
Semantic-Driven Matchmaking of Web Services Using Case-Based Reasoning

Taha Osman, Dhavalkumar Thakker, David Al-Dabass
School of Computing and Informatics, Nottingham Trent University, Nottingham, UK

(Taha.Osman, Dhavalkumar.Thakker, David.Al-Dabass)@ntu.ac.uk
Daniel Läzer, Ghislain Deleplanque

Naval Academy of France, Ecole Navale, BP 600, 29240 Brest, France

Abstract

With the rapid proliferation of Web services as the
medium of choice to securely publish application services
beyond the firewall, the importance of accurate, yet
flexible matchmaking of similar services gains importance
both for the human user and for dynamic composition
engines . In this paper, we present a novel approach that
utilizes the case based reasoning methodology for
modelling dynamic Web service discovery and
matchmaking. Our framework considers Web services
execution experiences in the decision making process and
is highly adaptable to the service requester constraints.
The framework also utilises OWL semantic descriptions
extensively for implementing both the components of the
CBR engine and the matchmaking profile of the Web
services.

1. Introduction

The Internet has become the market-place for a

colossal variety of information, recreational and business
services. Web services are increasingly becoming the
implementation platform of choice to securely expose
services beyond the firewall. Moreover, multiple Web
services can be integrated either to provide a new, value-
added service to the end-user or to facilitate co-operation
between various business partners. This integration of
Web services is called “Web services composition” and is
feasible to achieve because of the Web services
advantages of being platform, language neutral and
loosely coupled.

Automatic Web service discovery and matchmaking is
the principal aspect for dynamic services composition.
The accuracy of the matchmaking (selection) process
enhances the possibility of successful composition,
eventually satisfying the user and application
requirements. The current standard for Web service
discovery, the Universal Description, Discovery and
Integration (UDDI) registry is syntactical and has no
scope for automatic discovery of Web services. Hence,
current approaches attempting to automate the discovery
and matchmaking process apply semantics to the service

descriptions. These semantics are interpretable by the
service (software) agents and should include WSDL-based
functional parameters such as the Web services input-
outputs [1][2], and non-functional parameters such as
domain-specific constraints and user preferences [3].

The accuracy of automatic matchmaking of web
services can be further improved by taking into account
the adequacy of past matchmaking experiences for the
requested task, which gives us valuable information about
the services behaviour that is difficult to presume prior to
service execution. Hence, there is a need for a
methodology that uses domain-specific knowledge
representation of the required task to capture the Web
services execution experiences and utilise them in the
matchmaking process. Case Based Reasoning (CBR)
provides such methodology as its fundamental premise is
that experience formed in solving a problem situation can
be applied for other similar problem situation.

The paper begins with describing the motivation
behind the work. In section 3, we overview the theory of
CBR. Section 4 explains how we model Web services
matchmaking using CBR. In section 5 we discuss the
design of our matchmaking algorithm. The
implementation of the framework and analysis of results
are described in section 6 and 7. In section 8 we review
related work and we present our conclusions in section 9.

2. Motivation

The most practically deployed Web services

composition techniques use the theory of business
workflow-management as composition process model to
achieve formalization for control and data flow. Mainly
based on the Business Process Execution Language
(BPEL) standard [4], these techniques also have practical
capabilities that fulfil the needs of the business
environment, such as fault handling and state
management. However, the main shortcoming of these
techniques is the static selection and composition
approach, where the service selection and flow
management are done a priori and manually.

A popular research direction attempts to improve
BPEL composition by introducing semantics to workflow-

based composition [5]. However, these approaches also
match the static behaviour of Web services in terms of
whether the service has similar description for functional
and non-functional parameters. While for the candidate
Web services it is highly likely that these parameters are
semantically similar, it is the execution values for such
functional and non-functional parameters that provide
valuable guidance for decision-making process regarding
service adequacy for the task. This is because service
behaviour is difficult to presume prior to service
execution and can only be formed based on the experience
with the service execution.

