 3-6 OX40L-IgG purified samples by protein A resin 
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6.2.4 Biological activity of OX40L-IgG 

The biological effect of the OX40L purified by MBI and MEP on the growth of CT26 

tumour cells was assessed and compared with that purified by protein A sepharose resin. 

Four groups of 10 female BALB/c mice were implanted S.C. with 2×104 CT26 tumour 

cells on the right flank. On day 3 and 7, three groups were injected I.P. with 

500µg/100µl/mouse OX40L-IgG purified by MBI, MEP and protein A sepharose 

accordingly. The fourth group was injected with 100 µl PBS and used as control. The 

results clearly showed a significant delay in tumour growth when mice were injected with 

the OX40L regardless of the resin used for purification. However, tumour progression in 

mice injected with the OX40L-IgG purified by MBI resin was significantly slower than 

those injected with the OX40L purified by the other resins. No significant difference was 

observed between biological activities of the OX40L purified by MEP and protein A 

sepharose resins (Figure  6-13). The MBI purified OX40L-IgG was also effective at a 

concentration of 1.3 mg and 40 µg/100 µl/mouse (Figure  6-14 A & B respectively). 
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Figure  6-13: Efficacy of OX40L purified by MBI, MEP or pro ten A sepharose resin against the growth 
of CT26 tumour cells in vivo.  
4 groups of 10 BALB/c mice were implanted S.C. with 2×104 CT26 tumour cells and injected I.P. with 
500µg per mouse of OX40L-IgG purified by MBI, MEP and protein A sepharose resins. The fourth group 
was given 100µl per mouse PBS. The tumour growth was monitored regularly twice a week. Student t-test 
was used to analyse the data. The graph represents one experiment. Bars represent the standard deviation 
n=10. 
 

 
 
 
 
 

P-value MBI, PBS 0.0020 
P-value MEP, PBS 0.047 
P-value Pro A, PBS 0.03 
P-value MBI, Pro A 0.0026 
P-value MBI, MEP 0.018 
P-value MEP, Pro A 0.261 
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Figure  6-14: Effect of OX40L-IgG purified by MBI resin on CT26 tumour cell growth in vivo.   
2 groups of 10 BALB/c mice were injected S.C. with 2 ×104 CT26 cells. One group was treated 
intrapritonally with 1.3mg (graph A) and 40µg (graph B) OX40L-IgG fusion protein purified by MBI column. 
The OX40L-IgG protein was injected twice on day 3 and 7. Animals were monitored regularly for tumour 
growth. Student t-test was used to analyse the data. Each graph represents one experiment. Bars represent S.E. 
n=10. 
 

 

P-value 0.0012 
1/9 mice tumour 
free 
 

P-value= 0.024 



Chapter 6/OX40L: Purification and Application in leishmania 162 

6.2.5 Effect of OX40L-IgG (MM1) on leishmania infection 

To assess the effect of OX40L-IgG on leishmania infection, two groups of 6 BALB/c mice 

were injected I.D. with 2×106 L. mexicana promastigotes. On days 3 and 7, the first group 

was injected I.P. with 100µg/mouse MM1 (OX40L-IgG fusion protein) and the 2nd group 

was given 100µl PBS. Mice were regularly monitored for two months. The results clearly 

showed significant reduction in size of cutaneous leishmania lesions in MM1 treated group 

compared to control (Figure  6-15A). The group injected I.P. with MM1 showed local acute 

inflammatory reactions at the site of lesions soon after the injection of the OX40L, which 

lasted for 3 weeks. This group also showed a formation of scar tissue at the site of infection 

(Figure  6-15B). After two months, 40% (2 out of 5) of mice injected with MM1 remained 

lesion free (Figure  6-15 C).       

A: Lesion progression in mice treated with OX40L B: Scar progression in mice treated with OX40L 
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C: Healed leishmania lesion following the injection of MM1 

 

Figure  6-15: Effect of OX40L on L. mexicana infection.  
Two groups of 6 BALB/c mice were inocluted with 2×106 L. mexicana promastigotes. The first group was 
injected with 100µg/100µl/mouse of MM1 and the second group with 100µl PBS. Mice were injected twice 
on day 3 and 7 after infection. Mice were monitored regularly two times a week. The graph represents 2 
independent experiments. Bars represent the standard deviation n=6. 

P-value 0.018 
2/5 mice lesion free 
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6.2.6 Effect of OX40L-IgG (MM1) on the immunogenicity of SLA 

To assess the effect of MM1 on the enhancement of the immunogenicity of SLA, four 

groups of BALB/c mice were immunised with SLA, SLA in combination with MM1, 

MM1 and PBS. SLA was injected S.C. at 100µg per mouse mixed with the same volume 

of IFA at the base of the tail twice at two weeks interval and MM1 was injected I.P. at dose 

of 100µg per mouse on day 3 after SLA. Two weeks after the second immunisation, mice 

were challenged with 2× 106 L. mexicana. No significant delay was observed in mice 

treated with SLA or MM1 alone compared to those receiving PBS. However, a small but 

not significant delay was observed in mice treated with SLA and MM1 compared to those 

given SLA alone or PBS (Figure  6-16).  Also, no significant difference was observed 

between mice injected with MM1 and PBS. None of the mice were lesion free when the 

experiment was terminated. The results indicated a low effect for the OX40L when it was 

administered before challenging mice with the parasite compare to those injected after 

challenging with the parasite showed in  6.2.5. 
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Figure  6-16: Protection induced with SLA and MM1against L. mexicana infection. 
Four groups of 6 female BALB/c mice were selected. The first (-♦-) and second group (-■-) were immunised 
S.C. at the base of tail with 100µg SLA per mouse on days 0 & 14. Second (-■-) and third (-▲-) groups were 
given 100µg/mouse of MM1 I.P. on days 3 & 17 (3 days after immunisation with SLA). The group four (-×-) 
was injected with PBS. On day 28 all mice were challenged with 2×106 L. mexicana promastigotes. Mice 
were monitored regularly twice a week. Student t-test was applied to statistically analyse the data. The graph 
represents one experiment n=6.  
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6.2.7 Effect of MBI resin purified OX40L-IgG on leishmania infection 

