
332 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

Matr ix Formulation of Fuzzy Rule-Based Systems

A. Lotfi, H . C. Andersen, and A . C. Tsoi

Abstract—In this paper, a matrix formulation of fuzzy rule-based
systems is introduced. A gradient descent training algorithm for the
determination of the unknown parameters can also be expressed in a
matrix form for various adaptive fuzzy networks. When converting a
rule-based system to the proposed matrix formulation, only three sets
of linear/nonlinear equations are required instead of set of rules and an
inference mechanism. There are a number of advantages which the matrix
formulation has compared with the linguistic approach. Firstly, it obviates
the differences among the various architectures; and secondly, it is much
easier to organize data in the implementation or simulation of the fuzzy
system. The formulation will be illustrated by a number of examples.

I. INTRODUCTION

There has been much research activity in fuzzy rule-based systems
concerning the conceptual understanding of linguistic variables and
fuzzy values. There are numerous proposals for inference mechanisms
[18], [19], rule extractions [13], [26], and membership function
assignments [1], [9], [12], [15], [20], [22].

For a given input-output mapping, using a fuzzy rale based system,
it is possible to adjust the following parameters: 1) the membership
function classes, 2) the number of rules used, and 3) the inference
mechanism, to achieve an approximation. It was shown in [14] that
the effects of changing the membership functions are dominant over
the other two factors. Consequently, much research has been directed
to the problem of membership function assignment in fuzzy neural
networks [8], [12], adaptive network based fuzzy inference systems
[10], and other adaptive structures for fuzzy models [15].

We propose a matrix formulation for fuzzy rule-based systems
which gives a unified treatment of different already proposed fuzzy
if-then rules and fuzzy inferences. This matrix formulation makes
training algorithms very simple and understandable.

Since the first successful application of a fuzzy rule-based system
as a controller of a simple plant by Mamdani and Assilian [16], it was
always considered that the fuzzy rule-based controller gives an alter
nate paradigm to the "analytic" control theory. The traditional control
theory is analytic in that it is based on methods relating to differential
or difference equations, e.g., Laplace transform. Furthermore, it is
often model based, i.e., it assumes a model of the plant in the analysis
and design of a controller [11]. In contradistinction to this, the fuzzy
control approach is based on the decision making concept in artificial
intelligence [17]. Although there has been wide-spread acceptance
of this "nonanalytic" approach for controller design, the analytic and
nonanalytic approaches have grown independently.

Since most of modern control systems can be modeled using a
set of first order matrix differential equations—the so-called state
space approach—it would be useful to attempt a formulation of the
fuzzy control systems using a similar approach. However, a major
stumbling block in this endeavor is that the fuzzy control system is
one with a multiplicative nonlinearity. This means that, although we
are able to write the system in a matrix form, it is quite complicated,
and hence would make further analysis very difficult.

We propose to overcome this stumbling block by introducing an
approximation using a single-layer neural network to the multiplica
tive nonlinearity. It is shown that this approximation is valid over a

Manuscript received April 24, 1994; revised December 28, 1994.
The authors are with the Department of Electrical and Computer Engineer

ing, University of Queensland, Brisbane 4072, Australia (lotfia@elec.uq.oz.au;
andersen @elec.uq.oz.au; act@elec.uq.oz.au).

Publisher Item Identifier S 1083-4419(96)02298-4.

range of input values. By using this approximation, the fuzzy neural
network paradigm can be represented using matrix terminology.

With our proposed matrix model, a fuzzy rule-based system
can be decomposed into a three layer feedforward neural network,
each layer is represented by a set of linear or nonlinear difference
equations. In the first layer, the membership function parameters of
the antecedent are given. The second layer is an algorithm for the
approximation of the multiplication or minimum connective operator
and. The third layer operates as consequent parameters and the
defuzzification method. Note that this connectionist architecture is
not fully connected, i.e., each neuron may have a local receptive field
[3], rather than connections to all the neurons in the previous layer.

Once the fuzzy rule-based system is represented in matrix termi
nology, it is simple to derive a gradient descent training algorithm
to estimate the unknown parameters using an error function. We
propose again to express this training algorithm in terms-of matrices,
thus finishing a "transparent" view,1 and allowing for its simple
implementation.

The organization of the rest of the paper is as follows: different
fuzzy rule-based systems and related inference mechanisms will be
briefly described in Section II, followed by a matrix formulation of
a multi-layer perceptron in Section III to set the background for the
proposed method. A neural network structure of the proposed approx
imation of the multiplicative operator, and subsequent explanation for
different layers of the fuzzy rule-based system will be introduced in
Section IV. The matrix formulation of a fuzzy rule-based system
is given in Section V , and in Section VI gradient descent training
algorithms will be explained. Some numerical examples are presented
in Section VII and some conclusions will be drawn in Section VIII.

II. F U Z Z Y R U L E - B A S E D SYSTEMS .

In this paper, we will present a matrix formulation of Fuzzy
Inference Systems (FIS's). It has been shown that FIS's can be
represented by three layer feedforward neural networks and it is on
this structure that we base our matrix formulation for FIS. Firstly,
we will review the structure of FIS and some specific defuzzification
algorithms, then we will show how to represent the system by three
sets of matrix equations.

