
i 

 

Association of Genotype with Bone 

Metabolism, Skeletal Adaptation and 

Stress Fracture Injury Occurrence 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ian Varley 

 

 

 

 

 

 

 

 

 

 

Thesis submitted in partial fulfilment of the requirements of Nottingham Trent University 

for the degree of Doctor of Philosophy 

 

 

 

 

August 2014 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

Copyright statement  

This work is the intellectual property of the author. You may copy up to 5% of this work for 

private study, or personal, non-commercial research. Any re-use of the information contained 

within this document should be fully referenced, quoting the author, title, university, degree 

level and pagination. Queries or requests for any other use, or if a more substantial copy is 

required, should be directed in the owner of the Intellectual Property Rights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Abstract  

Positive changes in bone metabolism, structural characteristics, size and mass are commonly 

associated with weight-bearing exercise. Despite this, negative effects of exercise on bone 

phenotypes, such as stress fracture injuries have been reported. Little is known about the 

extent of the genetic mediation of changes in bone characteristics, stress fracture injury and 

bone resorption in response to exercise. Accordingly, this thesis investigated: the genotype 

dependent changes in bone phenotypes in academy footballers before and after an increase in 

training volume; genetic associations with stress fracture injury in elite athletes and a 

preliminary investigation into genetic associations with bone resorption following 120 min of 

treadmill running.   

The tibial bone characteristics of 80, full-time academy footballers was determined using 

pQCT before and after 12 weeks of increased volume football training. Genetic associations 

with baseline, post increased training and change in bone characteristics were then 

determined. Secondly, radiologically confirmed stress fracture history was reported in 518 

elite athletes, forming the Stress Fracture Elite Athlete (SFEA) cohort. Genetic associations 

were analysed for the whole group, and were also sub-stratified. Finally, recreationally active 

healthy male participants (n=42) performed a 120 min run at 70%   O2max. Genetic 

associations with bone resorption at baseline, immediately, 24, 48 and 72 hours post run were 

investigated. 

SNPs in the proximity of genes in P2X7R and the RANK/RANKL/OPG signalling and Wnt 

signalling pathways were associated with bone phenotypes before and following 12 weeks of 

increased volume football training (P<0.05). SNPs in close proximity to SOST, P2X7R, 

RANK, RANKL, OPG, Bradykinin and VDR genes were associated with stress fracture injury 

in the whole cohort and in various sub-classifications of elite athletes (P<0.05). No 
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associations were shown in bone resorption prior to, immediately following or in the 3 days 

following 120 min of treadmill running.   

The data suggest a role for specific genes and SNPs in bone phenotypic changes as a result of 

exercise training and in the susceptibility to stress fracture injury. The association of SNPs in 

P2X7R and the RANK/RANKL/OPG signalling and Wnt signalling pathways with bone 

phenotypes and stress fracture injury susceptibility highlights their role in the maintenance of 

bone health, and offers potential targets for therapeutic interventions.    
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Bone is a dynamic tissue in a constant state of change as a result of several factors including, 

chemical triggers, growth factors and the stresses placed upon it as a result of muscular and 

mechanical loading. Bone structure and composition are primarily determined by basic 

multicellular units (BMU) comprised of osteoclasts, osteoblasts and osteocytes. In healthy 

bone, homeostasis and structural integrity are maintained through the balance of continuous 

bone resorption and bone formation by osteoclasts and osteoblasts (Zaidi, 2007). Disruptions 

to the balance of formation and resorption can lead to bone deviating from homeostasis and 

the generation of micro-damage forming on the bone surface (Chapurlat and Delmas 2009), 

which can ultimately lead to bone injury and disease, ranging from high bone mass disorders 

to osteoporosis (O'Brien et al., 2005; Boyle et al., 2003). Weight-bearing mechanical loading 

has been shown to cause an increase in bone remodelling above basal levels, in which both 

bone formation and resorption are altered (Scott et al., 2010; 2011a; 2012a). These dynamic 

processes lead to loading specific changes in bone structure and integrity (Wolff’s Law, 

Wolff 1892) allowing bone to adapt in accordance to the load that is applied to it.  

 

The measurement of bone turnover by biochemical markers such as type 1 procollagen N-

terminal (P1NP) and collagen type 1 cross-linked C-telopeptide (β-CTX), and of bone 

structure by methods such as Peripheral Quantitative Computed Tomography (pQCT) and 

High Resolution Computed Tomography (HRpQCT), are commonly used to assess the 

effectiveness of pharmaceuticals and exercise or dietary interventions on bone characteristics. 

Data from exercise intervention studies indicate that weight-bearing mechanical loading has a 

mainly anabolic effect on bone (Maimoun and Sultan, 2009). However, the magnitude of the 

adaptations vary depending on the exercise conducted (Greene et al., 2012, Evans et al., 

2012) and the anatomical site measured (Evans et al., 2012). Exercise resulting in a high 

magnitude of loading and irregular movement patterns is predominately shown to produce 
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greater osteogenic effects, in comparison to exercise eliciting low loading impacts and 

necessitating regular movement patterns (Greene et al., 2012). This is exemplified by studies 

involving footballers and gymnasts demonstrating these athletes to have increases in a variety 

of bone characteristics including, size, density and thickness compared to swimmers and 

cyclists (Morgan et al., 2011; Ferry et al., 2012; Greene et al., 2012; Heinonen et al., 1993). 

It is still unclear whether there is a specific magnitude of loading that is required to elicit 

osteogenic effects. The bone response to a single bout of exercise shows a large degree of 

individual variability (Ratntalainen et al., 2009; Kerschan-Schindl et al., 2009), which might 

be due to a number of factors including: lack of experimental controls, the high degree of 

biological variability that can exist in some  biochemical markers of bone turnover (Clowes et 

al., 2002), feeding (Guillemant et al., 2004), circadian rhythm (Fraser et al., 2010) and sex 

hormones (Camacho and Kleerekoper, 2006). All of these factors have been shown to 

influence the concentration of biochemical markers of bone turnover at rest, and in response 

to exercise. Even after controlling for confounding variables (Scott et al., 2010; 2011a; 

2012a) large individual variability remains, suggesting intrinsic factors may be involved in 

the mediation of the response.  

 

Despite the mainly anaerobic effects of exercise on bone, there is the possibility that exercise 

can contribute to short-term local bone loss and lead to bone injuries, such as stress fracture. 

Stress fracture injuries are overuse bone injuries that commonly occur in athletes and military 

personal, due to the cyclic, repetitive nature of their training (Warden et al., 2006). The 

prevalence and frequency of injury depends on the sport played and the military population 

observed. Stress fractures account for 0.7%-20% of all athletic sports injuries (Bennell et al., 

1997; Fredericson et al., 2006), while the percentage of military recruits suffering from stress 

fracture injury ranges from 5%-31% (Milgrom et al., 1985; Armstrong et al., 2004). Injury 
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can result in major consequences for athletes and military personnel including: significant 

discomfort, reduced performance, loss of valuable training time and loss of earnings. Stress 

fracture injuries are caused by mechanical loading that is applied in a rhythmic, repeated, 

sub-threshold manner (McBryde, 1985), although the exact pathophysiology is not fully 

understood (Warden et al., 2007).  That said, inadequate bone remodelling (Schaffler et al., 

1990) and bone characteristics, such as low bone mineral density (BMD) (Wentz et al., 2012) 

and lower cortical area (Popp et al., 2009) have been associated with the development of 

stress fracture injury. Environmental factors including diet, training status, training 

environment, individual biomechanics and psychological factors have also been associated 

with stress fracture injury (Bennell et al., 1999). In particular, it would seem that a rapid 

increase in training volume or the engagement in unaccustomed exercise is associated with 

stress fracture injury (Bennell et al., 1999). This is supported by the observation of a 

relatively high proportion of stress fracture injuries in newly recruited military personal 

(Stroh Bach et al., 2012)    

 

Although the relative risk is unknown, a genetic contribution to stress fracture risk is likely, 

given the development of multiple stress fractures in the same individuals at various skeletal 

sites (Lambros and Alder, 1997), stress fracture injuries occurring in monozygotic twins 

(Singer et al., 1990; Van Meensal and Peers 2010), high stress fracture recurrence rates 

(Gehrmann and Renard, 2006) and variability in stress fracture incidence in individuals who 

are exposed to comparable training loads (Giladi et al., 1986). Despite this, there are very few 

published studies investigating genetic associations with stress fracture injury. Stress fracture 

candidate gene studies conducted hitherto have exclusively used military personnel (Korvala 

et al., 2010; Yanovich et al., 2011; Cosman et al., 2013; Valimaki et al., 2005; Chatzipapas et 

al., 2009). While some genetic associations in genes such as, low density lipoprotein 
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receptor-related protein 5 (LRP5) and the vitamin D receptor (VDR)  have been shown 

(Korvala et al., 2010; Yanovich et al., 2011; Chatzipapas et al., 2009), others have failed to 

confirm these findings (Cosman et al., 2013; Valimaki et al., 2005). The small range of SNPs 

investigated, small cohorts used, and the lack of homogeneity in prior training history may be 

the reason for the disparities. The aetiology and genotypic determinants of stress fracture 

injury might be different between military personnel and elite athletes due to the different 

types of training that they perform. 

 

Numerous large scale genome wide association studies (GWAS), investigating multiple bone 

phenotypes including, BMD, markers of bone turnover and osteoporotic fracture have been 

conducted (Paternoster et al., 2010; Roshandel et al., 2011; Medina-Gomez et al., 2012; 

Zheng et al., 2012). These studies have identified hundreds of specific genes and SNPs 

significantly associated with bone phenotypes. The genes and SNPs of significance vary 

depending on the population and anatomical site of the bone phenotype investigated. The 

genes and SNPs of greatest importance in relation to bone phenotypes have not been analysed 

for associations with stress fracture injury and, as such, the genes and SNPs that may increase 

susceptibility to stress fracture injury remain unclear. A direct or indirect association due to 

genes acting on bone phenotypic variants such as remodelling characteristics and structural 

adaptation may be evident given the previous genetic associations with these phenotypes 

(Kemp et al., 2013; Dhamrait et al., 2003; Roshandel et al., 2010). There is an absence of any 

data investigating the association of genotype with stress fracture injury in elite athletes, 

prompting questions about how genotype may influence the pathophysiology of injury in this 

population. 
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In summary, stress fractures are a commonly suffered injury by otherwise healthy individuals 

that have potentially serious consequences. Since the knowledge base regarding the 

pathogenesis of stress fracture injury is currently limited, so too is our ability to prevent, 

manage and treat it. Knowledge of how genotype may increase susceptibility to stress 

fracture injury through alterations in bone metabolism and structure will have wide ranging 

implications for sports medicine and bone health. The athlete model may also inform 

knowledge in relation to the management of clinical bone disorders, dental implants and 

orthopaedic surgical procedures. The study of skeletal responses to exercise also have the 

benefit of pace, given that large changes in bone phenotypes can be shown following a short 

period of time (10-12 weeks). This would help in the examination of factors relating to bone 

diseases, such as osteoporosis. Thus, it would be useful to examine whether the specific SNPs 

associated with changes in bone phenotypes, such as BMD, cortical thickness and fracture 

risk are also associated with bone metabolism, structural changes in size, density and 

thickness and stress fracture risk in response to exercise.  

Therefore, the aim of this thesis is to determine whether selected SNPs are associated with; 1) 

adaptations in bone structure as a result of increased training load, 2) stress fracture injury 

susceptibility in elite athletes and 3) bone metabolism following prolonged treadmill running. 

These aims will be examined in 4 studies reported in Chapters 4,5, 6 and 7:  

 Initially a methodological study was conducted in order to determine the most suitable 

method of sample collection for the subsequent experimental studies. The findings 

from this study are reported in Chapter 4. 

 Study 2, reported in Chapter 5 investigated whether genotype is associated with bone 

structural alterations in full-time academy footballers following 12 weeks of increased 

training volume.    
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 Study 3, reported in Chapter 6 investigated if variations in genotype, previously 

associated with other bone phenotypes, were associated with stress fracture injury in 

elite athletes.   

 Study 4, reported in Chapter 7 was an initial investigation in whether genetic factors 

were associated with the biochemical markers of bone resorption by measuring bone 

resorption before, immediately after (0h) and 24h,48h and 72h following 120 min of 

treadmill running.   
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Chapter 2.0. Literature Review  
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2.1. Overview  

 

Current literature has been reviewed relating to bone and the different phases that combine to 

make up the bone remodelling cycle. The positive and negative impact of mechanical loading 

on bone has been reviewed. The negative effects of mechanical loading on bone is discussed, 

including the suggested mechanisms and aetiology of stress fracture injury. This Chapter 

concludes by reviewing the literature relating to genetic susceptibility to bone phenotypic 

alterations.  

 

2.2. Bone 

 

Bone is a connective tissue, that has metabolic and structural functions. During bone 

developmental stages, such as bone growth, bone modelling occurs. In response to prolonged 

exercise or post-fracture, extensive bone remodelling takes place. During bone remodelling, 

woven bone contributes to the majority of the structural component of bone, which is 

replaced by stronger and more resilient lamellar bone as the bone develops. The axial and 

appendicular skeletal system provides structural support to the muscles, facilitates movement, 

and protects the vital organs.  

 

Cortical and trabecular bone make-up the anatomical aspect of bone; cortical bone 

contributing up to 80% of the total skeleton (Arikoski et al., 2002). Cortical bone is found on 

the bone surface and at the shaft of long bones (diaphysis), where it is strong and rigid 

allowing for mechanical loading and repeated strain. Trabecular bone is located primarily in 

the axial skeleton, at the ends of long bones and in the vertebrae; it is firm but appears to have 

a ‘spongy’ appearance  The external surface of the bone is covered by the periosteum, which 

contains osteoblasts and osteoclasts on its surface and is inter-connected with nerves, 
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lymphatic and blood vessels. The internal surface is covered by the endosteum containing 

osteoblasts and osteoclasts, which line the canals that navigate cortical bone. An overview of 

bone structure is shown in Figure 2.1. Bone also has metabolic and endocrine functions, 

including the facilitation of calcium and phosphate secretion that is regulated by calciotropic 

hormones (Guntur and Rosen, 2012). Protein and calcium are key components of bone 

homeostasis, playing important roles in bone metabolism. Decreased calcium circulating in 

blood lead to a sustained  increase in parathyroid hormone (PTH) secretion, which over time, 

negatively impacts on bone mass due to an increase in bone turnover (Please see section 

2.2.2.1.1.). Protein can have positive effects on calcium homeostasis through increased 

insulin-like growth factor 1 (IGF-1) concentrations (Schurch et al., 1998), and negative 

effects through  the generation of metabolic acidosis leading to an increase in bone resorption 

(Dawson-Hughes et al., 2003).   

 

  

Figure 2.1. Structure of bone (adapted from Marieb and Hoehm, 2006).  
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The dynamic nature of bone is shown by the ability to adapt to both intrinsic and extrinsic 

factors, such as magnitude of mechanical loading, diet and hormonal fluctuations. Bone 

changes throughout the life span with peak mass and strength being reached in the early  0’s 

and reducing thereafter (Figure 2.2.). Peak bone mass can be influenced by the level of 

mechanical loading, particularly during puberty (Bonnet and Ferrari, 2010). Genetic factors 

have been reported to largely explain (57%-92%) bone characteristics, such as bone mineral 

density (BMD) making it one of the most heritable human traits that has been identified 

(Slemenda et al., 1991; Harris et al., 1998).  More recent findings incorporating GWAS 

(Zheng et al., 2011; Hsu and Kiel, 2012) suggest that numerous complex gene interactions 

may occur.      

