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Abbreviations 

A, arcopallium 

Cb, cerebellum 

cDNA, complementary DNA  

DLM, medial nucleus of the dorsolateral thalamus 

GABA-aminobutyric acid 

HA, apical part of the hyperpallium 

Hb, habenula 

HD, densocellular part of the hyperpallium 

Hp, hippocampus 

HVC, used as the proper name 

L, Field L 

LMAN, lateral magnocellular nucleus of the anterior nidopallium 

LSt, lateral striatum 

M, mesopallium 

M1, first membrane-spanning domain 

M3, third membrane-spanning domain 

M4, fourth membrane-spanning domain 

MMAN, medial magnocellular nucleus of the anterior nidopallium 

MSt, medial striatum 

N, nidopallium 

NC, caudal nidopallium 

NIf, nucleus interface of the nidopallium 

nXIIts, tracheosyringeal subdivision of the hypoglossal nucleus 

PBS, phosphate-buffered saline 

PCR, polymerase chain reaction 

PHD, post-hatch day 

RA, robust nucleus of the arcopallium 

SNAg, Song system Nuclear Ag (antigen) 
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TeO, optic tectum 

Uva, uvaeform nucleus 

X, Area X 

zRalDH, zebra finch retinaldehyde-specific aldehyde dehydrogenase 
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Abstract 

 The acquisition, production and maintenance of song by oscine birds is a form of 

audition-dependent learning that, in many ways, resembles the process by which humans 

learn to speak.  In songbirds, the generation of structured song is determined by the activity of 

two interconnected neuronal pathways (the anterior forebrain pathway and the vocal motor 

pathway), each of which contains a number of discrete nuclei that together form the song 

system.  It is becoming increasingly evident that inhibitory GABAergic mechanisms are 

indispensable in counterbalancing the excitatory actions of glutamate and, thus, likely shape 

the neuronal firing patterns of neurons within this network.  Furthermore, there is compelling 

evidence for the involvement of GABAA receptors, although the molecular composition of 

these has, to date, remained elusive.  Here we describe the isolation of a complementary DNA 

for the zebra finch GABAA receptor 4 subunit, and map the expression pattern of the 

corresponding gene within the zebra finch (Taeniopygia guttata) brain.  Our findings show, 

remarkably, that the 4-subunit transcript is highly enriched in the major nuclei of the song 

system, including the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the 

medial magnocellular nucleus of the anterior nidopallium (MMAN), Area X, the robust 

nucleus of the arcopallium (RA) and the HVC, as well as Field L, which innervates the area 

surrounding HVC. 

In summary, we have demonstrated the presence of the mRNA for the 4 subunit of 

the GABAA receptor, the major inhibitory receptor in brain, in most of the nuclei of the two 

neural circuits that mediate song production in the zebra finch.  This not only marks the 

beginning of the characterisation of the GABAA receptor subtype(s) that mediate(s) the 

actions of GABA in the song system but it also provides a robust molecular marker with 

which to distinguish song system-specific brain structures. 

 

 

Keywords: Behavioural learning; development; inhibitory neurotransmitter receptor; ligand-

gated ion channel; robust nucleus of the arcopallium (RA); song system-specific 

marker 
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 The generation of structured song by adult songbirds is, like human speech, a motor 

behaviour that is learnt during an early sensitive period (reviewed in Doupe and Kuhl, 1999; 

Mooney, 1999).  The neuronal network that mediates song acquisition and production 

comprises a well-characterised set of anatomically-discrete brain nuclei, which form two 

functionally-distinct but interconnected circuits, called the song system (reviewed in Brainard 

and Doupe, 2002; Zeigler and Marler, 2004).  The vocal motor pathway descends from the 

HVC (used as the proper name; see Reiner et al., 2004) to the robust nucleus of the 

arcopallium (RA), and from there to the tracheosyringeal subdivision of the hypoglossal 

nucleus (nXIIts), which innervates the syrinx (Nottebohm et al., 1976).  RA also projects to 

the dorsal medial nucleus and then to respiratory centres in the medulla, which innervate the 

respiratory muscles (see Zeigler and Marler, 2004).  The anterior forebrain pathway 

comprises the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and 

the medial nucleus of the dorsolateral thalamus (DLM; Bottjer et al., 1989).  This circuit is 

part of a feedback loop, which may be involved in evaluating auditory information; it receives 

input from HVC (part of the vocal motor pathway) and projects to the RA via the LMAN.  

Two other important structures, that provide sensory input to the song system, are Field L, an 

integral component of the avian central auditory system, and the nucleus interface of the 

nidopallium (NIf); the former innervates the region around the HVC, while the latter provides 

a major auditory input to HVC itself (Kelley and Nottebohm, 1979; Cardin et al., 2005).  

Finally, it has been shown that the motor pathway is required for song production throughout 

life (Nottebohm et al., 1976), while the anterior forebrain pathway is necessary for song 

acquisition in juvenile birds and for song maintenance in adults (Bottjer et al., 1984; Brainard 

and Doupe, 2000). 