First, consider a fuzzy rule base containing n rules, R\ i =
1, 2, . . . , n with p inputs, XJ, j = 1, 2, • • •, p, and q outputs, ye,
i = 1, 2, • • •, q as follows:

R':Ifx i s M ' theny i s M \ else

O-.xisM'

A y isj\f'

The antecedent vector xT = [xi, x2, • • •, XJ, • • •, xp] is a p
vector with elements which are linguistic variables in the universe of
UT = [Ui, U2, • • •, Up]. The superscript T represents the transpose
of a vector. The consequent vector yT = [j/i, 3/2, • • •, ye, • • •, Vq]
is a q vector whose elements are linguistic variables in the universe
of V = [Vi, V2, • • •, Vq]. We further assume that the universe of
antecedent and consequent, i.e., U and V, are limited to a specific
domain interval as indicated below:

Uj=[VJ- U+] j = l,---,p
Ve=[Ve- V+] l=l,...,q. • (1)

1 "Transparency"is used to denote that one may clearly see the relationship
among the variables in obtaining the gradient descent training algorithm. It is
used in contrast to the more traditional indexed type of notation, which tends
to make the relationships more "opaque" to observe.

1083 t̂419/96$05.00 © 1996 IEEE

mailto:lotfia@elec.uq.oz.au
http://oz.au
mailto:act@elec.uq.oz.au

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996 333

Vector M{ = [M[, ML •••, M}, •••, M'p] is a. vector of linguistic
values and N{ = \N\, Nl

2, • • •, JVJ, • • •, N'q] is a vector of fuzzy
values referring to the fuzzy variables x and y, respectively. The
notation ~ represents the fuzzy concept in contrast with crisp values.
Vector M' and TV" = [N[, N2, • • •, N[, • • •, N'q] are, respec
tively, the crisp observation and conclusion vectors. The number
of individual membership functions for a specific input value XJ
(Mj, Mf, •••, M") is pj. The number of individual membership
functions for a specific output variable ye (Nj, Nf, • • •, N") is qe-
Note that pj < n and qe < n.

To make an inference "Y is N'" from a set of rules R and an
observation O, several types of fuzzy reasoning mechanisms have
been proposed. There are different fuzzy reasoning mechanisms for
various types of fuzzy if-then rules. We consider three different forms
of fuzzy if-then rules and their related reasoning mechanisms for
deducing the vector of crisp decision W which has been used widely
in the literature [21], [23], [27].

Type I: The first form of fuzzy if-then rules is the simplest, but
is relatively effective in control applications. The corresponding
consequent of rules are crisp numbers rather than linguistic values,
i.e., N' = Af'. The number of individual consequent parameters qe
is equal to n. The crisp decision N't is calculated as:

5>,iv;
I ! = 1 N =

Y,m
=l,2,---,q (2)

where ttfi is the rule firing strength given by:

wi = f[Mj(xj).
i=i

Wang and Mendel [27] have proven
in (2) is a universal approximator. This
semi-fuzzy if-then rule model. It can be
of Type II which is introduced below.

Type II: Another type of fuzzy if-
Takagi and Sugeno [23]. In this method,
only in the antecedent part of premises
function of its inputs i.e., JVj + Y1P,=
decision N'f is obtained as:

(3)

that the fuzzy representation
model will be referred as the
thought of as a simplification

then rule was proposed by
the fuzzy values are involved

and the consequent is a linear
j (Nj)eXj. The output crisp

N't=] C W{fu = 1, 2, •••,<? (4)

where

(5)
i = l

The number of individual consequent parameters qe = n. (Nj)e
and N} are n x q + p(n x q) constant parameters which must be
determined.

Type III: The third fuzzy if-then rule is a general model with
linguistic fuzzy values in both the antecedent and consequent parts
of rules.

Pacini and Kosko [21] have shown that, if the correlation product
inference determines the output fuzzy values, the global centroid N[
can be computed from local consequent premise centroids. Therefore,

F J •

o—'
L]—•
F~l •

A 'B

Fig. 1. One layer neural network with n; inputs and n0 outputs.

the output decision is given by:
n

^TwiN^Se N'f
^WiS'e

= 1 , • • • , « (6)

where Wi, N}, and SI are the rules' firing strength (as defined earlier),
local centroid, and area of consequent premises, respectively. When
the number of consequent individual membership functions, qe, is
less than number of rules, n the (6) can be rewritten as follows [2]:

N'.=

J2^rN^Sre
=i

y flrSl
= !,-••,

where

Q.r~\]wi V« G 1, 2, • • •, n r = 1, • • •,

(7)

(8)

III. M A T R I X FORMULATION OF A SINGLE L A Y E R PERCEPTRON

Before describing the matrix formulation of fuzzy rule-based
systems, it would be beneficial to clarify the concept of matrix
formulation of a single-layer perceptron (SLP). This formulation
was first proposed in [25] as a method for formulating a multilayer
perceptron (MLP) using matrix representations. It has been used
successfully for the formulation of an extensive class of recurrent
networks [24].

Consider a one layer network with n; inputs and n0 outputs. Each
node function can be considered a nonlinear operation on a linear
combination of inputs (see Fig. 1). We can express this functionality
in matrix form as follows:

z = F(Au + B) (9)

where z =- \z\ z2 • • • zno\ and u = [«i u2 • • • uni] are
the output and input vectors, respectively. A and B are matrices, of
dimensions rio- x ni and n0 x 1, respectively, which represent the
synaptic weights connecting the input nodes and the hidden layer
neurons, and the threshold weights. FT = [/(.) /(.) • • • /(.)] is
a n0 vector function representing the nonlinear activation functions.
This nonlinear activation function /(.) can be a sigmoid, a hyperbolic
tangent, or any other similar function [7]. It is interesting to note that
this formulation can be extended to a network containing more than
one layers.

334 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

/p-c
/ / T "t

><S>-4-

P f

F*

F*

~ l ?l, A

-183

F* L - _

x£>—L p.

F .
FH

-1 86 _

r \
o _ /

Fir

/ /
—<-<£r~L Xp \ T

* I

F*
-|Sm J/

\ F -

• Fw

1 TI

1 *-

1 F W !

* 1
Pw 1

tax

"W
\\.

w //
yn

ZJ wy

-J

A w B w

Layer 1: Membership Layer 2: AND Layrer 8: Output

Fig. 2. Proposed neural network model for fuzzy rule-based systems.