 

 

 

 

Figure 2.2. Age related bone mass accrual and loss. The blue line depicts males and the red 

line depicts females (Adapted from Bonnet and Ferrari, 2010).  
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2.2.1. Cells Involved in Bone Remodelling 

 

The mechanisms of bone remodelling and maintenance are complex with many factors 

influencing activation and regulation. Molecular communication both between BMUs and 

with other cells in the bone marrow and on the bone surface, regulate bone remodelling in a 

targeted site specific manner. Growth factors (e.g., transforming growth factor β (TGF-β)), 

hormones (e.g., PTH), oestrogen, a variety of cytokines as well as diet, neural activation and 

mechanical loading are all known to influence bone remodelling (Figure 2.3.).   

 

 

 

Figure 2.3. Diverse factors involved in the regulation of the skeleton (Adapted from Zaidi, 

2007).   

 

2.2.1.1. Osteoblasts 

 

Osteoblasts are the cells predominately involved in bone formation. They are derived through 

the proliferation and differentiation of mesenchymal stem cells when environmental 

conditions facilitate this process, such as the up-regulation of osteocalcin and type 1 collagen 
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genes (Kaveh et al., 2011). Osteoblastogenesis is initially activated by the differentiation of 

mesenchymal cells into osteoblast precursors as a result of Runt-related transcription factor 2 

(Runx2) and Osterix (Osx) expression (Camilleri and McDonold, 2006). This occurs as a 

result of increased expression of hormones and cytokines, including PTH, prostaglandin E2 

and TGF-β and is mainly driven by Wnt proteins and bone morphogenetic proteins (BMPs) 

(Zaidi, 2007). Osteoblasts are mononuclear cells 20-30 µm in diameter that have a rough 

endoplasmic reticulum (Manolagas and Parfitt, 2010). After the formation of ossification 

centres, osteoblasts create new bone by the formation of non-mineralised matrix to form 

osteoid (Franz-Odendaal et al., 2006) and govern mineralisation through the embedding of 

hydroxyapatite with collagen fibres (Manolagas, 2000). Following the bone formation 

process, 10-30% of osteoblasts are encased within the mineralised bone and become 

osteocytes, the remainder die via apoptosis or transform into bone lining cells (Manolagas 

2000). Abnormalities that occur in bone remodelling can lead to inadequate mineralisation 

and increased risk of fragility fracture, bone deformation and osteopenia (Feng et al., 2006).   

        

2.2.1.2. Osteocytes  

 

Osteocytes are thought to act as the prominent bone cell mechanoreceptor, sensing the 

direction and magnitude of mechanical strain (Bonewald, 2007). They also have a regulatory 

role in osteoblast and osteoclast production and bone mineralisation (Bonewald, 2007). They 

are formed when mature osteoblasts become embedded in the bone matrix and transform into 

osteocytes. As they are formed, long dendritic branches are created as the cell changes shape 

and takes on a mechanoreceptor function (Vatsa et al., 2008). Osteocytes are inter-connected 

to each other, to the bone-lining surface cells and to blood vessels through their dendrites, 

which are channelled within the canalicular system (Palumbo et al., 1990). Damage directly 
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to the osteocyte or its canalicular system and/or osteocytes apoptosis are thought to be 

mechanisms by which osteocytes are able to recruit osteoblast and osteoclast progenitor cells, 

by way of chemical mediation, and activate bone turnover in a site specific manner (Lin et 

al., 2009). Changes in fluid flow, stress, strain and pressure through the canalicular system 

can result in deformation of the osteocyte cell surface and is also thought to cause osteocyte 

apoptosis thus, initiating bone remodelling (Rochefort et al., 2010). The central mechanism 

of how this occurs remains unclear, with many receptors being proposed to regulate this 

process (Please see section 2.3.).  

 

2.2.1.3. Osteoclasts 

 

Mononuclear osteoclast precursors differentiate into multi-nucleated osteoclasts that are 

responsible for bone resorption (Suda et al., 1992). The differentiation of osteoclast 

precursors into monocytes and subsequently mature multi-nucleated osteoclasts is regulated 

by osteoblast cells in the bone marrow that express receptor activator of nuclear factor-KB 

ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Receptor activator of 

nuclear factor-KB (RANK) binds with its ligand (RANKL) on the pre-osteoclast cell surface 

(Simonet et al., 1997), in conjunction with M-CSF binding to c-Fms on the surface of the 

cell, leading to osteoclast differentiation. The importance of M-CSF is demonstranted by 

mutations in the Csf1 gene, which leads to a lack of M-CSF expression, causing low BMD in 

mice (Kodama et al., 1991).  Both, the RANK/RANKL/OPG signalling pathway (Please see 

section 2.5.2.1.3.2.) and M-CSF expression are key in the volume and longevity of osteoclast 

cells. When osteoclasts bind to the bone surface a resorption compartment is formed into 

which hydrogen cation ions are secreted thus dissolving the inorganic component of bone and 

creating a cavity ready for subsequent bone formation (Martin and Sims, 2005). The 
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osteoclast cell has a ruffled border that is able to uptake adenosine triphosphate (ATP) driven 

from proton pumps, forming an acidic environment for mineral resorption. Osteoclast activity 

can be influenced by many factors incuding, mechanical loading, hormones, growth factors 

and ultimately genetics.  

 

2.2.2. Bone Remodelling  

 

Bone modelling occurs throughout growth. It is the process by which bone formation occurs 

without equivalent prior bone resorption thus, the skeleton acquires bone and through 

adaptations based on hormonal influences and the environmental strains applied to it, it’s size 

and shape, are determined (Baron and Kneissel, 2013). Following puberty, bone modelling is 

terminated and the epiphyseal plate is closed. In contrast, bone remodelling adaptations occur 

in order to repair damage from habitual use, to react to fluctuations in cytokines and growth 

factors, and respond to hormonal alterations and mechanical loading (Zaidi, 2007). Bone 

remodelling (Figure 2.4.) refers to the cycle of events encompassing the recruitment of 

osteoclasts, followed by their resorption of old bone and the formation of new bone by 

osteoblasts. Bone is in a constant state of remodelling in order to preserve and maintain its 

structure and integrity. In 1892 the dynamic nature of bone was addressed for the first time; 

Wolff proposed that bone changed in shape and architecture in response to the stresses 

applied upon it (Wolff, 1892). The mechanostat theory (Frost, 1964) further developed this 

model by adding that bone is regulated in a proportional manner to modify the skeleton in 

accordance with forces applied to it. Bone remodelling occurs on numerous bone surfaces 

including periosteal, endosteal, cortical and trabecular remodelling. The rate of bone 

remodelling differs dependent on the composition of bone; for example, cortical remodelling 

occurs at a slower rate in comparison to trabecular (Manolagas, 2000; Parfitt, 1994). 

Osteoblastic bone formation, osteoclastic bone resorption and osteocytes are closely 
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integrated or coupled, as they act to maintain bone homeostasis throughout the life span. 

Mechanical support, regulation of mineral homeostasis and the repair of micro-damage all 

benefit from bone remodelling (Eriksen, 2010). The rate of remodelling and the number of 

remodelling sites are increased by various skeletal conditions, such as in the most common 

form of osteoporosis in which systematic alterations in hormone levels increase bone 

resorption (Boyce et al., 2003). Absence or inadequacies in response to environmental 

stresses by BMU compromises bone integrity and can lead to the development of micro-

damage to the bone architecture, local bone loss and ultimately bone injuries, such as stress 

fracture injury. Advances have been made in recent years in relation to the mechanisms 

responsible for regulating bone adaptations to mechanical loading (Baron and Kneissel, 

2013). 

 

Figure 2.4. The Bone remodelling cycle. Bone remodelling has four main phases, resorption, 

reversal, formation and mineralisation. Its initiation causes osteoclast precursor recruitment 

and maturation into multinuclear cells, which are activated by RANK binding to its ligand. 

These cells attach to the bone surface, and with the secretion of enzyme cathepsin K, create 

an acidic environment in which the organic matrix of the bone is dissolved and a resorption 

pit is created. Osteoclasts disperse and mononuclear cells prime the surface of the bone ready 

for formation. Osteoblast precursors then mature into osteoblasts and create a non-

mineralised matrix to form osteoid. This matrix is then mineralised under the mediation of 

osteoblasts. ~20% of the osteoblasts will become trapped in the bone matrix and change into 

osteocytes, while the remaining osteoblasts become bone lining cells.      

Osteocytes 
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2.2.2.1. Factors that Influence Bone Remodelling  

 

Bone remodelling and skeletal form are influenced by PTH (Poole and Reeve, 2005), TGF-β 

(Tang and Alliston 2012), vitamin D status (Reid et al., 2014) and cytokines (such as 

interleukin(s)-1,-6,-11) (Steeve et al., 2004). It has been established that bone homeostasis is 

maintained by the tightly sequenced recruitment, differentiation and maturation of BMUs. It 

is currently unclear as to the importance of the specific factors that control this process. 

Prominent factors will be reviewed in the following sections. 

 

2.2.2.1.1. PTH 

 

PTH has a regulatory role in governing blood calcium homeostasis. Increased extracellular 

ionised calcium concentrations inhibit PTH secretion from the chief cells of the parathyroid 

gland, while decreases in circulating ionised calcium cause an increase in PTH (Poole and 

Reeve, 2005). When PTH is released in response to low blood ionised calcium it activates the 

PTH/PTHrP receptor, which is expressed by osteoblasts, osteocytes and bone lining cells 

(Poole and Reeve, 2005). This causes activation of G-protein signalling following the binding 

of ligands such as cyclic AMP (cAMP), and results in the mobilisation of intracellular 

calcium (Poole and Reeve, 2005). Although prominent in osteoclastic bone resorption 

activity, it has previously been thought that osteoclasts do not have PTH receptors and are 

regulated indirectly by osteoblast activation (Dempster et al., 2005). Immunocytochemistry 

and protein expression studies have contested this view by showing that the resorptive 

function of osteoclasts is regulated by PTH in the absence of osteoblasts (Dempster et al., 

2005). PTH has many functions (Figure 2.5.) and directly influences osteoblast activity, 

indirectly influences bone homeostasis (by activation of IGF-1) and inhibits growth factor 

components such as sclerostin (Keller and Kneissel, 2005). 
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Figure 2.5. Aspects of PTHs role in bone metabolism (adapted from Khosla et al., 2008). 

PTH increases activation and differentiation of osteoblasts (OB) while also decreasing 

apoptosis in osteoblasts, proliferation of pre-osteoblasts and activation of sclerostin. In 

osteoclasts (OC), PTH increases differentiation and has been suggested to increase osteoblast 

stimulating factors produced by osteoclasts.   

 

PTH has contrasting effects on bone, dependent on the duration of exposure; intermittent 

PTH exposure inhibits osteoblast apoptosis causing an anabolic, osteogenic affect, while 

sustained increases have the opposite catabolic effects (Poole and Reeve, 2005). PTH 

administered intermittently has been shown to increase bone formation markers and bone 

resorption markers (albeit to a lesser extent) (Hodsman et al., 2003), increase osteoblast 

number (Hodsman and Steer, 1993) and reduce osteoblast apoptosis (Jilka et al., 1999), 

which is likely to be the result of PTH increasing differentiation, recruitment and 

proliferation of osteoblasts (Poole and Reeve, 2005). PTH also increases phosphate excretion 

and 1, 25 dihydroxyvitamin D formation in the kidney, increases intestinal calcium 

absorption and decreases sclerostin production, making it an important factor to the Wnt 

signalling pathway (Please see section 2.5.2.1.3.1.). 
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The mechanism by which continuous PTH secretion causes catabolic effects may be related 

to an increase in RANKL expression (Locklin et al., 2003) and/or a reduction in SOST 

expression (Keller and Kneissel, 2005). PTH also appears to have divergent effects on 

cortical and trabecular bone. Mutations in the PTH receptor lead to large increases in PTH 

signalling resulting in a loss of cortical bone and increase in trabecular bone (Syme et al., 

2005). In addition, PTH receptor knockout mice have increased cortical and decreased 

trabecular bone mass (Lanske et al., 1999). PTH is well established to have a major role in 

bone homoeostasis (Poole and Reeve, 2005, Locklin et al., 2003), although the underlying 

mechanisms for these effects require further investigation. 

 

2.2.2.1.2. TGF-β 

 

Transforming growth factor beta (TGF-β) has a critical role in cellular proliferation, 

differentiation and is thought to be an important factor in osteoclastogenesis (Tang et al., 

2009). TGF-β is integral to bone resorption since it directly enables osteoclast formation 

through the differentiation of osteoclast pre-cursors and facilitation of osteoclastogenesis by 

attracting osteoclast pre-cursors to the surface of the bone (Tang et al., 2009). Conversely, 

indirect TGF-β activity has been shown to suppress osteoclast formation by inhibiting 

RANKL (Fox and Lovibond, 2005) and mutations in TGF-β contribute to the bone thickening 

disorder Camurati-Engelmann disease (Jansseus et al., 2000). Despite the reported 

importance of TGF-β, it is unable to independently affect osteoclast formation (Fox and 

Lovibond, 2005) and requires crosstalk with its ligands, receptors and agonists to produce 

functional effects (Ikushima and Miyazono, 2012). TGF-β also has an important role in bone 

formation through the activation of bone matrix secreting cells, such as osteocalcin and the 

recruitment of osteoprogenitor cells (Tang and Alliston, 2012). The complexity of TGF-βs 

role in bone resorption and formation, is further highlighted by the seeming contrary effects 
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of up and down regulation of TGF-β being shown to lead to low bone mass disorders (Tang 

and Alliston, 2012).    

 

2.2.2.1.3. Vitamin D 

 

Vitamin D and its analogs are well publicised for their importance in the maintenance of bone 

health (Reid et al., 2014). The vitamin D endocrine system, which includes ergocalciferol 

(vitamin D2), cholecalciferol (vitamin D3) and vitamin D in its active form, (1,25-

dihydroxyvitamin D (1,25-(OH)2D)) has been shown to play a vital role in bone health 

(Holick, 1996) and to a lesser degree, has been associated with increased immune response 

and muscle strength and reduced proliferation of cancer cells (Haussler et al., 1998). The 

association of vitamin D status with bone health is highlighted by deficiencies resulting in 

diseases such as Rickets and osteomalacia (Mawer et al., 2001). Vitamin D, obtained from 

diet and sunlight, must undergo two hydroxylations before it is functional. Firstly, the liver 

converts vitamin D to 25-hydroxyvitamin D (25(OH)D) and secondly, the kidney 

hydroxylases 25(OH)D to form vitamin D in its active form, (1,25-(OH)2D) both, 25(OH)D 

and 1,25(OH)2D are used as biomarkers of vitamin D status. 1,25-(OH)2D is important for 

calcium homeostasis, as low circulating blood ionised calcium concentrations lead to an 

increased release of PTH from the parathyroid gland, which in turn leads to hydroxylation at 

the kidney and activation of 1,25-(OH)2D causing an increase in calcium absorption (Thomas 

et al., 1998). The importance of 1,25-(OH)2D has also been shown by its association with 

bone characteristics including BMD and fracture prevention in meta-analysis investigations 

(Bischoff-Ferrari et al., 2005). Despite studies investigating vitamin D status (both, 1,25-

(OH)2D and 25(OH)D) with diverse bone phenotypes, in a number of populations, doubt 

remains over the clinical significance and magnitude of the effects. Supplementation with 
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700 International units (IU) of vitamin D has been associated with increased plasma 1,25-

(OH)2D and 25(OH)D concentrations and also decreased fracture risk (Dawson-Hughes et al., 

1997). However, recent findings show that very high doses of cholecalciferol (500,000 IU) 

increase fracture risk (Sanders et al., 2010). This discovery is controversial as it opposes the 

majority of the published literature in the area, albeit supplementing with smaller doses (for 

review see Holick, 2004). The reason for the controversial findings are likely to be due to the 

high dose of vitamin D supplementation given, which may have caused toxicity in the 

participants leading to hypercalcemia. Symptoms of hypercalcemia include muscle weakness, 

tiredness and loss of appetite (Vogiatzi et al., 2014), which could all increase fracture risk. 

