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Efficient detection of periodic orbits in high dimensional systems
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This paper is concerned with developing a method for detecting unstable periodic orbits (UPOs) by stabilising
transformations. Here the strategy is to transform the system of interest in such away that the orbits become
stable. However, the number of such transformations becomes overwhelming as we move to higher dimen-
sions [5, 16, 17]. We have recently proposed a set of stabilising transformations which is constructed from a
small set of already found UPOs [1]. The real value of the set is that its cardinality depends on the dimension
of the unstable manifold at the UPO rather than the dimension of the system. Here we extend this approach to
high dimensional systems of ODEs and apply it to the model example of a chaotic spatially extended system –
the Kuramoto-Sivashinsky equation.
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1 Introduction

The following work is concerned with the detection of UPOs for large systems of ODEs of the form

dx

dt
= f(x), (1)

with x ∈ RN and f(x) ∈ RN . Often Eq. (1) is the result of a spatial discretisation of a parabolic PDE. In this way
dynamical system results can be applied to extended systems which exhibit chaos. Over the past twenty years
the periodic orbit theory (POT) has been developed and successfully applied to low dimensional systems. Many
dynamical invariants such as natural measure, Lyapunov exponents, fractal dimensions and entropies [14] can be
determined via cycle expansions. It is an open question whether or not the POT has anything to say for spatially
extended systems. It is thus an important numerical task to find UPOs for such systems in an attempt to answer
this question. The model example of a spatiotemporally chaotic system is the Kuramoto-Sivashinsky equation
(KSE), which was first studied in the context of reaction-diffusion equations by Kuramoto and Tsuzuki [11],
whilst Sivashinsky derived it independently as a model for thermal instabilities in laminar flame fronts [20]. It
is one of the simplest interesting PDEs to exhibit chaos and we have chosen it as a test case for the work that
follows.

The problem of finding UPOs is essentially a root finding problem, thus a popular approach is to use some
variant of Newton’s method. Indeed, Zoldi and Greenside have reported the detection of 127 distinct UPOs for
the KSE [23]. Here they solve for the discretised system using simple shooting with a damped Newton method to
update each step. Another recent assault on the KSE by Cvitanović and Lan use variational methods [3, 12]. Here
a suitable cost function is constructed so that its minimization leads to the detection of a UPO. The main problem
however is that Newton type methods suffer from two major drawbacks: firstly, the basin size is essentially
restricted to the linear neighborhood of any particular UPO and secondly, the method has no way of differentiating
between true roots and local minima of the cost function. The latter drawback is one which increases significantly
with dimension due to the complicated topology of multi-dimensional flows.
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The method of detecting UPOs by stabilising transformations [1, 5, 15, 16, 17] aims at transforming the system
in such a way that its UPOs become stable. Unlike in the Newton-type methods, the transformations are linear
and thus do not suffer from spurious convergence. When faced with the task of finding UPOs of a discrete system

xj+1 = F (xj), F : RN → RN , (2)

one can look instead at the related flow

dx

ds
= g(x), (3)

where g(x) = F p(x)− x. It is straightforward to see that the period−p points of the map are equilibrium points
for the associated flow. With this setup we are able to stabilise all UPOs x∗ of Eq. (2) such that all the eigenvalues
of the Jacobian DF p(x∗) have real part smaller then one. In order to stabilise all possible UPOs we study the
following flow

dx

ds
= Cg(x), (4)

where C ∈ RN×N is a constant matrix introduced in order to stabilise UPOs with the Jacobians that have
eigenvalues with real parts greater than one. Given a set {C} of such matrices, we have a family of differential
equations which need to be solved in order to find all UPOs of Eq. (2). One example of such a set was proposed
by Schmelcher and Diakonos (SD) [16]. It is the set CSD of orthogonal matrices such that only one entry {±1}
per row or column is nonzero. It has been verified that the set CSD stabilise all hyperbolic fixed points for N ≤ 2,
and numerical evidence suggests the result holds for N > 2, but, thus far, no proof has been presented. However,
if we wish to extend the stabilising transformation approach to higher dimensions, the set CSD cannot be applied
directly, since its size increases very rapidly with system dimension (|CSD|= 2NN !).