To assess the efficacy of the OX40L purified by MBI resin in leishmania infection, the 

progression of leishmania lesions in groups of BALB/ mice treated with MBI purified 

OX40L was investigated. In this study, two groups of mice were injected I.D. with 2×106 

L. mexicana promastigotes and then one group was treated with 500µg of the OX40L 

purified by MBI resin given on days 3 and 7 after infection. The second group was injected 

with PBS. The results showed a significant delay in lesion progression in mice treated with 

the OX40L compared to those injected with PBS and 33% (2 out of 6) of mice receiving 

the MBI purified OX40L remained lesion free (Figure  6-17 ). 

 

A:  Lesion progression in mice treated with OX40L B: Scar progression in mice treated with 
OX40L 

0

0.1

0.2

0.3

0.4

0.5

0.6

10 13 18 21 26 30 33 36 39 45 50 53 57 60 64

Day after injection of parasite

L
es

io
n

 s
iz

e 
cm

2

MBI purif ied
OX40L

PBS

 

0

0.1

0.2

0.3

0.4

0.5

0.6

10 13 18 21 26 30 33 36 39 45 50 53 57 60 64

Day after injection of parasite

S
ca

r 
si

ze
 c

m
2

MBI purif ied
OX40L

PBS

 

D: Lesion free mice following the injection of MBI 
purified OX40L  

 

 

 

Figure  6-17: Effect of OX40L purified by MBI resin on L. mexicana infection.  
Two groups of 6 female BALB/c mice were injected with 2×106 L. mexicana promastigotes. The first group 
was injected I.P. with two doses of 500µg MBI resin purified OX40L 3 and 7 days later. The second group 
was given PBS. Mice were monitored regularly twice a week and student t-test was used to analysed the data. 
The graph represents 2 independent experiments. Bars represent the standard deviation n=6. 
 

P-value 0.00052 
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6.3 Discussion  

 
6.3.1 OX40L purification 

Antibodies are essential in biomedical research and the optimal purification of antibodies 

has always been an objective for researchers. Finding a specific ligand, which can be used 

for purification of recombinant proteins, is sometimes difficult, therefore antibodies have 

been used to bind the protein of interest to make fusion protein to be used for purification. 

In this study, B9B8E2 cells, donated by Xenova plc, were transfected with the murine 

OX40L and IgG1 plasmids and were used to produce the mOX40-mIgG1 (MM1). The 

therapeutic efficacy of the MM1 fusion protein has previously been described in murine 

tumour models [Ali et al., 2004b]. In the present study, two novel resins (MBI & MEP) 

were used for the first time for the purification of OX40L-IgG fusion protein. To obtain 

optimum purification, the conditions of loading and elution were optimised and the purity 

was determined by western blotting using anti-murine OX40L antibodies. The biological 

activity of the product was also assessed against tumour growth and compared with that of 

the conventional methods (protein A sepharose), which were previously described by 

Xenova plc [Xenova plc MM1 product leaflet].  

MBI Hypercel is a resin recently designed for specific chromatographic capture of 

antibodies [MBI Hypercel product note]. In a study carried out by Brenac, MBI resin was 

successfully used for purification of antibodies from a cell culture supernatant and it was 

shown that uptake increased when the pH decreased [Brenac et al., 2005]. Our results 

confirmed that lowering the pH increases the binding of proteins to the resin and as the pH 

increases, the binding of the OX40L-IgG to the resin reduces. The maximum binding of 

proteins including the OX40L-IgG fusion protein to the resin occurred at pH 4; decreased 

amount of unbound OX40L-IgG was detected during the loading of the sample at this pH 

4. This is in contradiction with the results of Branac et al [Brenac et al., 2005] where the 

complete absorption of their antibody occurred at pH 5. The optimum pH for desorption of 

OX40L-IgG from the resin was pH 9.5 and this was similar to that of Branac et al [Brenac 

et al., 2005]. These results may indicate that for purification of each type of antibody, the 

conditions of purification by MBI resin need to be optimised.  

The purity of the purified product was determined by testing representative samples for 

contamination with BSA and bovine IgG. When samples were loaded at pH 4, the BSA 

completely bound to the resin and there was no unbound BSA released during the loading 

phase (as determined by western blotting). When the loading pH was increased to 5.2, no 
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BSA bound to the resin. Therefore, loading the samples at pH 5.2 resulted in more pure 

OX40L-IgG fusion protein, although compared to pH 4, adsorption of OX40L-IgG fusion 

protein at pH 5.2 was slightly less. This specific pH adsorption (5.2) was in agreement with 

the results obtained by Brenac et al (5.0 to 6.0) and Girot et al (5.0 to 5.5) [Brenac et al., 

2005; Girot et al., 2004]. No bovine IgG binding was detected under the same conditions. 

According to the datasheets produced by Xenova plc, MM1 has been produced through the 

purification of the cell supernatant by protein A sepharose resin. Thus, there may be a 

selectivity for binding of different antibodies to MBI resin where it is not for protein A 

sepharose resin, however this aspect requires further investigation.  

MEP Hypercel resin is a hydrophobic charge interaction chromatography resin designed 

for purification of antibodies. It is shown that MEP Hypercel has a negative charge at pH 7 

and above and a positive charge at lower pH; therefore, proteins bind to the resin at pH 

above 7 whereas they start eluting at pH below 7. This resin has successfully been used for 

purification of monoclonal antibodies [Dux et al., 2006; Mowry et al., 2004]. In the present 

study, MEP resin was used for the purification of OX40L-IgG fusion protein. To optimise 

the elution pH, a range of different pHs were tested, showing that the OX40L-IgG fusion 

protein is eluted only at pH 4.5. Testing the product for BSA and bovine IgG revealed that 

the OX40L purified by the resin was free of both BSA and bovine IgG, neither which was 

detected in the purified samples by western blotting indicating selectivity in the 

purification.  

