
332 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996 

Matr ix Formulation of Fuzzy Rule-Based Systems 

A. Lotfi, H . C. Andersen, and A . C. Tsoi 

Abstract—In this paper, a matrix formulation of fuzzy rule-based 
systems is introduced. A gradient descent training algorithm for the 
determination of the unknown parameters can also be expressed in a 
matrix form for various adaptive fuzzy networks. When converting a 
rule-based system to the proposed matrix formulation, only three sets 
of linear/nonlinear equations are required instead of set of rules and an 
inference mechanism. There are a number of advantages which the matrix 
formulation has compared with the linguistic approach. Firstly, it obviates 
the differences among the various architectures; and secondly, it is much 
easier to organize data in the implementation or simulation of the fuzzy 
system. The formulation will be illustrated by a number of examples. 

I. INTRODUCTION 

There has been much research activity in fuzzy rule-based systems 
concerning the conceptual understanding of linguistic variables and 
fuzzy values. There are numerous proposals for inference mechanisms 
[18], [19], rule extractions [13], [26], and membership function 
assignments [1], [9], [12], [15], [20], [22]. 

For a given input-output mapping, using a fuzzy rale based system, 
it is possible to adjust the following parameters: 1) the membership 
function classes, 2) the number of rules used, and 3) the inference 
mechanism, to achieve an approximation. It was shown in [14] that 
the effects of changing the membership functions are dominant over 
the other two factors. Consequently, much research has been directed 
to the problem of membership function assignment in fuzzy neural 
networks [8], [12], adaptive network based fuzzy inference systems 
[10], and other adaptive structures for fuzzy models [15]. 

We propose a matrix formulation for fuzzy rule-based systems 
which gives a unified treatment of different already proposed fuzzy 
if-then rules and fuzzy inferences. This matrix formulation makes 
training algorithms very simple and understandable. 

Since the first successful application of a fuzzy rule-based system 
as a controller of a simple plant by Mamdani and Assilian [16], it was 
always considered that the fuzzy rule-based controller gives an alter­
nate paradigm to the "analytic" control theory. The traditional control 
theory is analytic in that it is based on methods relating to differential 
or difference equations, e.g., Laplace transform. Furthermore, it is 
often model based, i.e., it assumes a model of the plant in the analysis 
and design of a controller [11]. In contradistinction to this, the fuzzy 
control approach is based on the decision making concept in artificial 
intelligence [17]. Although there has been wide-spread acceptance 
of this "nonanalytic" approach for controller design, the analytic and 
nonanalytic approaches have grown independently. 

Since most of modern control systems can be modeled using a 
set of first order matrix differential equations—the so-called state 
space approach—it would be useful to attempt a formulation of the 
fuzzy control systems using a similar approach. However, a major 
stumbling block in this endeavor is that the fuzzy control system is 
one with a multiplicative nonlinearity. This means that, although we 
are able to write the system in a matrix form, it is quite complicated, 
and hence would make further analysis very difficult. 

We propose to overcome this stumbling block by introducing an 
approximation using a single-layer neural network to the multiplica­
tive nonlinearity. It is shown that this approximation is valid over a 
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range of input values. By using this approximation, the fuzzy neural 
network paradigm can be represented using matrix terminology. 

With our proposed matrix model, a fuzzy rule-based system 
can be decomposed into a three layer feedforward neural network, 
each layer is represented by a set of linear or nonlinear difference 
equations. In the first layer, the membership function parameters of 
the antecedent are given. The second layer is an algorithm for the 
approximation of the multiplication or minimum connective operator 
and. The third layer operates as consequent parameters and the 
defuzzification method. Note that this connectionist architecture is 
not fully connected, i.e., each neuron may have a local receptive field 
[3], rather than connections to all the neurons in the previous layer. 

Once the fuzzy rule-based system is represented in matrix termi­
nology, it is simple to derive a gradient descent training algorithm 
to estimate the unknown parameters using an error function. We 
propose again to express this training algorithm in terms-of matrices, 
thus finishing a "transparent" view,1 and allowing for its simple 
implementation. 

The organization of the rest of the paper is as follows: different 
fuzzy rule-based systems and related inference mechanisms will be 
briefly described in Section II, followed by a matrix formulation of 
a multi-layer perceptron in Section III to set the background for the 
proposed method. A neural network structure of the proposed approx­
imation of the multiplicative operator, and subsequent explanation for 
different layers of the fuzzy rule-based system will be introduced in 
Section IV. The matrix formulation of a fuzzy rule-based system 
is given in Section V , and in Section VI gradient descent training 
algorithms will be explained. Some numerical examples are presented 
in Section VII and some conclusions will be drawn in Section VIII. 

II. F U Z Z Y R U L E - B A S E D SYSTEMS . 

In this paper, we will present a matrix formulation of Fuzzy 
Inference Systems (FIS's). It has been shown that FIS's can be 
represented by three layer feedforward neural networks and it is on 
this structure that we base our matrix formulation for FIS. Firstly, 
we will review the structure of FIS and some specific defuzzification 
algorithms, then we will show how to represent the system by three 
sets of matrix equations. 