 It has been known for many years that the inhibitory neurotransmitter, -aminobutyric 

acid (GABA), is widely distributed within the song system (Sakaguchi et al., 1987; Grisham 

and Arnold, 1994).  And, recently, the distribution of GABAergic cells within the zebra finch 

telencephalon has been mapped, using a glutamic acid decarboxylase riboprobe (Pinaud et al., 

2004) and an anti-GABA antibody (Pinaud and Mello, 2007).  Consistent with this, the 

presence of functional GABA type A (GABAA) receptors, within the song system, has been 
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demonstrated electrophysiologically by a number of groups (Livingston and Mooney, 1997; 

Bottjer et al., 1998; Luo and Perkel, 1999; Vicario and Raksin, 2000; Pinaud et al., 2004; 

Farries et al., 2005; Mooney and Prather, 2005), although a detailed pharmacological 

characterisation is lacking.  For example, picrotoxin and bicuculline block receptors on 

neurons within the LMAN (Livingston and Mooney, 1997; Bottjer et al., 1998), the DLM 

(Luo and Perkel, 1999), the HVC (Mooney and Prather, 2005), the RA (Vicario and Raksin, 

2000) and Area X (Farries et al., 2005).  From this body of work, it appears that GABAA 

receptors, which are a family of post-synaptic proteins, play an important role in the learning 

and production of song in the zebra finch. 

 In mammals, 16 different GABAA receptor subunits have been identified (named, 1–

6, 1–3, 1–3, , ,  and ; for review, see Darlison et al., 2005; Sieghart, 2006), which 

assemble to form pentameric ion-channel subtypes.  Birds possess two other subunits, named 

4 and 4, that appear to be orthologous to the mammalian  and  subunits, respectively 

(Darlison et al., 2005).  Interestingly, the 4 polypeptide has been implicated in imprinting, an 

early learning paradigm (see Horn, 1998), in the one-day-old chicken (Gallus gallus 

domesticus), by the demonstration of a large decrease in the corresponding mRNA, in 

appropriate brain regions, after training on a visual stimulus (Harvey et al., 1998).  Here we 

provide evidence that the 4-subunit gene is expressed in most of the major nuclei of the song 

system of the zebra finch, Taeniopygia guttata.  Our data suggest that this subunit is a 

component of one or more GABAA receptor subtypes that regulate song acquisition and 

production in this songbird.  Furthermore, the expression pattern of this GABAA receptor 

gene reveals it to be an excellent molecular marker for the song system. 
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Experimental Procedures 

Animals 

 Zebra finches (Taeniopygia guttata) were obtained from breeding colonies at the 

Abteilung für Allgemeine Zoologie, Technische Universität Kaiserslautern, Germany, and the 

Max Planck Institute for Ornithology, Seewiesen, Germany.  Birds of different ages (n = 22; 

males = 18, females = 4) were sacrificed, and their brains were removed and frozen over 

liquid nitrogen. 

 

RNA isolation and complementary DNA (cDNA) synthesis 

 Total RNA was isolated using RNAzol™ B (WAK-Chemie Medical, Bad Soden, 

Germany), and treated with RNase-free DNase I (Promega, Mannheim, Germany) to remove 

any contaminating genomic DNA.  It was then transcribed into first-strand cDNA using 

random nonamers (Stratagene, Amsterdam Zuidoost, The Netherlands) and Moloney murine 

leukemia virus reverse transcriptase (Promega). 

 

Cloning of a partial cDNA 

 An ~870-bp fragment, encoding part of the GABAA receptor 4 subunit, was 

amplified from zebra finch brain first-strand cDNA using degenerate oligonucleotide primers, 

that were designed using the sequences of different vertebrate GABAA receptor  subunits, 

and Taq DNA polymerase (Promega).  The primer sequences were: 5’-GTGTCTAGAAT 

(A/T/C)TGGAT(A/T/C)CC(A/C/G/T)GA(T/C)AC-3’, which is based on the amino-acid 

sequence: V(G/S)(K/L/R)IWIPDT (single-letter code) that is present in the amino-terminal 

extracellular domain, and 5’-CTGGAATTCTCG(A/T)(A/T)(A/G)CA(A/G)CA(A/G)AA 

(A/G)AA-3’, which is based on the amino-acid sequence: FFCC(F/Y/I)E(D/E)C(R/K/Q) that 

is located within the large intracellular loop between the third (M3) and fourth (M4) 

membrane-spanning domains.  Note that restriction endonuclease recognition sites for XbaI 

and EcoRI (underlined) were incorporated into the forward and reverse primer sequences, 

respectively.  The reaction conditions were 35 cycles of 94°C for 1 minute (denaturation), 

50°C for 1.5 minutes (annealing), followed by 72°C for 1.5 minutes (extension).  Products of 
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the expected size were cloned directly into pCR
®
2.1-TOPO

®
 (Invitrogen, Leek, The 

Netherlands), and sequenced to confirm their identity. 