Additionally, OX40L-IgG was purified from B9B8E2 cell culture supernatant by protein A 

sepharose column (see materials and methods). Purification by protein A sepharose is 

based on the affinity of FC portion of the fusion protein for the protein A. It was shown 

that increasing the course or the speed of the wash after loading the sample caused the loss 

of majority of the OX40L in the samples. This clearly shows that protein A sepharose resin 

has potential to bind to the OX40L-IgG molecules but the binding is very weak. Therefore, 

the speed of sample flow through the resin or increasing the course of wash result in a 

reduction in the amount of purified OX40L-IgG molecules.  

 

6.3.2 Biological activity 

It has been shown that the OX40L can enhance T cells immunity [Ali et al., 2004b], 

however, the effect of the method of purification on the biological activity of the OX40L 

has not yet been fully investigated. To the best of my knowledge, this is the first study, 

which has investigated the effect of methods of OX40L purification and immunisation 
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relative to the biological activity of the OX40L-IgG fusion protein. The biological activity 

of the OX40L purified by MBI, MEP and protein A sepharose were compared in a tumour 

growth inhibition experiment in a BALB/c mouse model. Mice treated with the same doses 

of the OX40L purified by the three resins showed a significant delay in tumour growth 

compared to the controls injected with PBS. Mice treated with the OX40L purified by MBI 

resin showed a significant delay in tumour growth compared with mice injected with 

OX40L purified by other resins suggesting a greater biological activity for the product 

purified by using the MBI resin. Better biological activity for OX40L purified by MBI may 

be due to less harsh conditions of purification; in MBI resin since the samples were loaded 

at pH 5.2 (less acidic) and eluted at pH 9.5 (basic) whereas in MEP and protein A 

sepharose resins the samples were loaded at pH 8 or 7 and eluted at4.5 or 3 (highly acidic). 

It has been observed that proteins at low pH are denatured and their tertiary or even 

secondary structures are changed [Poklar et al., 1997]. Then, it is possible that the elution 

of the OX40L at very low pHs affects its biological activity by altering the molecular 

structure of the protein. Further studies are needed to confirm these findings. 

 

6.3.3 Effect of OX40L in leishmania infection  

The role of OX40-OX40L co-stimulation in leishmania infection is not fully understood. 

Some studies showed that blocking the OX40L by the administration of anti-OX40L mAb 

abrogated the progressive disease in BALB/c mice. This was accompanied by reduction of 

Th2 cytokines and anti-L. major IgG1 [Akiba et al., 2000]. In addition, studies on L. major 

in OX40-deficient mice have suggested a less essential role for OX40 co-stimulation in 

immunity to leishmania [Pippig et al., 1999]. In another study, it was shown that 

constitutive OX40-OX40L interactions in OX40L deficient mice converted the normally 

resistant C57BL/6 strain, into a susceptible status following L. major infection due to an 

extraordinary elevated Th2 response [Ishii et al., 2003]. This was in agreement with studies 

showing that the OX40-OX40L co-stimulation augments the differentiation of T cells 

toward Th2 by up regulating expression of IL-4  and IL-13 and suppression of IFN-γ 

[Delespesse et al., 1999; Flynn et al., 1998; Ohshima et al., 1998; Tanaka et al., 2000]. On 

the other hand, other studies have suggested a mutual role for OX40-OX40L co-

stimulation affecting both Th1 and Th2 immune response. Ito et al [Ito et al., 2006] showed 

that OX40L strongly inhibited IL-10 production and abrogated the suppressive function of 

IL-10-producing CD4+ type 1 regulatory T cells. Also, OX40L-deficient mice show a  

reduction of both T helper type 1 (Th1) and Th2 cytokines [Murata et al., 2000]. 
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Furthermore, the Th1 and Th2-cytokine production by DCs including IL-2, IFN-γ, IL-10, 

and IL-13 were inhibited by an anti-rat OX40L mAb [Satake et al., 2000]. Stimulation of 

DC through OX40L enhanced their maturation and up regulated the production of Th1 

cytokines such as IL-2, IL-12 and IFN-γ, and increased the expression of other co-

stimulatory molecules [Ohshima et al., 1997; Wang et al., 2004]. Similar results were 

obtained when DCs were transfected with the OX40L gene where the transfected DCs 

were capable of polarization of naive CD4+ T cells toward Th1. Vaccination of tumor-

bearing mice using OX40L mRNA-cotransfected DCs resulted in significant enhancement 

of therapeutic anti-tumour immunity due to in vivo priming of Th1-type T-cell responses 

[Dannull et al., 2005]. The potency of OX40L in generating CTL activity against tumour 

has also been shown in mouse model [Ali et al., 2004b; Assudani et al., 2006].  