First, consider a fuzzy rule base containing n rules, R\ i = 
1, 2, . . . , n with p inputs, XJ, j = 1, 2, • • •, p, and q outputs, ye, 
i = 1, 2, • • •, q as follows: 

R':Ifx i s M ' theny i s M \ else 

O-.xisM' 

A y isj\f' 

The antecedent vector xT = [xi, x2, • • •, XJ, • • •, xp] is a p 
vector with elements which are linguistic variables in the universe of 
UT = [Ui, U2, • • •, Up]. The superscript T represents the transpose 
of a vector. The consequent vector yT = [j/i, 3/2, • • •, ye, • • •, Vq] 
is a q vector whose elements are linguistic variables in the universe 
of V = [Vi, V2, • • •, Vq]. We further assume that the universe of 
antecedent and consequent, i.e., U and V, are limited to a specific 
domain interval as indicated below: 

Uj=[VJ- U+] j = l,---,p 
Ve=[Ve- V+] l=l,...,q. • (1) 

1 "Transparency"is used to denote that one may clearly see the relationship 
among the variables in obtaining the gradient descent training algorithm. It is 
used in contrast to the more traditional indexed type of notation, which tends 
to make the relationships more "opaque" to observe. 
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Vector M{ = [M[, ML •••, M}, •••, M'p] is a. vector of linguistic 
values and N{ = \N\, Nl

2, • • •, JVJ, • • •, N'q] is a vector of fuzzy 
values referring to the fuzzy variables x and y, respectively. The 
notation ~ represents the fuzzy concept in contrast with crisp values. 
Vector M' and TV" = [N[, N2, • • •, N[, • • •, N'q] are, respec­
tively, the crisp observation and conclusion vectors. The number 
of individual membership functions for a specific input value XJ 
(Mj, Mf, •••, M") is pj. The number of individual membership 
functions for a specific output variable ye (Nj, Nf, • • •, N") is qe-
Note that pj < n and qe < n. 

To make an inference "Y is N'" from a set of rules R and an 
observation O, several types of fuzzy reasoning mechanisms have 
been proposed. There are different fuzzy reasoning mechanisms for 
various types of fuzzy if-then rules. We consider three different forms 
of fuzzy if-then rules and their related reasoning mechanisms for 
deducing the vector of crisp decision W which has been used widely 
in the literature [21], [23], [27]. 

Type I: The first form of fuzzy if-then rules is the simplest, but 
is relatively effective in control applications. The corresponding 
consequent of rules are crisp numbers rather than linguistic values, 
i.e., N' = Af'. The number of individual consequent parameters qe 
is equal to n. The crisp decision N't is calculated as: 

5>,iv; 
I ! = 1 N = 

Y,m 
=l,2,---,q (2) 

where ttfi is the rule firing strength given by: 

wi = f[ Mj(xj). 
i=i 

Wang and Mendel [27] have proven 
in (2) is a universal approximator. This 
semi-fuzzy if-then rule model. It can be 
of Type II which is introduced below. 

Type II: Another type of fuzzy if-
Takagi and Sugeno [23]. In this method, 
only in the antecedent part of premises 
function of its inputs i.e., JVj + Y1P,= 
decision N'f is obtained as: 

(3) 

that the fuzzy representation 
model will be referred as the 
thought of as a simplification 

then rule was proposed by 
the fuzzy values are involved 

and the consequent is a linear 
j (Nj)eXj. The output crisp 

N't= ] C W{fu = 1, 2, •••,<? (4) 

where 

(5) 
i = l 

The number of individual consequent parameters qe = n. (Nj)e 
and N} are n x q + p(n x q) constant parameters which must be 
determined. 

Type III: The third fuzzy if-then rule is a general model with 
linguistic fuzzy values in both the antecedent and consequent parts 
of rules. 

Pacini and Kosko [21] have shown that, if the correlation product 
inference determines the output fuzzy values, the global centroid N[ 
can be computed from local consequent premise centroids. Therefore, 

F J • 

o—' 
L]—• 
F~l • 

A 'B 

Fig. 1. One layer neural network with n; inputs and n0 outputs. 

the output decision is given by: 
n 

^TwiN^Se N'f 
^WiS'e 

= 1 , • • • , « (6) 

where Wi, N}, and SI are the rules' firing strength (as defined earlier), 
local centroid, and area of consequent premises, respectively. When 
the number of consequent individual membership functions, qe, is 
less than number of rules, n the (6) can be rewritten as follows [2]: 

N'.= 

J2^rN^Sre 
=i 

y flrSl 
= !,-••, 

where 

Q.r~\]wi V« G 1, 2, • • •, n r = 1, • • •, 

(7) 

(8) 

III. M A T R I X FORMULATION OF A SINGLE L A Y E R PERCEPTRON 

Before describing the matrix formulation of fuzzy rule-based 
systems, it would be beneficial to clarify the concept of matrix 
formulation of a single-layer perceptron (SLP). This formulation 
was first proposed in [25] as a method for formulating a multilayer 
perceptron (MLP) using matrix representations. It has been used 
successfully for the formulation of an extensive class of recurrent 
networks [24]. 

Consider a one layer network with n; inputs and n0 outputs. Each 
node function can be considered a nonlinear operation on a linear 
combination of inputs (see Fig. 1). We can express this functionality 
in matrix form as follows: 

z = F(Au + B) (9) 

where z =- \z\ z2 • • • zno\ and u = [«i u2 • • • uni] are 
the output and input vectors, respectively. A and B are matrices, of 
dimensions rio- x ni and n0 x 1, respectively, which represent the 
synaptic weights connecting the input nodes and the hidden layer 
neurons, and the threshold weights. FT = [/(.) /(.) • • • /(.)] is 
a n0 vector function representing the nonlinear activation functions. 
This nonlinear activation function /(.) can be a sigmoid, a hyperbolic 
tangent, or any other similar function [7]. It is interesting to note that 
this formulation can be extended to a network containing more than 
one layers. 
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Fig. 2. Proposed neural network model for fuzzy rule-based systems. 

TABLE I 
SOME COMMONLY USED MEMBERSHIP FUNCTIONS (MFs) 

MFs 

Linear 

Gaussian 

Cauchy 

Sigmoid 

Formula 

l _ | - = a | 

«*(-(*=*)') 
I 

i + ^ r 
i 

l+e*p(-S=^) 

Linear 

f=7*~t 
f=7*~$ 

•* £T (7 

•J a a 

Nonlinear 

i-m 
e"/2 

i+/2 

I 
l+e-/ 

IV. CONSTRUCTION OF PROPOSED NEURAL 
NETWORK MODEL 

Fig. 2 shows the proposed neural fuzzy rule-based system. The 
system has three individual layers. 