TABLE I
SOME COMMONLY USED MEMBERSHIP FUNCTIONS (MFs)

MFs

Linear

Gaussian

Cauchy

Sigmoid

Formula

l _ | - = a |

«*(-(*=*)')
I

i + ^ r
i

l+e*p(-S=^)

Linear

f=7*~t
f=7*~$

•* £T (7

•J a a

Nonlinear

i-m
e"/2

i+/2

I
l+e-/

IV. CONSTRUCTION OF PROPOSED NEURAL
NETWORK MODEL

Fig. 2 shows the proposed neural fuzzy rule-based system. The
system has three individual layers.

1) The first layer represents the parameters of membership func
tions in the antecedent part of the rule-base.

2) The second layer is a soft-and which is used as an approxima
tion of a multiplication (or minimum) operation.

3) The third layer, i.e., output layer, contains the parameters of
the consequent part of rule-base and denazification algorithm.

The functionality of each layer will be described in the following
subsections.

A. Layer 1: Membership Functions

There are different choices for the shape of membership functions.
Some membership functions commonly used in control applications
are given in Table I.

We will decompose the membership function into two parts, a
linear part and a nonlinear part. The linear part must be as a function
of input(s).

ffi

Fig. 3. An element of the first layer of the proposed neural network model.

and the nonlinear part yields the output of this subsystem,

z = f(h) (11)

a and & are scalar constants, z and u are, respectively, the crisp
output and the crisp input. /(.) is the nonlinearity in the membership
function. Fig. 3 illustrates the neural network model of a membership
function.

When there are ra individual membership functions, where, m =
Y^j-i Pi' w i m P inputs, the formulation expressed in (11) can be
converted to matrix formulation as follows:

g = Fg[diag(Ag)Hx + Bg (12)

where Fg

used nonlinearities are given in Table I. Ag

constant values with the general elements as indicated in (13). These
elements are governed by the structure of the rules used in the FIS.
H is a connection matrix with binary elements. This choice of binary
values represents the structure of membership functions in the first
layer. The vector g represents the output of all membership functions
in the antecedent with the input vector x.

(a\\

4i
al

4*

/ ' 0

H =
\

0 e§j 0

V o - - - e*)

B Q =

fb'\

"pi

bl

4
6?

(13)

VPJ
p) whose elements where epj is the vector of size, pj 0 = 1

are all equal to one.
For specific examples illustrating how to convert the antecedent

into a matrix form, please see Example 1 in Section VII.

B. Layer 2: Connective Operator AND

The connective operator "and" in most applications of fuzzy
controller/decision is implemented by multiplication or by evaluating
the minimum of the arguments. As indicated previously, this is a
major stumbling block in the matrix formulation of a FIS. In order
to obtain a matrix formulation of a fuzzy rule-based system, it is
necessary to approximate the and operator. It is for this reason that
we introduce a new operator, the soft-and, which utilizes a sigmoidal
function.

(14)

1 + exp £o + ^2 £k9k

h — au + b (10)

This "soft and" is a single layer feedforward neural network (see
Fig. 4) with A inputs (c/i, gi, • • •, g\) and one output w and fixed
synaptic weights £*:& = 0 ••• A. To determine the parameters
Ck'k — 0 ••• A, which allow the neuron to best approximate
multiplication, the following cost function must be minimized. Note

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996 335

1

l « J

w

Fig. 4. An
model.

element of the second layer of the proposed neural network

TABLE II
SYNAPTIC WEIGHTS AND THRESHOLD VALUES

FOR MULTIPLICATION NEURAL NETWORK MODEL

Two inputs (A = 2)

Three inputs (A = 3)

£
3.5856

3.0223

&

-5.1741

-4.0948

that in this derivation, we impose the following condition: 0 < gk <
1 for k = 1, • • •, A.

-f-f
Jo Jo

TT ii.
' 11 9k

k-l -, .

1 + exp

dgi ••• dg\.

1

- K o + 5^&3fc I

(15)

Due to network symmetry, the synaptic weights £& = £ for k =
1 • • • A. Therefore, only two parameters £ and £o need to be
determined. It should be noted that this approximation does not
introduce a new set of unknown parameters to the system, as £ and £o
can be calculated prior to the construction of the model. The synaptic
parameters for two (A = 2) and three (A = 3) inputs are shown in
Table II.

When there are m inputs to the "soft and" operation with n outputs,
the neural network model is the same as a SLP, which, in this case,
is not fully connected. As we explained in Section III, the matrix
formulation of the "soft and" operation can be represented as below:

w = Fw(Awg + Bu (16)

where Fw is a n vector of sigmoid functions. Am and Bw are constant
matrices of dimensions n x m and n x l , respectively, representing
the synaptic weights and thresholds as follows:

Aw =£Ai

Bw = £oen

(17)

(18)

where en is the vector of n in which all elements are equal to one
and Ai is a matrix nxm whose elements are binary. An element one
represents the existence of a connection between the jth input and
the ith output, j = 1, 2, • • •, m and i = 1, 2, • • •, n, and likewise
a zero represents the lack of a connection.

C. Layer 3: Output Layer

The functionality of this layer is dependent upon the fuzzy if-then
rules and the inference mechanism employed. However, in all the
cases studied in this paper, this layer is a linear combination of the
consequent parameters and the rule firing strength w. We will not
give a special neural network model for this layer. It should be noted
that it is possible to give a neural network model similar to the ones

used for the first and the second layers, but since the purpose of
this paper is to present a matrix formulation, it is not necessary to
employ such a neural network structure.