In L. donovoni, recent studies have shown that the OX40L fusion protein (OX40L-FC) has 

a therapeutic effect on leishmania either alone or when co-administered with anti-

leishmania drugs through enhancing CD4+ T cell activity [Zubairi et al., 2004]. To the best 

of my knowledge, there is no report of administration of OX40L on cutaneous 

leishmaniasis either in therapy or prophylactic immunisation and the present study for the 

first time reports the effect of OX40L on L. mexicana infection. The therapeutic effects of 

MM1 (OX40L-IgG purified by protein A sepharose and produced by Xenova plc) was 

tested in a challenge experiment using L. mexicana infected BALB/c mice. Mice received 

two doses of 100µg MM1, which was previously shown to be effective against tumour 

progression [Ali et al., 2004b], on day 3 and 7 after the infection. Mice receiving MM1 

generated an inflammatory reaction a few days after the injection of the OX40L, which 

was gradually dampened and finally disappeared 3 weeks later. This inflammatory reaction 

could be due to the high dose of OX40L in MM1 product. There was a significant delay in 

the growth of developing lesions in mice receiving OX40L compared to controls injected 

with PBS and the size of lesions in the group receiving MM1 was significantly smaller 

than that of injected with either PBS. 40% of mice given MM1 remained lesion free for 

two months, when experiments were terminated. The efficacy of the OX40L purified by 

MBI resin was also determined by the administration of 500µg of the product (the effective 

dose against tumour progression see  6.2.4) resulting in a significant delay in lesion 

progression in mice treated with the OX40L compared to those receiving PBS; 33% of the 

OX40L treated mice remained free of lesion after two months and did not experience 

major inflammatory reaction as shown for mice treated with MM1.  
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The results clearly indicate the high therapeutic effect of OX40L in L. mexicana infection. 

The positive therapeutic effect of OX40L demonstrated in this study was in agreement 

with that of Zubairi [Zubairi et al., 2004]. The effect of the method of purification on the 

affectivity of OX40L in leishmania infections is now being carried out in our lab. We 

failed to detect CTL activity against DCs loaded with SLA in the mice challenged with L. 

mexicana promastigotes and then treated with MBI-purified OX40L-IgG. Determination of 

CTL activity soon after treatment with OX40L-IgG and also the role of other T cell subsets 

in the healing process needs to be further studied. Immunisation of SLA in combination 

with MM1 revealed that OX40L did not enhance the immunogenicity of SLA. In addition, 

injection of MM1 alone before the initiation of infection did not result in any effect on the 

infection. The effect of OX40L on the enhancement of the immunogenicity of other types 

of vaccines and increasing the efficacy of methods of immunisation, such as gene gun 

immunisation, needs to be further investigated since it provides new opportunities for 

developing new vaccine strategies. 
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Chapter 7 Discussion 

 
 
7.1 Leishmania Immunity Induced by immunisation 

Leishmania is an intracellular parasite affecting a large group of people in the world and 

developing a potent vaccine has always been a goal for leishmania vaccine researchers. It 

is well known that leishmania infected individuals develop a long-term immunity to the 

parasite after the infection [Khamesipour et al., 2006], rationalizing the efforts made for 

developing a potential vaccine for prevention or cure of leishmania infections. Vaccines 

produced against leishmania parasites are now classified into two main groups: old and 

new generation vaccines. The old vaccines were based on using either live or killed 

parasites as a vaccine, which have demonstrated a lack of sufficient immunity or difficulty 

in the standardisation of the vaccine [Khamesipour et al., 2006; Sharifi et al., 1998]. New 

generation of leishmania vaccines are mainly based upon using a single or a combination 

of immunogenic genes rather than a “cocktail” of proteins such as killed parasites. The 

genome of Leishmania, which is approximately 35 Mb containing approximately 8500 

genes, was sequenced in 2002. It is believed that these genes are probably translated into 

more than 10 000 proteins [Almeida et al., 2002]. Different leishmania proteins have been 

used as vaccine candidates in which only a few immunogenic proteins have been found 

and tested in animal models using different methods of immunisation. 

In the present study, the immunogenicity of different vaccines including leishmania 

autoclaved vaccine, soluble leishmania antigens and DNA vaccines were compared. 

Although the protective potential of Autoclaved L. major (ALM) along with BCG against 

L. donovani in animal models was shown in some studies [Dube et al., 1998], other studies 

did not confirm this type of immunisation for cutaneous leishmaniasis particularly in 

human [De Luca et al., 1999; Khalil et al., 2000; Momeni et al., 1999]. Therefore, the 

protective immunity of autoclaved parasite is still questionable. In our experiments, the 

autoclaved parasite did not induce significant immunity to protect BALB/c mice against 

the infection. Also, the evaluation of IgG1 and IgG2a in the serum of immunised mice 

suggested the absence of Th1 immune response. Injection of SLA containing L. mexicana 

gp63 protein also failed to induce better immunity than autoclaved parasites and none of 

the SLA immunised mice remained lesion free. Analysing the antibody levels and types 

induced by the SLA immunisation showed that SLA produced high levels of both IgG2a 

and IgG1 indicating the presence of both Th1 and Th2 immune responses respectively. 
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These results were similar to those of Sharma [Sharma et al., 2006] suggesting a mixed 

Th1/Th2 immune response induced by SLA. 

Dendritic cells (DCs) have been proposed to play an important role as adjuvants in 

vaccination and immunotherapy [Jack et al., 2007]. In leishmania vaccination studies, 

higher levels of immunity has been reported using SLA-loaded and/or IL-12-transfected 

DCs [Ahuja et al., 1999; Ghosh et al., 2003]. In contrast, our results demonstrated that DCs 

loaded with SLA, although capable of inducing significant levels of both Th1 and Th2 

responses measured by increases in IgG2a and IgG1 respectively, failed to protect BALB/c 

mice from the infection.  