Hence, the problem requires a methodology, which has
the domain-specific knowledge representation system for
capturing the Web services execution experiences and
reason based on those experiences. We adopted CBR
(Case Based Reasoning) as the engine for our Web
services discovery mechanism because CBR’s
fundamental premise that situations recur with regularity
[6], i.e. experience involved in solving a problem situation
can be applied or can be used as guide to solve other
contextually similar problem situation. Reasoner based on
CBR hence matches the previous experiences to inspire a
solution for new problems.

3. Overview of Case Based Reasoning

The Case-Based Reasoning technology was developed

in 1977 based on the research effort of Schank and
Abelson. They proposed that our general knowledge about
situations is recorded in the brain as scripts that allow us
to set up expectations and perform inferences [7]. The
processes involved in CBR can be represented by a
schematic cycle comprising four phases [8]:
� RETRIEVE the most similar case(s);
� REUSE the case(s) to attempt to solve the problem;
� REVISE the proposed solution if necessary, and
� RETAIN the new solution as a part of a new case.

There are 4 main stages in CBR reasoning:

i. Case representation
A case is a contextualised piece of knowledge

representing an experience [8]. It contains the problem, a
description of the state of the world when the case
occurred, and the solution to this problem. The solution
contains elements to answer to the problem but also
criticises of the relevance of the solution. When a reasoner
is created, the elements of the case are defined according
to the context. For example, the city of departure or the
number of passengers could be some elements to represent
a travel experience as a case. Case vocabularies are thus
developed for each reasoner, to define what knowledge
needs to be captured.

ii. Case storage & indexing
Cases are then stored in a case library or case base. It is

an important aspect for the designing of CBR systems
because it reflects the conceptual view of what is
represented in the case. The structure of the library should
permit efficient search by the reasoner. This search can be
facilitated by the use of indexing. Indices are therefore
assigned to cases. These indices express information
about the content of the case.

iii. Case retrieval
Whenever a new problem needs to be solved, the Case

library is searched for the cases which can be a potential
solution. The first phase of this search is case retrieval
with the aim of finding the cases which are contextually
similar to the new problem. The retrieval is done
according to the index of the cases.

vi. Matchmaking
Matchmaking performs the comparison between these

similar cases and the new request to verify if the possible
solution is the one applied to the prior cases. There are
several available methods for matchmaking in CBR
literature. The Nearest-Neighbour Matching and Ranking
is an interesting one because it involves the assessment of
similarity between stored cases and the newly input case.
It assigns importance ranking to properties of cases and
then computes the degree of matching by comparing the
cases for these properties [8]. The matchmaking process
is thus performed on each retrieved case, and the most
similar case of the input case is the one with the highest
result. If the system finds a matching case, it is possible to
reuse the solution suggested by the retrieved case for the
new problem.

In our CBR matchmaking approach, Web services

execution experiences are modelled as cases. The cases
are the functional and non-functional domain specific
Web services properties described using semantics. In
this modelling, the case library will be the storage place
for such execution experiences and is identical to Web
service registry in that it stores Web services references,
but unlike registries case libraries also describe execution
behaviour.

Case retrieval is similar to Web services discovery
problem in that both mechanisms seek to find potential
Web services for the current problem. Case matchmaking
is similar to Web services matchmaking as both attempt to
select acceptable Web services, from the retrieved Web
services during the case retrieval or Web service
discovery phase respectively.

The apparent compatibility confirms our thesis that the
CBR methodology is well suited to build automatic Web
service composition frameworks

4. Matchmaking Web services using Case
Based Reasoning

4.1 The framework architecture

In our Semantic CBR matchmaking, there are two main

roles: case administrator who is responsible for case
library maintenance by entering or deleting cases from the
library and case requestor who searches the case library to
find solution for the problem and is similar in role with
Web service requestor. Figure 1 illustrates a schematic
diagram for our framework.