  

In situ hybridisation 

 In situ hybridisation was performed using 45-base transcript-specific oligonucleotide 

probes.  To ensure specificity of the hybridisation signal, three different oligonucleotides were 

used that are complementary to different parts of the nucleotide sequence that encodes the 

large intracellular loop (located between M3 and M4) of the zebra finch GABAA receptor 4 

subunit.  This region is highly variable in length and sequence between different receptor 

polypeptides (for details, see Darlison et al., 2005).  The sequences used were: probe 1, 5'-

CGGGGAGCCGGGCTCGTCATCCTCATCCTCCTCTATCTCCGGGGG-3', which is 

complementary to the sequence that encodes the amino-acid sequence PPEIEEDEDDEPGSP 

(single-letter code); probe 2, 5'-CTGTGGCTGTGCTCCAGTGGTTTCTTGTTTCCCACCA 

GGTAGTTG-3', which is complementary to the sequence that encodes NYLVGNKKPLEH 

SHR; and probe 3, 5'-TGCATGATGTGGTTGATGTTGATGGTGGTGAAGGTTGGCAT 

CACC-3', which is complementary to the sequence that encodes VMPTFTTININHIMH.  

These three oligonucleotides yielded identical hybridisation patterns.  However, all of the data 

shown here derive from the use of one oligonucleotide (probe 2). 

Oligonucleotide probes were labelled, with [
35

S]dATP (1250 Ci/mmol; 

NEN/PerkinElmer, Boston, USA), to a specific activity of between 1.3 and 2.6 x 10
9
 cpm/g.  

10 m coronal sections of zebra finch brains were prepared using a cryostat (Jung CM 3000, 

Leica, Bensheim, Germany) and thaw-mounted onto slides coated with 3-aminopropyl-

triethoxysilane (Sigma, Deisenhofen, Germany).  Sections were then fixed in 2% (w/v) 

paraformaldehyde in phosphate-buffered saline (PBS; 130 mM sodium chloride, 7 mM 

disodium hydrogen orthophosphate, 3 mM sodium dihydrogen orthophosphate) for 10 

minutes at 4°C, washed twice in PBS for 5 minutes each, and dehydrated in an ascending 

ethanol series.  The in situ hybridisation and wash conditions were as described previously 

(Wisden et al., 1991; Harvey et al., 1998).  For each bird, sections throughout the entire brain 
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were hybridised to ensure that all of the song system nuclei (both large and small) were 

included in our analysis. 

To directly compare the level of the γ4-subunit transcript in brains from birds at 

different developmental stages, and from different genders, fixed sections from small groups 

of brains were hybridised and washed together, and then exposed to the same sheet of Kodak 

BioMax™ MR X-ray film (Integra Biosciences, Fernwald, Germany) at room temperature for 

two to eight weeks.  Relative signal intensities in brain regions of interest were arbitrarily 

scored, as previously (see, for example, Harvey and Darlison, 1997; Bock et al., 2005; Thode 

et al., 2005), as either high (++++), moderate (+++), low (++), very low (+) or no signal 

above that of surrounding areas (-).  Note that hybridisation signals were entirely reproducible 

for birds of a given age and sex.  Negative control hybridisations were also performed.  These 

contained, in addition, a 200-fold excess of the same unlabelled oligonucleotide, which 

competes with the radiolabelled probe and should abolish the hybridisation signal.  Such 

control hybridisations did not yield any significant autoradiographic signal (data not shown).  

Rather than digitally quantify the in situ hybridisation signals for the various song system 

nuclei, we have recently carried out a much more sophisticated analysis of GABAA receptor 

gene expression.  For this, we (in collaboration with the group of Prof. Dr. Manfred Gahr, 

Seewiesen, Germany) have used a combination of laser capture microdissection of song 

system nuclei followed by quantitative reverse transcription-PCR (manuscript in preparation); 

the data obtained for the 4-subunit gene are consistent with those reported here (Table 1). 

 Brain regions were systematically identified using several approaches.  We used both 

the stereotaxic atlas of the canary (Stokes et al., 1974), and the zebra finch brain atlas, 

produced by B. E. Nixdorf-Bergweiler and H.-J. Bischof, which can be found on the National 

Center for Biotechnology Information web-site (see 

http://www.ncbi.nlm.nih.gov/books/bookres.fcgi/ atlas/atlas.pdf).  In addition, for 

confirmation of the location of structures such as Field L, MMAN, NIf and Uva, 

autoradiographs from relevant section were compared with published work (for example, 

Bottjer et al., 1989; Fortune and Margoliash, 1992).  Finally, we have analysed our in situ 

hybridisation data in the light of the recent publication by Poirier et al. (2008), who 
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constructed a three-dimensional magnetic resonance imaging stereotaxic atlas of the zebra 

finch brain.  Note that brain regions have been named using the nomenclature for the avian 

telencephalon developed by the Avian Brain Nomenclature Forum (see Reiner et al., 2004). 
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Results 

Sequence of the zebra finch GABAA receptor 4 subunit 

 Amplification of zebra finch brain first-strand cDNA, using primers that were 

designed to recognise vertebrate GABAA receptor -subunit sequences, led to the isolation of 

a fragment that encodes a polypeptide of 271 amino acids that exhibits 97% identity to the 

chicken GABAA receptor 4 subunit (Figure 1).  This partial cDNA specifies part of the 

amino-terminal extracellular domain, the first three membrane-spanning domains, and part of 

the large intracellular loop between M3 and M4, which is highly variable in sequence and 

length between different subunits.  Remarkably, there are only 8 amino-acid differences 

between the zebra finch and chicken polypeptides (4 of which are conservative substitutions), 

and all of these occur between M3 and M4.  From this, we conclude that we have isolated a 

cDNA that encodes a large part of the zebra finch GABAA receptor 4 subunit. 