V. M A T R I X FORMULATION OF FUZZY INFERENCE SYSTEMS

A FIS can be viewed as a mapping from crisp input variables to
crisp outputs governed by three sets of nonlinear equations as follows:

g{t)=h [g(t),x(t),t]

w(t)=f2[w(t),g(t),t]

»(*)=/s[»(*), »(*).*]

(19)

(20)

(21)

where x(t) G Rp, y{t) G Rq, are the inputs and outputs of the FIS.
g(t) G Rm and w(t) G R" are the firing weights and outputs of all
individual membership functions in the antecedent part. There is no
time dependency involved in the formulation of FIS, but in order to
show explicit dependencies of the variables, we use the notation t. It
may be thought of as the tth sample.

We wish to design a neural network model governed by the
(19)—(21) such that the following error function is minimized.

J = eLe (22)

where e = y — y , is a. q dimensional vector, y and y are q
dimensional vectors of the target function and the actual output,
respectively.

We can discuss the set of (19)—(21) more specifically, if we know
about the structure of the fuzzy if-then rules, the fuzzy reasoning, and
the defuzzification methods. In the next three subsections, we will
explain this matrix formulation for three different models discussed
previously in Section II.

A. Matrix Formulation of a Semi-Fuzzy Model

Consider the following FIS matrix formulation which is exactly
the same as the element by element formulation presented in Section
II-Type I for the semi-fuzzy model.

g(t)^Fg[dmg(Ag)Hx(t) + B9]

w(t) = Fw[Awg(t) + Bw]

y(t) [eT
nw(t)\- 1CTw(t)

(23)

(24)

(25)

N'q]
T is a q x 1 crisp output vector, y(t) = [N[,Ni,---,Ni

» (t) i s a) i x 1 vector of firing rule strengths, g(t) is a rra x 1 vector
holding the outputs of the individual membership functions, and x(t)
is ap x 1 input vector. Ag, H, and Aw are, respectively, matrices of
dimensions m x 1, m x p, and nxm introduced previously in Section
IV. Bg and Bw are, respectively, vectors of dimensions m x l and
n x 1. Fg is a m dimensional vector of nonlinear functions. In the
FIS situation, this is given by Fj = [fg(.) /9(.) ••• fg(-)] and
fg(.) is one of the functions given in Table I. Similarly Fw is an
n dimensional vector of sigmoidal functions. The consequent, C, is
an n x q matrix whose elements (iVJ were introduced previously as
consequent constant parameters) are given as follows:

C = m
\N?

m •

Ni •

m •

• N? •

• N't •

• N? •

• Nl

• N'q

• N^J

(26)

The unknown parameters Ag, Bg, and C can be obtained by use
of expert knowledge or by minimizing the error function J (22) using

336 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

a gradient descent algorithm. The gradient of the error function with
respect to the parameters Ag, Bg, and C are given by:

dJ_
dC
d.J

8Bg

dJ_

dAa

= 2[elw(t)] 1w{i)eT{t) (27)

= 2[elw(t)r1Ag8[C - eny
T(t)]e{t) (28)

= 2 [e ^ (t)] - 1 d i a g [J f f x (i)]

• Ag8[C - eny
T\t)]e(t) (29)

6 = AlAw (30)

where A „ , denotes a n n x n diagonal matrix, whose diagonal elements
are given by f'w{-), denoting the first derivative of the nonlinear
function fw{.) £ Fw. Similarly, Ag is an m x m diagonal matrix
whose diagonal elements are given by f'g(-), the first derivative o f
the nonlinear function fg(.) £ Fg.

The application of (27)-(30) for a gradient descent minimization
algorithm w i l l be given in Section V I .

B. Matrix Formulation of Takagi and Sugeno 's Model

In the semi-fuzzy model explained in the previous subsection, the
consequent part of rules are constants. Takagi and Sugeno introduced
their model whereby the consequent part is a linear combination of
the crisp inputs. The matrix formulation for this specific form of
fuzzy if-then rules is as follows:

g(t)=Fg[<Hag(Ag)Hx(t) + Bg] (31)

w(t)=Fw{Awg(t) + Bw] (32)

y{t)=[eT
nw{t)]-1{C + D{Iq®x(t)\}Tw(t). (33)

Matrix D is defined as a column matrix whose elements are pa
rameters in the consequent part which are expressed as a linear
combination of inputs. / , is a unit matrix of order q x q and ®
denotes the Kronecker product [6].

D = [D1\D2\ ••• \Dt

The matrix Dj is defined as follows:

D.=

Da (34)

({Nl)t

(W)t

W)<
(M)i •

(N2)i •

• {Nf)e •

• (N})t •

• {N?)t •

• (K)i

• (N;)J

(35)

The corresponding gradients for minimizing the error function (22)
are given in the Appendix.

C. Matrix Formulation of General Fuzzy Model

W h e n both the antecedent and the consequent of rules are expressed
in fuzzy value form, we have a set of general fuzzy if-then rules.
Wi th the help of the defuzzification method explained i n Section II,
it is possible to construct our proposed matrix formulation. Due to
the complexity of the matrix formulation in this case, we w i l l give
the formulation only for systems with one output i.e., q = 1. The
case for q ^ 1 can be obtained in a similar fashion. The proposed
formulation is given below:

g(t) = -F9[diag (Ag)Hx(t) + Bg] (36)

£l(t)=QFv,[Awg(t) + Bw] (37)

^ (i) = [D T f i (i)] - 1 C T d i a g (Z)) n (t) . (38)

Equations (36) and (37) are explained previously. In (38) the firing
weight, w(t), is substituted with fl(t), which is related to w(t)'by
the operator matrix Q as follows:

ft(i) = Qw(t). (39)

The operator Q is a ft x n matrix with binary elements that define

the connection o f different firing weights w, to different individual

consequent fuzzy values. If an element is one in particular row of

the operator matrix Q, it means that the consequent membership

functions for those rules must be equal. Vectors C and D are given,

respectively, as follows:

C =
(Ni\
\N*')

D

(S}\

(40)

The corresponding gradients for minimizing the error function are
given in the Appendix.