Environment variances such as low socioeconomic status (Jones et al., 2004) have been 

associated with increased fracture prevalence.  

 

1,25-(OH)2D has previously been associated with the regulation of osteocalcin and an 

increase in bone resorption through the control of calcium homeostasis, low serum calcium 

leading to increased PTH secretion from the parathyroid gland in turn stimulating the 

hydroxylation (Staal et al., 1998), which provides a more mechanistic explanation of the 

findings. Serum 25-(OH) D concentrations have been associated with many bone phenotypes, 

including lower BMD and fracture risk (Valimaki et al., 2004). Ruohola et al., (2005) 

showed that lower 1,25-(OH)2D concentrations increased the likelihood of stress fracture 

injury in 800 military recruits over a 90 day period. Lappe et al. (2008) reported lower 

prevalence of stress fractures in 5021 female naval recruits who had been given 800IU of 

vitamin D supplementation together with 2000 mg calcium supplement prior to training. 

However, Lappe et al., (2008) failed to report the type of vitamin D supplemented with (D2 or 

D3) and also failed to assess vitamin D status before or after supplementation. As these 

assessments were not made it is impossible to know the vitamin D status of the recruits 
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before the intervention, which is likely to have influenced the findings. As vitamin D was 

supplemented in combination with calcium it is also impossible to isolate the suggested 

benefits to vitamin D. Dietary vitamin D consumption has also been associated with 

increased BMD and reduced stress fracture incidence in a two-year prospective study 

involving competitive female cross-country runners (Nieves et al., 2008). Although this study 

is well controlled in terms of the homogeneity of the population investigated (all female, 

competitive cross-country runners, aged 18-26 y), the mixed components of participants’ 

dietary intake make it difficult to isolate vitamin D intake as the regulatory factor.   

 

2.2.2.1.4. Interleukins 

 

IL1 is a pleiotropic cytokine that induces the expression of hematopoietic cytokines, such as 

IL6 and initiates a complex signalling cascade that includes the activation of RANK, thus 

facilitating osteoclast survival. The importance of IL1 is shown by IL1 receptor knockout 

mice being immune to ovariectomy related bone loss (Lorenzo et al., 1998). IL6 stimulates 

mesenchymal progenitor cells to aid the differentiation of osteoblasts and also prolong 

osteoblast longevity. However, the main role of IL6 is in increasing osteoclastogenesis and 

subsequent bone resorption by facilitating interactions between osteoblasts and osteoclasts. 

IL1 and IL6 are interrelated and increase bone resorption primarily by controlling the 

expression of RANKL, with increased concentrations of IL1 and IL6 leading to a net increase 

(Steeve et al., 2004). Prolonged running (>1 h) increases concentrations of circulating 

cytokines, including IL1 and IL6, which peak at the end of exercise (Scott et al., 2011b, 

2013a) and stay elevated for 1-5 days following prolonged exercise (ironman) (Neubauer et 

al., 2008). Increases in IL1 and IL6 appear to be intensity and activity specific, with the 

largest increases seen in running (Fischer, 2006) and no change seen in cycling (Starkie et al., 

2005) or a knee-extensor activity (Steensberg et al., 2002). The mechanisms as to why this 
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occurs are not clear, but is likely to be related to an immune response following local damage 

to the working muscle and involve the mechanotransductive response of bone to weight-

bearing exercise.  

 

2.2.2.2. Neural Control  

 

The bone remodelling process is mediated by neural activation of the hypothalamus, directly 

affecting BMUs, and by indirectly affecting hormonal signals from the pituitary (Zaidi, 

2005). Leptin is thought to act as a prominent neural inhibitor of osteoblastic function 

(Elefteriou et al., 2005) and leptin knockout mice have been shown to have a reduced 

sympathetic tone, which caused high bone mass and increased bone formation, whereas leptin 

infusion reduced bone mass in wild-type and leptin deficient mice (Ducy et al., 2000).  The 

neural mediation of bone phenotypes is demonstrated by high bone mass being shown in 

mice lacking dopamine, and mice given beta blockers also showing high bone mass and an 

increase in bone formation (Takeda et al., 2002). Human studies have also shown beta 

blocker ingestion to reduce fracture risk by at least 10% (Yang et al., 2012). Increased bone 

loss has been shown in humans with reflex sympathetic dystrophy, a disease causing 

abnormal activation of the sympathetic nervous system (Patel and Elefteriou, 2007). 

Conversely, an increased osteogenic response is seen in traumatic brain injury patients, which 

is thought to be due to a decrease in bone noradrenaline levels (Tam et al., 2008). Despite the 

evidence for neural mediation of bone remodelling, the magnitude of the effect on bone in 

healthy individuals has not been fully elucidated. 

2.3. Mechanical Loading  

 

Exercise is known to affect bone as a result of three main actions: 1) as a direct result of 

mechanical loading that is detected by the mechanoreceptors and follows a signalling cascade 



39 

 

to ultimately induce bone remodelling; 2) muscular contractions applying stress and strain to 

the bone, which is then translated to the mechanoreceptors; 3) exercise induced changes in 

hormonal factors altering concentrations of circulating minerals that have a direct effect on 

bone turnover and an indirect effect through altered mineral homeostasis (Figure 2.6.). 

 

 
 

Figure 2.6. Schematic representation of the effect of weight bearing exercise on bone 

maintenance and adaptation. Weight-bearing exercise directly impacts upon bone, which is 

sensed by the osteocytes that then inform the mechanoreceptors to signal for a proportional 

remodelling response. Weight bearing exercise also causes the secretion of hormones that 

influence bone structural components, mineral expression and the muscular contractive 

process. Muscle contractions, caused by exercise; create strain on the bone structure, which is 

sensed in the same way as mechanical loading. 

 

 

The intrinsic ability of bone to adapt based on the functional demands required of it was first 

documented by Wolf (1892). The mechanostat theory further built upon this theory 

(Explained in section 2.2.2.), suggesting that a large amount of stress and strain is placed 

upon bone will cause proportional bone adaptations, creating larger and stronger bones 

(Karlsson et al., 1993) in an anatomical site specific manner (Kannus et al., 1994). Equally, a 

lack of loading, such as that experienced during space flight (Carmelict et al., 2001), 

prolonged bed rest (LeBlanc et al., 1990; Nagaraja and Risin 2013) and simulated 
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microgravity environments (Blaber et al., 2014) can cause an acceleration in bone loss. 

However, while loading has been shown to produce predominately anabolic effects upon 

bone, catabolic effects have been reported (Please see section 2.3.1.). The exact amount of 

loading required to achieve an anabolic effect is not well established, similarly it is not clear 

whether a threshold occurs upon which the anabolic effects are actioned. Pharmaceutical 

therapeutic interventions, such as the administration of denosumab, have focused on the 

inhibition of bone resorption (Bone et al., 2011) or the promotion of bone formation (Padhi et 

al., 2011) by targeting specific components of bone remodelling pathways in an attempt to 

delay the age related decline in BMD and onset of osteoporosis. However, these strategies 

fail to replicate the complex interactions between bone formation and resorption that 

mechanical loading initiates and are unable to regulate bone turnover in a site specific manner 

(Thompson et al., 2012).  

 

Mechanotransduction is the mechanism by which mechanical loading is sensed and converted 

into complex cellular interactions. The mechanism of how loading is initially sensed and 

eventually induces a structural bone adaptation is complex (Figure 2.7. provides a simplified 

explanation) and the specific mechanisms are not well established. Bone cells and their 

precursors are able to respond to both biological and physical factors in order to regulate 

bone turnover (Salter et al.,1997). Osteocytes, osteoblasts and mesenchymal cells are all 

mechanosensitive and able to recruit, proliferate and differentiate in response to various 

forms of loading (Scott et al., 2008) to induce changes in bone remodelling (Robling and 

Turner, 2009). This is shown in mouse studies where the application of mechanical loading 

caused a reduction in osteoclast formation and reduced RANKL expression (Rubin et al., 

2000). There is debate as to the specific mechanisms involved in the mechanotransduction 

process. It is generally believed that osteocytes sense mechanical loading and initiate the 
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remodelling process due to their location within the bone matrix and their connection to the 

canalicular system (Bonewald, 2011). Despite being most prominently investigated in 

relation to their role in bone formation, it has been suggested that osteoblasts may also have a 

sensory role (Papachroni et al., 2009). Osteocytes are able to sense the magnitude and 

specific location on the bone where the strains (mechanical, shear, pressure) are occurring 

through a complex network of receptor interactions (Bonewald, 2011). Mechanoreceptors 

located on the osteocyte dendrites release an electrical charge, and as a result of this, calcium 

channels are activated and nitric oxide and prostaglandins, such as E2, are stimulated 

enabling signals to be sent to the osteoblasts and osteoclasts on the bone surface (Cowin and 

Moss, 2001). The number of cycles, magnitude and frequency of loading affect the cellular 

response (Robling and Turner, 2009; Turner et al., 1995). Mouse models show that β-catenin 

activation (Please see section 2.5.2.1.3.1.) occurs in osteocytes 60 min following loading; 

however β-catenin was only detectable on the bone’s surface  4 hours following loading 

(Kramer et al., 2010) suggesting that osteocytes are able to respond quicker than osteoblasts 

to a loading stimulus. Osteocytes may also respond indirectly to mechanical loading, as a 

result of an increase in extracellular fluid waves in the canalicular system (Turner, 2006).  

 

Bone cell signalling can induce a biochemical response leading to bone remodelling by 

recruiting a variety of mechanisms including: ATP signalling, integrins, G-proteins, the 

cytoskeleton and ion channels. The extent of the role each plays in bone signalling is not fully 

understood (Bonnet and Ferrari, 2010, Figure 2.7.). There are many theories as to how, and 

which mechanoreceptors respond to signals from bone cells to cause the up/down regulation 

of pathways to induce bone remodelling. It may be that multiple mechanoreceptors are 

involved in this action with an overlap based on the type magnitude and frequency of the 

load. Wnt signalling may also regulate mechanical loading in osteoblasts (Robinson et al., 

http://www.ncbi.nlm.nih.gov/pubmed?term=Papachroni%20KK%5BAuthor%5D&cauthor=true&cauthor_uid=19362057
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 006)  The mechanical strains created as a result of loading cause a rapid increase in β-

catenin in the cytoplasm, which causes it to translocate to the nucleus and up-regulate Wnt 

target genes, causing increased Wnt secretion (Robling and Turner, 2009). Wnt-signalling 

also influences mechanical loading induced osteocyte activation (Bonewald and Johnson, 

2008). In vitro investigations have shown that fluid flow shear stress results in increased 

phosphorylation of glycogen synthase kinase-3β (GSK-3β) resulting in a change in 

expression of  β-catenin target genes known to be integral to the Wnt signalling pathway 

(Please see section 2.5.2.1.3.1.)  (Bonewald and Johnson, 2008).                                         

 

 
 

Figure 2.7. Selection of pathways demonstrating how mechanotransduction leads to bone cell 

response (Adapted from Bonnet and Ferrari, 2010). Osteocytes, osteoblasts and mesenchymal 

cells have the ability to act as sensors of various forms of loading (shear stress, pressure, 

tissue strain).There are various biological candidates to act as mechanoreceptors including 

but not limited to; adenosine 5'-triphosphate (ATP) being released by bone cells in response 

to mechanical loading, which is facilitated by the purinergic receptors (P2X7R) reviewed in 

section 5.4.3. Stretch activated ion channels that are activiated in response to membrane 

strain allow the influx of calcium, glycocalix on the cell surface which induces calcium influx 
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or increases cAMP as a result of fluid shear stress. Complex integrin-actin filaments activate 

signalling pathways such as MAPK as a result of cell-cell junction receptors sensing loading, 

and intracellular strain acts upon the cytoskeleton which effects binding to specific molecules 

and activates pathways known to induce G-protein signalling.  

 

 

2.3.1. Metabolic Adaption of Bone to Exercise 

 

A better understanding of the bone’s response to mechanical loading may lead to the 

development of a clearer picture with regard to the pathophysiology and aetiology of bone 

injury and disease. Athletes are known to have a greater bone mass than non-athletes (Greene 

et al., 2012), although longitudinal training intervention studies, examining the impact of 

different modes of exercise, have produced inconsistent outcomes (for review see Maimoun 

and Sultan, 2011). Examination of bone turnover and changes in bone structural adaptations 

as a result of exercise may lead to the discovery of mechanistic evidence that may be of 

benefit in the prevention and treatment of bone debilitating diseases and act as a preventative 

measure to minimise fracture incidence. 

 

2.3.1.1. Single Bout of Exercise  

The response of bone to a single bout of exercise is not yet fully understood. Given the subtle 

changes to bone structure that result from a single bout of exercise, we are reliant upon 

measurement of biochemical markers of bone turnover before, during and after exercise to 

provide us with information relating to bone cellular activity.  
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2.3.1.1.1. Biochemical Markers of Bone Turnover 

There are a number of biochemical markers of bone turnover that are regularly used to 

monitor bone formation including type 1 procollagen N-terminal (P1NP), bone alkaline 

phosphatase (bone-ALP), osteocalcin (OC), carboxy-terminal propeptide of type 1 

procollagen (P1CP). Other markers are used to monitor the bone resorption process and these 

include: collagen type 1 cross-linked C-telopeptide (β-CTX), collagen type 1 cross-linked N-

telopeptide (NTX), urinary total pyridinoline (PYD), urinary free deoxypyridinoline (DPD), 

tartrate-resistant acid phosphatase 5b (TRACP5b) and C-Terminal Telopeptide Type I 

Collagen (ICTP). These are used in clinical settings to monitor the effectiveness of treatment 

for bone disease (Lee and Vasikaran, 2012) and to assess the bone response to exercise (Scott 

et al., 2010; 2011a; 2012a). Through the measurement of blood and urine markers, such as 

proteins/peptides and by-products of bone formation and resorption, an acute indication of 

bone metabolic responses before structural adaptations occur can be detected. Currently, 

there is no consensus on which biochemical markers of bone turnover give the most accurate 

estimate of bone formation and resorption, which may be due to different bone markers 

giving insight to different aspects of the bone remodelling process. Although widely used 

(Table 2.1.), biochemical markers of bone turnover have shown inter-individual variability in 

response to exercise. The reason for the variability in the response may be due to the number 

of different biochemical markers of bone turnover used and differences in the methodologies 

of assessment (see Table 2.1. for examples of studies investigating the effects of a single bout 

of exercise on biochemical markers of bone turnover). Recommendations have been made by 

the International Osteoporosis Foundation (IOF) and the International Federation of Clinical 

Chemistry (IFCC) to standardise β-CTX as a marker of bone resorption and procollagen type 

1 N-terminal propeptide (P1NP) as a marker of bone formation (Vasikaran et al., 2011). The 

usefulness of these biochemical markers of bone turnover have been shown by evidence that 
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β-CTX can be used as predictor of fracture risk independent of BMD (Garnero et al., 2003; 

Bauer et al., 2009), is sensitive to exercise (Scott et al., 2010; 2011a; 2012a) and 

pharmaceutical interventions (Garnero et al., 1996; Sondergaard et al., 2009).    

 

A number of factors are known to influence the accurate measurement of the biochemical 

markers of bone turnover including; the timing of the sample collection, the preservative used 

for collection (Stokes et al., 2011), the sample type (blood or urine) and analytical factors 

(postprandial hyperglycaemia, alterations in acid-base balance, blood flow and enzyme action 

(Clowes et al., 2002; 2005). β-CTX is also influenced by renal function, food consumption 

and circadian variation (Fraser et al., 2010; Brown et al., 2009). With appropriate control 

measures in place, urine and blood markers of bone turnover provide a useful measurement in 

which acute exercise-induced changes can be estimated. Through bone marker assessment, 

the biological rate and magnitude of osteoblastic bone formation and osteoclastic bone 

resorption can be assessed, providing a clinically relevant tool to assess the normal and 

pathologic responses of bone turnover.  
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Table 2.1. Studies investigating biochemical markers of bone turnover in response to a single bout of exercise. 