1) The first layer represents the parameters of membership func­
tions in the antecedent part of the rule-base. 

2) The second layer is a soft-and which is used as an approxima­
tion of a multiplication (or minimum) operation. 

3) The third layer, i.e., output layer, contains the parameters of 
the consequent part of rule-base and denazification algorithm. 

The functionality of each layer will be described in the following 
subsections. 

A. Layer 1: Membership Functions 

There are different choices for the shape of membership functions. 
Some membership functions commonly used in control applications 
are given in Table I. 

We will decompose the membership function into two parts, a 
linear part and a nonlinear part. The linear part must be as a function 
of input(s). 

ffi 

Fig. 3. An element of the first layer of the proposed neural network model. 

and the nonlinear part yields the output of this subsystem, 

z = f(h) (11) 

a and & are scalar constants, z and u are, respectively, the crisp 
output and the crisp input. /(.) is the nonlinearity in the membership 
function. Fig. 3 illustrates the neural network model of a membership 
function. 

When there are ra individual membership functions, where, m = 
Y^j-i Pi' w i m P inputs, the formulation expressed in (11) can be 
converted to matrix formulation as follows: 

g = Fg[diag(Ag)Hx + Bg (12) 

where Fg 

used nonlinearities are given in Table I. Ag 

constant values with the general elements as indicated in (13). These 
elements are governed by the structure of the rules used in the FIS. 
H is a connection matrix with binary elements. This choice of binary 
values represents the structure of membership functions in the first 
layer. The vector g represents the output of all membership functions 
in the antecedent with the input vector x. 

(a\\ 

4i 
al 

4* 

/ ' 0 

H = 
\ 

0 e§j 0 

V o - - - e* ) 

B Q = 

fb'\ 

"pi 

bl 

4 
6? 

(13) 

VPJ 
p) whose elements where epj is the vector of size, pj 0 = 1 

are all equal to one. 
For specific examples illustrating how to convert the antecedent 

into a matrix form, please see Example 1 in Section VII. 

B. Layer 2: Connective Operator AND 

The connective operator "and" in most applications of fuzzy 
controller/decision is implemented by multiplication or by evaluating 
the minimum of the arguments. As indicated previously, this is a 
major stumbling block in the matrix formulation of a FIS. In order 
to obtain a matrix formulation of a fuzzy rule-based system, it is 
necessary to approximate the and operator. It is for this reason that 
we introduce a new operator, the soft-and, which utilizes a sigmoidal 
function. 

(14) 

1 + exp £o + ^2 £k9k 

h — au + b (10) 

This "soft and" is a single layer feedforward neural network (see 
Fig. 4) with A inputs (c/i, gi, • • •, g\) and one output w and fixed 
synaptic weights £*:& = 0 ••• A. To determine the parameters 
Ck'k — 0 ••• A, which allow the neuron to best approximate 
multiplication, the following cost function must be minimized. Note 
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Fig. 4. An 
model. 

element of the second layer of the proposed neural network 

TABLE II 
SYNAPTIC WEIGHTS AND THRESHOLD VALUES 

FOR MULTIPLICATION NEURAL NETWORK MODEL 

Two inputs (A = 2) 

Three inputs (A = 3) 

£ 
3.5856 

3.0223 

& 

-5.1741 

-4.0948 

that in this derivation, we impose the following condition: 0 < gk < 
1 for k = 1, • • •, A. 

-f-f 
Jo Jo 

TT ii. 
' 11 9k 

k-l -, . 

1 + exp 

dgi ••• dg\. 

1 

- K o + 5^&3fc I 

(15) 

Due to network symmetry, the synaptic weights £& = £ for k = 
1 • • • A. Therefore, only two parameters £ and £o need to be 
determined. It should be noted that this approximation does not 
introduce a new set of unknown parameters to the system, as £ and £o 
can be calculated prior to the construction of the model. The synaptic 
parameters for two (A = 2) and three (A = 3) inputs are shown in 
Table II. 

When there are m inputs to the "soft and" operation with n outputs, 
the neural network model is the same as a SLP, which, in this case, 
is not fully connected. As we explained in Section III, the matrix 
formulation of the "soft and" operation can be represented as below: 

w = Fw(Awg + Bu (16) 

where Fw is a n vector of sigmoid functions. Am and Bw are constant 
matrices of dimensions n x m and n x l , respectively, representing 
the synaptic weights and thresholds as follows: 

Aw =£Ai 

Bw = £oen 

(17) 

(18) 

where en is the vector of n in which all elements are equal to one 
and Ai is a matrix nxm whose elements are binary. An element one 
represents the existence of a connection between the jth input and 
the ith output, j = 1, 2, • • •, m and i = 1, 2, • • •, n, and likewise 
a zero represents the lack of a connection. 

C. Layer 3: Output Layer 

The functionality of this layer is dependent upon the fuzzy if-then 
rules and the inference mechanism employed. However, in all the 
cases studied in this paper, this layer is a linear combination of the 
consequent parameters and the rule firing strength w. We will not 
give a special neural network model for this layer. It should be noted 
that it is possible to give a neural network model similar to the ones 

used for the first and the second layers, but since the purpose of 
this paper is to present a matrix formulation, it is not necessary to 
employ such a neural network structure. 

V. M A T R I X FORMULATION OF FUZZY INFERENCE SYSTEMS 

A FIS can be viewed as a mapping from crisp input variables to 
crisp outputs governed by three sets of nonlinear equations as follows: 

g{t)=h [g(t),x(t),t] 

w(t)=f2[w(t),g(t),t] 

»(*)=/s[»(*), »(*).*] 

(19) 

(20) 

(21) 

where x(t) G Rp, y{t) G Rq, are the inputs and outputs of the FIS. 
g(t) G Rm and w(t) G R" are the firing weights and outputs of all 
individual membership functions in the antecedent part. There is no 
time dependency involved in the formulation of FIS, but in order to 
show explicit dependencies of the variables, we use the notation t. It 
may be thought of as the tth sample. 