Figure 1. Architecture of the CBR matchmaking
framework

The dynamics of the framework operation is as

follows:
1. Initially, the administrator populates the repository
with semantic case representation formats for specific
application domain. This representation is used to
semantically annotate both the user requests for suitable
services and the execution experiences of Web services
for the specific domain.
2. The user inputs the service requirements and as a
result receives Web service references via the framework
interface. The same interface is used by service provides
or the system administrator to subscribe a Web service as
a candidate for available services for the specific domain.
3. The case representation repository retrieves the
appropriate semantic case representation format for the
requested service and forwards it together with the
problem description to the Semantic Description generator
module, which semantically annotates the new problem
according to the representation format.

4. The annotated problem is then passed to the indexing
module, which computes a suitable index for the new
problem based on the domain feature and/or the functional
parameters of the requested service. The index is passed
for case retrieval.
5. The case retrieval module queries the case library for
cases with the similar indexes. Output at this stage will be
the cases that have similar index to the current problem,
which will be candidates for matchmaking.
6. The case matchmaking module takes the retrieved
cases and the annotation of problem description from the
semantic description generator module, runs them through
a matchmaking algorithm and forwards the closest match
Web service to the requester.

Although the chosen case study for this work is from
the travel domain, the modular, ontology-driven design of
framework makes it application-independent and allows
for its seamless reuse for other applications domain. In
order to enable matchmaking for the financial markets
domain for instance, it would suffice to enter a new case
representation format into the repository, keeping the rest
of the reasoning logic intact.

4.2 Ontology support for case representation

and storage

The most common use of ontologies is the

reconciliation between syntactically different terms that
are semantically equivalent. Applied to CBR case
descriptions for Web services, ontologies can be used to
provide a generic, reasoner-independent description of
their functional and non-functional parameters. Moreover,
ontologies can also be used to further index and structure
cases with key domain features that increase the efficiency
of the matchmaking process. For instance, we can add a
feature to the travel domain ontology to indicate whether a
trip is domestic or international. Web services QoS
parameters are also indexed using ontologies to further
improve the accuracy of case matchmaking.

In our framework, ontologies are also used to describe
the rules of the CBR reasoning engine, which not only
streamlines the intercommunication between the Web
service, user request, and the case library, but promotes
exploring the collaboration at the reasoning level between
different composition frameworks.

4.2.1 Case vocabulary

In CBR theory, the first step is to define all the

elements contained in a case and the associated
vocabulary that represents the knowledge associated with
the context of a specific domain (our case study is the
travel domain).

Semantic
Description

Genrator

Case
Matchmaking

service
requester

Indexing

problem
description

annotated problem description

case
repository

Admin

web service
reference

domain
representation

new
problem

semantic case
represntation

Case Retrieval

new problem index

matched cases

case with
similar index

case library

candidate
web service

This vocabulary includes functional and non-functional
parameters:
1. Functional parameters are the service input (e.g. the
travel details), and the service output or results (e.g. the
travel itinerary). Input corresponds to the request of the
user (e.g. date or city of departure) whereas output
corresponds to the response given to the user (e.g. price,
flight number).
2. Non-functional parameters are constraints imposed by
the user (e.g. exclusion of particular travel medium) or
preferences over certain specific parameters (e.g. Price
range, Quality of Service expected). In addition, execution
experiences stored in the case library should also include
the solution (i.e. Web services effectively used) and a
notion to specify if the solution is acceptable for the end-
user. Features that characterise the domain are extremely
useful for top-level indexing and can also be included as
non-functional parameters.

4.2.2 Case representation using frame
structures

After deciding on the knowledge and corresponding

vocabulary to be represented as a case, we need to decide
how this knowledge can be represented.

In our approach, we adopt frame structures [9] for the
case representation. In frame structures, frame is the
highest representation element consisting of slots and
fillers. Slots have dimensions that represent lower level
elements of the frame, while fillers are the value range the
slot dimensions can draw from. In our implementation,
slot dimensions represent case vocabulary in modular
fashion while fillers describe the possible value ranges for
the slot dimensions.

The frame representations are highly structured and
modular which allows handling complexity involved in
representation. Moreover, frame structure has a natural
mapping to the semantic OWL description language as the
semantic net representations largely borrowed from the
frame structures [10], which makes natural transition to
the Semantic Web descriptions possible. Table 1 shows
such a frame structure for our travel domain case
vocabulary.