It should be noted that the gradients for the consequent membership

functions are expressed i n terms of the parameters describing the

center of the membership functions (vector C) and the area of

individual membership functions in the consequent part (vector D).

V I . T H E G R A D I E N T D E S C E N T T R A I N I N G A L G O R I T H M

The vector of membership function parameters for the antecedent

Ag, Bg, and the vector of constant variables for the consequent C and

D can be adjusted to minimize an objective function Jtot defined as

follows:

Jtot - 2__, Jp - / /• (41)

p=i

where Jp is the error function for the pth training data [defined earlier
i n (22)]. The number o f exemplars in the training data set is P.

To update the unknown parameters in matrices Ag,,Bg, C, and
D, we introduce a steepest descent method [4], [5] to minimize the
total error function Jtot-

dJtot •
Ag(Bg, C, D)

~V dAg(Bg,C,D)

+ aAg(Bg,C,D)\old (42)

where r\ is learning rate which can be expressed as follows:

V =
fdJtot

V dD
dJtot

dc
dJtot (dJt,

\9Ag

(43)

Note that in this case, the learning is dependent on the "strength"
of the gradients. If the gradients are large, then the correspond
ing learning rate is small. O n the other hand, i f the gradients
are small, learning rate can be increased. The constant parameter
a is the momentum term of the gradient descent method. The
constant « is the corresponding step size. The gradient vectors
(dJtot/dD), (dJtot/dC), (dJtot/dBg), and {dJtot/dAg) are de
fined as follows:

dJtot E
dJ„

dA3(Bg, C, D) ^ dAg(Bg, C, D)
(44)

Due to the nonlinear interaction in the first layer between Ag and
Bg, the training algorithm does not perform very wel l . If the step
size K is chosen to be very small, it performs relatively wel l but then
the speed is very slow. To utilize the nonlinear interaction in the first

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996 337

layer among the parameters, we introduce two vectors Ag and Bg

which can be obtained by a simple operation on the vectors of Ag

and B g , respectively.

Ag = diag[diag(,49)~1] *-> Ag

= diag[diag(A 9) _ 1]

B 9 = - d i a g (A 9) - 1 B 9 - B f l

= - d i i i g (Z 9) - 1 B 9 .

(45)

(46)

Therefore, the gradient vectors for the new parameter vectors can

be achieved by using the gradients of Ag and Bg as follows:

|£=-diag(Afl)!£
dBg

dJp

dBa

= -diag (Ag

diag(A9)fi + diag(B9)fi

(47)

(48)

Based on the new gradients and the new parameter vectors, we can
expressed the training algorithm for vectors ^49 and Bg as follows:

1 OJtot . -T I
g\new = ~n~^=- + <xAg\0ld

dAa

dJtot . - „ I

dBa

Similarly, the learning rate TJ can be calculated as follows;

dJtot
3D

dJtot
dC

dJtot

dBa

dJtot

dAa

(51)

VII . ILLUSTRATIVE EXAMPLE

To illustrate the matrix formulation expressed in previous sections,
we consider a fuzzy rule-based system with 2 inputs (p = 2), one
output (q = 1), six rules (n = 6), three individual membership
functions for the first input (pi = 3), and two individual membership
functions for the second input (p2 = 2). The membership functions
in the first layer are chosen to be of a Gaussian shape. The neural
network model for this system is shown in F i g . 5.

A computer simulation program is written to train the fuzzy system
with matrix formulations. The training data yd is obtained from a
nonlinear surface given by (52). The universes of inputs Vi and {72

for both xi and x2 are [—5 5].

y = 10e~ -4/4)2

(52)

Based on some intuitive understanding from the desired surface
given by (52), we assign initial values for the vectors Ag,Bg, C, and
D. With an appropriate combination of step size K and the momentum
a, the algorithm converges.

In order to evaluate the performance of different adaptive networks,
we define an average percentage error (A P E) as follows [9]:

APE =
P = i

x 100% (53)

P = i

where in our simulation we use P = 441 (2 1 x 2 1) sampling points.
The various matrix formulations expressed in Section V w i l l be
illustrated with the given data.

9-ce^

y(t)

Fig. 5. Neural network model for a fuzzy rule-based system with two inputs,
one output and six rules.

Example 1: A t first we consider a semi-fuzzy model for the rule-
based system. Based on this model, the rules can be expressed as
follows:

If xi is M i and x2 is M2 then y is N\, else

If x i is M i and X2 is M2 then y is i V f , else

If x i is Mi and X2 is M2 then yisN±, else

If x i is M i and x 2 is M f then yisN*, else

If a: i is Mi and x2 is M f then y is JVf, else

If xi is Mi and x2 is M f then y is Nf

(49)

(50)

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

The initial values for the unknown matrices As

Bw are given as follows:

CO
al
a\

\a2J

iVi2 *
iVf
iVi4

Nf
\N?J

Aw = 3.5856

C =

/0.25\
' 0.25 *

0.25
0.25

\0.25/

'0.5 *
0
1

10
V l J

0
1
0
0
1
0

bl

\bV

Bg, C, H, Aw, and

- 1

1

• 1 . V - i /

H =
(\

1
0

Vo

°\
0
0
1
1
1/

0
1
l /

£„, =-5.1741
1
1
1

V i /

(54)

The average percentage errors for the first 500 epochs of training
with a step size K = 0.01, and a momentum a = 0.95 are plotted
in F i g . 6(a). The vector of unknown parameters after training has
stopped are given as follows:

Aa =

/0 .2414\
' 0.0001 '

0.2414

0.2365
Vo.212o/

1.2301 \
0.0000

-1.2301
1.0447

V-1.6591/

C =

\
/ 0.0667

1.1354
0.0667
0.8076

10.2257
V 0.8076/

(55)

This simulation was repeated for training using the modified
training algorithms i.e., using vectors of Ag and Bg. The A P E is
shown in F ig . 6(b) where the step size is K = 0.1 and the momentum
a = 0.