 

Study Population Exercise Protocol Venepuncture Markers of Bone Formation 

 

Markers of Bone Resorption 

Nishiyama et 

al.,  1988 

M 19; 20-24 

9 Volleyball 

players 

Treadmill running 30 

mins 43-52% of 

individual maximum. 

Base, EE, P 1 h. OC increase EE (NA), P 1 h 

(A vs base and NA). A base 

significantly different from 

NA. No change in Bone-

ALP. 

n/a 

Brahm et al.,  

1996 

M RA 10; 

22-53 F RA 

10; 22-55 

28 +-5 km M, 15 +-6 

km F. 

Base, FU1,FU2. OC decrease FU1 in M. 

P1CP decrease in F FU1. No 

change in PTH or bone ALP. 

ICTP increase in M FU2. 

Thorsen et al.,  

1997 

F 14; 24-26 Outdoor running 50% 

  O2max 45 min 

Base, P 1h, FU1, FU3. PICP decrease vs Base 1h. 

increase FU1 and FU3 vs 

base. 

PTH increase FU1, FU3 vs 

base.   

ICTP increase FU1, FU3 vs 

Base. 

Rong et al.,  

1997 

M RA 8; 20-

26 

Ergometer cycling; 45 

min 55%    2max, 15 

min 85%    2max. 

Resistance exercise, leg 

press 5 x 8 reps. 

Base, EE, P 1h, P 4h FU1. PTH increase EE (resistance 

exercise). 

OC no change. 

ICTP no change. 

Ashizawa et 

al.,  1998 

M 14; 24-25 Standard resistance 

exercise protocol 3 x 

10 sets of 7 

manoeuvres. 

Base, EE, FU1,FU2,FU3. P1CP decrease FU1. Bone-

ALP decrease FU2, FU3. No 

change in OC. 

DPD decrease FU3. TRACP5b 

decrease FU1. 

Crespo et al.,  

1999 

M 11 ET F 7 

ET; 22-33 

42 km outdoor race. Base, EE, FU1. Bone-ALP increase EE,FU1 

vs base  

TRACP5b increase EE vs base, 

decrease FU1 vs base. 
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Zittermann et 

al.,  2002 

M athletes 

18; 24-26 

60 mins outdoor 

running 70% of 

maximum speed. 

Base (pre feeding), P 3h. P1CP decrease P 3 h. Β-CTX  decrease P 3h. 

Guillemant et 

al.,  2004 

12 M ET; 

23-37 

Ergometer cycling 80% 

  O2max. 

1h pre, 30 min pre, base, 30 

min during, EE, P .5h, P 

1h, P 2h.  

No change in Bone-ALP β-CTX  increase P .5h, P 1h, P 2h 

vs base. 

Whipple et 

al.,  2004 

M  9; 20-23 Standard resistance 

exercise protocol 3 x 

10 sets of 7 

manoeuvres. 

Base, EE, P 1h, P 8h, 

FU1,FU2. 

Bone-ALP increase EE (vs 

con). P1CP no change 

NTX decrease P1, P8, FU2 (vs 

Control). 

Maimoun et 

al.,  2005 

M RA 11 W 

RA 10; 60-

88 

Treadmill walking to 

exhaustion 8-12 mins. 

Base,EE. Increase in PTH EE. No 

change in Bone-ALP or OC. 

No change in β-CTX. 

Tosun et al.,  

2006 

F S 9; 26-33 Sub-maximal treadmill 

walking 30 mins, 

loaded (5kg) and un-

loaded. 

Base, EE, 15 min, FU1. Bone-ALP decreased FU1 

(un-loaded), increased FU1 

(loaded). Increase in PTH EE 

(un-loaded). No change in 

OC, P1CP,PINP. 

No change in β-CTX , ICTP. 

Hermann et 

al.,  2007 

M 15 RA F 

17 RA; 17-

39 

60 mins ergometer 

cycling 

75%,95%,110% of AT. 

Base, P 3h, FU1 OC decrease in M at 75% (P 

3h, FU1), increase at 95% (P 

3h), 110% (P 3h). Decrease 

in F at 75% (P 3h, FU1), 

increase at 95% (FU1). P1NP 

decrease in M at 75% (P 3h, 

FU1), increase AT 110% (P 

3h). Decrease in F at 75% (P 

3h, FU1). 

 

β-CTX increase in M at 95% (P 3 

h) and 110% (P 3 h, FU1) AT. 

Decrease at 75% in M (FU1) and 

F (P 3 h). TRACP5b increase in 

F at 110% (P 3 h, FU1). 
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Pomerants et 

al.,  2008 

M 60; 10-18 Ergometer cycling; 

Ramped protocol, 30 

mins at 95% IVT. 

Base, EE, P 30 min. P1NP no change. ICTP no change. 

Rantalainen et 

al.,  2009 

M 15 

various 

activity 

levels; 22-28 

Bilateral jumping to 

exhaustion 520-2278 

range. 

Base, EE, P 2h, FU1, FU2 P1NP no change. β-CTX increase FU2. 

Kerschan-

Schindl et al.,  

2009 

M 16 F 2; 

37-47 

Ultramarathon (mean 

32h 55min). 

Base, EE, FU3. OC decrease EE vs base β-CTX increase EE, FU2 vs base. 

Scott et al.,  

2010 

M 21 RA 10 

ET; 23-34 

Treadmill running 65% 

  O2max 60 min- 70% 

to exhaustion. 

Base, 20min, 40min, 

60min, Blood taken. EE, P 

30 min, P 1 h, P 1.5 h, P 2 

h, FU1, FU2,FU3,FU4. 

P1NP and bone-ALP no 

change. OPG increase 

during, EE, P 2 h, FU1 vs 

BASE in RA and ET.  PTH 

transient increase 

β-CTX increase in RA and ET at 

FU1,FU2,FU3,FU4 vs Base. RA 

and ET accumulated increase vs 

CON. No diff RA vs ET 

Lin et al.,  

2011 

M 24; 18-19 Plyometrics and 

interval running, under 

10 mins per exercise. 

 Base, pre feeding; post 

feeding P 5 min EE, 15 min 

EE, P 1h, P 3h, P 6h, FU1, 

FU2,FU3. 

OC increased P 5 min EE, P 

1h (PL vs CON). 

No change in TRAP. 

Scott et al.,  

2011a 

M  RA 10; 

24-32 

60 mins treadmill 

running at 

55%,65%,75% 

  O2max. 

Base, 20mins,40mins, EE, 

P 30 min, P 1 h, P 1.5 h, P 

2 h, P 3 h FU1, 

FU2,FU3,FU4. 

P1NP increased EE (pooled 

vs base). No change in  

Bone-ALP. PTH increase at 

20 mins (75% vs base, 55%, 

65%), 40 mins (75% vs base, 

55%, 65%), EE (75% vs 

base, 55%, 65%). 

β-CTX increase EE (75% vs 

55%,65%), P 30 min (75% vs 

55%), P 1h (75% vs 55%,65%) 

decrease P 3h (75 % vs 55%).  

β-CTX decrease vs base; EE, P 

30 min, P 1h, P 2h, P 3h (55%). P 

2h, P 3h (65%). 
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Rodgers et al.,  

2011 

M RA 12 

24-62 

Plyometerics and 

resistance exercise (fed 

and fasted) 3 x 10 reps 

of 6 standard 

manoeuvres. 

Base, EE, P 1h, P 2h, FU1. No change in OC or  

Bone-ALP. 

β-CTX increased P 1h, FU2 (PL-

Fed). No change in TRACP5b. 

Scott et al., 

2012a 

M RA 10 

24±4 

60 mins treadmill 

running at 65% 

  O2max in fed and 

fasted states  

Base (pre-feeding), 1 h pre, 

30 min pre, pre exercise, 30 

min, EE, P 1 h, P 2 h, P 3 h 

FU1, FU2,FU3,FU4. 

Pooled PTH increase (EE vs 

base, FU1 vs base, base vs 1 

h pre). Pooled OC decrease 

(30 min pre vs base, 30 min 

vs base). Pooled P1NP 

increase (30 mins vs base, P 

3 h vs base). 

β-CTX in fed decrease (1 h pre, 

30 min pre and pre exercise vs 

base)  β-CTX in fed increase (P 1 

h vs base)  β-CTX in fasted 

decrease (pre exercise vs base), 

increase at 30 min pre and pre 

exercise, 30 min and EE vs fed. 

β-CTX in fasted decrease at P 2 h 

and P 3 h vs base. No change in 

follow-up days.  

M = male; F= female; A= Athletes; NA= Non-Athletes; RA = recreational active; ET= endurance trained; AT = anaerobic threshold; BASE = pre; P= post; 

EE = end of exercise; FU1 = follow up 24h; FU2 = follow up 48h; FU3 = follow up 72h; PL= placebo group; CON= Control group; 
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2.3.1.2. Mode of Exercise 

 

The mode of exercise is an important factor in influencing the bone turnover response to a 

single bout of exercise, as it affects the type, magnitude, frequency and duration of loading. 

Different modes of habitual exercise, have been associated with divergent long-term effects 

on bone structure (Greene et al., 2012; Nikander et al., 2006; Nilsson et al., 2012), suggesting 

that the bone response to a single bout of exercise is mode dependent. Resistance exercise has 

been associated with a decrease in bone resorption in the hours immediately following 

exercise (Ashizawa et al., 1998; Rogers et al., 2011) and up to 48h after exercise (Ashizawa 

et al.,1998) leading the authors to suggest that that a single exercise bout is sufficient to 

provide a large osteogenic stimulus. However, the only bone marker shown to decrease was 

TRACP5b, while other markers remained unchanged (β-CTX) (Ashizawa et al., 1998; 

Rogers et al., 2011). TRACP5b may reflect osteoclast number and not bone resorption 

(Alatalo et al., 2000) casting doubt on the implication of these findings (Scott et al., 2012b). 

It is difficult to define the effects of resistance exercise in comparison to other modes of 

exercise as the relative resistance and specific mode of resistance exercise differ among 

studies, which will have influenced the bone turnover response. 

 

Studies investigating the effect of biochemical markers on bone turnover in response to 

endurance exercise, such as running and cycling, are more commonly investigated (Table 

2.1.). Guillemant et al., (2005) demonstrated that 60 min of high-intensity cycling (80% 

  O2max) increased β-CTX marker concentrations 30 min post exercise, which remained 

elevated until 2 hours after exercise. Bone-ALP was unchanged immediately after exercise, 

which was unsurprising as it is a marker of late stage mineralisation (Harris, 1990). In 

contrast, Scott et al. (2011a) discovered that β-CTX concentrations were in line with the 
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body’s natural circadian rhythm (Fraser et al., 2010) during 60 min running trials of variable 

intensity (55% and 65%   O2max), while concentrations of P1NP were increased. The decrease 

of β-CTX seen in cycling but not running is surprising, although the intensity of cycling was 

in excess of the running study, the loading experienced during running would have been far 

greater, causing an assumed greater osteogenic effect. Although, muscle contractions, shear 

stress and acidosis may be responsible for the osteogenic effects shown, current research 

suggests this would be insignificant in comparison to the affects of mechanical loading 

(Schipilow et al., 2013). Further studies are needed to identify how exercise impacts on 

muscle and bone as a unit and to establish the modes of exercise during which muscle 

transfers loading to bone. 

 

2.3.1.3. Exercise Intensity 

The effects of relative exercise intensity on bone turnover are not well understood. It is 

difficult to make comparisons between studies as a variety of measures have been used to 

define exercise intensity. These have included the percentage of maximal oxygen uptake 

(%  O2max; Scott et al., 2010), the ventilatory threshold (VT; Maimoun et al., 2006) and the 

individual anaerobic threshold (IAT; Hermann et al., 2007). Bone resorption has been 

reported to increase, decrease and be unaltered as a result of exercise (Table 2.1.), although  

the decrease attributed to the exercise in some studies may have been the natural circadian 

rhythm that β-CTX it is known to follow (Qvist et al., 2002). Bone markers were not always 

measured in the days following exercise and this is a common limitation of studies, which is 

likely to have concealed any changes in bone turnover in the longer term. Scott et al., 

(2011a), using a running exercise protocol, identified the differences in bone marker 

responses at three different exercise intensities (55%, 65% and 75%   O2max). Only the higher 

intensity exercise (75%   O2max) resulted in increased bone resorption (β-CTX) in the 60 min 
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following exercise but did not affect bone formation. The higher intensity trial would have 

caused a greater mechanical loading, which may be the reason for the association of 

mechanical loading with increased osteoclastogenesis (Li et al., 2012). Despite being difficult 

to define due to intensity being quantified by different methods, it seems that higher intensity 

exercise produces an increased mechanical load, which translates into a detectable fluctuation 

in bone marker responses. However, the individual ground reaction forces created due to 

kinematic differences, make it difficult to directly associate higher intensity with increased 

loading.     

 

2.3.1.4. Exercise Duration 

Short-duration exercise (e.g., 8-12 min brisk walking;  Maimoun et al., 2005) appears to have 

little effect on bone turnover. Conversely, long duration exercise (e.g., marathons or ultra-

marathons) has been shown to suppress markers of bone formation (Brahm et al., 1996; 

Kerschan-Schindl et al., 2009; Malm  et al., 1993; Mouzopoulos et al., 2007) and increase 

markers of bone resorption (Kerschan-Schindl et al.,  2009) immediately and up to 5 days-

post exercise. The merits of these data are questionable, however, since the bone formation 

markers used in these studies (total osteocalcin) are not always indicative of bone accrual 

(Staal et al., 1998) and the blood sample timings are not always consistent (occur at varying 

times due to differences in marathon finishing time). Whilst studies of this nature are 

informative of the bone marker response to sustained strenuous exercise, the lack of controls 

make it hard to compare studies (particularly those conducted in a field setting, under race 

conditions) as the timing of samples, exercise duration and relative intensity could not be 

controlled. In controlled laboratory conditions, Scott et al. (2010) showed increases in bone 

resorption when treadmill running for 1h at 70%   O2max was followed by intermittent 

running to exhaustion, in comparison to a non-exercising Control group. 1h treadmill running 
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(Scott et al., 2012a) at 70%   O2max alone showed no difference in bone turnover markers 

suggesting that either the exhaustive element or the prolonged nature of running to 

exhaustion was a significant determinant in the increase in bone resorption.   

 

2.3.1.5. Training Status 

 

Few recent studies have examined the effects of training status on bone turnover. Training 

status is difficult to assess as the definition of terms such as, recreationally active and elite, 

differs among studies. Most studies have compared the extremes of training status (athletes vs. 

sedentary Control group) (Herrmann et al., 2007), meaning that the effects of different 

training volumes, intensities and durations on bone turnover remain relatively unknown.  

Scott et al. (2010) examined the response of bone turnover to strenuous exercise for 4 follow-

up days after exercise in endurance-trained, recreational athletes and sedentary Controls. 

Baseline levels of bone markers did not differ between participants of different training status. 

No significant differences were also reported between recreationally-active and endurance-

trained individuals in either bone resorption (β-CTX) or bone formation markers (P1NP, 

bone-ALP) after exhaustive exercise. These data are from an isolated sample of athletes who 

are likely to differ in terms of current and prior training histories, making it difficult to 

generalise the conclusions.   