For high dimensional systems with relatively few unstable directions, the method of stabilising transformations
can be applied efficiently by restricting our attention to the unstable part of Eq. (2). Indeed, by constructing
transformations which only alter the stability of the flow in Eq. (4) in the unstable subspace ofDF p, it is possible
to reduce the number of transformations considerably. The authors have recently proposed a new set of matrices C
based on the properties of a small already detected set of UPOs. Here the cardinality is |C| = 2nu , where nu is the
dimension of the unstable manifold at x∗. This is the key to extending these ideas to spatially extended systems,
since often in practice the systems of interest are such that nu � N . For example, after a finite difference
discretisation of the KSE [23] with resulting system of size N = 100, only four of the corresponding Lyapunov
exponents are positive. Thus at each seed we would have only |C| = 16 matrices as opposed to |CSD| = 29999! if
we used the SD matrices 1.

2 Subspace decomposition

In what follows we take our leave from the subspace iteration methods [13, 19], where the idea is to split the
phase space into an unstable subspace P

P = Span{ui ∈ RN |DF p(x∗)ui = λiui, |λi| > 1}, (5)

and its orthogonal complement Q, so that any x ∈ RN can be uniquely represented as x = xp+xq , where xp ∈ P
and xq ∈ Q. By decomposing Eq. (2) onto the respective spaces it is possible to apply Newton’s method on the
unstable subspace and fixed point iteration to its complement. As long as nu � N where nu is the dimension of
P, this gives an efficient solver. However, primary concern of the work in [13, 19] is the continuation of branches
of periodic orbits, where it is assumed that a reasonable approximation to a UPO is known. This is not a luxury
which we share and we shall need to accommodate this into our extension of the method to Eq. (4).

If we define orthogonal projectors P and Q onto the respective subspaces

P = VuV
T
u Vu ∈ RN×nu , (6)

Q = IN − P = VsV
T
s , Vs ∈ RN×N−nu , (7)

1 Here we reduce the flow to a Poincaré surface of section in order to obtain a discrete system
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(a) Schur decomposition (b) Singular value decomposition

Fig. 1 Basins of attraction for the period−3 orbits of the Ikeda map with parameter values a = 1.0, b = 0.9, k = 0.4 and
η = 6.0. Here we have chosen C̃ = −1 since in this example the unstable subspace is 1−dimensional.

where IN is the identity matrix and the columns of Vu and Vs are orthonormal vectors that span the spaces P and
Q respectively, then Eq. (3) can be rewritten as

dp

ds
= gu(p, q), (8)

dq

ds
= gs(p, q), (9)

where gu = V T
u g, gs = V T

s g, p = V T
u x, q = V T

s x and x = Vup + Vsq. Thus we have replaced the original
Eq. (3) by a pair of coupled equations, Eq. (8) of dimension nu and Eq. (9) of dimension N −nu. The usefulness
of this splitting can be seen in the following lemma [13]

Lemma 2.1 Let x∗ be a fixed point of F p and let the columns of Vu and Vs consist of the first nu and remaining
N − nu Schur vectors of DF p(x∗) (x∗ = V T

u p
∗ + V T

s q
∗). Then all the eigenvalues of

∂

∂q
gs(p

∗, q∗) = V T
s DgVs (10)

have negative real part.
From this lemma we see that it is only necessary to apply a stabilising transformation to Eq. (8) in order to

converge to the UPO x∗. Therefore in order to stabilise all equilibrium points of Eq. (3) we elect to study:

dp

ds
= C̃gu(p, q), (11)

dq

ds
= gs(p, q), (12)

where C̃ ∈ Rnu×nu is a constant matrix.
In Lemma 2.1 the Schur decomposition is used in order to construct the projectors P and Q. This is fine for

continuation problems since one may assume from the offset that they possess an initial condition x0 sufficiently
close to a UPO such that the Schur decomposition of DF (x0) gives a good approximation to the eigenspace

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 Jonathan J. Crofts and Ruslan L. Davidchack: Detection of UPOs in high dimensional systems

Fig. 2 The basins of attraction for the Ikeda map for the choice of C̃ = 1. Fixed points of F 3 with negative unstable
eigenvalues are stable stationary solutions of the associated flow, while those with positive eigenvalues are saddles located at
the basin boundaries.