 

Figure 1 near here 

 

Mapping of GABAA receptor 4-subunit gene expression in the major song system nuclei  

 Using three transcript-specific oligonucleotide probes, designed to recognise the zebra 

finch GABAA receptor 4-subunit cDNA sequence, the distribution of the corresponding 

mRNA was initially examined, in the brains of post-hatch day (PHD) 25 male zebra finches 

(i.e. juvenile birds), by in situ hybridisation.  After a two-week exposure to X-ray film, the 

strongest signals were observed in three of the major nuclei of the song system, namely, the 

LMAN, Area X in the medial striatum, and the HVC.  Strong signals were also detected in 

several forebrain areas, such as Field L (Table 1). 

 

Table 1 near here 

 

 In view of the intriguing preliminary data obtained, and the fact that hybridisation 

signals appeared stronger in the anterior forebrain than in the posterior part, the pattern of 

expression of the GABAA receptor 4-subunit gene was investigated in male zebra finches at 
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different, well-defined, developmental stages.  For this, we chose time-points before birds are 

able to produce song (PHD22 and PHD25), at the onset of singing (PHD35 to 38), when birds 

are capable of song (PHD60/61), and after the song has crystallised (adult birds; PHD>100; 

Mooney, 1999).  For most brain regions, the distribution of the γ4-subunit transcript was 

qualitatively similar at all ages (Table 1), with high levels of expression again being seen in 

LMAN (Figure 2), Area X (Figure 2), the HVC (Figure 3) and Field L (Figure 4).  

Furthermore, where in situ hybridisation was carried out simultaneously, with brain sections 

from birds of different ages, the results appeared quantitatively similar, although the signals in 

the LMAN and the HVC appeared a little weaker at PHD22 and PHD25 compared to later 

stages (Table 1).  The one striking exception was the RA, which is part of the vocal motor 

pathway.  Expression of the GABAA receptor 4-subunit gene was observed, in this nucleus, 

only in PHD35 and older birds and the level of the corresponding mRNA increased during 

development (compare Figures 3C and D; see also Table 1); cells within the RA of birds 

younger than PHD35 did not contain this transcript at a level above that of the surrounding 

areas. 

 

Figures 2 to 4 near here 

 

Expression of the GABAA receptor 4-subunit gene in other brain regions 

 Detailed anatomical analysis of the data from male zebra finches showed the presence 

of the GABAA receptor 4-subunit mRNA, in a number of other brain areas, at all 

developmental time-points.  One of these was the medial magnocellular nucleus of the 

anterior nidopallium (MMAN; Figure 2A and Table 1), which innervates the HVC 

(Nottebohm et al., 1982; Bottjer et al., 1989), and which is also part of the song system.  Note 

that MMAN lies adjacent to, but is not connected with, the LMAN.  In addition to the HVC, 

the MMAN projects to the paraHVC region (Foster et al., 1997), a medial portion of the 

HVC, which also expresses the 4-subunit gene (see, for example, the right and left 

hemispheres, respectively, in Figures 3B and 5E).  Other regions that were labelled included 

the densocellular part of the hyperpallium (HD; Figure 2), the mesopallium (M; Figure 2), the 
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medial and lateral striatum (MSt and LSt; Figures 2 and 3), and the habenula (Hb; Figures 3 

and 4).  Expression of the 4-subunit gene was also found in the ventral part of the 

entopallium (data not shown), the optic tectum (TeO; Figures 3 and 4), the caudal nidopallium 

(NC; Figure 3), and the medial nucleus of the dorsolateral thalamus (DLM; data not shown).  

It should be noted that the latter nucleus is part of the anterior forebrain pathway.  Analysis of 

autoradiographs, from sections covering the entire diencephalon and telencephalon, did not 

reveal signals above those of the surrounding areas in either the uvaeform nucleus (Uva; 

Williams and Vicario, 1993) or the nucleus interface of the nidopallium (NIf; Table 1); both 

of these structures send efferents to the HVC (Nottebohm et al., 1982; Bottjer et al., 1989; 

Cardin et al., 2005). 

 

Expression of the GABAA receptor 4-subunit gene in the female zebra finch brain 

 We have also used in situ hybridisation to investigate the expression of the GABAA 

receptor 4-subunit gene in the brains of female zebra finches.  These birds generate 

vocalisations but can not produce the stereotypic song that is characteristic of males; this 

behavioural difference can be correlated with gender-specific differences in the size of song 

system nuclei (Nottebohm and Arnold, 1976; Nixdorf-Bergweiler, 1996; Zeigler and Marler, 

2004).  The 4-subunit mRNA distribution in adult females is very similar to that of adult 

males (Figure 5) with the notable exception of the song system nuclei.  Expression is 

observed in females in LMAN (Figure 5B), albeit at a lower level than in males (compare 

with Figure 5A), but there is no autoradiographic signal above that of surrounding areas in the 

MMAN (Figure 5B), the HVC (Figure 5F) and the RA (Figure 5H).  Also, there is no 

enhanced labelling in the region corresponding to Area X, which is observed in male zebra 

finches (compare Figures 5C and D).  This is consistent with the known absence, in females, 

of a structure comparable to Area X in males (Nottebohm and Arnold, 1976).  Note that no 

qualitative differences were observed in the expression pattern of the 4-subunit gene in 

juvenile (PHD35) vs. adult (PHD>100) female brains (data not shown). 