338 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

(a)

JO lOO ISO 200 ISO 900 350 400 450

(a)

SO lOO ISO 200 230 3O0 330 400 450 300

(b) (b)

SO 100 ISO 200 290 300 SSO 40O «SO SOO 50 1O0 ISO 200 2SO SOO 3SO 400 4SO SOO

Fig. 6. Average percentage error for semi-fuzzy model, (a) Training algo
rithm with step size re = 0.01 and momentum a = 0.95. (b) Modified
training algorithm with step size re = 0.1 and momentum a = 0.

Fig. 7. Average percentage error for Sugeno fuzzy if-then rule, (a) Training
algorithm with step size re = 0.01 and momentum a = 0. (b) Modified
training algorithm with step size re = 0.1 and momentum a = 0.95.

Example 2: The matrix formulation for the same inputs and output
as indicated in Example 1 can be considered for a rule-based system
with Sugenos's fuzzy if-then rules.

Rule 1: If xi is M\ andx2 is Ml then

y = N± + (iVjOizi + (Nl)ix2, else

Rule 2: If an is M\ and x2 is Ml then

y = Nf + {Nf)lXl + (Nl)ix2, else

Rule 3: If x i is M? and x2 is Ml then

Rule 4:

Rule 5:

Rule 6:

y = Nf + {Nf)lXl + (#|)ia:2, else

If a; i is M i 1 and x2 is M | then

j , = N? + (iV i 4) ^ ! + (Nl)lX2, else

If X! is M f and x2 is M f then

y = Nf + (Nl)lXl + {Nl)ix2, else

If a; i is Mi and x2 is M | then

y = /vt + (iV! 6)^ ! + (Nl)1x2

The matrices A 9 , B f f , and C, i f f i , and B „ are as defined as in
Example 1. The initial values for the unknown matrix D is defined
as follows:

(Nlh\

D =
(Nth

=
0 0
0 0
0 0

Vo o/

(56)
(iV|)t
(iV|) i

(M)J
The average percentage errors for the first 500 epochs of training

are plotted in Fig. 7(a) where the step size re = 0.01 and momentum
a = 0. The vector of parameters after training has stopped is given
in (57). In Fig. 7(b), the A P E is plotted for the modified training
algorithm where the step size K = 0.1 and the momentum a = 0.95.

/0.3131\ / 1.4631 \
i

/U.3i31\
'0.2502 >

Aa = 0.3131
0.3479

Vo.1783/

/ 0.0000
-1.4631

0.2932
V-0.6537/

C--

0.2133\
0.7546 *
0.2133
0.8687

10.0288
V 0.8687/

D

-0.2357
0.0000
0.2357
0.5012
0.0000
-0.5012

0.0666 \
0.8261
0.0666

-0.1101
1.2781

-0.1101/

(57)

Example 3: Consider the rule base system given in Example 1,
but with the fuzzy values in the consequent part using instead, 4
individual membership functions for the output variable.

Rule 1: If X l is Mi and X2 is M2 then J/ is Ni , else

Rule 2: I f X l is Mx miX2 is M2 then J/

If X l is M1 and X2 is M2 then y is j V x , else

If X l is M1 and X2 is M2 then y

Rule 5:

Rule 6:

If X , l is M1 and X2 is M2 then y is Nx , else

N(,

Nt,

If X l is M\ and X2 is M2 then J/ is Nt

The constant matrix Q and initial values for unknown vectors C,
and D are given as follows:

C =

(1 0
0 1
0 0

\0 0

(Nl\
Nf
Nf

W)

1 0 0 o\
0 0 0 0
0 0 1 0
0 1 0 1/

=
/ 0 \
0.5
10

w
D = si

.5?
W

I
^ i /

(58)

The average percentage errors for the first 500 epochs of training
are shown in Fig. 8(a) where the step size « = 0.01 and the
momentum a = 0.95. The vector of parameters after training is
given in (59). In Fig. 8(b), the APE is shown for the modified training
algorithm where the step size n = 0.01 and the momentum a = 0.95.

^0.2212^ (1.3526 N
0.1792

Aa = 0.2212 Ba

0.2070
Vo.2211/

/ 1.352(D\
' 0.0000 '

-1.3526
1.1388

V-i

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996 339

(a)

(b)

^-JID'nwr '

1 0 O 1 3 0 2 0 0 2 9 0 3 C 0 3 9 0 4 O 0 4 3 O 3 0 0

Fig. 8. Average percentage error for general fuzzy model, (a) Training
algorithm with step size n = 0.01 and momentum a = 0.95 (b) Modified
training algorithm with step size K = 0.01 and momentum a = 0.95.

C--

I 0.3832 \
-2.9100
17.1048

\ 1.2079/

D

/1.8194\
0.8991
1.0216 '

\2.1085/

(59)

VIII. CONCLUSIONS

In this paper we have introduced a matrix formulation for fuzzy
rule-based systems in a very general and commonly used structure
with p inputs, q outputs, and n rules. It has been shown that
a fuzzy rule-based system with some commonly used mechanism
of reasoning can be expressed by a set of nonlinear and linear
matrix equations. Subsequently the training algorithm for adaptive
membership functions are also provided in matrix formulations.
Illustrative examples are given to clarify the notation used and the
applicability of the proposed method.