We wish to design a neural network model governed by the 
(19)—(21) such that the following error function is minimized. 

J = eLe (22) 

where e = y — y , is a. q dimensional vector, y and y are q 
dimensional vectors of the target function and the actual output, 
respectively. 

We can discuss the set of (19)—(21) more specifically, if we know 
about the structure of the fuzzy if-then rules, the fuzzy reasoning, and 
the defuzzification methods. In the next three subsections, we will 
explain this matrix formulation for three different models discussed 
previously in Section II. 

A. Matrix Formulation of a Semi-Fuzzy Model 

Consider the following FIS matrix formulation which is exactly 
the same as the element by element formulation presented in Section 
II-Type I for the semi-fuzzy model. 

g(t)^Fg[dmg(Ag)Hx(t) + B9] 

w(t) = Fw[Awg(t) + Bw] 

y(t) [eT
nw(t)\- 1CTw(t) 

(23) 

(24) 

(25) 

N'q]
T is a q x 1 crisp output vector, y(t) = [N[,Ni,---,Ni 

» ( t ) i s a ) i x 1 vector of firing rule strengths, g(t) is a rra x 1 vector 
holding the outputs of the individual membership functions, and x(t) 
is ap x 1 input vector. Ag, H, and Aw are, respectively, matrices of 
dimensions m x 1, m x p, and nxm introduced previously in Section 
IV. Bg and Bw are, respectively, vectors of dimensions m x l and 
n x 1. Fg is a m dimensional vector of nonlinear functions. In the 
FIS situation, this is given by Fj = [fg(.) /9(.) ••• fg(-)] and 
fg(.) is one of the functions given in Table I. Similarly Fw is an 
n dimensional vector of sigmoidal functions. The consequent, C, is 
an n x q matrix whose elements (iVJ were introduced previously as 
consequent constant parameters) are given as follows: 

C = m 
\N? 

m • 

Ni • 

m • 

• N? • 

• N't • 

• N? • 

• Nl 

• N'q 

• N^J 

(26) 

The unknown parameters Ag, Bg, and C can be obtained by use 
of expert knowledge or by minimizing the error function J (22) using 
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a gradient descent algorithm. The gradient of the error function with 
respect to the parameters Ag, Bg, and C are given by: 

dJ_ 
dC 
d.J 

8Bg 

dJ_ 

dAa 

= 2[elw(t)] 1w{i)eT{t) (27) 

= 2[elw(t)r1Ag8[C - eny
T(t)]e{t) (28) 

= 2 [ e ^ ( t ) ] - 1 d i a g [ J f f x ( i ) ] 

• Ag8[C - eny
T\t)]e(t) (29) 

6 = AlAw (30) 

where A „ , denotes a n n x n diagonal matrix, whose diagonal elements 
are given by f'w{-), denoting the first derivative of the nonlinear 
function fw{.) £ Fw. Similarly, Ag is an m x m diagonal matrix 
whose diagonal elements are given by f'g(-), the first derivative o f 
the nonlinear function fg(.) £ Fg. 

The application of (27)-(30) for a gradient descent minimization 
algorithm w i l l be given in Section V I . 

B. Matrix Formulation of Takagi and Sugeno 's Model 

In the semi-fuzzy model explained in the previous subsection, the 
consequent part of rules are constants. Takagi and Sugeno introduced 
their model whereby the consequent part is a linear combination of 
the crisp inputs. The matrix formulation for this specific form of 
fuzzy if-then rules is as follows: 

g(t)=Fg[<Hag(Ag)Hx(t) + Bg] (31) 

w(t)=Fw{Awg(t) + Bw] (32) 

y{t)=[eT
nw{t)]-1{C + D{Iq®x(t)\}Tw(t). (33) 

Matrix D is defined as a column matrix whose elements are pa­
rameters in the consequent part which are expressed as a linear 
combination of inputs. / , is a unit matrix of order q x q and ® 
denotes the Kronecker product [6]. 

D = [D1\D2\ ••• \Dt 

The matrix Dj is defined as follows: 

D.= 

Da (34) 

({Nl)t 

(W)t 

W)< 
(M)i • 

(N2)i • 

• {Nf)e • 

• (N})t • 

• {N?)t • 

• (K)i 

• (N;)J 

(35) 

The corresponding gradients for minimizing the error function (22) 
are given in the Appendix. 

C. Matrix Formulation of General Fuzzy Model 

W h e n both the antecedent and the consequent of rules are expressed 
in fuzzy value form, we have a set of general fuzzy if-then rules. 
Wi th the help of the defuzzification method explained i n Section II, 
it is possible to construct our proposed matrix formulation. Due to 
the complexity of the matrix formulation in this case, we w i l l give 
the formulation only for systems with one output i.e., q = 1. The 
case for q ^ 1 can be obtained in a similar fashion. The proposed 
formulation is given below: 

g(t) = -F9[diag (Ag)Hx(t) + Bg] (36) 

£l(t)=QFv,[Awg(t) + Bw] (37) 

^ ( i ) = [ D T f i ( i ) ] - 1 C T d i a g ( Z ) ) n ( t ) . (38) 

Equations (36) and (37) are explained previously. In (38) the firing 
weight, w(t), is substituted with fl(t), which is related to w(t)'by 
the operator matrix Q as follows: 

ft(i) = Qw(t). (39) 

The operator Q is a ft x n matrix with binary elements that define 

the connection o f different firing weights w, to different individual 

consequent fuzzy values. If an element is one in particular row of 

the operator matrix Q, it means that the consequent membership 

functions for those rules must be equal. Vectors C and D are given, 

respectively, as follows: 

C = 
(Ni\ 
\N*' ) 

D 

(S}\ 

(40) 

The corresponding gradients for minimizing the error function are 
given in the Appendix. 