 

Figures 5 near here 
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Discussion 

 We have described here the isolation of a cDNA clone that encodes a large portion of 

the zebra finch GABAA receptor 4 subunit, and its use in mapping the expression pattern of 

the corresponding gene in the male zebra finch brain at four different ontogenetic stages, 

namely, before birds are able to produce song (PHD22 and PHD25), at the onset of singing 

(PHD35 to 38), when birds are capable of song (PHD60/61) and after the song has 

crystallised (adult; PHD>100; Mooney, 1999).  Our data are important because they: i.) begin 

the molecular characterisation of the GABAA receptor(s) that participate(s) in audition-

dependent learning; ii.) yield insight into the development of the GABAergic system in a 

central song nucleus, the RA; and iii.) provide a molecular marker for most of the nuclei that 

comprise the two neuronal circuits that are required for vocalisation in songbirds.  We have 

also described the expression of the 4-subunit gene in female zebra finches, and the data 

obtained are qualitatively similar to those found for males, with the expected exception of the 

song system nuclei (see Nottebohm and Arnold, 1976; Nixdorf-Bergweiler, 1996, and Figure 

5). 

 

GABAA receptors containing the 4 subunit possibly play a role in song learning 

 A significant body of literature has strongly implicated GABAA receptors in the 

regulation of excitation within the zebra finch song system (Livingston and Mooney, 1997; 

Bottjer et al., 1998; Luo and Perkel, 1999; Cardin and Schmidt, 2004; Pinaud et al., 2004; 

Farries et al., 2005; Mooney and Prather, 2005).  These receptors are the major inhibitory 

neurotransmitter receptors in brain, and they exist in a variety of forms called subtypes, that 

are assembled from seven different types of subunit (, , , , ,  and ; Darlison et al., 

2005; Sieghart, 2006).  Each of them possesses an integral chloride-selective channel that is 

activated upon the binding of GABA.  Although  and  subunits can form functional 

agonist-activated channels (Schofield et al., 1987), most in vivo GABAA receptors possess 

two  subunits, two subunits and a  subunit (see Sieghart, 2006).  The absence of a  

subunit, in GABAA receptors in vivo, has been shown to result in a number of changes, 

including a significant reduction in the whole-cell GABA-induced current and insensitivity to 
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the benzodiazepine class of compounds (Günther et al., 1995). 

Our observation that the 4-subunit gene is expressed in the major nuclei of the song 

system, in male zebra finches, strongly suggests that one or more GABAA receptors 

containing this polypeptide regulate song acquisition and production.  An alternative, but not 

mutually-exclusive, interpretation of our findings is that the high levels of expression of this 

gene are a consequence of the unique properties of the song system, for example, its 

sensitivity to steroid hormones and its sexual dimorphic nature.  In this context, it is well-

established that several GABAA receptor genes are regulated by steroids (Orchinik et al. 

1995).  Indeed, putative steroid hormone response elements have been identified in the 

promoter regions of the majority of GABAA receptor subunit genes (see Steiger and Russek, 

2004); however, it is not yet known if this is the case for the 4-subunit gene.  The sexual 

dimorphic nature of the song system is also mirrored by our in situ hybridisation data (Figure 

5).  Nevertheless, it has long been known that pharmacological modulation of GABAA 

receptors has a profound effect on learning and memory processes (Chapouthier and Venault, 

2002). 

The involvement of GABAA receptors in the physiological processes underlying song 

learning and production is supported by data, from lightly-sedated birds, showing that 

injection of the GABAA receptor agonist, muscimol, into NIf eliminated spontaneous activity 

and auditory responses in the projection area HVC; conversely, injection of the antagonist, 

bicuculline, into the same structure, increased auditory responsiveness in HVC (Cardin and 

Schmidt, 2004).  However, although several groups have recorded GABAA receptor responses 

from neurons within the LMAN (Livingston and Mooney, 1997; Bottjer et al., 1998), the 

DLM (Luo and Perkel, 1999), the HVC (Mooney and Prather, 2005), the RA (Vicario and 

Raksin, 2000) and Area X (Farries et al., 2005), the drugs used in these studies (picrotoxin 

and bicuculline) do not discriminate between receptor subtypes.  Thus, the molecular identity 

of these receptors in the song system is unknown.  Here we provide convincing evidence that 

the 4 subunit is a component of one or more GABAA receptor subtypes that is/are present in 

most of the major song system nuclei (i.e. the LMAN, Area X, the HVC and the RA).  These 

data are in line with our previous studies that have shown that 4-subunit gene expression is 
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modulated, in appropriate brain areas such as the intermediate medial mesopallium (formerly, 

the intermediate and medial part of the hyperstriatum ventrale; see Reiner et al., 2004), in 

response to visual imprinting in the one-day-old chick (Harvey et al., 1998), which is a form 

of juvenile learning (Horn, 1998).  Although GABAA receptors have been functionally 

identified, in the zebra finch, in the NIf (Cardin and Schmidt, 2004), significant levels of the 

4-subunit transcript could not be detected in this nucleus.  We therefore conclude that these 

receptors likely contain another  subunit or the  or  subunit. 

