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ABSTRACT

This paper presents an adaptive fuzzy control algorithm for the control of
the solder paste stencil printing stage of surface mount printed circuit board
assembly. The proposed method of automatic solder paste stencil printing
consist of four blocks; fuzzy feature extraction, defect classification of paste
deposits, adaptive fuzzy rule-based model identification and subsequently an
optimal control action for the stencil printing process. Experimental results

are presented to illustrate the capability of the algorithm.
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1 INTRODUCTION

Surface mount technology (SMT) is the dominant methodology in the as-
sembly of sophisticated electronic devices [3]. It involves bonding electronic
packages to printed circuit boards (PCBs) via solder paste pads. The solder
deposits are accurately placed on the PCB by stencil printing, however, faults
in the printing process are a major source of board failure. There will be
significant economic benefits from enhanced product yield, if the process is

controlled more accurately.

The small amount of solder that attaches a surface mount component to the
circuit, serves as both the electrical and mechanical means of connection. In
the SMT process, the most critical step is the solder paste stencil printing
stage. If the correct amount of paste is not applied at this stage, later process
steps cannot correct the situation. The solder paste stencil printing process is
complex and has a number of parameters that can influence the final quality

of the solder paste deposit.

To produce better solder paste deposits and to automate the process of stencil
printing, the algorithm presented in this paper is proposed. The block diagram
for control of the solder paste stencil printing stage of SMT is illustrated in
Figure 1. The proposed architecture consists of four principal components.
They are: a) fuzzy feature extraction b) defects classification using the fuzzy

c- mean algorithm c) adaptive model identification employing an adaptive
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Fig. 1. Proposed block diagram of the automatic solder paste stencil printing control

system.

fuzzy rule-based system and d) optimal controller. The following paragraphs

describe the indicated elements of the proposed block diagram.

Applying a set of parameters Py to the printer produces a print which can be
mapped to image space using a fast laser scanner. To reduce the dimensionality
of the image space, each image will be transformed into a fuzzy feature vector
V. A set of m fuzzy geometrical features for each image is used to perform
the conversion from range image data to feature vector V. This procedure is
considered as mapping from parameter space Py into feature vector Vy, i.e.

Pk — Vk.

To have an intuitive understanding of the above mapping, it is desirable to
alter the feature vector Vi into defect class membership functions (CMFs)

Uy, using a classification method. We used the fuzzy c-mean algorithm to



Fig. 2. 3-D image of solder paste deposits on a PCB representing typical defects.

perform this transformation. The resulting output produces ¢ classes which
ranged from ideal to bad where the CMF of each image represents the de-
gree of membership into each class. Figure 2 illustrates a 3-D image of solder
paste deposits on a PCB representing typical defects. The ideal shape of paste

deposits is shown in the second row.

When direct mapping from Py to Uy, generated from two separate mappings
i.e. Pr — Vi — Uy is established, it enables us to create a model for the
printing process using a fuzzy rule-based system (FRBS). FRBSs have demon-
strated their capability for nonlinear function approximation. From the large
set of experimentally obtained, input-output (Py,Uy) data, it is clear that
the printing process produces a nonlinear response. Hence, a FRBS is ideally

suited to modelling the nonlinear behavior of the stencil printing process.

To take into account the effect of unknown parameters and uncertainty in-



volved in the printing process, the model identification will be accomplished
employing an adaptive FRBS [7]. It will ensure that the error generated from

the output of the model, Uk, and CMF Uy is minimized.

The requirement of the printer producing high quality output (paste deposit)
can be translated into having a CMF with the highest value in the class of
ideal deposit shape. Therefore the control action for each consequent print
Py, will be in the form of settings that maximize the CMF for the ideal class

based on the generated fuzzy model for the printer.

The presented work in this paper gives a brief introduction to the stencil
printing stage of surface mount assembly process followed by a description
of fuzzy feature extraction in Section 3. The defects classification method is
explained in Section 4. The subsequent FRBS model and control strategy
are described in Sections 5 and 6 respectively. The experimental results are

presented in Section 7. Concluding remarks are then made in the final section.

2 SOLDER PASTE STENCIL PRINTING

The solder paste printing process starts by placing a metal stencil over the
PCB. Stencil openings (apertures) corresponds to pad location on the PCB
where solder paste is required. A moving squeegee is located on top of the
stencil to force the solder paste, rolling in front of the squeegee into the stencil

openings. When the squeegee has traveled past all stencil openings, the stencil
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Fig. 3. A schematic of solder paste stencil printing.

is removed and the PCB is ready for component placement. Figure 3 illustrates
a schematic diagram of the solder paste stencil printing stage of surface mount

PCB assembly.