The immunity induced by L. mexicana gp63 cDNA using two different methods of 

immunisation, intramuscular injection of the DNA and gene gun immunisation, was 

investigated and compared with those of autoclaved parasite or SLA immunisation. It was 

shown that DNA immunisation with L. mexicana gp63 cDNA resulted in higher immunity 

to the parasite; the immunised mice exhibited a significant delay in lesion formation and 

some of the mice remained free of lesions. This clearly confirms the feasablity of new 

strategies in using single or combinated antigens than a “cocktail” of antigens for 

leishmania vaccination. Although there are reports showing that the alteration of the 

method or the route of immunisation results in alteration of the immunity [Jaafari et al., 

2006; Russell & Alexander, 1988], this was the first time that two different methods of 

DNA immunisation were compared in a leishmania vaccination model. Immunisation 

using the gene gun gave higher levels of immunity to the parasite. In contrast with reports 

showing a Th2-bias immunity for gene gun [Scheiblhofer et al., 2007; Schirmbeck & 

Reimann, 2001], in this study, all mice immunised by the gene gun demonstrated a 

stronger Th1-type immune response, which was accompanied by a sharp increase in IgG2a 

in the early stages of immunisation. The sharp rise in mouse IgG2a occurred short time 

after the immunisation, which was not accompanied by increase in IgG1 level. This may be 

due to the differences between antigens used for immunisation suggesting the need for 

testing different antigens with different methods. Mice immunised intramuscularly with 

DNA demonstrated lower levels of protection, which was accompanied by a gradual 

increase in IgG2a.  

Comparison of the results obtained from the immunisation with the SLA and the DNA 

demonstrates that the immunisation with the SLA resulted in a mixed Th1/Th2 immune 

response, which was similar to that induced during the course of the infection in non-

immunised mice [Rolao et al., 2007]. Although it was reported that the initial Th2 immune 
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response may play a role for raising Th1 immune response in L. donovoni [Mazumdar et 

al., 2004], results of this study showed that there was no correlation between the initial rise 

in Th2 immune response and immunity to L. mexicana; SLA induced little immunity 

compared to that of the DNA vaccination, which did not induce Th2-type immune 

response in the early phases of the immunisation. Instead, it seems the early activation of a 

Th1 immune response is crucial for the induction of immunity to the parasite. Results 

clearly showed that immunisation by gene gun induced a sharp activation of Th1 immune 

response soon after the initiation of immunisation. On the other hand intramuscular 

injection of the DNA induced a gradual increase in Th1 immune response, which peaked a 

few weeks after the initiation of immunisation. 

The use of DCs as an adjuvant (DCs pulsed with SLA) to promote immunity did not 

significantly alter the immunogenicity of the SLA derived from L. mexicana, which was in 

contrast with the results obtained in L. donovoni model by Ahuja and Ghosh [Ahuja et al., 

1999; Ghosh et al., 2003]. This might demonstrate the species-dependency of 

immunogenicity of SLA, suggesting differences in immunity between leishmania species 

and this should be taken in consideration in developing vaccine strategies. 

Irradiated CT26 tumour cells transfected with L. mexicana gp63, as a surrogate antigen, 

did not induce strong immunity against the parasite, which may suggest the immune 

domination of tumour antigens. However, this approach requires further study in order to 

gain insight into the mechanisms involved. 

 
7.2 CTL activity induced by L. mexicana gp63 and SL A 

The role of cytotoxic T lymphocytes in immunity to leishmania is still not clearly 

identified. CD8+ T cells are reported as an important source of IFN-γ during leishmania 

infection in mice [Lehmann et al., 2000] and it has also been shown that depletion of CD8+ 

T cells in mice vaccinated with LACK DNA at the time of vaccination abrogated the 

control of infection, indicating a significant role for these cells in this model [Gurunathan 

et al., 2000b]. 

In the present study the role of CTLs in immunity against leishmania induced by DNA and 

SLA was investigated. The results showed that gene gun immunisation with a gp63 cDNA 

construct, which was capable of inducing high levels of Th1-type immunity and 

significantly protect the mice from the infection, also induced long-term CTL activity that 

could be detected against tumour cells expressing the gp63 protein. However, mice 

infected with L. mexicana did not show significant CTL activity, suggesting that the CTL 



Chapter 7/Discussion 173 

activity was only induced by immunisation. This was compatible with the results obtained 

by Gurunathan where DNA vaccination encoding LACK resulted in  the production of 

IFN-γ by CD8+ T cells, which induced protective immunity against L. major in mice; in 

this system no protection was observed in CD8+ T cell depleted mice, although they did 

not measure CTL activity in vitro [Gurunathan et al., 2000b]. On the other hand, 

immunisation of mice with DCs loaded with SLA induced a high level of CTL activity but 

this was not correlated with protection. Similar CTL activity has recently been obtained in 

our lab by immunisation with SLA + IFA [Fathia & Ali, personal communication]. These 

results are similar to those obtained by Mendonca where they immunised 43 Brazilian 

volunteers with a vaccine made of whole antigens derived from killed promastigotes of 

five American dermotropic Leishmania strains. In this study peripheral blood mononuclear 

cells  were obtained one year after vaccination and tested in a proliferation assay against L. 

braziliensis antigens; the majority of the responding cells were of a CD8+ T cell subtype 

[Mendonca et al., 1995]. De Luca also reported the predominance of  CD8+ over CD4+ T 

cells among the leishmania-reactive cells after administration of a vaccine composed of 

whole antigens of killed L. amasonensis promastigotes [De Luca et al., 1999]. Similar  

involvement of CD8+ T cells in the clearance of L. donovoni was also reported by Ahmed 

[Ahmed et al., 2003]. The discrepancy in the CTL activity and protection induced by 

immunisation with L. mexicana gp63 DNA and SLA has only been reported in the present 

study and needs further investigation to determine the mechanism underlying the role CTL 

activity in leishmania protection; however, the difference between the antigens used and 

the methods of immunisation may represent important parameters.  

To clarify aspects of the role of CTLs in immunity to leishmania the effect of leishmania 

infection on the expression of the MHC class I in DCs was investigated. The results clearly 

showed that only infection with live leishmania parasites effectively down regulated the 

expression of MHC molecules in DCs; treatment with autoclaved parasite, SLA or 

transfection of DCs with L. mexicana gp63 cDNA did not reduce MHC expression. The 

effect of down regulation of MHC class I by the parasite on the immunogenicity of 

vaccines is not clear and reqires further investigations. Down regulation of MHC class I is 

a known strategy for tumour escape from CTL-mediated immunity [Khanna, 1998].  