of DF (x∗). However it is well known that the eigenvectors of the perturbed Jacobian DF (x∗ + δx) behave
erratically as we increase δx. In order to enlarge the basins of attraction for the UPOs we propose that singular
value decomposition (SVD) be used instead. That is we choose an initial condition x0 and construct the SVD of
its preimage i.e. DF (F−1(x0)) = USWT (or in the continuous case DφT (φ−T (x0)) = USWT for some time
T ), the columns of U give the stretching directions of the map at x0, whilst the singular values determine whether
the directions are expanding or contracting. It is these directions which we use to construct the projectors P and
Q. Due to the robustness of the SVD we expect the respective basins of attraction to increase 2.

It is not necessary in practice to decompose Eq. (3) in order to to apply the new stabilising transformation.
Rather we can express C in terms of C̃ and Vu. To see this we add Vu times Eq. (11) to Vs times Eq. (12) to get

dx

ds
= VuC̃V

T
u g(x) + VsV

T
s g(x),

= [IN + Vu(C̃ − Inu
)V T
u ]g(x), (13)

where the second line follows from Eq. (7). From this we see that the following choice of C is equivalent to the
preceding decomposition

C = IN + Vu(C̃ − Inu
)V T
u . (14)

Thus in practice we compute Vu and C̃ at the seed x0 in order to construct C and then proceed to solve Eq. (4).
The advantage of using the SVD rather than the Schur decomposition can be illustrated by the following example.
Consider the Ikeda map [8]:

F

(
xn+1

yn+1

)
=

(
a+ b(xncos(φ)− ynsin(φ))
b(xnsin(φ) + yncos(φ))

)
, (15)

where φ = k−η/(1+x2+y2) and the parameters are chosen such that the map has a chaotic attractor: a = 1.0,
b = 0.9, k = 0.4 and η = 6.0. For this choice of parameters the Ikeda map possesses eight period−3 orbit points
(two period-3 orbits and two fixed points, one of which is on the attractor basin boundary). In our experiments

2 The theory at present holds for Schur decomposition and it is an on going effort to formulate similar ideas for SVD. However numerical
experiments using SVD have had considerable success.
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we have covered the attractor for Eq. (15) with a grid of initial seeds and solved the associated flow for p = 3.
This is done twice, firstly in the case where the projections P and Q are constructed via the Schur decomposition
and secondly when they are constructed through the SVD. Since all orbits of the Ikeda map are of saddle type,
the unstable subspace is one-dimensional and we need only two transformations: C = 1 and C = −1. Figure
1 shows the respective basins of attraction for the two experiments with C̃ = −1. It can be clearly seen that the
use of SVD corresponds to a significant increase in basin size compared to the Schur decomposition. Note that
with C̃ = −1 we stabilise four out of eight fixed points of F 3. The other four are stabilised with C̃ = 1. The
corresponding basins of attraction are shown in Figure 2. Note that for this choice of stabilising transformation
the choice of basis vectors is not important, since Eq. (14) yields C = I , so that the associated flow is given by
Eq. (3).

3 Stabilising transformations

There are several options for choosing the stabilising transformations C̃. One choice would be to apply the
matrices of Schmelcher and Diakonos CSD. With this new setup the numbers would be manageable for systems
with up to two or three unstable directions. However numerical experiments have shown that many of the matrices
in CSD are redundant. Thus it is useful to find a minimal subset CMin ⊂ CSD such that all hyperbolic UPOs of
a given N -dimensional system are stabilised by at least one of the elements of CMin. Pingel et al. provide a
non-rigorous approach to this problem in [15]. Here a candidate for the minimal set CMin is determined via a
statistical approach. The idea is to construct a large ensemble of N × N matrices {Ai} whose elements are
chosen at random from the unit interval, then apply each of the 2NN ! stabilising transformations to each matrix
Ai. The set CMin is then formed by retaining only those transformations which stabilise at least one matrix Ai.