Table 1. Representation of a case

Slot Dimension Filler

Name of Traveler Any text
Date of Arrival Any valid date

Travel
Request

City of Departure Any valid city
Solution

Service WSDL file

Price Range Any positive Double

Travel
Response

Currency Any valid currency

On Domain Any Valid Travel Domain
On Price range Any positive Double

Constraints

On QoS parameter Any possible QoS
parameter(s)

Features Travel Regions Domestic/International

The slot Travel Request corresponds to the Input, i.e.

all the travel details as for any travel agent. The Travel
Response slot corresponds to the Output, i.e. the answer
given to the user at the end of the process. The elements
of the answer are the price and the corresponding
currency, the access point to the WSDL file of the
corresponding Web Services and the Services Used
(companies involved in the trip, e.g. an airline and a
hotel).

4.2.3 Semantic encoding of the frame structure

In the developed framework, we map the frame

structures to ontologies. We derive rules for such mapping
as described in Figure 2.

Figure 2. Mapping between frame structure and
semantic case representation for travel domain

According to this mapping, frame and slot are

represented as classes. The relationship between frame
and slot is expressed in terms of properties of frame, as
the range for these properties are the slot classes.
Dimensions are the properties of the slots. Possible range
for these properties is the values the respective filler can
derive from.

We use Web Ontology Language (OWL), a Semantic
Web standard for constructing these ontologies. OWL is
the most expressive Semantic Web knowledge
representation so far. The layered approach adopted by
semantic web, allows reasoning and inference based on
ontologies, which is the most powerful and ubiquitous
feature of Semantic Web. After applying the mapping, the
ontology for the travel domain case representation is

CaseRepresentation

TravelResponse

$520 London

Constraints Features

hasTravelResponse

hasFeatures

hasConstraintsnGoal

price city

frame

property

slot

filler

created, where for instance the CaseRepresentation class
has: hasTravelResponse, hasConstraintsOnGoal, and
hasFeature object properties. Range for these properties
are TravelResponse, Constraints, and Feature classes
respectively.

In order to exercise the noble objective of globalization
of semantic descriptions, we used external ontologies
where appropriate. For instance, the property
cityOfArrival is an object property referring to a
publically available ontology [11], where other useful
information about the specific city can be found such as
country, the number of inhabitants, etc.

An example of a semantically-encoded travel request is

illustrated in Table 2. “Find a Trip for a single person, Mr
Lee; Mr Lee wants to travel from Boston to New York,
with a maximum price range in total of $220, He does not
want to travel by road. The dates of Travel will be 27-02-
2005 for departure and 01-03-2005 for return. He prefers
to pay in USD. He needs a quick result (approximately in
1.5 seconds)”.

Table 2. Example of case
Name of passengers Lee <TravelRequest:namePassengers>Le

e</TravelRequest:namePassengers>

City of Arrival Boston <TravelRequest:cityArrival
rdf:resource=
"http://localhost/ntu/ac/uk/2005/ont
o/City.owl#Boston"/>

Date of Arrival 01-03-2005 <TravelRequest:dateArrival>2005-
03-01</TravelRequest:dateArrival>

Constraint on domain Road <Constraints:OnDomain
rdf:resource=
"http://localhost/ntu/ac/uk/2005/ont
o/TravelDomain.owl#Airline"/>

Constraint on price 220 <Constraints:OnPrice>220</Constr
aints:onPrice>

Constraint on
currency

USD <Constraints:OnCurrency
rdf:resource=
"http://www.daml.ecs.soton.ac.uk/o
nt/currency.daml#USD"/>

Constraint on QoS 1.5 s <QoS:ExecutionDuration>1.5</Qo
S:ExecutionDuration>

4.2.4 Case storage

All the Web service execution experiences, i.e.

solutions deemed valid for a particular request, are stored
in the Case Library to be reused by the reasoner. The Case
Library itself is also an ontology. It contains some
instances of the class CaseRepresentation (e.g. a travel
experience or a travel case).