APPENDIX

Gradients for minimizing the error function for Takagi and
Sugeno's model can be expressed in matrix formulation as follows:

= 2[eT
nw(t)]-1w(t)eT(t)

dJ_
dc
| ^ = 2[elw(t)]-1w(t)eT{t)[Iq ® xT'(*)]

dJ

dBg

dJ
dAq

= 2[elw{t))-1

• Ag8{C + D[Iq ® x(t)] - eny
T{t)}e(t)

= 2[eT
nw(t)]~1 dmg[Hx(t)]

• Ag6{C + D[Iq <g> x(t)} - eny
T(t)}s(t)

6 = AZAW.

The gradients for General fuzzy model are:

~ =2[DTfi(*)]-1 diag(2?)n(t)e(t)

~ =2{DTQ(t)}-1 diag [0(t)][C - e9ty{t)W)

dJ
dA~

•AgSdmg(D)[C-eqty(t)}e(t)

•-2[DTn(t)r1 diag[Hx(t)]

•A36dmg(D){C-eqiy{t)]e{t)

6 = AZAWQT.'

REFERENCES

[1] A . Athalye, D. Edwards, and V . S. Manoranjan, "On design a fuzzy
control system using an optimization algorithm," Fuzzy Sets Syst., vol.
56, pp. 281-290, 1993.

[2] J. Bruske, E. V . Puttkamer, and U . R. Zimmer, "Spin-nfds learning
and preset knowledge for surface fusion—A neural fuzzy decision sys
tem," in Proc. Australia and New Zealand Conf. Intelligent Information
Systems (ANZIIS-93), Perth, Australia, Dec. 1993, pp. 396-401.

[3] C. Darken and J. Moody, "Connectionist models summer school," in
Proc. 1988 Connectionist Models Summer School, D. S. Touretzky, T.
Sejnowski, and G. E. Hinton, Eds.. San Francisco: Morgan Kaufmann,
1989.

[4] R. Fletcher, Practical Methods of Optimization, 2nd ed. New York:
Wiley, 1987.

[5] P. E. Gil l , Practical Optimization. London: Academic, 1981.
[6] A . Graham, Kronecker Products and Matrix Calculus With Applications.

New York: Halsted, 1981.
[7] J. Hertz, A . Krogh, and R. G. Palmer, Introduction to the Theory of

Neural Computation. Reading, M A : Addison Wesley, 1990.
[8] S. Horikawa, T. Furuhashi, and Y . Uchikawa, "On fuzzy modeling

using fuzzy neural networks with the back-propagation algorithm," IEEE
Trans. Neural Networks, vol. 3, no. 5, pp. 801-806, Sept. 1992.

[9] I. S. R. Jang, "Anfis: Adaptive-network-based fuzzy inference system,"
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May/June
1993.

[10] , "Self-learning fuzzy controllers based on temporal back propa
gation," IEEE Trans. Syst., Man, Cybern., vol. 3, no. 5, pp. 714-723,
Sept. 1992.

[11] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice Hall, 1980.
[12] C. T. Lin and C. S. George Lee, "Neural-network-based fuzzy logic

control and decision system," IEEE Trans. Comput, vol. 40, no. 12, pp.
1320-1336, Dec. 1991.

[13] S. Liu and S. Hu, " A method of generating control rule model and its
application," Fuzzy Sets Syst., vol. 52, pp. 33-37, 1992.

[14] A . Lotfi and A . C. Tsoi, "Importance of membership functions: A
comparative study on different learning methods for fuzzy inference
systems," in Proc. Third IEEE Int. Conf. Fuzzy Systems, Orlando, FL ,
June 1994, pp. 1791-1796.

[15] , "Learning fuzzy inference systems using an adaptive membership
function scheme," IEEE Trans. Syst., Man, Cybern. B, vol. 26, no. 2,
pp. 326-331, Apr. 1996.

[16] E. H . Mamdani and S. Assilian, "An experiment in linguistic synthesis
with a fuzzy logic controller," Int. J. Man Machine Studies, vol. 7, no.
1, pp. 1-13, 1974.

[17] E. H . Mamdani, "Twenty years of fuzzy control: Experiences gained
and lesson learnt," in Proc. IEEE Conf. Fuzzy Systems, San Francisco,
CA, Apr. 1993, vol. 1, pp. 339-344.

[18] M . Mizumoto, "Fuzzy control under various reasoning method," Inform.
Set, vol. 45, pp. 129-151, 1988.

[19] K. Nishimori, H . Tokutaka, and S. Hirakawa, "Comparison of several
fuzzy reasoning methods on driving control of a model car," in Proc.
2nd Int. Conf. Fuzzy Logic and Neural Networks, Iizuka, Japan, July
1992, pp. 421^124.

[20] H . Nomura, I. Hayashi, and N . Wakami, " A learning method of fuzzy
inference rules by descent method," in Proc. IEEE Int. Conf. Fuzzy
Systems, Mar. 1992, pp. 203-210.

[21] P. J. Pacini and B. Kosko, "Adaptive fuzzy systems for target tracking,"
Intell. Syst. Eng., pp. 3-21, July 1992.

[22] B. G. Song et al., "Adaptive membership function fusion and annihi
lation in fuzzy if-then rules," in Proc. IEEE Int. Conf. Fuzzy Systems,
Apr. 1993, pp. 961-967.

[23] T. Takagi and M . Sugeno, "Fuzzy identification of systems and its
application to modeling and control," IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 1, pp. 116-132, Jan. 1985.