 

 

2.3.2. Structural Adaptation of Bone to Exercise  

 

Long-term weight bearing exercise has a mainly anabolic effect on bone structure (Greene et 

al., 2012; Weidauer et al., 2012; Rantalainen et al., 2011; Evans et al., 2012; Wilks et al., 

2009; Nilsson et al., 2012). Studies before 2007 have shown the anabolic properties of 
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exercise on bone in children and adolescents; with the majority of these studies using Dual-

Energy X-ray Absorptiometry (DXA) as their method of bone assessment (for review see 

Hind and Burrows, 2007). DXA has limitations when scanning bone as it only scans in two 

dimensions and, therefore, has to make assumptions about the volumetric aspects of bone. 

These volumetric assumptions can lead to a measurement error of 5-8% in predicting 

volumetric bone density and geometry (Maghraoui and Roux, 2008). Peripheral Quantitative 

Computed Tomography (pQCT), High Resolution Computed Tomography (HRpQCT) and 

Micro-Computed Tomography (µCT) allow trabecular and cortical bone to be distinguished 

and accurate estimates of bone geometry to be assessed. The latter models also allow a 3D 

image of bone to be created facilitating the identification of the site specific location of bone 

adaptation (Nilsson et al., 2012; Schipilow et al., 2013; Ju et al., 2013).  

The clearest example of exercise related adaptations are seen in unilateral sports where the 

dominant arm of tennis players is shown to have significantly increased bone mineral content 

(BMC) and cross-sectional area (CSA) in comparison to the non-dominant arm (Bass et al., 

2002). Participation in physical activity and exercise interventions (≥ 8 weeks) has been 

shown to increase bone strength, with findings being reported across a range of populations, 

including children/adolescents (Greene et al., 2012; Rantalainen et al., 2011), adults 

(Weidauer et al., 2012; Evans et al., 2012; Nilsson et al., 2012), athletes (Weidauer et al., 

2012; Rantalainen et al., 2011; Nilsson et al., 2012) and retired athletes (Wilks et al., 2009). 

Changes have also been shown in a variety of different sports, including gymnastics (Greene 

et al., 2012), football (Weidauer et al., 2012; Rantalainen et al., 2011; Nilsson et al., 2012), 

running (Greene et al., 2012; Wilks et al., 2009; Weidauer et al., 2012) and resistance 

exercise (Rantalainen et al., 2011; Nilsson et al., 2012; Evans et al., 2012). However, the 

type, intensity and duration of exercise needed to bring about an osteogenic effect warrant 

further investigation.   
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2.3.2.1. Mode 

The mode of exercise has also been shown to mediate the osteogenic response, with 

significant differences shown in weight and non-weight bearing exercise (Greene et al., 

2012). Both weight and non-weight bearing exercise involves muscle contractions, which, 

along with gravitational loading, impact on bone to produce a net mechanical load. It was 

previously thought that the loading created by the muscular contractions could produce 

significant amounts of bone strain thus, causing an osteogenic effect (Burr et al., 1996). This 

has led to the belief that sports of a minimal or non-weight bearing nature (e.g., swimming, 

cycling) may be of benefit to bone health. However, recent reports using HR-pQCT have 

shown the effects of muscular strength to be minimal in comparison to mechanical loading in 

relation cortical thickness at the distal tibia (Schipilow et al., 2013). This may explain why 

cross sectional studies investigating swimmers (Nikander et al., 2006) and water polo players 

(Greene et al., 2012) showed no differences in several bone characteristics including, tibial 

total cross sectional area, cortical density and cortical thickness when compared an inactive 

Control population. Conversely, gymnasts and track and field athletes had significantly 

greater bone characteristics including, significantly increased total CSA and trabecular 

density at the epiphysis and significantly increased cortical density and area at the diaphysis 

of the tibia, in comparison to water polo players and sedentary Control participants (Greene 

et al., 2012), indicating that mechanical loading generated through impact is of paramount 

importance for bone accrual.  

It has been shown that sports requiring a high magnitude of loading and irregular movement 

patterns consistently produce greater osteogenic effects than those eliciting low impacts and 

necessitating regular movement patterns (Greene et al., 2012, Weidauer et al., 2012, 

Rantalainen et al., 2011, Nilsson et al., 2012).  Adult males who regularly participate in 

football were shown to have increased cortical BMD, cross sectional area, circumference and 
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thickness of the tibia in comparison to age matched participants who regularly take part in 

resistance training (Nilsson et al., 2012). The anabolic bone response to football participation 

is thought to be due to the high magnitude, frequency and multiple directional movements 

that football training and match play necessitate (Vicente-Rodriguez et al., 2003). This is 

substantiated by Wilks et al. (2009), who showed running speed to be related to volumetric 

BMD and cortical area in groups of masters track athletes. pQCT measurements were taken 

from the tibia in sprinters, middle and long distance runners, race walkers and an age 

matched Control population. Bone characteristics were related to running speed in a 

descending order, sprinters being the largest followed by middle and long distance runners, 

race walkers and Control participants. Increases in bone strength (Ferry et al., 2011), BMC 

(Morgan et al., 2011), BMD (Ferry et al., 2012), cortical CSA, circumference and thickness 

(Nilsson et al., 2012) have been shown in recreational football players compared to sedentary 

Control populations in cross sectional studies. Prospective studies have also shown football 

participation to increase BMD (Helge et al., 2010, Krustrup et al., 2010) and BMC (Vicente-

Rodriguez et al., 2004). Despite this, stress related bone injuries occur in some elite 

footballers (Fredericson et al., 2006), suggesting that intrinsic and extrinsic factors (Please 

see sections   5 and   6) can influence an individual’s bone response     

   

2.3.2.2. Duration and Intensity 

 

Training duration and intensity are important factors when considering the osteogenic effects 

of habitual exercise on bone, as human studies using exercise interventions of various 

exercise durations and intensities have shown anabolic bone adaptation (Evans et al., 2012, 

Lester et al., 2009, Nilsson et al., 2012). However, the specific effects that exercise intensity, 

in terms of magnitude of loading and cardiovascular strain, has on bone structure and health 
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are still not fully elucidated. Sports that require high intensity training and match play seem 

to correspond with greater bone characteristics in comparison to sports that do not have this 

type of intensive training routine (Greene et al., 2012). It is uncertain whether different 

intensities of habitual exercise consisting of equal mode and duration cause divergent effects 

in bone response. Problems quantifying exercise intensity in a field setting and difficulties 

prescribing the same relative intensity for different individuals make the effects of exercise 

intensity challenging to explore. Despite this, it has been shown that site specific osteogenic 

effects occur following 13 weeks of aerobic or combined aerobic and resistance exercise in 

previously sedentary female volunteers (Evans et al., 2013). Little is known, however, in 

relation to other forms of exercise and different populations.  

The effects of exercise on bone are not always positive; volumetric BMD is either not 

affected by or has been negatively associated with habitual exercise (Nilsson et al., 2012; 

Weidauer et al., 2012, Rantalainen et al., 2011). A reduction in exercise-induced remodelling 

may explain the high BMD values seen in sedentary groups in comparison to active 

populations. A sedentary lifestyle results in less remodelling cycles occurring, thus older and 

therefore more dense (Schoenau et al., 2002) bone is more plentiful in an inactive population. 

Conversely, participation in physical activity with a greater magnitude of mechanical loading 

has been shown to cause damage to the bones micro-architecture resulting in the occurrence 

of stress fracture injuries (Bennell et al., 1999). As bone remodelling increases, to repair the 

inflicted micro-damage, the bones cortical porosity increases (Wilks et al., 2009) and density 

decreases, which can cause site specific weakness.   
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2.3.2.3. Age 

 

Habitual mechanical loading during pre-pubertal and pubertal stages has consistently been 

associated with current (Lorentzon et al., 2005; Tobias et al., 2007, Blinkley and Specker 

2004) and future (Nilsson et al., 2009) anabolic effects on bone characteristics. Physical 

activity during growth periods has been shown to increase bone accrual (Lorentzon et al., 

2005; Tobias et al., 2007), cortical area (Lorentzon et al., 2005) and BMD and work as a 

preventative mechanism against stress fracture injury (Tentorde et al., 2013). Bone accrual 

gained by physical activity during growth periods has been preserved into adulthood even 

when regular exercise has been attenuated (Nilsson et al., 2009; Tenforde and Fredericson 

2011). Adults who ceased physical activity for an average of 6.5 years prior to bone 

assessment retained greater periosteal circumference and CSA than those who had never 

taken part in physical activity (Nilsson et al., 2009). This evidence highlights puberty as a 

critical age in terms of long-term bone health.   

  

2.3.2.4. Training Status  

 

Physical fitness has been shown to have an influence on bone characteristics and bone 

adaptation to physical activity. Low activity levels have been associated with lower cortical 

BMD, cross sectional area, circumference and thickness of the tibia when compared to 

habitually active populations regularly participating in weight bearing sports (Greene et al., 

2012; Nikander et al., 2006; Nilsson et al., 2012) and with increased risk of stress fracture 

injury in military recruits (Jones et al., 2002). Conversely, well trained athletes in non-weight 

bearing sports, such as swimming and water polo have been shown to have a tibial total cross 

sectional area, cortical density and cortical thickness comparable to sedentary populations 

(Greene et al., 2012; Nikander et al., 2006). The effects of sudden increases in unaccustomed 
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exercise in already physically active participants are yet to be established despite being 

suggested as a key risk factor for stress fracture injury risk (Fredericson et al., 2006). 

    

2.3.2.5. Site Specific Adaptations 

 

Differences in bone size, density, thickness, and ultimately bone strength, are site specific 

and thus vary dependent on the scanned location (Nilsson et al., 2012; Greene et al., 2012). 

The inconsistencies in inter-study anatomical scan locations (i.e., % of tibial length) make it 

difficult to compare studies that have measured different sites and assess if a hierarchical 

structure of sports associated with bone properties. Posterior, anterior, lateral and medial 

aspects of bone also show site specific differences in BMD (Rantalainen et al., 2011; Evans 

et al., 2012). These differences can be associated with the direction and magnitude in which 

the forces are applied (Nikander et al., 2010). Females who participated in high impact (e.g., 

jumping, hurdling) or intermittent high impact sports (e.g., football, squash) had lower 

cortical volumetric BMD compared to sedentary Controls at the inner, outer and mid cortical 

tibia regions (Rantalainen et al., 2011). As stress fractures commonly occur at the medial 

aspect of the tibia, information about this is pertinent. However, site specific analysis of 

pQCT results are not routinely conducted; therefore this area of research warrants further 

investigations.  

 

The wide variety of populations used, and the range of scanning sites implemented make it 

difficult to compare studies, thus making accurate hierarchical assessments of osteogenic 

sporting activities very difficult to determine. While the adaptation of bone to suit its 

environment is key to bone health and injury avoidance, there is an important role for 
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exercise in the determination of long-term bone health. Knowledge of how exercise 

influences bone morphology in the short and long-term, and the mechanisms responsible for 

this will improve our understanding of how exercise influences bone turnover.        

 

2.4. Stress Fracture Injury 

 

Stress fracture injuries can be classified into two categories; insufficiency stress fracture and 

fatigue stress fracture. The former occurs as a consequence of pre-existing bone weakness 

and occurs when the bone is placed under ordinary strain. The latter is a result of the bone 

being placed under prolonged strain. Both types of stress fracture are the result of 

inadequacies in bone repair, leading to damage of the micro-architecture and the formation of 

micro-cracks (Pegrum et al., 2012). Stress fractures differ from traumatic fractures due to the 

absence of above fracture threshold impact or loading causing the fracture. Stress fractures 

were first characterised in the 1800’s and referred to as ‘marching fractures’ that manifested 

as foot pain and inflammation that occurred in soldiers following repetitive marching 

(Childers et al., 1990). Theories have been proposed to explain the occurrence of stress 

fracture injury, from spasticity and spasm of the muscle (Deutschlander 1921) to impaired 

circulation (Solane 1936). The aetiology of stress fracture injury is not fully understood with 

multiple intrinsic and extrinsic risk factors being proposed (Table 2.2.). Stress fractures occur 

in the absence of an acute high magnitude traumatic impact and occur as a result of 

cumulatively repetitive below threshold loads encountered as a result of mechanical loading 

and/or muscular strain (Fyhrie et al., 1998). Repetitive loading of sufficient magnitude can 

lead to damage or micro-cracks within the bone structure (Chapurlat and Delmas, 2009). If 

adequate rest periods are undertaken bone is able to self-repair or remodel, by the removal of 

old bone and the formation of new bone (Gefen and Neulander, 2007) (Figure 2.8.).  
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However, if adequate rest periods are not allowed and adequate bone repair is not under 

taken, more loading cycles occur and the micro-cracks can elongate and propagate, when 

more loading cycles are applied (Schaffler et al., 1990). During the bone remodelling 

process, the porosity of the cortex increases, leading to weakening of bone due to secondary 

bone mineralisation taking place. This is closely followed by intra-cortical remodelling via 

osteoblastic activity, resulting in bone expansion at the expense of bone tissue volume 

(Eriksen and Langdahl, 1995). Under these conditions the bone is more liable to local stress 

and is at a greater risk of micro-damage accumulation and ultimately stress fracture injury 

(O'Brien et al., 2005). Strength and stiffness of the bone can contribute to protection against 

crack propagation and ultimately fracture. Conversely, deficits in bone characteristics, such 

as low BMD (Wentz et al., 2012), bone geometry and strength (Popp et al., 2009) may 

increase the risk of stress fracture injury incidence. Micro-cracks may also have a protective 

function, as they allow for the dissipation of energy during the loading process (Dong et al., 

2010). The process of bone remodelling to counteract micro-cracks is currently unclear, it has 

been suggested that two types of remodelling occur; background remodelling (occurring 

continually), and targeted remodelling (in response to micro-cracks) (Parfitt et al., 1996). 

Studies conducted in rabbits have shown that resorption lacunae are present in areas 

subjected to micro-cracks, while no resorption occurs in unaffected areas (Hedgecock et al., 

2007), which substantiates this theory.  
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Figure 2.8. Schematic depicting how mechanical loading can lead to positive skeletal 

adaptations or fracture.    

 

Stress fracture injuries are relatively common in elite athletes, accounting for up to 20% of all 

clinically reported sports injuries (Bennell et al., 1996; Fredericson et al., 2006). Stress 

fractures have been reported at multiple anatomical sites, although weight bearing bones are 

at a greater risk due to the pathophysiology of injury. With this in mind, it is not unexpected 

that the tibia is the most common site of stress fracture injury in athletic and military 

populations (Rauh et al., 2006; Gaeta et al., 2005; Arendt et al., 2003). Metatarsal, pelvis, 

ulna, navicular, fibula, rib, neck of femur and lumbar spine are also sites in which stress 

fracture injuries have been reported (Iwamoto et al., 2003), with the location of stress fracture 

seemingly common to particular sports. For example, stress fracture injury of the rib appears 

to occur almost exclusively in rowers, due to the unique motion that is involved in the stroke 

component of the rowing action (Dragoni et al., 2007). Sprinters experience stress fracture 
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injuries most commonly in the metatarsal compared to middle and long distance runners who 

most regularly encounter tibial stress fractures; the differences are most likely due to the 

different loading patterns these sport necessitate (Bennell et al., 1996). The causes of stress 

fracture are multi-facetted and arise from extrinsic influences on intrinsic processes relating 

to bone metabolism and overall health, which will be discussed in the following sub-sections.  

 

2.4.1. Extrinsic Factors 

 

A high volume of training is vital to stress fracture injury development, which is 

demonstrated by stress fracture occurrence being almost exclusively limited to elite athletes 

and military personal. The mode of exercise, and more specifically the magnitude and 

duration of loading patterns, are key to the development of stress fracture occurrence 

(Warden et al., 2006). Unaccustomed training may result in a disruption of the bone 

remodelling balance and may alter the anatomical site loaded, along with a change in the 

number of remodelling cycles. A cause and effect theory of unaccustomed training leading to 

stress fracture incidence is difficult to prove due to the lack of data detailing the amount of 

athletes that do not suffer from a stress fracture injury after changes in their training protocol. 