5. Development of the CBR framework

5.1 Case indexing and Retrieval

To facilitate the search procedure, cases are indexed

based on vocabularies. In our framework, we use
“partitioning the case library” method, which is a variation
of “flat memory indexing” technique [9]. In this indexing
method, case library is partitioned based on certain
vocabularies and the new problem is recognized based on
the identical vocabularies to decide which partition the
problem falls into.

In our architecture, cases are stored based on
vocabulary element Features as presented in Table 1,
which corresponds to hasFeatures property (see Figure 4)
from the CaseRepresentation ontology class. For our
travel agent case study, the possible values for this
property are either Domestic or International (predefined
instances from the TravelRegion class), hence indexing
will partition case library into two parts. In more complex
examples more than one vocabulary term or a
combination of terms can be used for more sophisticated
indexing. As in relational databases selection, the
efficency of the retrieval process largely depends on the
precision of the indexing.

Whenever a new Web service needs to be fetched, the
problem description involving the functional parameters
and non-functional parameters are encoded using the case
representation frame structure, i.e. as an instance of
CaseRepresentation ontology as illustrated in Table 2.

5.2 Matchmaking and Ranking

Case retrieval fetches Web services that are a potential

solution to the problem. The matchmaking process
narrows down the retrieved cases to present acceptable
solution(s). From the available methods for matchmaking
in CBR literature, we choose Nearest-Neighbour
Matching and Ranking using numeric evaluation function
[12] method for our framework. The method operates as
follows:
1. Compare the similarity for each property, between the
new problem and the cases retrieved. The method used for
comparison depends on the type of the property;
2. Quantify the weight of the similarity. A ranking is

assigned to each property in accordance with its
importance as exemplified in Table 3.

Table 3. Quantifying the Travel Domain case
dimensions

Slot Dimension Importance (0-1)
City Departure

1.0
Travel Request City Arrival 1.0

On Instance 0.2
Constraints on Goal On Domain 0.8

For each case retrieved, the similarity degree is

computed and the case with the highest score corresponds
to the best-match. Similarity takes values between 0 and 1,
which is attributed to each property for each retrieved
case. Our similarity comparison method depends on the
type of the dimension: data or object.

5.2.1 Data property comparison
To compare data type properties, like the price range

or the value of QoS (e.g. execution time), we the
qualitative regions based measurement method [9]. The
closer the value in a retrieved case is to the value in the
request, the higher the similarity coefficient is.

For each data type property, this formula used is:
|Vr − Vc| X.[Vr|, where V is the value of the property in
the request r or in the retrieved case c and X the factor of
tolerance. Thus, a factor of tolerance of 0.9 means the
value of the retrieved case should be in ±10% region in
relation to the value of the request. The optimum
tolerance value is determined by the administrator and can
be calculated heuristically.

5.2.2 Object property comparison
For the dimensions annotated as object properties, the

possible filler values will be an instance of slot class.
Hence, for semantically matching object property value of
the new problem and the retrieved cases, the algorithm
compares the instances. If the instances match, then the
degree of match is 1. Otherwise, the algorithm traverses
back to the super (upper) class that the instance is derived
from and the comparison is performed at that level.

The comparison is similar to traversing a tree structure
[13], where the tree represents the class hierarchy for the
ontology element. The procedure of traversing back to
the upper class and matching instances is repeated until
there are no super classes in the class hierarchy, i.e. the
leaf node for the tree is reached, giving degree of match
equal to 0. The degree of match (DoM) degree is
calculated according to the following equation:

Where the MN is Total number of matching
nodes in the selected traversal path, and GN

Total number of nodes in the selected traversal path
For example, for the request in Figure 3, case#1 will

return a degree of match of 0 because no matches are
found while traversing the ontology tree until the leaf
node is reached. However, for case#2, the degree of match
will be 2/3=0.67 as the instances (New Jersey, New York)
does not match but the instances of the Country super
class match.