It should be noted that the gradients for the consequent membership 

functions are expressed i n terms of the parameters describing the 

center of the membership functions (vector C) and the area of 

individual membership functions in the consequent part (vector D). 

V I . T H E G R A D I E N T D E S C E N T T R A I N I N G A L G O R I T H M 

The vector of membership function parameters for the antecedent 

Ag, Bg, and the vector of constant variables for the consequent C and 

D can be adjusted to minimize an objective function Jtot defined as 

follows: 

Jtot - 2__, Jp - / /• (41) 

p=i 

where Jp is the error function for the pth training data [defined earlier 
i n (22)]. The number o f exemplars in the training data set is P. 

To update the unknown parameters in matrices Ag,,Bg, C, and 
D, we introduce a steepest descent method [4], [5] to minimize the 
total error function Jtot-

dJtot • 
Ag(Bg, C, D) 

~V dAg(Bg,C,D) 

+ aAg(Bg,C,D)\old (42) 

where r\ is learning rate which can be expressed as follows: 

V = 
fdJtot 

V dD 
dJtot 

dc 
dJtot (dJt, 

\9Ag 

(43) 

Note that in this case, the learning is dependent on the "strength" 
of the gradients. If the gradients are large, then the correspond­
ing learning rate is small. O n the other hand, i f the gradients 
are small, learning rate can be increased. The constant parameter 
a is the momentum term of the gradient descent method. The 
constant « is the corresponding step size. The gradient vectors 
(dJtot/dD), (dJtot/dC), (dJtot/dBg), and {dJtot/dAg) are de­
fined as follows: 

dJtot E 
dJ„ 

dA3(Bg, C, D) ^ dAg(Bg, C, D) 
(44) 

Due to the nonlinear interaction in the first layer between Ag and 
Bg, the training algorithm does not perform very wel l . If the step 
size K is chosen to be very small, it performs relatively wel l but then 
the speed is very slow. To utilize the nonlinear interaction in the first 
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layer among the parameters, we introduce two vectors Ag and Bg 

which can be obtained by a simple operation on the vectors of Ag 

and B g , respectively. 

Ag = diag[diag(,49)~1] *-> Ag 

= diag[diag(A 9) _ 1] 

B 9 = - d i a g ( A 9 ) - 1 B 9 - B f l 

= - d i i i g ( Z 9 ) - 1 B 9 . 

(45) 

(46) 

Therefore, the gradient vectors for the new parameter vectors can 

be achieved by using the gradients of Ag and Bg as follows: 

|£=-diag(Afl)!£ 
dBg 

dJp 

dBa 

= -diag (Ag 

diag(A9)fi + diag(B9)fi 

(47) 

(48) 

Based on the new gradients and the new parameter vectors, we can 
expressed the training algorithm for vectors ^49 and Bg as follows: 

1 OJtot . -T I 
g\new = ~n~^=- + <xAg\0ld 

dAa 

dJtot . - „ I 

dBa 

Similarly, the learning rate TJ can be calculated as follows; 

dJtot 
3D 

dJtot 
dC 

dJtot 

dBa 

dJtot 

dAa 

(51) 

VII . ILLUSTRATIVE EXAMPLE 

To illustrate the matrix formulation expressed in previous sections, 
we consider a fuzzy rule-based system with 2 inputs (p = 2), one 
output (q = 1), six rules (n = 6), three individual membership 
functions for the first input (pi = 3), and two individual membership 
functions for the second input (p2 = 2). The membership functions 
in the first layer are chosen to be of a Gaussian shape. The neural 
network model for this system is shown in F i g . 5. 

A computer simulation program is written to train the fuzzy system 
with matrix formulations. The training data yd is obtained from a 
nonlinear surface given by (52). The universes of inputs Vi and {72 

for both xi and x2 are [—5 5]. 

y = 10e~ -4/4)2 

(52) 

Based on some intuitive understanding from the desired surface 
given by (52), we assign initial values for the vectors Ag,Bg, C, and 
D. With an appropriate combination of step size K and the momentum 
a, the algorithm converges. 

In order to evaluate the performance of different adaptive networks, 
we define an average percentage error ( A P E ) as follows [9]: 

APE = 
P = i 

x 100% (53) 

P = i 

where in our simulation we use P = 441 ( 2 1 x 2 1 ) sampling points. 
The various matrix formulations expressed in Section V w i l l be 
illustrated with the given data. 

9-ce^ 

y(t) 

Fig. 5. Neural network model for a fuzzy rule-based system with two inputs, 
one output and six rules. 

Example 1: A t first we consider a semi-fuzzy model for the rule-
based system. Based on this model, the rules can be expressed as 
follows: 

If xi is M i and x2 is M2 then y is N\, else 

If x i is M i and X2 is M2 then y is i V f , else 

If x i is Mi and X2 is M2 then yisN±, else 

If x i is M i and x 2 is M f then yisN*, else 

If a: i is Mi and x2 is M f then y is JVf, else 

If xi is Mi and x2 is M f then y is Nf 

(49) 

(50) 

Rule 2 

Rule 3 

Rule 4 

Rule 5 

Rule 6 

The initial values for the unknown matrices As 

Bw are given as follows: 

CO 
al 
a\ 

\a2J 

iVi2 * 
iVf 
iVi4 

Nf 
\N?J 

Aw = 3.5856 

C = 

/0.25\ 
' 0.25 * 

0.25 
0.25 

\0.25/ 

'0.5 * 
0 
1 

10 
V l J 

0 
1 
0 
0 
1 
0 

bl 

\bV 

Bg, C, H, Aw, and 

- 1 

1 

• 1 . V - i / 

H = 
(\ 

1 
0 

Vo 

°\ 
0 
0 
1 
1 
1/ 

0 
1 
l / 

£„, =-5.1741 
1 
1 
1 

V i / 

(54) 

