Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection

Darch, SE, McNally, A ORCID: 0000-0002-3099-630X, Harrison, F, Corander, J, Barr, HL, Paszckiewicz, K, Holden, S, Fogarty, A, Crusz, SA and Diggle, SP, 2015. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Scientific Reports, 5. ISSN 2045-2322


Download (1MB) | Preview


The Cystic Fibrosis (CF) lung harbors a complex, polymicrobial ecosystem, in which Pseudomonas aeruginosa is capable of sustaining chronic infections, which are highly resistant to multiple antibiotics. Here, we investigate the phenotypic and genotypic diversity of 44 morphologically identical P. aeruginosa isolates taken from a single CF patient sputum sample. Comprehensive phenotypic analysis of isolates revealed large variances and trade-offs in growth, virulence factors and quorum sensing (QS) signals. Whole genome analysis of 22 isolates revealed high levels of intra-isolate diversity ranging from 5 to 64 SNPs and that recombination and not spontaneous mutation was the dominant driver of diversity in this population. Furthermore, phenotypic differences between isolates were not linked to mutations in known genes but were statistically associated with distinct recombination events. We also assessed antibiotic susceptibility of all isolates. Resistance to antibiotics significantly increased when multiple isolates were mixed together. Our results highlight the significant role of recombination in generating phenotypic and genetic diversification during in vivo chronic CF infection. We also discuss (i) how these findings could influence how patient-to-patient transmission studies are performed using whole genome sequencing, and (ii) the need to refine antibiotic susceptibility testing in sputum samples taken from patients with CF.

Item Type: Journal article
Publication Title: Scientific Reports
Creators: Darch, S.E., McNally, A., Harrison, F., Corander, J., Barr, H.L., Paszckiewicz, K., Holden, S., Fogarty, A., Crusz, S.A. and Diggle, S.P.
Publisher: Nature Publishing Group
Date: 2015
Volume: 5
ISSN: 2045-2322
Divisions: Schools > School of Science and Technology
Depositing User: EPrints Services
Date Added: 09 Oct 2015 11:01
Last Modified: 09 Jun 2017 13:47

Actions (login required)

Edit View Edit View


Views per month over past year


Downloads per month over past year