[24] A . C. Tsoi and A . Back, " A new dynamic neuron model, and its training
algorithm," preprint, 1994.

340 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

[25] A . C. Tsoi, D. S. C. So, and A . Sergejew, "Classification of electroen
cephalogram using artificial neural networks," in Neural Information
Processing Systems, J. Cowan, L . Giles, and G. Tesauro, Eds. San
Francisco: Morgan Kaufmann, 1994, vol. 6.

[26] L . X . Wang and J. M . Mendel, "Generating fuzzy rules by learning
from examples," IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp.
1414-1427, Dec. 1992.

[27] , "Fuzzy basis functions, universal approximation, and orthogonal
least-squares learning," IEEE Trans. Neural Networks, vol. 3, no. 5, pp.
807-814, Sept. 1992.

Hierarchical Reduction and Partition of Hypergraph

Hyung Lee-Kwang and Choong Ho Cho

Abstract—In this paper, a hierarchical reduction method of hyper-
graphs is proposed. A macro-vertex in a reduced hypergraph corresponds
to an edge of the original hypergraph, and thus a reduced hypergraph
can provide a partition of a system. The reduction is realized by the
iterations and the sequence of hierarchical reduction gives a sequence
of hierarchical partitions. The proposed method allows to reduce and
decompose the complexity of the system represented by hypergraphs.

I. INTRODUCTION

The hypergraph was introduced by Berge [1] and has been consid
ered as a useful tool to analyze the structure of a system and to model
a partition, covering and clustering [9]. However, the complexity of
the model is increased with the number of vertices and edges i n the
hypergraph. This complexity often gives rise to considerable errors
on modeling and analyzing the system. The analysis of a large-scale
system is faced with the complexity, and it is convenient to analyze
with reduced models and submodels.

Reduction and decomposition of system dimension is a general
approach to manage the complexity in the field of system engineering
and large-scale systems [5], [7], [10]. Our fundamental principle in
managing the complexity is to reduce the size of edges and vertices
by hypergraph reduction [11], [12].

The hypergraph reduction is a procedure that homomorphically
transforms hypergraphs to their reduced graphs. The procedure re
duces the size of edges and vertices and thus the complexity of
models. However, it has been pointed out that there is no approach
to reduce the hypergraphs.

Therefore, in this paper, a reduction method o f hypergraphs is
proposed. In the reduction, an edge is reduced into a macro-vertex.
The reduction is realized by iterations and the iterations provide a
sequence of hierarchical reductions. A macro-vertex in a reduced
hypergraph represents an edge (sub-hypergraph) and thus a reduced
hypergraph can give a partition of a system. The sequence of
reduction can also provide a sequence of partitions. The partitions
are ordered by the inclusion relation. The sequence of partition gives
hierarchical partitions of the system.

Manuscript received Ari l 24, 1994; revised December 28, 1994.
H . Lee-Kwang is with the Department of Computer Science, Korea Ad

vanced Institute of Science and Technology (KAIST), Taejon 305:701, Seoul,
Korea (e-mail: khlee@monami.kaist.ac.kr).

C. H . Cho is with the Department of Computer Science, Korea University,
Chochiwon, Choongnam 393-800, Korea.

Publisher Item Identifier S 1083-4419(96)02310-2.

In Section n , a brief review on the hypergraph is given and Section
I H provides a hierarchical reduction method of hypergraphs. Section
I V shows an example of a hierarchical reductions and hierarchical
partitions o f a hypergraph,

II. HYPERGRAPH

The hypergraph H — (V, £) was proposed by Berge [1] and is
defined as follows:

H = (V, £) where

V = {xi, x2, • • • , xn} : a finite set of vertices

£ — {Ei, E2, • • • , Em} : a family of subsets of V

Ej ^ 4>, j - 1, • • • , TO

\JjE3=V.

The set V is called the set of vertices and £ is the set of edges
(or hyperedges). In the diagram, the edge Ej is represented by a
solid line surrounding its vertices i f |£?_,• | > 2; i f \Ej\ = 1 by a
cycle on the element. If \Ej\ = 2 for a l l j , the hypergraph becomes
an ordinary (undirected) graph. The hypergraph (V, £) can be also
represented by (V; Ei, E2, • • • , Em). The order of a hypergraph is
the cardinality of set V, that is, | V | .

In a hypergraph, two vertices x and y are said to be adjacent i f there
exists an edge Ej which contains the two vertices (x £ Ej, y £ Ej).
T w o edges Ei and Ej are said to be adjacent i f their intersection is
not empty (Ei O Ej =fi <fi, i ^ j).

In a hypergraph H = (V, £); V = {xi, X2, ••• , xn} and
£ = {Ei, E2, • • • , Em}, its incidence matrix is a matrix M H =
(aij)nxm with TO columns representing the edges and n rows repre
senting the vertices, where the elements a,ij indicate the membership
of vertex to hyperedge as follows:

aij = 1 i f Xi 6 Ej

= 0 i f xi g Ej.

For example, consider a hypergraph H = (V, £) such that

V = {xi, X2, X3, x4, Xs}

£ = {Ei, E2, E3}

Ei ={xi, x2},

E2 = {x2, xz, x4},

E-i ={x4 , £5}.

The hypergraph can be shown as in Fig. 1 and its incidence matrix
is as follows:

Xi

x2

x3

X4

Xs

Ei

1
1
0
0
0

E2

0
1
1
1
0

E3

0
0
0
1
1

In general, a_ hypergraph represents a covering of set V. In a
hypergraph, if every vertex has its degree 1 (i.e., EiCiEj = (f>, %-^ j) ,
the hypergraph represents a partition of V.

1083^419/96$05.00 © 1996 IEEE

mailto:khlee@monami.kaist.ac.kr