It is worth to note that Constraints on object properties
are handled by omitting that path in the case ontology tree
that renders the constraint invalid. For example, if the
passenger is reluctant to travel by air, then the Brit Air,
Flight path will not be traversed.
Figure 3. Semantically matching object
properties (dimensions)

5.2.3 Computing the overall similarity value
Overall similarity is evaluated by computing the

aggregate degree of match (ADoM) [12] for each
retrieved case according to the following equation:

¦

¦

=

=

×
= n

i
i

n

i

R
i

N
ii

W

ffsimW
ADoM

1

1
),(

Where, n is the number of ranked dimensions, Wi is the

importance of dimension i, sim is the similarity function
for primitives, and fi

N
 and fi

R are the values for feature fi
in the new problem and the retrieved case respectively.

The evaluation function sums the degree of match for
all the dimensions as computed in step A, and takes
aggregate of this sum by considering the importance of
dimensions.

6. Implementation Highlights
The implementation of our framework uses semantics

extensively to implement both the utility ontologies
describing the components of the Case-Based Reasoner
(Case representation), and the domain ontologies that
describe the profile of the Web services in the Case
library with a semantic representation (Case Storage).

OWL was our ontology language of choice. We used

GN
MNDoM =

 Request Case#1 Case#2

America Europe America Continent

USA UK USA Country

New Jersey London New York

Pellet [14] - a Java based OWL reasoner, as our ontology
engine in favour of the more popular Jena [15], because it
supports user-defined simple types. Pellet was used to
load and verify (type and cardinality) ontology class
instances of user requests and candidate cases.

Figure 4 illustrates a snapshot of the GUI developed
for the matchmaking framework. The interface allows
different options to two kinds of users: The case
administrator, who is responsible for maintaining the case
library, and a standard client, who wants to retrieve Web
services for a trip. The case administrator has admin
privileges to perform case maintenance activities like case
seeding, modifying the ranking system or deleting old
cases. The client can also setup a ranking system, which
will be applicable for a particular session.

While seeding the case library with a new case or
making a new trip request, the interface assists the client
in creating the required ontology instances. The value
entered for a particular property is validated in relation to
the range and cardinality drawn from the ontologies.

The solutions (cases) resulting from the matchmaking
process are presented to the client are stored into the case
library.

Figure 4. Admin and User Interface

7. Preliminary results
At this initial stage of development, the focus of our

experiments was to validate the logic of our matchmaking
framework, rather than testing a fully working prototype.
Hence, we tested our framework with simple in-house
developed Web services and compatible wrappers for
external publicly available services.

In order to consolidate the test process, we applied
different rankings against each test case and associated
them with a specific profile. The profile represents a
group of users that have similar requirements for the travel
request. For instance, the Business profile stands for
corporate users, who have to travel frequently, therefore a
high standard of comfort is a significant element of
choice. These users also need reliability of services. Price
is not very important because firms very often have
contracts with travel companies. On the other hand, for

regular users, represented by the Personal profile, cost is
of paramount importance.

The three other types of users are mainly based on
specific comparison properties: Economic retrieves cases
which price never exceeds a user-defined maximum
amount; Travel Medium is specific for constraints on
travel domain as well as instances; and Enterprise is useful
for companies which are interested in using reliable
services. The latter can be important if contracts between
the company and different Web services exist so that they
can restrict other services.

The rankings are currently administered centrally, but
in the future we would like to give the users the
opportunity to tweak some of them using a user-friendly
interface. Table 4 shows the ranking of our profile system.
Example of constraint on Domain is reluctance to travel
using a certain transport and constraint on instance the
exclusion of certain airline from the search. Quality of
service is represented as a single parameter, but in this
experiment it is expressed as the availability and response
time of the service.

Table 4. User Profiles
 Property

Profile Category Constraint
on Domain

Constraint.
on Instance Price Quality of

Service
Business 0.6 0.6 0.4 0.1 0.5

Personal 0.2 0.4 0.7 0.5 0.2

Economic 0.2 0.4 0.2 1 0.1

Travel Medium 0.2 1 0.8 0.3 0.2

Enterprise 0.5 0.3 0.1 0.2 1

Figure 8 shows the matchmaking degree for different

cases using the criteria above. Some cases (Web service
execution experiences) present satisfactory results to all
users (CaseInst10511611478). Another interesting
highlight is that the chosen ranking systems provide
different results only if the coefficients are significantly
different. This is probably due to the fact that that our case
library is not richly populated at the moment.