Despite this, there are cases of athletes reporting changes in training prior to stress fracture 

injury. Also, there is a high stress fracture injury prevalence in newly inducted college 

athletes (Goldberg and Pecora, 1994) and military recruits (Milgrom et al., 1985; Beck et al., 

1996).      

 

2.4.2. Intrinsic Factors 

 

The intrinsic factors implicated in stress fracture risk centre around metabolic, endocrine and 

genetic variations. Female athletes are at a greater risk of stress fracture in comparison to 
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males (Brunet et al., 1990), possibly due to changes in hormonal status associated with heavy 

training that result in amenorrhea, which is common in female athletes (Nattiv et al., 2007) 

and is often also associated with nutritional deficiency and low BMD (Loud et al., 2005). 

These factors independently, or in combination, could lead to increased stress fracture injury 

susceptibility (Bennell et al., 1999), although some reports suggest population specific factors 

may also be implicated (Warden et al., 2006; McCormick et al., 2012). Specific bone 

phenotypes have also been reported to be associated with stress fracture injury risk; cross 

sectional studies have shown that lower BMD (Wentz et al., 2012; Pouilles et al., 1989) and 

smaller cortical area (Popp et al., 2009) are common in stress fracture sufferers. Prospective 

studies have also shown BMD to be important factors when considering stress fracture risk 

(Beck et al., 2000; Lappe et al., 2005). Despite being implicated in the pathophysiology of 

stress fracture injury (Pegrum et al., 2012), the evidence for bone metabolism influencing 

stress fracture risk is not clear. Some studies have shown bone metabolism to be unrelated to 

stress fracture injury (Myburgh et al., 1990; Bennell et al., 1998; Valimaki et al., 2005), 

although Murguia et al.(1988) did show a significant link between markers of bone resorption 

and stress fracture incidence. The reason for the lack of evidence may be the difficulty in 

determining bone metabolism in the days preceding stress fracture occurrence. As the 

majority of studies are carried out retrospectively, bone metabolism at the time of sampling 

could have little relation to bone metabolism at the time of actual stress fracture injury. 

Without conducting large, well-controlled, prospective studies regularly monitoring bone 

turnover and stress fracture injury incidence, the relationship between bone metabolism and 

stress fracture is likely to remain unproven.      
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Table 2.2. Examples of intrinsic and extrinsic risk factors associated with stress fracture 

injury. 

  Risk Factor Example References 

Intrinsic 

 Bone Phenotypes 

      Bone Density Wentz et al., 2012 

     Cortical Area Popp et al., 2009 

     Bone Turnover Murguia et al., 1988 

     Bone Mass Warden et al., 2005 

Small Muscle Mass Bennell et al., 1996 

Poor Flexibility Hughes et al., 1984 

Prior Stress Fracture Loud et al., 2009 

Leg Length Brunet et al., 1990; Bennell et al., 1996 

Female Brunet et al., 1990 

Eating Psychopathology Duckham et al., 2012 

Genetics Chatzipapas et al., 2009, Korvala et al., 2010 

White Race Brunet et al., 1990 

Amenorrhea Friedl et al., 1992, Duckham et al., 2013 

 

Extrinsic 

 Smoking Reynolds et al., 1994 

Alcohol  Bennell et al., 1996 

High Training Volume Jones et al., 2002 

Muscle Fatigue Bennell et al., 1996; Beck et al., 2000 

Unaccustomed Exercise Goldberg and Pecora 1994 

Insufficient Prior Training Gardner et al., 1998 

High Magnitude Repetitive Exercise Warden et al., 2006 

Sport Played Bennell et al., 1999 

Calcium Intake Nieves et al., 2010 

Vitamin D Intake Lappe et al., 2008 

Physical Fitness Jones et al., 2002 

Inappropriate Footwear Finestone et al., 1991  

Training Surface Zahger et al., 1998 

 

 

2.5. Genetics  

 

2.5.1. Genetic Associations with Athletic Prowess, Physical Fitness and Health 
 

The ‘‘nature or nurture’’ debate is commonly held in relation to sporting success and health 

attributes, with the inherited aspect of physical fitness, athletic prowess and health having 

been suggested for many years. Only in the last 10 years, with the advent of the human gene 

map for performance and health-related fitness phenotypes, and advances in genotyping 
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technology, have researchers been able to establish associations between an individual’s 

genotype and their athletic ability, health and fitness (Bray et al., 2009). It is now well 

established that both genotype and environmental factors influence physical traits, but the 

extent of the proportional contribution for distinct phenotypes remains a pertinent question. 

Currently the majority of research conducted centres around single SNPs. Gene-gene and 

gene-environment interactions are also thought to influence phenotypes, although this area of 

research is in its infancy. To date the predominant role of genetics in sport has been to try to 

determine or explain the performance capabilities of athletes. This is difficult to accomplish 

due to the multi-factorial nature of performance and the many intricate environmental 

variables involved. Physical fitness and numerous health related phenotypes have been 

demonstrated to have a large genetic element (Bouchard et al., 1992). The identification of 

genes and SNPs that contribute to physical fitness has proved difficult, which may be due to 

each SNP contributing a small amount to the overall effect. The ever expanding human gene 

map for physical performance and health related phenotypes provides an example of this, 

currently containing 239 genes that are purported to influence fitness and health phenotypes 

(Roth et al., 2011). The map includes various genes and a range of levels of investigation, 

including small cohorts from diverse populations, which may increase the risk of erroneous 

findings and could be the reason for the difficulty seen in replication. The lack of a 

quantifiable phenotype in some studies also raises questions in relation to the mechanistic 

role of how a particular gene influences health and fitness. Genetic susceptibility to injury 

risk may be easier to elucidate as less extrinsic variables are thought to be involved. This is 

an emerging area in sports medicine, as currently the overwhelming majority of the data on 

genetic associations with injury risk and adverse health conditions is focused on clinical 

populations, which are very rarely young and/or active. 
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2.5.2. Genetics and Injury  

 

One of the major challenges for researchers investigating genetic associations with medical 

conditions, and an application of the recently completed human genome project, is to use the 

data collected to have a better understanding of the management and treatment of injury and 

assist with the prevention of such injuries and disorders. Information derived from genetic 

studies can be valuable in counteracting diseases, as seen by the recent development of 

pharmaceuticals as a result of genetic research (Padhi et al., 2010). Several genes and SNPs 

may increase susceptibility to injury, but predisposition may not always lead to injury 

occurrence due to potential counteracting genes and the likely, polygenic nature of injury 

influencing gene expression. Epigenetic modification may also influence an individual’s 

susceptibility to injury risk. In a sports medicine setting, very few injuries have been 

examined for genetic associations, although tendonopathy and concussion are two injuries 

that have been shown to have genetic associations. Variations in collagen type V alpha 1 

(COL5A1) and tenaisan-C genes have been associated with tendonopathy (Mokone et al., 

2005, Mokone et al., 2006), while concussion risk has been associated with apolipoprotein E 

in collegiate American footballers (Tierney et al., 2010). Despite the large number of studies 

exploring genetic associations with bone phenotypes, there is a lack of literature investigating 

bone phenotypes in athletic populations.  

   

2.5.2.1. Genetics and Bone 

 

It is now well established that genetic elements influence several bone phenotypes and are 

important in bone disorders, including osteoporosis (Paternoster et al., 2010) and Paget’s 

disease (Albagha et al., 2010). Due to the prevalence of osteoporosis in the general 

population and the large economic cost to health providers, genetic studies investigating 
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osteoporosis risk factors are popular. Twin and family studies have shown that numerous 

bone phenotypes are highly genetic, namely; bone turnover (Garnero et al., 1996), skeletal 

structure (Havill et al., 2013) and fracture risk (Estrada et al., 2012). The genes that are 

associated with different bone phenotypes are diverse as some phenotypes share genetic risk 

factors and some are unique to a particular phenotype. Both candidate gene and genome wide 

association studies (GWAS) have been used to try to determine genetic associations with 

bone phenotypes. The candidate gene approach relies on prior knowledge of the function of 

the SNP and knowledge of a biochemical pathway in which it can be hypothesised to affect 

the phenotype of interest. GWAS make no prior assumptions regarding the genes or SNPs of 

interest and utilise large sample sizes to detect modest effects. Few GWAS have been 

conducted in the sport and health setting, although GWAS have been extensively used for 

clinical exploration and can act as a hypothesis generation tool in order to select genes of 

interest for subsequent candidate gene studies. Due to the high number of SNPs studied in 

GWAS, a high level of significance is needed in order to allow for the multiple comparisons 

used in the analysis. This could lead to the suggestion that GWAS are too conservative and 

more targeted approaches would prevent type I errors. The level of significance needed also 

leads to the requirement for a large amount of participants in order to produce adequate 

power, which can increase the heterogeneity of the population, potentially leading to an 

increase in the amount of environmental confounding factors. 

 

BMD is the phenotype predominately measured in genetic studies looking for associations 

with bone disease due to its relationship with fracture, ease of measurement and the evidence 

of a strong genetic component (Duncan and Brown, 2008). Currently 12 GWAS have 

detected 62 SNPs related to BMD at GWAS significance level (p =10x
-8

) (Estrada et al., 

2012), demonstrating the polygenic nature of BMD. The majority of genes identified by 
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GWAS have not been previously associated with bone phenotypes in candidate gene studies. 

A recent meta-analysis of GWAS consisting of 81,949 cases and 102,444 Controls showed 

SNPs within RANK, RANKL, OPG, LRP5, SOST and Wnt to be associated with BMD and 

osteoporosis (Estrada et al., 2012). These findings have been replicated in other GWAS, 

suggesting genes involved in the RANK/RANKL/OPG signalling pathway (Paternoster et al., 

2010a; 2010b; Roshandel et al., 2010; 2011) and Wnt signalling pathway (Medina-Gomez et 

al., 2012; Zheng et al., 2012) may be important in the mediation of bone phenotypes. Despite 

strong associations between BMD and risk of fracture (Leslie et al., 2007), low BMD does 

not lead to fracture in all cases, leading to the hypothesis that other factors are involved in the 

pathophysiology of fracture.   

 

2.5.2.1.1. Genetics and Fracture 

 

Fracture can be defined as a complete or incomplete break in bone as a result of an above 

threshold force and is a common injury encountered by a large proportion of the population 

(Donaldson et al., 2008). Fracture risk can be heightened as a consequence of cumulative 

deterioration in bone strength and disturbances in bone remodelling (Nguyen et al., 2007). 

Bone strength is multi-factorial; therefore BMD alone is not the only factor contributing to 

bone strength, suggesting other factors could lead to fracture. Fracture risk has a genetic 

element (Deng et al., 2000; Zheng et al., 2012) varying from 16%-46% depending on the 

type of fracture and the age of the population (Michaelsson et al., 2005). The genetic 

component of fracture has been shown to decline with age (Michaelsson et al., 2005), which 

coincides with increased susceptibility to falls through sarcopenia and impaired 

neuromuscular function (Gerontol et al., 2012). As the majority of research into fracture risk 

is conducted in older individuals (50 y +) this may have underestimated the genetic 
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component. Many genes have been associated with fragility fracture at various sites, although 

no definitive genes or SNPs have been established. Several genes and SNPs have been 

associated with a variety of bone phenotypes and these findings have been replicated in 

various populations (Paternoster et al., 2010a; 2010b; Roshandel et al., 2010; 2011; Medina-

Gomez et al., 2012; Zheng et al., 2012). As the genes and SNPs associated with bone 

phenotypes have been shown to vary, it is difficult to ascertain the genes associated with 

fracture preposition due to the complex nature of fracture. Certain genes may only be 

associated with fracture at specific anatomical locations due to the different compositions of 

trabecular and cortical bone at different anatomical sites. Studies to establish genes associated 

with fracture risk and bone phenotypes have mainly used post-menopausal women due to the 

large fracture prevalence in this population. Unfortunately, this population also has a large 

degree of heterogeneity due to the varied lifestyle factors, including previous and current 

habitual activity, which is known to influence bone phenotypes. Military studies also have a 

degree of heterogeneity, albeit to a lesser extent, due to the diverse background and range of 

fitness levels from which military personnel are recruited. In a young elite athlete population, 

the heterogeneity of environmental factors is reduced. Despite participation in different 

sports, training time is similar and it is likely that all elite athletes would have participated in 

organised sport from a young age (exercise during pubertal stage is important for bone 

accrual, please see section 2.3.2.2.) in order to attain elite status. These factors make elite 

athletes an excellent population in which to examine genetic susceptibility to bone injury. 

Genetic associations with bone injuries in athletic populations have not been studied to the 

extent of elderly or osteoporotic cohorts due to the relatively lower prevalence of common 

fractures in sport. Stress fractures are relatively common injuries in athletic populations 

(Bennell et al., 1996; Fredericson et al., 2006), but currently there is an absence of research 

into the genetic associations of their manifestation. 
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2.5.2.1.2. Genetics and Stress Fracture  

 

Despite a lack of studies into the genetic associations with stress fracture there is evidence to 

suggest that stress fracture injury susceptibility may have a genetic component. A potential 

genetic contribution to stress fracture injury risk is supported by findings on the development 

of multiple stress fractures at various skeletal sites (Lambros and Alder, 1997), comparable 

stress fracture injuries occurring in monozygotic twins (Singer et al., 1990; Van Meensal and 

Peers, 2010), high stress fracture recurrence rates (Gehrmann and Renard, 2006) and 

variation in stress fracture incidence in military recruits subjected to comparable training 

loads (Giladi et al., 1986). Recent candidate gene studies have sought to investigate the 

genetic component of stress fracture in military populations with varying results. 

Associations were shown for SNPs and haplotype blocks within the vitamin D receptor 

(Chatzipapas et al., 2009; Korvala et al., 2010) and the androgen receptor repeat sequence 

(Yanovich et al., 2011), although no associations have also been shown for the same SNPs in 

similar military populations (Cosman et al., 2013, Valimaki et al., 2005). The reason for the 

disparity may be because of the range of SNPs analysed, small samples sizes (stress fracture 

cases) and, in some cases, the lack of a polygenic approach. Due to the development of stress 

fractures being associated with disturbances in bone remodelling (Warden et al., 2006), SNPs 

repeatedly associated with bone phenotypes in large scale studies are needed. As all previous 

studies investigating stress fracture injury incidence have used military personnel, studies 

involving alternative cohorts (e.g., athletes, dancers) would be useful to attain further 

knowledge on the aetiology of stress fracture injury.   

 

Impact fractures, cause a complete or incomplete break in bone as result of an above 

threshold force being applied. The risk factors for impact fractures have some similarities to 
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stress fracture. Like impact fractures, a family history of a stress fracture is shown to increase 

risk (Loud et al., 2007), as does low BMD (Popp et al., 2009). However, risk factors such as 

age and body mass that have ambiguity in stress fracture prevalence are established risk 

factors for impact fractures (Nguyen et al., 2007). The SNPs associated with fracture 

incidence are prime candidate genes to be associated with stress fracture incidence due to the 

overlapping elements of their pathophysiology. However, common osteoporotic fracture sites 

(e.g., the hip and vertebrae) that are often studied in GWAS of BMD and fracture, are not 

common sites of stress fracture. Therefore, doubts remain as to whether the SNPs involved in 

stress fracture incidence are the same SNPs as those associated with other bone phenotypes. 

Relative risk of stress fracture injury is not known and the lack of empirical evidence for 

SNPs associated with stress fracture make the selection of SNPs challenging when GWAS 

cannot be utilised.  

 

2.5.2.1.3. Genetic Mediation of Bone 

 

Despite no genetic markers being repeatedly associated with stress fracture incidence in 

athletes, many genes and SNPs are candidates for influencing stress fracture injury risk due to 

previously published literature on genetic associations with fracture, BMD and biochemical 

markers of bone turnover (Table 2.3.). The genes previously associated with bone phenotypes 

broadly fall into two main signalling pathways; Wnt signalling and RANK/RANKL/OPG 

signalling pathways. 