Down regulation of HLA-C molecules was also reported in herpes simplex virus and 

human cytomegalovirus infections whereby viral genes interfered with the expression of 

MHC class I molecules [Huard & Fruh, 2000]. In parasitic infections, it has been shown 

that T. cruzi, effectively inhibits the up-regulation of MHC class I molecules induced by 
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LPS on the surface of human DCs [Van Overtvelt et al., 2002]. Similar observations were 

also reported during P. falciparum malaria infection [Brustoski et al., 2005]. In leishmania 

infection, whether down regulation of MHC class I has any impact on the role of CD8+ T 

cells in immunity to leishmania needs to be determined. Perhaps leishmania vaccine 

candidates are potent enough to prevent infection if the expression of MHC class I 

molecules is not altered or down regulated by the parasite. Therefore, a better 

understanding of the mechanisms by which the parasite down regulates the expression of 

the MHC class I molecule is essential, for the design of future vaccine strategies. 

 
7.3 Peptide immunisation 

Immunogenic synthetic peptides have been widely used for identification of both B and T 

cell epitopes responsible for protection against parasites including eimeria, malaria, 

schistosoma and leishmania with different outcome [Dobano & Doolan, 2007; Jardim et 

al., 1990; LoVerde et al., 2004; Spitzer et al., 1999; Talebi & Mulcahy, 2005]. In 

leishmania, most of the studies on synthetic peptides were carried out on long-sequence 

peptides [Jardim et al., 1990], which were not clearly defined as MHC class I or II, or even 

both. However, in most of these studies the role of CD8+ T cell epitopes was not 

identified. Therefore, in order to evaluate the role of MHC class I epitopes in immunity to 

leishmania, the immunogenicity of MHC class I epitopes derived from L. mexicana gp63 

vaccine was investigated (gp63 protein/Ag). Preliminary results to detect CTL activity 

induced by L. mexicana gp63 DNA immunisation indicated the presence of immunogenic 

MHC class I epitopes derived from this proteins. The SYFPEITHI data base is a known 

web-based algorithm, which has successfully been used in other studies for prediction of 

HLA and mouse MHC class I restricted epitopes [Dong & Sui, 2005; Harpur et al., 1993]. 

MHC class I peptides were predicted by “SYFPEITHI” software in two different models; 

mouse MHC class I and human HLA-A2 epitopes were defined and tested in BALB/c and 

HHDII transgenic mouse models respectively. None of the peptides predicted for mouse 

MHC class I, which were tested in BALB/c mice, showed significant immunogenicity but 

three out of the four peptides predicted for human HLA-A2 were immunogenic and were 

able to induce significant CTL activity detected by standard 4-hour cytotoxicity assay. The 

immunogenic peptides were tested to determine whether they were natural processed using 

DNA immunisation. It was shown that two of the immunogenic peptides (RLAAAGAAV 

& AAAGAAVTV) induced significant levels of IFN-γ indicating the possibility that they 

are naturally processed within the cell. Finally, the immunogenicity of the peptides was 
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tested in the protection studies against the live parasite. None of the immunogenic peptides 

could protect HHDII mice from the infection. As the peptides used in this study were 

restricted to MHC class I molecules, the lack of protection in mice immunised with the 

immunogenic peptides may suggest the need for additional activation of CD4+ T cells. In 

addition, the lack of immunogenicity of peptides predicted for mouse MHC class I, which 

were tested in BALB/c mice compared with the peptides predicted for human HLA-A2 

indicates either differences between the immune system in the two strains of mice 

(BALB/c and HHD II) or the lack of accuracy of SYFPEITHI software for prediction the 

immunogenic peptides in BALB/ mice.  

 
7.4 Application of OX40L in Leishmania infection 

Combination therapy is a new approach that has recently been applied in the treatment of 

leishmaniasis. Different materials, such as cytokines, have been used in combination with 

drugs or vaccines in order to enhance their efficacy [Michel et al., 2006]. OX40L, a co-

stimulatory molecule expressed on APCs, has recently been used to enhance the immunity 

in tumour mouse models [Ali et al., 2004b]. In leishmania, only a few studies have been 

carried out with a discrepancy of results. Early studies showed that blocking the OX40-

OX40L interaction resulted in the abrogation of progressive disease in BALB/c mice, 

possibly due to blocking the Th2 immune response [Akiba et al., 2000]. Later studies 

revealed that administration of the OX40L after challenge of susceptible mice with 

leishmania resulted in healing and a reduction in parasite burden [Zubairi et al., 2004]. 

Collectively, these results indicate that the OX40L may play a mutual role in inducing Th1 

or Th2-type immune responses.  

In agreement with the study of Zubairi [Zubairi et al., 2004], our results showed that the 

administration of the OX40L, after the initiation of the infection, induced a significant 

delay in the disease, which was accompanied by a reduction in the lesion size. 

Surprisingly, application of the OX40L purified by two different resins, MBI or protein A 

sepharose, resulted in different potency of healing; injection of Protein A Sepharose 

purified OX40L on day 3 and 7 of parasite inoculation resulted in a delay in progression of 

the lesion along with the production of scar tissue while MBI purified OX40L showed 

more delay in lesion progression and far less scar formation. Almost no protection, and 

even exacerbation of the infection, was observed when OX40L purified by protein A 

sepharose resin was administered after immunisation of mice with SLA, while injection of 

OX40L purified with the MBI resin still induced a significant delay in lesion progression 
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(data not shown). The main difference between the methods of purification was the pH 

conditions under which the OX40L samples were loaded and eluted. Therefore the 

conditions in which the OX40L is purified has a direct effect on the biological 

activity/integrity of the OX40L. This could explain the different behaviour of OX40L 

preparation and the discrepancy in the results obtained in the pilot studies. The difference 

in the biological activity of the OX40L purified by different resins was also confirmed by 

the administration of the OX40L against CT26 tumour cells (see chapter 6). 
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7.5 Future work 

The data presented in this study have demonstrated new opportunities to develop 

leishmania vaccine strategies where further studies are required: 

1- The data presented demonstrates that SLA is capable of inducing both Th1 and Th2 

immunity along with high levels of CTL activity in immunised mice. The antigens 

present in the SLA could be fractionated and assessed for their individual ablity to 

induce Th1 or CTL activity important in generating immunity to the parasite. Active 

fractions could be analysed by mass spectrometry and used to search data bases to 

discover the identity of the protein and gene. 