The average percentage errors for the first 500 epochs of training 
with a step size K = 0.01, and a momentum a = 0.95 are plotted 
in F i g . 6(a). The vector of unknown parameters after training has 
stopped are given as follows: 

Aa = 

/0 .2414\ 
' 0.0001 ' 

0.2414 

0.2365 
Vo.212o/ 

1.2301 \ 
0.0000 

-1.2301 
1.0447 

V-1.6591/ 

C = 

\ 
/ 0.0667 

1.1354 
0.0667 
0.8076 

10.2257 
V 0.8076/ 

(55) 

This simulation was repeated for training using the modified 
training algorithms i.e., using vectors of Ag and Bg. The A P E is 
shown in F ig . 6(b) where the step size is K = 0.1 and the momentum 
a = 0. 
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(a) 

JO lOO ISO 200 ISO 900 350 400 450 

(a) 

SO lOO ISO 200 230 3O0 330 400 450 300 

(b) (b) 

SO 100 ISO 200 290 300 SSO 40O «SO SOO 50 1O0 ISO 200 2SO SOO 3SO 400 4SO SOO 

Fig. 6. Average percentage error for semi-fuzzy model, (a) Training algo­
rithm with step size re = 0.01 and momentum a = 0.95. (b) Modified 
training algorithm with step size re = 0.1 and momentum a = 0. 

Fig. 7. Average percentage error for Sugeno fuzzy if-then rule, (a) Training 
algorithm with step size re = 0.01 and momentum a = 0. (b) Modified 
training algorithm with step size re = 0.1 and momentum a = 0.95. 

Example 2: The matrix formulation for the same inputs and output 
as indicated in Example 1 can be considered for a rule-based system 
with Sugenos's fuzzy if-then rules. 

Rule 1: If xi is M\ andx2 is Ml then 

y = N± + (iVjOizi + (Nl)ix2, else 

Rule 2: If an is M\ and x2 is Ml then 

y = Nf + {Nf)lXl + (Nl)ix2, else 

Rule 3: If x i is M? and x2 is Ml then 

Rule 4: 

Rule 5: 

Rule 6: 

y = Nf + {Nf)lXl + (#|)ia:2, else 

If a; i is M i 1 and x2 is M | then 

j , = N? + ( iV i 4 ) ^ ! + (Nl)lX2, else 

If X! is M f and x2 is M f then 

y = Nf + (Nl)lXl + {Nl)ix2, else 

If a; i is Mi and x2 is M | then 

y = /vt + ( iV! 6 )^ ! + (Nl)1x2 

The matrices A 9 , B f f , and C, i f f i , and B „ are as defined as in 
Example 1. The initial values for the unknown matrix D is defined 
as follows: 

(Nlh\ 

D = 
(Nth 

= 
0 0 
0 0 
0 0 

Vo o/ 

(56) 
(iV|)t 
( iV| ) i 

(M)J 
The average percentage errors for the first 500 epochs of training 

are plotted in Fig. 7(a) where the step size re = 0.01 and momentum 
a = 0. The vector of parameters after training has stopped is given 
in (57). In Fig. 7(b), the A P E is plotted for the modified training 
algorithm where the step size K = 0.1 and the momentum a = 0.95. 

/0.3131\ / 1.4631 \ 
i 

/U.3i31\ 
'0.2502 > 

Aa = 0.3131 
0.3479 

Vo.1783/ 

/ 0.0000 
-1.4631 

0.2932 
V-0.6537/ 

C--

0.2133\ 
0.7546 * 
0.2133 
0.8687 

10.0288 
V 0.8687/ 

D 

-0.2357 
0.0000 
0.2357 
0.5012 
0.0000 
-0.5012 

0.0666 \ 
0.8261 
0.0666 

-0.1101 
1.2781 

-0.1101/ 

(57) 

Example 3: Consider the rule base system given in Example 1, 
but with the fuzzy values in the consequent part using instead, 4 
individual membership functions for the output variable. 

Rule 1: If X l is Mi and X2 is M2 then J/ is Ni , else 

Rule 2: I f X l is Mx miX2 is M2 then J/ 

If X l is M1 and X2 is M2 then y is j V x , else 

If X l is M1 and X2 is M2 then y 

Rule 5: 

Rule 6: 

If X , l is M1 and X2 is M2 then y is Nx , else 

N(, 

Nt, 

If X l is M\ and X2 is M2 then J/ is Nt 

The constant matrix Q and initial values for unknown vectors C, 
and D are given as follows: 

C = 

(1 0 
0 1 
0 0 

\0 0 

(Nl\ 
Nf 
Nf 

W) 

1 0 0 o\ 
0 0 0 0 
0 0 1 0 
0 1 0 1/ 

= 
/ 0 \ 
0.5 
10 

w 
D = si 

.5? 
W 

I 
^ i / 

(58) 

The average percentage errors for the first 500 epochs of training 
are shown in Fig. 8(a) where the step size « = 0.01 and the 
momentum a = 0.95. The vector of parameters after training is 
given in (59). In Fig. 8(b), the APE is shown for the modified training 
algorithm where the step size n = 0.01 and the momentum a = 0.95. 

^0.2212^ ( 1.3526 N 
0.1792 

Aa = 0.2212 Ba 

0.2070 
Vo.2211/ 

/ 1.352(D\ 
' 0.0000 ' 

-1.3526 
1.1388 

V-i 
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(a) 

(b) 

^-JID'nwr ' 

1 0 O 1 3 0 2 0 0 2 9 0 3 C 0 3 9 0 4 O 0 4 3 O 3 0 0 

Fig. 8. Average percentage error for general fuzzy model, (a) Training 
algorithm with step size n = 0.01 and momentum a = 0.95 (b) Modified 
training algorithm with step size K = 0.01 and momentum a = 0.95. 