The height, area and volume of the solder paste deposit is ideally equal to the
shape of the stencil apertures. Solder paste deposit for 1.25 mm pitch? and
higher is generally reliable and close to the ideal shape. The problem arises
when fine-pitch elements (< 0.6 mm pitch) are present on the PCB. For the
stencil printing process to deliver the best results, a balance of interactive
printer parameters must be achieved. There are many factors which can influ-
ence stencil printing performances, either directly or through interaction with
other factors. These include squeegee speed, squeegee load, viscosity of paste,

enviromental factors etc.

2 Pitch is the total distance between the centers of two adjacent pads.



To investigate the quality of each print, the paste deposited on each PCB will
be scanned using a fast laser scanner. Producing a digital image of the paste
deposit. In the following sections, a short introduction to digital images and

the conversion of each image to a set of fuzzy features is given.

3 FEATURES EXTRACTION

3.1 DIGITAL IMAGES

A digital image, I (z, y), is characterized by a N, x N, matrix of grey levels. The
elements of this matrix are in certain bounds i.e. I(z,y) € {G|,G;+ 1, ..., G}

where (G; and G, are the lowest and highest grey values of pixels respectively.

To enhance the contrast of the digital image so that all grey-levels of grey-scale
are utilized, contrast stretching [13] is performed by first shifting all the values
so that the lowest grey value begins at 0, i.e. add to every pixel the difference
between the new low value, 0, and the initial lowest value, GG;. Next, all pixels
are scaled by reassigning all the values by a factor 255/(G), — G;). Thus, an
image [ is stretched to the full range of grey-levelsi.e. I .s(z,y) € 0,1,2, ..., 255.
the above expression can be formulated as follows:

255(1(x,y) — G1)
Gy — Gy

Is(z,y) =



3.2 FUZZY GEOMETRICAL FEATURES

Let p(I(x,y)) denote the mapping of all pixels from digital image I(x,y) into
[0 1]. For any pixel (z,y) € I(x,y), the grey level of pixel scaled to the range
[01] i.e. u(I(x,y)) is regarded as the membership of pixel (z,y) in the fuzzy
set of bright pixels [8,11]. In this paper the mapping p(I(z,y)) is defined by
rescaling the contrast stretched image, I.s(x,y), into the range [0 1]. It can

easily be produced by dividing all I.4(z,y) entries by 255.

o Ics o [(xay)_Gl
255 Gy -G,

(2)

Various geometrical properties of u(I(x,y)) are defined by Rosenfeld [12].
These features are employed extensively for pattern recognition. For instance
in [8] the fuzzy geometrical features, as well as textural features are used
for fingerprint classification. In our study, the eight fuzzy geometrical features
used in [8,10,12] are employed. The features and their definitions are described

below.

— Area: The area, a(u), of a fuzzy subset of u(I(x,y)) is defined as follows:

a(u) = p(I(x,y)) (3)

— Perimeter: For a digital image with a fuzzy subset of p(I(x,y)) the perimeter

is defined by:

p(p) =23 nl(z,y) — p(z +1,y))|



+ 33 |l (2, y) = p(I(,y + 1)) (4)

where the membership values of two adjacent pixels are subtracted and the
absolute differences are added.
— Compactness: The compactness of a fuzzy subset of p(I(z,y)) having area

a(p) and perimeter p(p) is defined by:

() = A1) (5)

— Height and Width: The height, h(p), and width, w(u), of a fuzzy subset of

p(I(x,y)) are defined by:

h(p) = Y _{maxpu(I(z,y))} (6)

Y

and

w(p) = _{max u(I(z,y))} (7)

— Length and Breadth: The length, [(x), and breadth, b(u), of a fuzzy subset

of u(I(z,y)) are defined by:

U(p) = maoc{ 3 (I ()} (8)

and

() = max{" (I (x,))} (9)

— Index of Area Convergence: The index of area convergence of a fuzzy subset



of u(I(z,y)) is defined as follows:

ac() = — (10)

To classify different images corresponding to disparate types of deposit, each
image is represented by its fuzzy features explained above and the classification
methods will take place on this vector. Therefore, an image I with its fuzzy

values u(I(x,y)) is represented by the fuzzy geometrical feature vector, V.