That the 4 subunit is a bona fide GABAA receptor polypeptide has been demonstrated 

by the functional expression of the chicken sequence, with an  and a  subunit, in Xenopus 

laevis oocytes (Forster et al., 2001).  These experiments have revealed that the 4 subunit 

exhibits most of the properties expected of a GABAA receptor  subunit, including the ability 

to confer sensitivity to benzodiazepines; it differs from the mammalian 1, 2 and 3 subunits 

in that recombinant 4-subunit receptors have a high sensitivity to zinc (Forster et al., 

2001).  Together with the strong sequence conservation between the zebra finch and chicken 

4 subunits (97% identity over 271 amino acids), our data point to a conserved function for 

GABAA receptors containing this polypeptide in learning and memory processes in birds.  

Recently, we, in collaboration with others, have begun to quantify the expression levels of 

GABAA receptor subunit genes, in the zebra finch brain, using laser capture microdissection 

of individual song system nuclei in combination with quantitative (real-time) PCR, at a 

variety of developmental stages.  These experiments should help elucidate the nature of the 

other GABAA receptor polypeptides that assemble with the 4 subunit in vivo, and reveal the 

extent of the involvement of this ligand-gated ion channel in the learnt behaviour of song 

production. 

 

Development of the GABAergic system within the RA 

 The expression pattern of the GABAA receptor 4-subunit gene, within the male zebra 

finch brain, suggests that the encoded polypeptide (and the receptor subtype(s) of which it is a 

part) has functional significance in communication between, and within, the two 

interconnected circuits that make up the song system.  This is supported by the fact that, in 
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juvenile birds as young as PHD22, the 4-subunit mRNA is already present in two of the main 

nuclei of the anterior forebrain pathway (the LMAN and Area X), at the time when this 

pathway is anatomically connected and essential for song acquisition (Mooney and Rao, 

1994).  The 4-subunit transcript is also detectable, by in situ hybridisation, in the RA but 

only in PHD35 and older birds, despite the fact that this nucleus is histochemically 

recognisable much earlier (i.e. PHD12; Konishi and Akutagawa, 1985).  It has been reported 

that, at ~PHD15, the HVC terminals migrate and reach the dorsal border of the RA, where 

they remain until the onset of singing (Konishi and Akutagawa, 1985), and at ~PHD35, which 

marks the beginning of the sensorimotor phase (Mooney, 1999), the terminals begin to 

innervate this nucleus.  However, this observation has been challenged by Foster and Bottjer 

(1998), who have provided evidence that the HVC to RA connection is established much 

earlier (namely, at PHD20 to PHD23).  Nevertheless, the onset of expression of the 4-subunit 

gene in the RA coincides with the time-point when the vocal motor pathway becomes 

functional.  Whether the transcription of this gene in this nucleus is dependent on innervation 

from the HVC requires further investigation.  However, it must be independent of innervation 

by LMAN projection neurons because the terminals of this nucleus are functionally connected 

to the RA as early as PHD15 (Mooney, 1992; Mooney and Rao, 1994).  An interesting 

observation in connection with our findings is that the zebra finch retinaldehyde-specific 

aldehyde dehydrogenase gene, zRalDH, has also been found to be developmentally regulated 

in the RA (Denisenko-Nehrbass et al., 2000).  The expression of this gene peaks in the RA at 

PHD38, around the time that the GABAA receptor 4-subunit transcript starts to accumulate in 

this nucleus. 

It is currently not technically easy to localise the 4-subunit mRNA to a particular cell 

type using either emulsion autoradiography or non-radioactive in situ hybridisation and, in the 

absence of a suitable antibody, it is not possible to determine the subcellular location of 

receptors containing the 4 subunit.  However, there is clear evidence for GABAergic 

interneurons within the RA (Spiro et al., 1999; Vicario and Raksin, 2000).  It is, perhaps, 

worth noting that these inhibitory neurons are believed to be essential for the generation of 

temporally-precise patterns of neural activity (Spiro et al., 1999; Vicario and Raksin, 2000), 
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which are necessary for the production of song. 

 

The GABAA receptor 4-subunit mRNA is a molecular marker for the song system 

 As mentioned above, we have described here strong hybridisation signals, 

corresponding to the presence of the GABAA receptor 4-subunit transcript, in most of the 

major nuclei of the song system.  Furthermore, the strength of the signals clearly distinguishes 

these structures from the surrounding brain areas.  Moreover, the sizes of some of the nuclei 

undergo alterations during brain development (Nixdorf-Bergweiler, 1996), and this appears to 

be paralleled by the extent of spatial labelling seen here (compare, for example, Area X in 

Figures 2C and D, and the HVC in Figures 3A and B).  Clearly, this observation merits 

further investigation.  Thus, the 4-subunit mRNA appears to be a specific marker for the 

song system that could, perhaps, be used, among other things, to delineate the boundaries of 

the component nuclei (Gahr, 1997).  This is clearly a fortuitous finding, since early attempts 

to identify molecules that are unique to, and account for the sexual dimorphism, of this 

neuronal network in another songbird (the canary) were not particularly successful (Clayton 

and Huecas, 1990).  Akutagawa and Konishi (2001) generated a monoclonal antibody that 

recognises a yet unknown antigen (named SNAg for Song system Nuclear Ag) that is found 

within the nuclear compartment.  While this antibody is able to label the HVC, the RA, the 

LMAN, the MMAN and the NIf of male zebra finches and other estrildine birds, it does not 

yield a signal in other song system nuclei, such as Area X and the DLM, nor does it label 

structures within the canary brain.  SNAg is interesting because its synthesis is 

developmentally regulated, and it can be induced by the hormone oestrogen in female zebra 

finches (Akutagawa and Konishi, 2001).  However, based on its subcellular location and 

expression pattern, it can not be the GABAA receptor 4 subunit. 