C--

I 0.3832 \ 
-2.9100 
17.1048 

\ 1.2079/ 

D 

/1.8194\ 
0.8991 
1.0216 ' 

\2.1085/ 

(59) 

VIII. CONCLUSIONS 

In this paper we have introduced a matrix formulation for fuzzy 
rule-based systems in a very general and commonly used structure 
with p inputs, q outputs, and n rules. It has been shown that 
a fuzzy rule-based system with some commonly used mechanism 
of reasoning can be expressed by a set of nonlinear and linear 
matrix equations. Subsequently the training algorithm for adaptive 
membership functions are also provided in matrix formulations. 
Illustrative examples are given to clarify the notation used and the 
applicability of the proposed method. 

APPENDIX 

Gradients for minimizing the error function for Takagi and 
Sugeno's model can be expressed in matrix formulation as follows: 

= 2[eT
nw(t)]-1w(t)eT(t) 

dJ_ 
dc 
| ^ = 2[elw(t)]-1w(t)eT{t)[Iq ® xT'(*)] 

dJ 

dBg 

dJ 
dAq 

= 2[elw{t))-1 

• Ag8{C + D[Iq ® x(t)] - eny
T{t)}e(t) 

= 2[eT
nw(t)]~1 dmg[Hx(t)] 

• Ag6{C + D[Iq <g> x(t)} - eny
T(t)}s(t) 

6 = AZAW. 

The gradients for General fuzzy model are: 

~ =2[DTfi(*)]-1 diag(2?)n(t)e(t) 

~ =2{DTQ(t)}-1 diag [0(t)][C - e9ty{t)W) 

dJ 
dA~ 

•AgSdmg(D)[C-eqty(t)}e(t) 

•-2[DTn(t)r1 diag[Hx(t)] 

•A36dmg(D){C-eqiy{t)]e{t) 

6 = AZAWQT.' 

REFERENCES 

[1] A . Athalye, D. Edwards, and V . S. Manoranjan, "On design a fuzzy 
control system using an optimization algorithm," Fuzzy Sets Syst., vol. 
56, pp. 281-290, 1993. 

[2] J. Bruske, E. V . Puttkamer, and U . R. Zimmer, "Spin-nfds learning 
and preset knowledge for surface fusion—A neural fuzzy decision sys­
tem," in Proc. Australia and New Zealand Conf. Intelligent Information 
Systems (ANZIIS-93), Perth, Australia, Dec. 1993, pp. 396-401. 

[3] C. Darken and J. Moody, "Connectionist models summer school," in 
Proc. 1988 Connectionist Models Summer School, D. S. Touretzky, T. 
Sejnowski, and G. E. Hinton, Eds.. San Francisco: Morgan Kaufmann, 
1989. 

[4] R. Fletcher, Practical Methods of Optimization, 2nd ed. New York: 
Wiley, 1987. 

[5] P. E. Gil l , Practical Optimization. London: Academic, 1981. 
[6] A . Graham, Kronecker Products and Matrix Calculus With Applications. 

New York: Halsted, 1981. 
[7] J. Hertz, A . Krogh, and R. G. Palmer, Introduction to the Theory of 

Neural Computation. Reading, M A : Addison Wesley, 1990. 
[8] S. Horikawa, T. Furuhashi, and Y . Uchikawa, "On fuzzy modeling 

using fuzzy neural networks with the back-propagation algorithm," IEEE 
Trans. Neural Networks, vol. 3, no. 5, pp. 801-806, Sept. 1992. 

[9] I. S. R. Jang, "Anfis: Adaptive-network-based fuzzy inference system," 
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May/June 
1993. 

[10] , "Self-learning fuzzy controllers based on temporal back propa­
gation," IEEE Trans. Syst., Man, Cybern., vol. 3, no. 5, pp. 714-723, 
Sept. 1992. 

[11] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice Hall, 1980. 
[12] C. T. Lin and C. S. George Lee, "Neural-network-based fuzzy logic 

control and decision system," IEEE Trans. Comput, vol. 40, no. 12, pp. 
1320-1336, Dec. 1991. 

[13] S. Liu and S. Hu, " A method of generating control rule model and its 
application," Fuzzy Sets Syst., vol. 52, pp. 33-37, 1992. 

[14] A . Lotfi and A . C. Tsoi, "Importance of membership functions: A 
comparative study on different learning methods for fuzzy inference 
systems," in Proc. Third IEEE Int. Conf. Fuzzy Systems, Orlando, FL , 
June 1994, pp. 1791-1796. 

[15] , "Learning fuzzy inference systems using an adaptive membership 
function scheme," IEEE Trans. Syst., Man, Cybern. B, vol. 26, no. 2, 
pp. 326-331, Apr. 1996. 

[16] E. H . Mamdani and S. Assilian, "An experiment in linguistic synthesis 
with a fuzzy logic controller," Int. J. Man Machine Studies, vol. 7, no. 
1, pp. 1-13, 1974. 

[17] E. H . Mamdani, "Twenty years of fuzzy control: Experiences gained 
and lesson learnt," in Proc. IEEE Conf. Fuzzy Systems, San Francisco, 
CA, Apr. 1993, vol. 1, pp. 339-344. 

[18] M . Mizumoto, "Fuzzy control under various reasoning method," Inform. 
Set, vol. 45, pp. 129-151, 1988. 

[19] K. Nishimori, H . Tokutaka, and S. Hirakawa, "Comparison of several 
fuzzy reasoning methods on driving control of a model car," in Proc. 
2nd Int. Conf. Fuzzy Logic and Neural Networks, Iizuka, Japan, July 
1992, pp. 421^124. 

[20] H . Nomura, I. Hayashi, and N . Wakami, " A learning method of fuzzy 
inference rules by descent method," in Proc. IEEE Int. Conf. Fuzzy 
Systems, Mar. 1992, pp. 203-210. 

[21] P. J. Pacini and B. Kosko, "Adaptive fuzzy systems for target tracking," 
Intell. Syst. Eng., pp. 3-21, July 1992. 