Vi = la(p) p(p) c(p) h(p) wp) W(p) b(p) ac(p)]” (11)

4 DEFECTS CLASSIFICATION

Consider a set of fuzzy geometrical features V = {V7y,..., Vi, ..., Vr}, where
Vi = [v, v, ...,v"" is a m fuzzy geometrical features vector extracted from
the kth image. The fuzzy clustering of V into ¢ clusters is a process of assigning
a grade of membership to each object Vi for any cluster [1,9,16]. One of
the most frequently used clustering algorithms which has been applied is the
fuzzy c-means algorithm (FCM) [1]. This algorithm assigns objects, which
are described by several features, to different classes with different degrees of
membership. An advantage of this method is that it provides an automatic
method of forming the membership functions and does not require any initial

knowledge about the structure in the feature vectors [14,17].

10



4.1 FUZZY C-MEANS CLUSTERING

The fuzzy clusters can be characterized by a ¢ X I' class membership function

(CMF) matrix U = [uf], whose entries satisfy the following conditions:

Sup=1, k=1,2,... (12)
/=1
N
0< > up <D, £=1,2,..,q (13)
k=1

where uf is the grade of membership for Vi object in the /th cluster.

In FCM, cluster centers are determined first at the learning stage, and then
the classification is made by the comparison of distance between the incom-
ing feature and each cluster center. At the learning stage, cluster centers are

obtained by the minimization of a cost function given below:

J(U,C) =33 (up)?|[Vie = Cil]?, 1< p < o0 (14)
k=1/=1
and usually @ =2

where C' = {Cy, Ca, ...., Cy, ..., Cq} are ¢ vectors of cluster centers with C, =

[c}, 2, ..., cl']T representing m features for the center of the fth cluster.

The following algorithm is used [17] to determine the CMFs of each object to

a cluster.

(i) Estimate the CMF matrix U.

11



(ii) Calculate cluster centers {Cy, Ca, ..., Cq} using the following equation:

ket (uh)* Vi
C,= &= Yk g9 4 15

T )
(iii) Update the CMF matrix, U to U* with:

1
q (||V1rCl||)2
r=1 |V}, —C.||

(iv) If control error, i.e. maxy ¢ |uf* — uf| < e, stop. Otherwise substitute U <

U* and return to step 2.

After a number of iterations, cluster centers satisfy the minimization of cost

function, J(U, (), to a local minimum.

5 SOLDER PASTE STENCIL PRINTING MODELING

To create a model for the process of printing we propose to map the param-
eter space Py, to the CMF space Uy explained in the preceding section. The
model might be achieved by determining a multi-input multi-output functional

relationship of the form:

Uy, = f(Pr) (17)

where Py, = [pL, p2, .oy plhy os po] " and Uy, = [uh, u2, ..., ul, ..., u?]”. This model
can be achieved using a number of different modeling approaches. It has been

proved that fuzzy rule-based systems (FRBSs) with the structure given in the

12



following subsection are universal approximators [15], i.e. they are capable of

capturing the nonlinear characteristics of any complex process.

5.1 FUZZY RULE-BASED SYSTEMS

The FRBS model we use (p inputs and ¢ outputs) is in the following form.

R 1f phis (A and ... pl is (A ... and p? is (A?)y, then @) is (B})), and ...

it is (BY)g ... and af is (BY)y,

where R’ is the label of ith rule, p,i : j=1,2,...,pis the jth parameter and
4t - 0 =1,2,...,qis the fth CMF values of defects. (A7), (i = 1,2,...,n
and j =1,2,...,p) are membership functions (MFs) of fuzzy labels assigned
to each input parameter, and (BY);, € [0 1] are real numbers representing the
consequent parameters of FRBS. n, p and ¢ are the numbers of rules, input
parameters and number of defect classes respectively. We assume that the

universe of variable factors is limited to a lower limit and upper limit bounds,

ie.pl € [LL;, UL}, j=1,...,p.

Different shapes of MF for fuzzy values, fl{, can be employed e.g. triangular

or Gaussian. We further assume that the MFs for each input are normal, i.e.

sup(A)y = Ly € [LL; UL,] (13)

P
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The fth output of the model, @}, at the kth print, as a function of printer

parameter p}c : j=1,2,...,p, is given in the following equation [15]:
=1 W
where w’ is the rule firing strength given by:
. p .
w=[lruw,) i=12,...,n (20)
=1

To determine how effectively and accurately the model can estimate the out-

puts, the following cost function must be optimized.

Tt (A, (B)w) = min [ley (AL BB (21)
(A, (BEk

where e, = U, — f,Tk The output of the model, ﬂ'k is an estimation of the

CMF for the kth print.