The average execution time of our matchmaking
program at the time of the experiment was approximately
40 seconds, relatively slow considering we only have 30
cases stored in the library. Using semantics has the
disadvantage of being more time-consuming than
scanning databases. We identified the use of imported
ontologies as the main performance leak for our program.
We plan to develop an off-line caching system to enable
us to access the public ontologies locally.

Figure 8. User Profiles

8. Related Work

Semantic descriptions are increasingly being used for

exploring the automation features related to Web services
discovery, matchmaking and composition. In [13] such
semantic-based approach is described. They use ontology
to describe Web services templates and select Web
services for composition by comparing the Web service
output parameters with the input parameters of other
available Web services. A constraint driven composition
framework in [3] also uses functional and data semantics
with QoS specifications for selecting Web services.
These approaches use semantics for automatic Web
services discovery; however overlook the Web service
execution behaviour in decision-making.

Experience based learning using CBR is a relatively
old branch of Artificial Intelligence and Cognitive Science
and is being used [16][17] as an alternative to rule-based
expert system for the problem domains, which have
knowledge captured in terms of experiences rather than
rules. However, Case based reasoning for Web services
were initially documented in [18], where the developed
framework uses CBR for Web services composition. In
their approach, the algorithm for Web services discovery
and matchmaking is keyword based and has no notion for
semantics. This affects the automation aspects for Web
services search and later for composition. Our framework
consumes semantics extensively and achieves the
automation required for web service discovery and
matchmaking. Use of ontologies also makes our
framework extensible and reusable.

9. Conclusions

Semantic description of Web service profile paves the

way for automating the discovery and matchmaking of
services since it allows intelligent agents to reason about
the service parameters and capabilities. However, the
accuracy of such automatic search mechanism largely
relies on how soundly formal methods working on such

semantic descriptions consume them.
In this paper, we argued for the importance of

considering the execution values for semantically
described functional and non-functional Web services
parameters in decision making regarding Web service
adequacy for the task. This is because the service
behaviour is impossible to presume prior execution and
can only be generalized if such execution values are
stored and reasoned for deciding service capability. AI
planning and Intelligent Agent based reasoning methods
offer rule-based reasoning methodology rather than
experience-based. Hence, we used Case Based Reasoning
method that allows capturing experiences and reasoning
based on them.

We implemented Semantic Case based Reasoner,
which captures Web service execution experiences as
cases and uses these cases for finding a solution for new
problems. The implemented framework extensively uses
ontologies, as semantics are used for describing the
problem parameters and for implementing components of
the CBR system: representation, indexing, storage,
matching and retrieval. These components are modelled
based on ontologies, making the application logic
captured within semantic descriptions. Our approach for
modelling CBR as ontology-based reasoner achieves
required automation and makes the framework extensible
and reusable.

A problem that research in semantic-based
matchmaking and composition has not addressed
sufficiently is the interoperation between independently
developed reasoning engines. Without this interoperation,
the reasoning engines remain imprisoned within their own
framework, which is a drawback, especially that most
engines usually specialise in servicing a particular
domain, hence interoperation can facilitate inter-domain
orchestration. We believe that in this work we took a
small step towards standardization at the reasoner level by
describing the CBR reasoning model semantically

In this paper we also presented the preliminary
experimental results of our framework, which informally
proved the correctness of our approach despite the
relatively slow response time of the matchmaking process.
The latter is primarily attributed to exporting external
ontologies, which can be countered by utilising off-line
caching of public ontologies. The experimental results
also demonstrated the advantages of classifying user
groups into profiles that have standard set of constraint
rankings.

Future work will involve exploring case adaptation,
which is applicable when the available cases cannot fulfil
the problem requirements, so matchmaking is attempted
by adapting available cases. Adaptation is similar to Web
service composition, as the composition is applied when
available services are not sufficient in meeting the
requirement for the problem.