2- Gene gun immunisation was shown to be the most effective in inducing immunity to 

the leishmania parasite compared to other methods of immunisation. Gene gun 

immunisation with L. mexicana gp63 could be used in combination with other 

immunogenic vaccines such as SLA or viral vaccines. Intramuscular injection of 

DNA or electroporation injection in prime-boost studies and this would form the 

basis of an extensive vaccine program. 

3- Our results indicate the presence of CTL activity following both gene gun and SLA 

immunisation, which is a key factor for developing an effective immunity. For 

immunisation with the DC + SLA, CTL activity occurred but was not correlated with 

protection. Further study to understand the mechanisms behind these contradictory 

results is required, including the use of MHC class I knock out mice or administration 

of anti-MHC class I antibody together with the gene gun immunisation. 

4- The down-regulation of the MHC class I molecules in DCs induced by the parasite is 

another finding that could be extended to include other cell lines, particularly 

macrophages. It is important to know if the down-regulation of the MHC class I plays 

a role in decreasing the immunogenicity of the vaccines. Moreover, it is important to 

define the mechanisms used by the parasite to down-regulate the MHC class I 

molecules; preventing this action by the parasite may lead to enhancing immunity. 

The effect of infection with other species of leishmania parasites in down regulating 

MHC class I expression also needs to be determined. The effect of leishmania 

infection on cytokine production and expression of other co-stimulating molecules by 

DCs or other cells such as macrophages needs to be determined at the gene and 

protein expression levels. Our preliminary results showed that infection with L. 

mexicana did not downregulate the expression of MHC class II (data not shown), 
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which is in agreement with other studies. However, this needs to be confirmed by 

further studies.  

5- In this study MBI and MEP were used to optimise the purification of the OX40L-IgG 

fusion protein. It was shown that those resins have the potential to purify the OX40L-

IgG fusion protein from B9B8E2 cell culture supernatant. The potency of MBI and 

MEP resins in purification of other fusion proteins should be investigated. 

Furthermore, the use of OX40L in vaccine studies is fairly a new approach in 

leishmania research and the potency of the OX40L in enhancing the immunogenicity 

of gene gun immunisation and other methods of immunisation should be further 

investigated. 
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Reagent Apendix 
 

Reagents 
Culture Media Company 

DMEM Bio Whittaker, Europe 

1640 RPMI Bio Whittaker, Europe 

Schneider  Sigma 

 

Supplements added to Culture Media Company 

Foetal Calf Serum (FCS) Bio Whittaker, Europe 

glutamine synthetase (GS) and 10%  IRH Biosciences 

Bio-FCS (FCS without bovine IgG) Autogen Bioclear, UK Ltd. 

2-mercaptoethanol Bio Whittaker, Europe 

Penicillin/Streptomycin Bio Whittaker, Europe 

HEPES buffer Bio Whittaker, Europe 

Fungizone Bio Whittaker, Europe 

Geniticin (G418) Bio Whittaker, Europe 

 

Other Reagents  Company 

Trypsin Gibco, UK 

Versene Gibco, UK 

Heparin Sigma, UK 

DNAase Sigma, UK 

Collagenase Calbiochem, UK 

Trypan Blue Sigma, UK 

Lipopolysaccharide Sigma, UK 

 

Molecular Grade Chemicals Company 

Molecular Grade Water  Sigma, UK 

Absolut Ethanol BDH, UK 

Isopropanol Sigma, UK 

RNA Stat 60 AMS Biotechnology, UK 
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Chloroform Sigma Aldrich 

Agarose Bioline 

Tryptone Oxoid 

Yeast Oxoid 

Bacteriological Agar Oxoid 

Sodium Chloride Sigma 

Kanamycin Sigma 

Tetracyclin Sigma 

Ampicillin Sigma 

Phenol-Chloroform IsoAmyl Alcohol Sigma 

Absolute Ethanol BDH 

α-Chymotrypsin Sigma Aldrich 

Aprotinin Sigma Aldrich 

BSA Sigma 

Sucrose BDH Lab Supplies 

PBS tablets pH 7.2-7.4 OXOID 

Acetic Acid Fisher Scientific Ltd 

Tween 20 Promega 

Sodium azide Sigma 

Trypan Blue Sigma 

Ethidium Bromide Sigma 

Sodium Chloride Fisher Scientific Ltd 

Sodium Hydroxide Fisher Scientific Ltd 

Tris Fisher Scientific Ltd 

 

Other Reagents Company 

EMLA Anaesthetic Cream Astra Zeneca, UK 

Chromium 51 Amersham 

Incomplete Freunds adjuvant [Rafati et al.]  Gibco 
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T cell Media 
Ingredients Quantity 

Complete RPMI 500 ml 

10% FCS (by volume) 50 ml 

Glutamine 5 ml 

20 mM HEPES 10 ml 

50 µM 2 Mercaptoethanol 500 µl 

50U/ml Penicillin/Streptomycin 5 ml 

0.25 µg/ml Fungizone 500 µl 

 

BM-DC media  
Ingredients Quantity 

Complete RPMI 500 ml 

10% FCS (by volume) 25 ml 

Glutamine 5 ml 

20 mM HEPES 10 ml 

50 µM 2 Mercaptoethanol 500 µl 

50U/ml Penicillin/Streptomycin 5 ml 

0.25 µg/ml Fungizone 500 µl 

 