[22] B. G. Song et al., "Adaptive membership function fusion and annihi­
lation in fuzzy if-then rules," in Proc. IEEE Int. Conf. Fuzzy Systems, 
Apr. 1993, pp. 961-967. 

[23] T. Takagi and M . Sugeno, "Fuzzy identification of systems and its 
application to modeling and control," IEEE Trans. Syst., Man, Cybern., 
vol. SMC-15, no. 1, pp. 116-132, Jan. 1985. 

[24] A . C. Tsoi and A . Back, " A new dynamic neuron model, and its training 
algorithm," preprint, 1994. 



340 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996 

[25] A . C. Tsoi, D. S. C. So, and A . Sergejew, "Classification of electroen­
cephalogram using artificial neural networks," in Neural Information 
Processing Systems, J. Cowan, L . Giles, and G. Tesauro, Eds. San 
Francisco: Morgan Kaufmann, 1994, vol. 6. 

[26] L . X . Wang and J. M . Mendel, "Generating fuzzy rules by learning 
from examples," IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 
1414-1427, Dec. 1992. 

[27] , "Fuzzy basis functions, universal approximation, and orthogonal 
least-squares learning," IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 
807-814, Sept. 1992. 

Hierarchical Reduction and Partition of Hypergraph 

Hyung Lee-Kwang and Choong Ho Cho 

Abstract—In this paper, a hierarchical reduction method of hyper-
graphs is proposed. A macro-vertex in a reduced hypergraph corresponds 
to an edge of the original hypergraph, and thus a reduced hypergraph 
can provide a partition of a system. The reduction is realized by the 
iterations and the sequence of hierarchical reduction gives a sequence 
of hierarchical partitions. The proposed method allows to reduce and 
decompose the complexity of the system represented by hypergraphs. 

I. INTRODUCTION 

The hypergraph was introduced by Berge [1] and has been consid­
ered as a useful tool to analyze the structure of a system and to model 
a partition, covering and clustering [9]. However, the complexity of 
the model is increased with the number of vertices and edges i n the 
hypergraph. This complexity often gives rise to considerable errors 
on modeling and analyzing the system. The analysis of a large-scale 
system is faced with the complexity, and it is convenient to analyze 
with reduced models and submodels. 

Reduction and decomposition of system dimension is a general 
approach to manage the complexity in the field of system engineering 
and large-scale systems [5], [7], [10]. Our fundamental principle in 
managing the complexity is to reduce the size of edges and vertices 
by hypergraph reduction [11], [12]. 

The hypergraph reduction is a procedure that homomorphically 
transforms hypergraphs to their reduced graphs. The procedure re­
duces the size of edges and vertices and thus the complexity of 
models. However, it has been pointed out that there is no approach 
to reduce the hypergraphs. 

Therefore, in this paper, a reduction method o f hypergraphs is 
proposed. In the reduction, an edge is reduced into a macro-vertex. 
The reduction is realized by iterations and the iterations provide a 
sequence of hierarchical reductions. A macro-vertex in a reduced 
hypergraph represents an edge (sub-hypergraph) and thus a reduced 
hypergraph can give a partition of a system. The sequence of 
reduction can also provide a sequence of partitions. The partitions 
are ordered by the inclusion relation. The sequence of partition gives 
hierarchical partitions of the system. 
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In Section n , a brief review on the hypergraph is given and Section 
I H provides a hierarchical reduction method of hypergraphs. Section 
I V shows an example of a hierarchical reductions and hierarchical 
partitions o f a hypergraph, 

II. HYPERGRAPH 

The hypergraph H — (V, £) was proposed by Berge [1] and is 
defined as follows: 

H = (V, £) where 

V = {xi, x2, • • • , xn} : a finite set of vertices 

£ — {Ei, E2, • • • , Em} : a family of subsets of V 

Ej ^ 4>, j - 1, • • • , TO 

\JjE3=V. 

The set V is called the set of vertices and £ is the set of edges 
(or hyperedges). In the diagram, the edge Ej is represented by a 
solid line surrounding its vertices i f |£?_,• | > 2; i f \Ej\ = 1 by a 
cycle on the element. If \Ej\ = 2 for a l l j , the hypergraph becomes 
an ordinary (undirected) graph. The hypergraph (V, £) can be also 
represented by (V; Ei, E2, • • • , Em). The order of a hypergraph is 
the cardinality of set V, that is, | V | . 

In a hypergraph, two vertices x and y are said to be adjacent i f there 
exists an edge Ej which contains the two vertices (x £ Ej, y £ Ej). 
T w o edges Ei and Ej are said to be adjacent i f their intersection is 
not empty (Ei O Ej =fi <fi, i ^ j). 

In a hypergraph H = (V, £); V = {xi, X2, ••• , xn} and 
£ = {Ei, E2, • • • , Em}, its incidence matrix is a matrix M H = 
(aij)nxm with TO columns representing the edges and n rows repre­
senting the vertices, where the elements a,ij indicate the membership 
of vertex to hyperedge as follows: 

aij = 1 i f Xi 6 Ej 

= 0 i f xi g Ej. 

For example, consider a hypergraph H = (V, £) such that 

V = {xi, X2, X3, x4, Xs} 

£ = {Ei, E2, E3} 

Ei ={xi, x2}, 

E2 = {x2, xz, x4}, 

E-i ={x4 , £5}. 

The hypergraph can be shown as in Fig. 1 and its incidence matrix 
is as follows: 

Xi 

x2 

x3 

X4 

Xs 

Ei 

1 
1 
0 
0 
0 

E2 

0 
1 
1 
1 
0 

E3 

0 
0 
0 
1 
1 

In general, a_ hypergraph represents a covering of set V. In a 
hypergraph, if every vertex has its degree 1 (i.e., EiCiEj = (f>, %-^ j ) , 
the hypergraph represents a partition of V. 

1083^419/96$05.00 © 1996 IEEE 

mailto:khlee@monami.kaist.ac.kr