Business Personal Economie Medium Enterprise
0

0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45
0,5

0,55
0,6

0,65

Case equivalence according to user Rank

different users

fa
ct

or
 d

es
cr

ib
in

g
th

e
eq

ui
va

le
nc

e

CaseInst10511611478
CaseInst105116115144
CaseInst105116114943
CaseInst10511611579
CaseInst105116115410

10. References

[1] Martin, D., Paolucci, M., McIIraith, S., Burstein,
M., McDermott, D ., McGuinness, D., Parsia, B., Payne,
T., Sabou, M., Solanki, M., Srinivasan, N., and Sycara,
K., : Bringing Semantics to Web Services: The OWL-S
Approach, Proceedings of the First International
Workshop on Semantic Web Services and Web Process
Composition (SWSWPC 2004).

[2] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M.,
Schmidt, M., Sheth, A., and Verma, K., Web Service
Semantics - WSDL-S, A joint UGA-IBM Technical Note,
version 1.0, April 18, 2005.

[3] Aggarwal, R., Verma, K., Miller, J.A., Milnor, W., :
Constraint Driven Web Service Composition in
METEOR-S , Proceedings of the 2004 IEEE International
Conference on Services Computing (SCC 2004),
Shanghai, China, (2004), 23-30

[4] Osman, T., Thakker, D., and Al-Dabass, D.,: Bridging
the Gap between Workflow and Semantic-based Web
services Composition, In the Proceedings of the
Workshop on WWW Service Composition with Semantic
Web Services 2005, the 2005 IEEE/WIC/ACM
International Joint Conference, Compiègne, France,
(2005) 13-23.

[5] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J.,
Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic,
I., and Weerawarana, S., “Business Process Execution Language
for Web Services, Version 1.1”,
http://www-128.ibm.com/developerworks/library/wsbpel/

[6] Aamodt , A., and Plaza, E.,: Case-based reasoning:
foundational issues, methodological variations, and
system approaches, AI Communications, v.7 n.1, 1994
(39-59)

[7] WATSON, Ian. Applying Case-Based Reasoning :
Techniques for Enterprise Systems.
San Francisco : Morgan Kaufmann Publishers. 1997. 285
p. ISBN 1-55860-462-6

[8] AAMODT, Agnar ; PLAZA, Enric. Case-Based
Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications.
IOS Press, Vol. 7:1. 1994. pp 39-59.

[9] Kolodner., J., and Simpson, R., The MEDIATOR:
Analysis of an early case based problem-solver. Cognitive
Science, 13(4): (1989) 507-549

[10] Rich, E., and Knight, K., Artificial Intelligence.
McGraw-Hill, 1992.

[11] Portal Ontology. AKT Technologies. 10 Feb 2003.
Available at: http://www.aktors.org/ontology/portal#

[12] ReMind Developer’s Reference Manual, Cognitive
Systems, Boston, 1992

[13] Zhang, R., Budak I., and Aleman-Meza, B.:
Automatic Composition of Semantic Web Services.
Proceedings of the International Conference on Web
Services, ICWS '03, Las Vegas, Nevada, USA. (2003) 38-
41

[14] Parsia, B., and Sirin, E., Pellet: An OWL DL
Reasoner. In Third International Semantic Web
Conference (ISWC2004), Hiroshima, Japan, (2004)

[15] Jena- A semantic Web Framework for Java, HP Labs
Semantic Web Programme, http://jena.sourceforge.net/

[16] Hammond, K., : Learning to anticipate and avoid
planning problems through the explanation of failures. In
proceedings of AAAI-86. Cambridge, MA: AAAI
press/MIT press (1986)

[17] Ashley, K.D., and Rissland, E.L.,: A case-based
approach to modelling legal expertise. IEEE Experts 3(3),
(1988) 70-77.

[18] Limthanmaphon, B., and Zhang, Y.: Web service
composition with case-based reasoning, Proceedings of
the Fourteenth Australasian database conference on
Database technologies, Adelaide, Australia, (2003) 201 –
208.