Another possibility which has been successfully used by the authors in low dimensional systems (N ≤ 6), is
to construct stabilising transformations from the Jacobians of already found UPOs. Recall that any non-singular
N ×N matrix can be uniquely represented as a product

G = QB , (16)

where Q is an orthogonal matrix and B is a symmetric positive definite matrix. Now for N > 2, we can always
use the polar decomposition to construct a transformation that will stabilise a given fixed point. Indeed, if a fixed
point x∗ of an N -dimensional flow has a non-singular matrix G ≡ Dg(x∗), then we can calculate the polar
decomposition G = QB and define

C = −QT , (17)

which will stabilise x∗. Moreover, as we have shown in our recent work [1], the same matrix C will also stabilise
other UPOs with stability properties similar to those of x∗. In the scheme where already detected periodic orbits
are used as seeds to detect other orbits [5], we can use C in Eq. (17) as a stabilising matrix for the seed x∗ in
order to detect other UPOs in its vicinity.

In the current work we use the following set C̃ = diag(±1,±1, . . . ,±1) with cardinality |C̃| = 2nu , which,
according to our numerical experiments, is sufficient to stabilise most of the UPOs that have eigenvalues with
both positive and negative real parts. Note that, as can be seen from Eq. (13), for every −1 in C̃, the transfor-
mation represents a Householder reflection in the plane normal to the corresponding vector vu. Therefore, if
an eigenvector corresponding to a positive eigenvalue is close to vu, the transformation is likely to produce an
associated flow with a negative eigenvalue along the corresponding direction. A more rigorous treatment of this
argument is currently under investigation.

4 Implementation

A typical approach in the determination of UPOs for flows is via a Poincaré surface of section (PSS). By “clever”
placement of anN−1 dimensional manifold in the phase space, the problem is reduced to a discrete map defined
via intersections with the manifold. However, a correct choice of PSS is a challenging problem in itself. Due to the
complex topology of a high dimensional phase space, the successful detection of UPOs will be highly dependent
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upon the choice of PSS. When the choice of a suitable PSS is not obvious a priori we found it preferable to work
with the full flow, adding an auxiliary equation to determine the integration time T .

Let x 7→ φT (x) define the flow map of the solution of Eq. (1). Similar to Eq. (4), we define the associated
flow as follows:

dx

ds
= C(φT (x)− x). (18)

The additional equation for T is defined in the following form

dT

ds
= −αf(φT (x)) · (φT (x)− x), (19)

such that T is always changing in the direction that decreases the distance |φT (x)− x|. Here α > 0 is a constant
that controls the relative convergence speed of Eq. (19).

4.1 Numerical results

We have chosen the KSE for our numerical experiments. It is the simplest example of spatiotemporal chaos and
has been studied in a similar context in [4, 12, 23], where the detection of many UPOs have been reported. We
work with the KSE in the form

ut = (u2)x − uxx − νuxxxx, (20)

where x ∈ [0, 2π] is the spatial coordinate, t ∈ R+ is the time and the subscripts x, t denote differentiation with
respect to space and time. The viscosity parameter ν > 0 determines the amount of dissipation present within the
system. For values of ν > 1 we have that u(x, t) = 0 is the global attractor for the system and the resulting long
time dynamics are trivial. However, as ν is decreased the system undergoes a sequence of bifurcations leading to
complicated dynamics (see for example [10]).

Our setup will be close to that found in [12]. Thus in what follows we assume periodic boundary conditions:
u(x, t) = u(x + 2π, t), and restrict our search to the subspace of antisymmetric solutions i.e. u(2π − x, t) =
−u(x, t). Due to the periodicity of the solution we can solve Eq. (20) using the psuedo-spectral method [7, 21].
Representing the function u(x, t) in terms of its Fourier modes:

û(k, t) =
1

2π

∫ 2π

0

u(x, t)e−ikxdx, u(x, t) =
∑
k∈Z

û(k, t)eikx, (21)

we arrive at the following system of ODEs:

ût(k, t) = (k2 − νk4)û(k, t) + ikû2(k, t). (22)

Since KSE has a rapidly decaying Fourier spectrum we can restrict the system to a finite number of modes N and
use the discrete Fourier transform instead of Eq. (21).