To minimize the above optimisation index, the parameters of the FRBS, i.e.
(A7), and (BY); must be tuned as new data is available. There are many

reported methods for adaptive FRBS [5-7] and we have employed the method

reported in [7] where a steepest descent gradient method is used.

6 PRINT QUALITY IMPROVEMENT

The overall closed loop control systems must be designed in such a way that

the sensitivity of the print quality to the process parameters is minimized and

14



produces a paste deposit with higher CMF in the class of ideal deposits [2].
The controller task is to produce a set of new parameters Py, for the next
print based on the data collected from experiment 1 to k. To produce a control

action the following cost function must be optimized.

where Uy is the CMF vector and U9, is the desired CMF for the kth print.
U4, is a binary vector with all elements equal to zero except one entry corre-
sponding to the class of an ideal deposit which is equal to one i.e. we want to

have a print with CMF of one for the ideal shape.

In our investigation we found that the classes of defects can be limited to three
major classes of defects in addition to a class of ideal deposit. Therefore, the

fuzzy model of the printing process has ¢ = 4 outputs.

Considering only four classes for the printing results (3 types of defects and

one ideal class), the cost function (22) can be rewritten as follows:

T (Py) = min(|(u, = 0)] + [(u = 0)] + |(u = 0)] + (i = 1)]) (23)

where the fourth class represents an ideal print. From equation (12) we have:

up 4+ up +uip +up =1 (24)

15



Hence the cost function (22) can be replaced by a simpler optimisation problem

of:

T (P) = mgax (u) (25)

since

up >0 ui>0 up>0 up>0 (26)

A Simplex search method [4] is used to maximize the cost function (25) from
the starting vector Py. The optimization procedure results in a new parameter
vector Py, which is the local maximum of the FRBS model for the class of

ideal deposits.

7 EXPERIMENTAL RESULTS

An experiment with 25 combinations of 3 printer parameters (p = 3) was con-
ducted. The selected machine parameters are: squeegee angle, squeegee pres-
sure and squeegee speed. The printer parameters for this experiment cover a
wide range, chosen to provide data on the machine performance throughout its
operational capability. Figure 4 depicts 25 range images for a single Ball Grid
Array (BGA) pad obtained from the experiment . Following accurate mea-
surement of the deposit shape and obtaining the range image data, the next

step is to calculate m = 8 fuzzy features of each paste deposit. Consequently

16



Fig. 4. Images of the paste deposit for a single BGA pad.

we have a matrix (V) of fuzzy features with 8 columns and 25 rows. Using
the matrix of fuzzy features as input data, the fuzzy c-mean classification has
been conducted to produce the CMF of each paste deposit for a certain class
of defects. For the classification procedure, ¢ = 4 classes were selected. The
CMF values for a single BGA pad are shown in Figure 5. Comparing the re-
sults obtained from the CMF grades with the actual images given in Figure 4
shows that the experiment number 9,12, 15, 20,23 and 24 are producing the

highest CMF for the class of ideal deposits (class 4).

Upon evaluation of the CMF of each image, a fuzzy rule-based model for the
ideal class was formed. The original fuzzy rule-based model contains n = 25
rules with p = 3 inputs and one output representing the CMF of the ideal

class.

After forming the fuzzy model, the parameter values for the next print Py

17
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Fig. 5. The CMF values of the 25 print for BGA pads.

are determined by conducting an optimisation technique which detects the
maximum effect of each parameter and uses these new values for the next
print. The output of the optimisation technique can be either a fuzzy value or
a crisp value. The fuzzy value recommends a range of parameters which can

provide a good print.

Considering the control action recommended by the controller, a second exper-
iment was conducted concentrating on the ideal region. An experiment with
nine combinations of print parameters was conducted to assess the ideal print
condition predicted by the controller. The images of the nine paste deposits
resulting from the new experiment are illustrated in Figure 6. The new set
of experimental data was augmented to the original data and the controller
suggested a new set of parameters to improve further the print results. Figure
7 illustrates the results of a confirmation experiment at constant parameter
Py, settings. The results obtained from the last set of experiment shows that
the CMF of new prints are all above 0.8 which is considered as an acceptable

print.

18



Fig. 7. Images of the paste deposit for confirmation experiment.

8 CONCLUSIONS

An algorithm for automatic control of solder paste stencil printing process of
SMT is developed to reduce the number of board failures using an adaptive
fuzzy controller. The prototype of the proposed automatic control is imple-
mented and it demonstrates the capability of a fuzzy system to model and

produce a good control action for solder paste stencil printing.
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