 

2.5.2.1.3.1. Wnt Signalling  

 

Wnt signalling pathways work in a complex network of proteins involved in embryo 

development, cancer and physiological processing (Lie et al., 2005). Wnt signalling acts 

through at least three distinct pathways, all of which are involved in bone homeostasis (Piters 
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et al., 2008). These pathways regulate the differentiation and activation of bone cells, 

particularly osteoblasts and their precursors (Williams and Insogna, 2009). Increased Wnt 

signalling results in increased bone formation, whereas diminished Wnt signalling results in a 

decrease (Krishnan et al., 2006). The three main pathways are the canonical pathway (Figure 

2.9.), non-canonical planar cell polarity pathway, and the non-canonical Wnt/calcium 

pathway. All are initiated by Wnt ligands binding to a complex receptor composed of 

members of the frizzled gene family and low density lipoprotein receptor-related proteins 

(LRP5 and LRP6). In the canonical pathway (Figure 2.9), Wnt binding to its ligands inhibits 

GSK-3β phosphorylation of β-catenin, allowing its accumulation in the cytoplasm  β-catenin 

then enters the nucleus where it can associate with the lymphoid enhancing factor (Lef)/T cell 

factor (Tcf) transcription factors to regulate gene expression (Case and Rubin, 2010). Both 

non-canonical pathways act without causing the accumulation of β-catenin. After initial 

activation, the non-canonical planar cell polarity pathway recruits the phosphoprotein 

Dishevelled (Dsh), which is ultimately involved with the regulation of the cytoskeleton. The 

non-canonical Wnt/calcium pathway also recruits Dsh and activates Dsh proteins causing 

downstream calcium release, which, in turn, activates calcineurin and CaMKII leading to an 

inhibition of the canonical pathway (Komiya and Habas, 2008). The Wnt signalling pathway 

can be inhibited by the binding of sclerostin (SOST) and Dickkopf (DKK) proteins to LRP5 

and LRP6 thus preventing Wnt ligand association, which subsequently restricts downstream 

bone formation (Kawano and Kypta, 2003). Wnt signalling may also play a role in the 

regulatory response to mechanical loading (Robinson et al., 2006). Fluid flow shear stress 

results in increased GSK-3β phosphorylation, β-catenin translocation and changes in 

expression of β-catenin target genes, such as SOST and DKK (Bonewald et al., 2008). 
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     Wnt binding            Inhibition of Wnt binding  

   

Figure 2.9. The canonical Wnt signalling pathway (adapted from Issack et al., 2008). Wnt 

proteins bind to low-density lipoproteins receptor related proteins (LRP) and receptors made-

up from the frizzled gene family. This occurs in the absence of secreted frizzled-related 

proteins (Sfrps) and Dickkopf (DKK) proteins which can bind to Wnt proteins and LRP, 

which effectively blocks Wnt signalling. When Wnt binding occurs, glycogen synthase 

kinase-3β (GSK-3) is inhibited and β-catenin is not phosphorylated. This allows β-catenin to 

bind with lymphoid enhancing factor (Lef)/T cell factor (Tcf) transcription factors to 

influence subsequent gene expression. In the absence of Wnt signalling, β-catenin is 

phosphorylated by GSK-3 and its degradation is facilitated by APC protein (APC). 

 

Allelic variations in some of the genes involved in the Wnt signalling pathway 

(LRP5/Wnt/SOST) have been associated with bone phenotypic variations, including BMD 

and fracture risk (Table 2.3.) (Kato et al., 2002; Medina-Gomez et al., 2012; Zheng et al., 

2012; Balemans et al., 2001). 
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Table 2.3. Single nucleotide polymorphisms (SNPs) selected for analysis into association with stress fracture injury in elite athletes. RS identification numbers 

are shown followed by location on the chromosome, the nearest gene and SNP name where applicable. Minor allele frequency (MAF) is also shown along with 

evidence of a metabolic function and evidence of a functional effect on bone.  RS # written in bold were only genotyped in studies 2 and 4. 

RS #  location Gene SNP MAF Function Bone related phenotype evidence 

rs2230912  12q24.3 P2X7R Gln460Arg 17% Variant allele associated decrease in 

calcium influx (Cabrini et al., 2005). 

Decrease in femoral neck BMD (Jørgensen et 

al., 2012) and osteoporosis (Wesselius et al., 

2012). 

rs208294  12q24.3 P2X7R His155Tyr 43% Variant allele associated with an increased 

receptor functionality and Calcium influx 

(Cabrini et al., 2005) 

Decrease in femoral neck BMD (Wesselius et 

al., 2013) and aBMD in women (Hustead et al., 

2012). Men homozygote for the variant allele 

show increases in BMD (Hustead et al., 2012).   

rs1653624  12q24.3 P2X7R Ile568Asn  1% Variant allele shows decrease in P2X7R 

expression and cell trafficking and 

functionality (Wiley et al., 2003).  

Variant allele shows increased fracture 

incidence (Ohlendorff et al., 2007). 

rs3751143  12q24.3 P2X7R Glu496Ala  17% Variant allele leads to impaired protein-

protein interactions (Gu et al.,  2001).  

Impairment of ATP-mediated immune 

responses and the release of IL1 and IL18 

(Saunders et al.,  2003).  

 

Increased fracture incidence (Ohlendorff et al., 

2007) and lower BMD (Wesselius et al.,  2012, 

Husted et al.,  2012).  

rs1718119  12q24.3 P2X7R Ala348Thr  39% Influences pore formation and variant 

allele shows an increased response to low 

concentrations of BzATP (Sun et al.,  

2010).  

Increased BMD values (Ohlendorff et al.,  

2007) as well as reduced fracture risk 

(Jørgensen et al.,  2012). Osteoporosis 

protection (Wesselius et al.,  2012).  
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rs3736228 11q13.4 LRP5 Ala1330Val  13% Ala1330Val variant results in a functional 

difference of the LRP5 protein, Wnt-

signalling capacity decreased in the variant 

allele (Kiel et al.,  2007). 

 

Key determinant of bone mass (Gong et al.,  

2001). Activating point mutations result in high 

bone mass (Van Wesenbeeck et al.,  2003). 

rs1544410 12q13.11 VDR BsmI  42% Polymorphism function is largely 

unknown. However, regulation of vitamin 

status, protein-protein interactions and 

mediation of cell transcriptional factors are 

suggested functions (Uitterlinden et al.,  

2004). 

Significantly associated with stress fracture risk 

(Chatzipapas et al.,  2009). 

rs731236 12q13.11 VDR TaqI 43% Polymorphism function is largely 

unknown. However, regulation of vitamin 

status, protein-protein interactions and 

mediation of cell transcriptional factors are 

suggested functions (Uitterlinden et al.,  

2004) 

Significantly associated with fracture incidence 

individually (Nguyen et al.,  2005) and in 

association with other VDR SNPs (Langdahl et 

al.,  2000,Horst-Sikorska et al.,  2005,2007)  

rs7975232 12q13.11 VDR ApaI 44% Polymorphism function is largely 

unknown. However, regulation of vitamin 

status, protein-protein interactions and 

mediation of cell transcriptional factors are 

suggested functions (Uitterlinden et al.,  

2004) 

Significantly associated with fracture incidence 

individually (Nguyen et al.,  2005) and in 

association with other VDR SNPs (Langdahl et 

al.,  2000,Horst-Sikorska et al.,  2005,2007)  

rs10735810 12q13.11 VDR FokI 34% Transcription activation characteristics of 

the VDR protein (Gross et al.,  1998). 

Significantly associated with fracture incidence 

individually (Gennari et al.,  1999) and in 

association with other VDR SNPs (Langdahl et 

al.,  2000, Quevedo et al.,  2008). Significantly 

associated with stress fracture risk (Chatzipapas 

et al.,  2009). 
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rs1801197 7q21.3 CTR  26% Inhibits bone resorption and stimulates 

urinary calcium excretion (Nakamura et 

al.,  2001). Functioning related to 

inhibition of parathyroid hormone (Garfia 

et al.,  2000). 

Minor allele C and with the VDR C-A haplotype 

associated with a decrease in stress fracture 

prevalence (Korvala et al.,  2010) and BMD 

(Braga et al.,  2002). 

rs1877632 17q11.2 SOST  31% Binds to LRP5 and LRP6 preventing 

binding with frizzled protein and Wnt 

signalling, and thereby reducing bone 

formation (Kneissel et al.,  2009).   

Homozygotes for the variant allele are 

associated with higher lumbar spine vBMD 

explaining 0.89% of differences seen in vBMD 

(Yerges et al.,  2009). 

rs3018362 18q22.1 RANK TNFRSF11A  42% Integral to the production of NF-κB  

(RANK).  Facilitates differentiation in 

osteoclasts (Boyle et al., 2003). Mutations 

cause Paget disease (Albagha et al.,  

2010). Mechanism not well understood, 

duplication mutations in the TNFRSF11A 

gene over activate the pathway that 

promotes osteoclast formation (Boyle et 

al., 2003).   

Variant allele increases susceptibility to 

fractures (Styrkarsdottir et al.,  2008), 

associated with BMD (Lui et al.,  2010, 

Paternoster et al.,  2010). 

rs1021188 13q14 RANKL TNFRSF11 24% Prominent in osteoclast differentiation 

(Boyle et al., 2003).  Exact function of the 

SNP is not known.  

Associated with cortical bone density, endosteal 

circumference and cortical thickness. More 

prominent in males than females. Minor allele 

associated with higher circulating levels of free 

RANKL (Paternoster et al.,  2010). 

rs9594738 13q14 RANKL TNFRSF11 32% Prominent in osteoclast differentiation 

(Boyle et al., 2003) .  Exact function of the 

SNP is not known.  

Variant allele increases risk of low BMD and 

osteoporotic hip fracture (Styrkardottir et al.,  

2008, Paternoster et al.,  2010).  
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rs4355801 8q24 OPG TNFRSF11B 30% Osteoprotegerin (OPG) acts as a decoy 

receptor for RANKL inhibiting the binding 

process leading to the prevention of 

osteoclast precursor development into 

mature osteoclasts. Exact function of the 

SNP is not known.  

Variant allele had an increased risk of 

osteoporosis and osteoporotic fractures 

(Styrkarsdottir et al.,  2008). Lower BMD of the 

lumbar spine and for femoral neck (Richards et 

al.,  2008). 

rs7041 4q12-

q13 

GC Glu416Asp  30% Stimulation of osteoclast activity, 

associated with vitamin D level (Fang et 

al.,  2009).  

As part of a haplotype with the Thr420Lys, has 

been associated with lower BMD and increased 

fracture risk (Ezura et al.,  2003, Lauridsen et 

al.,  2004). Haplotype of Vitamin D binding 

protein (DBP) together with osteoporosis risk 

allele from VDR and or low calcium intake is 

associated with fracture risk (Fang et al.,  

2009). 

rs4588  4q12-

q14 

GC Thr420Lys 21% Stimulation of osteoclast activity, 

associated with (25(OH)D) level (Fang et 

al.,  2009).  

As part of a haplotype with the Glu416Asp, 

Thr420Lys has been associated with lower 

BMD and increased fracture risk (Ezura et al.,  

2003, Lauridsen et al.,  2004). Haplotype of GC 

together with osteoporosis risk allele from VDR 

and or low calcium intake is associated with 

fracture risk (Fang et al.,  2009).  

rs1800012 17q21.33 COL1A1  11% Increases in DNA–protein binding, 

transcription, and production of the 

COLIA1 mRNA and protein are associated 

with COLIA1 Sp1 SNP (Mann et al.,  

2001)  

  

Associated with various bone phenotypes, 

including bone density, fragility fractures, 

postmenopausal bone loss, bone geometry , 

bone quality and bone mineralization (Ralston 

and Crombrugghe 2006) . Reduced yield 

strength of bone has been shown in 

heterozygotes for the variant allele (Uitterlinden 

et al., 1996). Homozygotes for the variant Sp1 

SNP are associated with BMD and vertebral 

fractures (Ralston et al., 2006). Variant allele 

associated with a 3 fold increase in fracture 

incidence in pre-pubertal children (Blades et al.,  
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2010) 

rs16987491  19q13.41 Kallikrein  KLKN R35H 4% Kinin agonists stimulate osteoclasts, 

however an exact role is yet to be defined 

(Lerner 1994). 

Associated with BMD and stress fracture risk in 

unpublished data from collaborating group. 

rs1799722 14q32.1 Bradykinin 

receptor  

BDKRB2 37% 9-amino acid peptide. Expressed by 

osteoblasts (Braun et al.,  1996)  

Associated with BMD and stress fracture risk in 

unpublished data from collaborating group. 

       

SNPs genotyped in 

studies 2 and 4. 

     

rs9594759 13q14 RANKL TNFRSF11 42%  

Prominent in osteoclast differentiation 

(Boyle et al., 2003).  Exact function of the 

SNP is not known. 

 

Associated with bone turnover and BMD 

(Roshandel et al., 2010). Also, associated with 

BMD is in a separate cohort (Kemp et al., 

2013). 

 

rs2707466 7q12 Wnt16  47% Wnt16 acts as a ligand for members of the 

frizzled family of seven trans membrane 

receptors. Although the exact function of 

Wnt16 is not known, it is thought to be 

responsible for developmental signalling 

processes (Zheng et al., 2012). 

Associated with cortical thickness in two 

separate cohorts and fracture risk (Zheng et al.,  

2012). 

rs8065345 17q43 MAP3K14  15% The specific function is not known. 

However, MAP3K14 has been associated 

RANK activation (Malinin et al., 1997). 

Associated with cortical area, cortical thickness. 

Also associated with lumbar spine BMD with 

BMD decreasing proportional to the number of 

risk allele carried (Roshandel et al., 2011). 

 

rs13447445 7q22 IL6 -174 G/C 30% -174 G/C is known to affect IL6 

concentrations which are thought to 

Risk of osteoporosis (Garnero et al.,  2002, 

Ferrari et al.,  2003, Mangana et al.,  2008), 
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stimulate bone resorption through 

increased osteoclast differentiation 

(Fishman et al.,  1998).  

bone turnover (Fishman et al.,  1998, Ferrari et 

al.,  2001), BMD (Lorentzon et al.,  2000, 

Garnero et al.,  2002, Ferrari et al.,  2003), 

fracture risk (Moffet et al.,  2004) and bone 

accrual (Dhamrait et al.,  2003) have all been 

associated with -174 G/C. 
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2.5.2.1.3.1.1. Wnt 

 

19 Wnt ligands have currently been identified; some activate through the canonical pathway 

whereas others, such as Wnt16, use the non-canonical pathways (Garcia-Ibarbia et al., 2013). 

Genetic association studies have recently shown variations in the gene that encodes Wnt16 to 

be associated with BMD and wrist fracture (Medina-Gomez et al., 2012; Zheng et al., 2012), 

as well as osteoporosis (Estrada et al., 2013). However, no associations with Wnt16 were 

shown with hip fracture in a study investigating osteoporotic fracture cases (Garcia-Ibarbia et 

al., 2013). The multitude of environmental factors that are associated with osteoporotic 

fracture (e.g., activity levels, socioeconomic status; Jones et al., 2004) and the decrease in 

genetic association with fracture and increased age (Michaelsson et al., 2005) may be the 

reason for the disparities. A meta-analysis of 17 GWAS, consisting of 32,961 individuals, 

suggests that hundreds of variants with small effects, may contribute to BMD and potential 

fracture risk (Estrada et al., 2012). Genes directly related to Wnt signalling were associated 

with BMD, as well as SNPs known to influence functions upstream of Wnt signalling 

(Estrada et al., 2012). 