The search for UPOs is conducted within a rectangular region containing the chaotic invariant set. Initial
seeds are obtained by integrating a random point within the region for some transient time. In order to build the
stabilising transformations it is necessary to approximate the local stretching rates at the seed. Thus we solve the
variational form [2] in addition to the flow each time we determine an initial seed.

Our experiments thus far have been carried out using Matlab. We use an exponential time differencing method
(ETDRK4) due to Kassam and Trefethen [9] in order to solve the KSE and variational equations. Note that the
method uses a fixed step-size (h = 0.002 in our calculations) thus it is necessary to use an interpolation scheme
in order to integrate up to arbitrary times. In our work we have used cubic interpolation [22]. Since the resulting
associated flow is typically stiff, we use Matlab routine ode15s [18]. In our calculations we have chosen the
viscosity parameter ν = 0.015, our system size isN = 32 and the positive constant α = 0.1 in Eq. (19). Typically
the associated flow converges to a UPO within approximately 150 integration steps with accuracy of about 10−7.
If the flow does not converge within 300 integration steps, we have found it more efficient to terminate the solver
and re-start with a different stabilising transformation or a new seed. In our numerical experiments, about half
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Fig. 3 Illustration of two UPOs of KSE detected from a single seed. We show both a level plot for the solutions and
a projection onto the first two Fourier components where a = Im(û) denotes the fact that we restrict our search to the
space of odd solutions: (a) Seed with time T = 0.6110, (b) a periodic solution of length T = 0.6352 detected with
stabilising transformation C̃ = I3 and (c) a periodic solution of length T = 0.6619 detected with stabilising transformation
C̃ = diag(1,−1, 1).

of the seeds yielded UPOs, often converging to several different UPOs from the same seed, depending on the
stabilising transformation used.

Figure 3 shows one of such cases, where Eqs. (18) and (19) are solved from the same seed for each of the
2nu stabilising transformations (nu = 3 in this example), with two of them converging to two different UPOs.
Figure 3a shows the level plot of the initial condition and a projection onto the first two Fourier components.
Figures 3b and 3c show two unstable spatiotemporally periodic solutions which were detected from this initial
condition, the first of period T = 0.6352 was detected using C̃ = I3, whilst the second of period T = 0.6619
was detected using C̃ = diag(1,−1, 1). The ability to detect several orbits from one seed increases the efficiency
of the algorithm.

5 Conclusions and further work

We have presented a scheme for detecting UPOs in high dimensional chaotic systems based upon the stabilising
transformations proposed in [5, 16]. Due to the fact that one often wishes to study low dimensional dynamics
embedded in a high dimensional phase space, it is possible to increase the efficiency of the stabilising transfor-
mations approach by restricting the construction of such transformations only to the low-dimensional unstable
subspace. Following the approach often adopted in subspace iteration methods [13], we construct a decom-
position of the tangent space into unstable and stable orthogonal subspaces. We find that the use of SVD to
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approximate the appropriate subspaces is preferable to that of Schur decomposition, which is usually employed
within the subspace iteration approach. As illustrated with the example of the Ikeda map, the decomposition
based on SVD is less susceptible to variations in the properties of the tangent space away from a seed and thus
produce larger basins of attraction for stabilised periodic orbits. Within the low-dimensional unstable subspace,
the number of useful stabilising transformations is relatively small, so it is possible to apply the full set of SD
matrices. In fact, we have found that the subset of diagonal matrices of ±1 is capable of locating a large number
of UPOs, although more analysis will be carried out in the future to determine if it is possible to detect all types
of UPOs with this subset.

The proposed method for detecting UPOs in high-dimensional dynamical systems has been tested on a 32-
dimensional system of ODEs representing odd solutions of the Kuramoto-Sivashinsky equation in the weakly
turbulent regime. We have been able to detect many UPOs using only the standard set of linear algebra tools and
a stiff ODE solver available within the Matlab environment.

In conclusion, we have presented an extension of the stabilising transformations approach for locating periodic
orbits in high-dimensional dynamical systems. Future work will concentrate on rigorous mathematical analysis
of this approach in order to determine the range of its applicability. We will also work on the development,
within the stabilising transformations approach, of an efficient strategy for systematic detection of periodic orbits
in high-dimensional systems.
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