A number of other authors have identified genes, the expression of which is enriched 

in song system nuclei.  For example, using in situ hybridisation, Metzdorf et al. (1999) 

investigated the expression of genes encoding the enzyme aromatase, and receptors for 

oestrogen and androgen, in songbirds (namely, the canary, Serinus canaria, and the ring dove, 

Streptopelia risoria).  Of these, only the androgen receptor gene is transcribed in a number of 
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song system nuclei (i.e. the HVC, the LMAN, the MMAN, the NIf, and the RA; expression 

was not detected in Area X).  The mRNAs for the oestrogen receptor and aromatase were only 

found in the HVC and the MMAN, respectively.  However, the transcript for the androgen 

receptor gene has been detected, in the zebra finch, in Area X (Kim et al., 2004).  Denisenko-

Nehrbass et al. (2000) have reported the isolation of a cDNA for zRalDH; this is expressed in 

the HVC, the LMAN and the RA but not Area X.  A plethora of cDNAs for glutamate 

receptor subunits have also been cloned and the corresponding gene expression patterns 

elucidated (Wada et al., 2004), and many of these are transcribed within the song system.  In 

particular, the N-methyl-D-aspartate receptor NR2A-subunit mRNA can be detected, albeit 

not in high amounts, within the HVC, the LMAN, the RA and Area X.  In addition, the 

mRNA for the middle-weight neurofilament protein is enriched in the HVC, the LMAN, the 

MMAN and the RA; it is also present in area X but at a very low level (Velho et al., 2007).  

Finally, radioligand binding studies, using the antagonist [
3
H]RX821002, have demonstrated 

that the 2-adrenergic receptor protein is present in the HVC, the LMAN, the RA and Area X 

(Riters and Ball, 2002; the MMAN was not reported on).  In contrast, the GABAA receptor 

4-subunit gene is highly expressed in the HVC, the LMAN, the MMAN and the RA, as well 

as Area X.  The latter is, therefore, clearly, a useful marker for studies on the song system.  

Finally, its use is not limited to the zebra finch since we (C. Thode and M. G. Darlison, 

unpublished data) have recently isolated an orthologous cDNA from the canary. 

 In conclusion, GABAA receptors are known to modulate learning and memory in a 

number of animal models, including man (see, for example, Chapouthier and Venault, 2002; 

Maubach, 2003).  And, as has been noted (Doupe and Kuhl, 1999; Mooney, 1999), the 

acquisition of complex vocalisations in songbirds resembles the process by which humans 

learn to speak.  Although the data presented here only demonstrate the specific and enhanced 

expression of the GABAA receptor 4-subunit gene within most of the major song system 

nuclei, they do provide a very strong correlation with vocal behaviour.  Currently, we are 

trying to modulate the expression of GABAA receptor genes in vivo, which should enable us 

to demonstrate a functional role for 4-subunit-containing receptors in the learning, 

production and/or maintenance of song. 
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Legends to Figures 

Figure 1.  Alignment of part of the zebra finch GABAA receptor 4 subunit with the 

corresponding chicken sequence.  The amino-acid sequences (shown in single-letter code) 

were aligned with the help of the computer programme CLUSTAL_X (Thompson et al., 

1997); dots denote gaps that have been introduced to maximise the alignment.  Three 

membrane-spanning domains (M1 to M3) and the conserved cysteine loop, in the amino-

terminal extracellular domain, are indicated by solid lines and a dotted line above the 

sequences, respectively.  Positions at which the two sequences differ are high-lighted by 

white lettering on a black background.  The sequence of the cDNA, from which the zebra 

finch GABAA receptor 4-subunit amino-acid sequence has been deduced, has been given the 

EMBL accession number AM086993.  The chicken GABAA receptor 4-subunit sequence has 

been taken from EMBL accession number X73533 (see Harvey et al., 1993). 

 

Figure 2.  Expression of the GABAA receptor 4-subunit gene in nuclei of the anterior 

forebrain pathway in juvenile (PHD35; A and C) and adult (PHD>100; B and D) male zebra 

finches.  Shown are inverse images, from autoradiographs, of sections that were hybridised 

with a transcript-specific oligonucleotide probe.  Numbers on the schematics refer to the 

corresponding sections of the stereotaxic atlas of Stokes et al. (1974).  Abbreviations: HA, 

apical part of the hyperpallium; HD, densocellular part of the hyperpallium; LMAN, lateral 

magnocellular nucleus of the anterior nidopallium; M, mesopallium; MMAN, medial 

magnocellular nucleus of the anterior nidopallium; MSt, medial striatum; N, nidopallium; X, 

Area X.  Scale bar: 2 mm. 