PBS-BSA wash for FACS 
Ingredients Quantity 

PBS tablets 10/litre 

BSA 0.1% (1g/litre) 

Sodium Azide 0.02% (0.2 g/litre) 

 

RIP Buffer 
Reagent gm/500 ml mM 
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Sodium Chloride 4.38 150 

Tris 3.027 50 

EDTA, anhydrous 0.931 5 

 

Western Blot Lysis Buffer 
   Ingredients Quantity 

RIP Buffer 5 ml 

Igepal 50 µl 

Deoxycholate acid 25 mg 

10% SDS 50 µl 

500 mM Benzamidine 10 µl 

100 mM PMSF 5 µl 

200 mM Sodium Valproate 25 µl 

1 M Sodium Fluoride 5 µl 

 

Other Buffers 
Buffer Composition 

PBS 1 tablet dissolved in 100 ml distilled 

water 

 

PBA PBS 

0.1% (w/v) BSA  

0.02% (w/v) Sodium Azide  

 

TBS 10mM Tris 

150nM NaCl 

pH 7.4 

 

1 x TAE 

Freshly prepared from 10x TAE 

40 mM Tris Acetate 

1 mM EDTA 
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RT-PCR Enzymes, Restriction Enzymes and Reagents 
 

Reagent Company 

M-MLV-RT Promega 

Oligo dT Primers Promega 

RNasin Inhibitor Promega 

Taq Polymerase Bioline 

T4 Ligase Enzyme Promega 

EcoRI Restriciton Enzyme Promega 

BamHI Restriciton Enzyme Promega 

HindIII Restriciton Enzyme Promega 

Pfu Polymerase Promega 

Phusion Taq polymerase Finnzyme 

pcDNA3 plasmid Invitrogen 

SYBR Green Master Mix Biorad 

dNTPs Bioline 

DNA ladder (1Kb plus) Invitrogen 

10X Reaction Buffer Promega 

Magnesium Chloride Promega 

 

Antibodies and Kits 
Cell line/Antibody Source/Manufacturer 

Goat anti-mouse FITC Sigma 

HB54 (HLA-A2.1) Hybridoma 

Rabbit Anti Goat-HRP antibody DAKO 

CD80 Cambridge Biosciences 

CD40 Hybridoma FGK-45 

CD25-FITC Serotec 

CD11c Hybridoma 
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Rabbit anti-mouse IgG1 Serotech 

Rabbit anti-mouse IgG2a Serotech 

goat anti-rabbit IgG – HRP Serotech 

Streptavidin – HRP Zymed, USA 

Goat Anti-Mouse – HRP DAKO 

Anti-Rat FITC Serotec 

Anti-hamster FITC Serotec 

Anti-Goat FITC Sigma 

Mouse IFN-γ ELISA kit R&D Systems, UK 

Mouse IL-4 ELISA kit R&D Systems, UK 

Mouse CD8: Dynabeads  Dynal, Europe 

MBI resin Pall Biosepra Ltd, France 

MEP resin Pall Biosepra Ltd, France 

Protein A  Sigma 

 

Laboratory Plastic ware, glass ware and sharps 
Item Company 

T25 and T75 tissue culture flasks Sarstedt, UK 

50 ml screw top tubes Sarstedt, UK 

10 ml and 5 ml pipettes Sarstedt, UK 

20 ml Universal tubes Sterilin UK 

Centrifuge Tubes (15ml) Sarstedt, UK 

Bijou tubes (7 ml) Sterlin, SLS, UK 

FACS tubes Elkay, UK 

10 ml syringes Becton Dickenson 

BD Microlance 3 needles Becton Dickenson 

24 well and 6 well flat bottom culture dishes Sarstedt, UK 

96 well round bottom plates Sarstedt, UK 

Pasteur pipettes Sarstedt, UK 

1.5 ml eppendorf tubes Sarstedt, UK 

0.5 ml eppendorf tubes Sarstedt, UK 

1.2 ml Cryovials TPP, UK 
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Pipette tips < 1ml Sarstedt, UK 

96 well ELISA plates Costar, UK 

Petri dishes Sterilin UK 

25 ml Pipettes Sarstedt, UK 

10 ml Pipettes Sarstedt, UK 

5 ml Pipettes Sarstedt, UK 

Haemocytometer Weber 

96 well plate harvester filters Perkin Elmer 

Scalpels Swann Morton Ltd. 

PCR Tubes Micronic Systems 

0.2µm Filters Sartorius, UK 

Realtime PCR tubes Strategene, Germany 

0.5 – 10µl tips Sarstedt, UK 

20 – 200µl tips Sarstedt, UK 

200 – 1000µl tips Sarstedt, UK 

 

Electrical Equipment 
Equipment Manufacturer 

Refrigerated centrifuge Mistral 1000, MSE 

Flow Cytometer Beckman Coulter 

Clenz Beckman Coulter 

Isoton Beckman Coulter 

Liquid Nitrogen Freezer Forma Scientific 

-80°C Freezer Ultima II, Revco 

Class II safety cabinets Walker 

37°C incubator Forma Scientific 

96 well plate harvester Packard 

Light microscope Olympus 

96 well plate reader Tecan 

Top count scintillation counter Packard 

Drying Cabinet Scientific Laboratory Supplies 

Ltd 
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PCR Thermal Cycler Hybaid, Germany 

Water Baths Grant Instruments 

Real Time PCR Thermal Cycler Bio-rad 

Microscope Nikon 

Power Packs Bio-rad 

Electrophoresis gel tanks Bio-rad 

Microwave Matsui 

UV Spectrophotometer Sanyo 

Transilluminator Ultra Violet Products 

Whirlimixer Scientific Industries 
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