 

Figure 3.  Expression of the GABAA receptor 4-subunit gene in nuclei of the vocal motor 

pathway in juvenile (PHD35; A and C) and adult (PHD>100; B and D) male zebra finches.  

Shown are inverse images, from autoradiographs, of sections that were hybridised with a 

transcript-specific oligonucleotide probe.  Numbers on the schematics refer to the 

corresponding sections of the stereotaxic atlas of Stokes et al. (1974).  Abbreviations: A, 

arcopallium; Cb, cerebellum; Hb, habenula; Hp, hippocampus; LSt, lateral striatum; N, 
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nidopallium; NC, caudal nidopallium; RA, robust nucleus of the arcopallium; TeO, optic 

tectum.  Note that HVC is used as the proper name.  Scale bar: 2 mm. 

 

Figure 4.  Expression of the GABAA receptor 4-subunit gene in Field L of juvenile (PHD35; 

A) and adult (PHD>100; B) male zebra finches.  Shown are inverse images, from 

autoradiographs, of sections that were hybridised with a transcript-specific oligonucleotide 

probe.  The number on the schematic refers to the corresponding section of the stereotaxic 

atlas of Stokes et al. (1974).  Abbreviations: Hb, habenula; Hp, hippocampus; L, Field L; LSt, 

lateral striatum; N, nidopallium; TeO, optic tectum.  Scale bar: 2 mm. 

 

Figure 5.  Comparison of the expression of the GABAA receptor 4-subunit gene in adult 

(PHD>100) male (A, C, E and G) and female (B, D, F and H) zebra finches.  Shown are 

inverse images, from autoradiographs, of sections at equivalent levels of the zebra finch 

neuroaxis.  Male and female sections were hybridised (with a transcript-specific probe) and 

washed together, and then exposed to the same sheet of X-ray film.  Abbreviations: LMAN, 

lateral magnocellular nucleus of the anterior nidopallium; M, mesopallium; MMAN, medial 

magnocellular nucleus of the anterior nidopallium; RA, robust nucleus of the arcopallium; X, 

Area X.  Note that HVC is used as the proper name.  Scale bar: 2 mm. 
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Table 1.  Distribution of the GABAA receptor 4-subunit mRNA in the song system of the 

male zebra finch at different developmental stages. 

 

Brain region 

Developmental stage 

PHD22 and 25 

(n = 3) 

PHD35 to 38 

(n = 6) 

PHD60 and 61 

(n = 2) 

PHD>100 

(n = 7) 

Anterior 

forebrain 

pathway 

Area X +++ +++ +++ +++ 

LMAN ++ +++ +++ +++ 

MMAN ++ +++ +++ +++ 

Vocal 

motor 

pathway 

HVC ++ +++ ++++ ++++ 

RA – + +++ ++++ 

Auditory 

areas 

Field L +++ +++ +++ +++ 

NIf – – – – 

  

Legend to Table 1 

Listed are the major nuclei of the two neuronal pathways of the zebra finch song system and 

two areas, Field L and NIf that provide auditory input.  Hybridisation signals in these nuclei, 

obtained with specific oligonucleotide probes that recognise the GABAA receptor 4-subunit 

mRNA (see text), were arbitrarily scored essentially as previously (see, for example, Harvey 

and Darlison, 1997; Bock et al., 2005; Thode et al., 2005), as either high (++++), moderate 

(+++), low (++), very low (+) or no signal above that of surrounding areas (-).  Data derive 

from Figures 2 to 4, and data not shown.  Brain areas were identified as described in 

Experimental Procedures. 
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Figure 1 

 
Zebra finch  FFRNSKRADSHWITTPNQLLRIWNDGKVLYTLRLTIEAECLLQLQNFPMDTHSCPLVFSSYGYPREEIVYRWRRYSIEVSDQRTWRLYQFD   91 

Chicken  FFRNSKRADSHWITTPNQLLRIWNDGKVLYTLRLTIEAECLLQLQNFPMDTHSCPLVFSSYGYPREEIVYRWRRYSIEVSDQRTWRLYQFD 91 
 

Zebra finch  FTGLRNTSEVLRTGAGEYMVMTVSFDLSRRMGYFAIQTYIPCILTVVLSWVSFWIKRDSTPARTSLGITTVLTMTTLSTISRKHLPRVSYI 182 

Chicken  FTGLRNTSEVLRTGAGEYMVMTVSFDLSRRMGYFAIQTYIPCILTVVLSWVSFWIKRDSTPARTSLGITTVLTMTTLSTISRKHLPRVSYI 182 

 

Zebra finch  TAMDLFVSVCFIFVFAALMEYATLNYLVGNKKPLEHSHRRARLPPAGAQVMPTFTT..ININHIMHWPPEIEEDEDDEPGSPCLEGKECER 271 

Chicken  TAMDLFVSVCFIFVFAALMEYATLNYLVGNKKPLEHSSRKARLPPAGAQVMPSFTAINININNIMHWPPEIEEDEDDDPGSPCLEGKECER 273 
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Figure 2 
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Figure 3 
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Figure 5 

 

 