 

2.5.2.1.3.1.2. SOST 

 

The SOST gene encodes sclerostin, a glycoprotein secreted primarily by osteocytes that 

inhibits Wnt signalling by binding to Wnt co-receptor LRP5, ultimately reducing bone 

formation (Williams and Insogna, 2009). Evidence has shown that serum sclerostin levels 

influence bone phenotypic variations (Kirmani et al., 2012), leading to clinical trials being 

commissioned for the development of a sclerostin inhibitory drug as a therapy for the 

preservation of bone mass (Padhi et al., 2010). Loss of function variations in SOST cause 
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high bone mass diseases such as  an Buchem’s and sclerosteosis (Balemans et al., 2001), 

characterised by an increase in bone formation and BMD (Van Lierop et al., 2011). 

Variations in SOST SNPs have been associated with variations in BMD (Balemans et al., 

2001; Uitterlinden et al., 2004). 0.89% of the variation in BMD at the lumbar spine was 

shown to be SOST SNP rs1877632 dependent (Yerges et al., 2009). Allelic variation in SOST 

SNPs have also been related to serum sclerostin levels (Kuipers et al., 2013), thus providing a 

potential mechanism for how it may influence bone phenotypes. Sclerostin concentrations 

have been theorised to be associated with mechanical loading (Fazeli et al., 2013), making it 

a pertinent gene to explore in relation to elite athletes. Sclerostin levels have been shown to 

increase with high levels of habitual physical activity (Fazeli et al., 2013), increase 

immediately following 120 min of treadmill running (Sale et al., currently unpublished) and 

be greater in elite athletes competing in weight bearing sports in comparison to their non-

weight bearing counterparts (Lombardi et al., 2012). Conversely, increased physical activity 

was associated with lower sclerostin levels in humans (Amrein et al., 2012), reduced SOST 

mRNA expression in the 24h post exercise (Robling et al., 2007) and decreased SOST 

expression in animal models (Robling et al., 2008). The disparity in the findings may be due 

to the intensity of mechanical loading, as the effects of high intensity loading (Fazeli et al., 

2013) were shown to differ from moderate intensity loading (Palombaro et al., 2005). The 

time at which blood samples were taken may have also impacted upon the data, Sale et al. 

(currently unpublished) show that despite an initial significant increase from baseline 

following exercise, sclerostin levels returned to baseline 60 min post exercise. However, it 

should be noted that this was not compared to a non-exercising Control group and therefore, 

although currently unexplored, the possibility of variations in sclerostin due to natural 

circadian rhythm remains a possibility.     
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SOST expression/sclerostin regulation may be the mechanism by which bone formation is 

reduced during disuse. Unloading induces osteocyte and osteoblast apoptosis (Aguirre et al., 

2006) and inhibits osteoblast differentiation (Grano et al., 2002).  Deletion of the SOST gene 

caused insensitivity to unloading in murine models (Lin et al., 2009). SOST expression 

changes in both loading and unloading conditions showing that SOST is regulated by the 

loading environment. The role of sclerostin involvement in mechanotransduction and ability 

to modulate anabolic effects of exercise is further established by sclerostin being inversely 

associated with BMD in non-athletes and positively associated with BMD in athletes (Fazeli 

et al., 2013).  

 

2.5.2.1.3.1.3. LRP5 

 

Low density lipoprotein receptor-related protein 5 (LRP5) is an integral requirement for 

mechanically induced bone formation through the Wnt signalling pathway. LRP5 and LRP6 

act as co-receptors, binding to Wnt ligands to initiate the Wnt signalling pathway (Krishnan et 

al., 2006). This initiation is inhibited by sclerostin acting as a decoy receptor and binding to 

LRP5 and LRP6, preventing Wnt recruitment (Li et al., 2005, Semenov et al., 2005). LRP5 

mutations affect bone formation by osteoblasts, principally by altering Wnt signalling through 

the canonical β-catenin pathway (Ferrari et al., 2005). Loss of function LRP5 mice were 

characterised by low bone mass (Kayo et al., 2002), bone weakening disorders (Kato et al., 

2002) and an inability to produce osteogenic responses to mechanical loading (Sawakami et 

al., 2006). In contrast to this, mice possessing the gain of function alleles for LRP5 have 

increased BMD, bone strength and resistance to fracture (Babij et al., 2002). In humans, 

osteoporosis risk and fracture incidence have also been associated with allelic variation in 

SNPs in the proximity of the LRP5 gene. This indicates that SNPs within the LRP5 gene may 
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have a modulating role in the determination of bone phenotypes and supports the suggestion 

that LRP5 and Wnt signalling are vital factors in mechanotransduction and bone accrual. 

Variations in LRP5 SNPs may also mediate the bones response to physical activity as 

genotype has been shown to influence BMD at the lumbar spine in response to exercise. 

Ala1330Val is one of the most studied LRP5 SNPs and has been associated with bone 

phenotypic responses, including peak bone mass (Saarinen et al., 2007), osteoblast 

differentiation (Kato et al., 2002), osteoblast/osteocyte apoptosis (Javaheri et al., 2011) and 

BMD in a GWAS (Richards et al., 2008). The rare allele of LRP5 SNP Ala1330Val has been 

consistently associated with adverse bone phenotypes (van Meurs et al., 2006, Saarinen et al., 

2007). Kiel et al. (2007) however, showed that individuals homozygous for the rare allele of 

Ala1330Val had increased BMD dependent on the amount of physical activity performed, 

whereas the opposite was apparent for common allele homozygotes whose BMD was 

inversely related to physical activity. Heterozygotes had a similar level of BMD irrespective 

of physical activity. This suggests that Ala1330Val may mediate the bone remodelling 

process in response to mechanical loading. Future studies need to replicate these findings as 

participant numbers for individuals homozygous for the rare allele were very low (n = 16). 

The amount and diversity of the phenotypes affected make it difficult to confirm the 

mechanism by which Ala1330Val may regulate bone phenotypes.   

                        

2.5.2.1.3.2. RANK/RANKL/OPG 

 

RANK, and its ligand, RANKL, members of the TNF superfamily, are integral to 

osteoclastogenesis (Boyce and Xing, 2008), as they stimulate osteoclast activation, formation 

and differentiation (Boyle et al., 2003) (Figure 2.10.). RANKL is expressed on the surface of 

pre-osteoblastic stromal cells and binds to RANK on osteoclastic precursor cells. Macrophage 
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colony-stimulating factor (M-CSF) binding to the Fms receptor is needed for RANKL-RANK 

binding, as it mediates the amount of osteoclast precursor cells produced (Boyce and Xing, 

2008). RANKL is essential for the differentiation of osteoclasts into multi-nucleated cells, 

their activation and longevity (Boyce and Xing, 2008). Osteoprotegerin (OPG) acts as a 

decoy receptor for RANKL, binding RANKL, leading to the prevention of osteoclast 

precursor development into mature osteoclasts, resulting in the subsequent attenuation of 

bone resorption (Boyle et al., 2003). These factors in combination make the 

RANK/RANKL/OPG signalling pathway an important component in the regulation of bone 

turnover and of  bone adaptation in response to exercise. Although the specific mechanisms 

of how SNPs within the RANK/RANKL/OPG signalling pathway regulate bone health remain 

unknown, several SNPs have been implicated in bone pathologies. BMD (Paternoster et al., 

2010; Styrkarsdottir et al., 2008; Richards et al., 2008), bone strength (Roshandel et al., 

2011), bone turnover markers (Roshandel et al., 2010) and osteoporotic fracture risk 

(Styrkarsdottir et al., 2008) have all been associated with SNPs located in the proximity of 

the RANK/RANKL/OPG signalling pathway. Of the many SNPs associated, some have 

maintained association in replication cohorts and in various populations for BMD and 

fracture (Table 2.3.).  

 

Osteoclast precursor differentiation (Boyce and Xing, 2008) is one mechanism of how SNPs 

from the RANK/RANKL/OPG signalling pathway regulate bone phenotypes, although due to 

the number of transcription factors and signalling pathways that are activated by 

RANK/RANKL interaction, the mechanisms are not well understood.  

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Roshandel%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20205168
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Figure    0  How the RANK/RANKL/OPG signalling pathway interacts in the differentiation 

of osteoclasts  Macrophage progenitor cells merge to become pre-fusion osteoclasts  

 steoblasts express RANKL, which binds to RANK on the cell surface, facilitating the 

formation of multi-nucleated osteoclasts   steoblasts can also express  PG, which binds to 

RANKL and inhibits pre-osteoclast differentiation    

 

2.5.2.1.3.2.1. Vitamin D related genes 

The genes that encode the vitamin D binding protein and the vitamin D receptor influence 

1,25(OH)2D status and therefore bone metabolism (Safadi et al., 1999; Strugnell and Deluca 

1997). The vitamin D endocrine system includes ergocalciferol (vitamin D 2), cholecalciferol 

(vitamin D 3), its active form, 1,25-dihydroxyvitamin D (1,25-(OH)2D) and the Vitamin D 

Receptor (VDR) gene, of which there are four commonly studied SNPs; BsmI, FokI, ApaI and 

TaqI  (Uitterlinden et al., 2004).    

  

2.5.2.1.3.2.1.1. Vitamin D binding protein    

The DBP binds to 25(OH)D and has been shown to prolong the circulating half-life of 

1,25(OH)2D in blood, regulate the delivery of 25(OH)D to target tissues and protect against 
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vitamin D deficiency in murine models (Safadi et al., 1999). Conversely, DBP inhibits the 

activity of injected 1,25(OH)2D3 in mice (Safadi et al., 1999) causing doubt over its role. An 

inverse relationship between DBP concentrations and BMD has also been shown (Powe et 

al., 2011). The reason for the contrasting findings may be due to functional vitamin D status 

being altered in individuals with similar 25(OH)D levels due to allelic differences in DBP 

SNPs. A variety of SNPs from the gene related to DBP (GC) have been associated with 

vitamin D concentrations and variations in bone phenotypes. The GC gene is important in the 

maintenance of bone homeostasis due to its known associations with BMD, bone metabolism 

(Eisman et al., 1995) and its role in the downstream modulation of transcription factors 

related to calcium homeostasis (Strugnell and Deluca, 1997). Genetic variants in SNPs in the 

GC gene have also been associated with changes in 1,25(OH)2D3 concentrations  (Sinotte et 

al., 2009; Carpenter et al., 2013; Wang et al., 2010) in a number of young adult populations 

(Gozdzik et al., 2011) and osteoporosis risk in elderly Caucasians (Fang et al., 2009).  

 

2.5.2.1.3.2.1.2. Vitamin D receptor  

 

VDR is associated with 1,25(OH)2D binding, which subsequently affects calcium absorption 

(Strugnell and Deluca 1997). Mutations in VDR cause vitamin D-resistant rickets, 

characterised by increased risk of fracture and genu varum (Kristjansson et al., 1993), due to 

insufficient absorption of calcium and phosphate by the intestine rather than a direct 

influence on 1,25(OH)2D3 concentrations (Ralston and de Crombrugghe, 2006). Although the 

VDR gene has been intensively studied, ambiguity exists in relation to its role within bone 

health and skeletal function. The inconsistencies could be due to a variety of factors including 

sample size, study cohort, failure to adequately control environmental factors and failure to 

sufficiently report the bone phenotype examined. McClung and Karl (2010) suggest that 

allelic variation in polymorphisms within the VDR gene can increase the concentration of 
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1,25(OH)2D, which may facilitate bone health and therefore reduce the risk of bone injury. 

The mechanism by which this occurs is thought to be related to the binding of the VDR to 

1,25(OH)2D, which induces absorption of calcium and phosphate for bone mineralisation and 

homeostatic metabolism (Korvala et al., 2010). Many studies have shown VDR SNPs to be 

associated with aspects of bone health. VDR null mice have low bone mass characterised by 

hypocalcaemia, as well as elevated 1,25(OH)2D3 levels (Malloy and Feldman, 2011). In 

humans, homozygotes for the F allele of the FokI SNP results in lower 1,25(OH)2D3 

concentrations in comparison to homozygotes of the f allele. This should be treated with 

caution, however, as the study participant numbers were low (n =81), particularly the ff group 

(n = 7).  F allele homozygotes also exhibits a greater response to resistance training in terms 

of suppressed bone resorption (Tajima et al., 2000). Similarly, the BsmI SNP has been 

associated with lower BMD (Thakkinstian et al., 2004; Valdivielso et al., 2006; Morrison et 

al., 1994) and a haplotype block of BsmI, ApaI and TaqI has been associated with increased 

risk of osteoporosis (Thakkinstian et al., 2004). VDR SNPs could also be involved in stress 

fracture prevalence as subtle changes in the bone structure can cause an area of weakness 

increasing susceptibility. Studies have suggested that SNPs within the VDR gene can cause a 

predisposition to stress fracture injury (Chatzipapas et al., 2009; Korvala et al., 2010). 

However, these studies have relied on relatively small cohorts (n=64 and n=192 respectively) 

therefore studies of replication cohorts need to be performed to substantiate these findings. 

   

2.5.2.1.3.2.2. P2X7R 

 

The highly polymorphic purinergic P2X7 receptors (P2X7R) are ligand-gated ion channels 

that are likely candidates to mediate bone phenotypic responses, given that previous studies 

have shown numerous functional SNPs cause differential functioning of osteoblasts, 
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osteoclasts and osteocytes (Gartland et al., 2001; Ohlendorff et al., 2007; Li et al., 2005). 

ATP induced P2X7R activation causes distinct cellular alterations including, apoptosis and 

ultimately cell death (Ohlendorff et al., 2007) as a result of membrane blebbing in osteoclasts 

(Panupinthu et al., 2007) along with  increased cell permeability in osteoclasts (Ohlendorff et 

al., 2007) and osteoblasts (Garland et al., 2001). P2X7R activation also stimulates the release 

of interleukin-1 alpha and interleukin-1 beta (Stokes et al., 2010), which have been associated 

with increased IL-1 production and activation and subsequently with osteoclast formation and 

increases in bone resorption (Kim et al., 2009).  Studies using P2X7R-KO murine models 

have shown a decrease in bone mass (Ke et al., 2005), a reduced inflammatory response 

(Labasi et al., 2002) and a decrease in mechanical loading induced inter cell signalling (Li et 

al., 2005). The multitude of different P2X7R dependent cellular responses suggests a multi-

dimensional role of P2X7R in bone remodelling. In response to mechanical loading, P2X7Rs 

are stimulated by extracellular ATP, which, in turn, activates osteoblasts causing increases in 

bone formation and induces apoptosis in osteoclasts, thus reducing bone resorption (Grol et 

al., 2009). Bone cell differentiation and longevity, as well as mechanotransduction, may 

therefore have an element of P2X7R governance. 

 

To date, 11 SNPs (gain and loss of function) within P2X7R have been associated with a 

functional effect on bone parameters. In humans, significant differences in bone loss 

(Jorgensen et al., 2012; Gartland et al., 2012), BMD at the hip and lumbar spine (Wesselius 

et al., 2012; Gartland et al., 2012), fracture risk (Ohlendorff et al., 2007) and osteoporosis 

risk (Wesselius et al., 2012; Husted et al., 2012) have been attributed to various P2X7R SNPs 

(see Table 2.3.). SNPs within P2X7R can influence distinct functions, including pore 

formation and cell differentiation and longevity (Grol et al., 2009). Several SNPs have been 

individually associated with various bone phenotypic alterations including lower BMD, 
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fracture risk and bone accrual (Wesselius et al., 2012; Gartland et al., 2012; Ohlendorff et al., 

2007; Jorgensen et al., 2012; Husted et al., 2012). Due to the high level of linkage 

disequilibrium that exists, haplotype analysis has demonstrated the significance of several 

P2X7R SNPs with BMD, vertebral fracture and osteoporosis risk (Husted et al., 2012; 

Jorgensen et al., 2012).   

      

2.6. Summary 

 

Weight-bearing mechanical loading has a key role in the maintenance of bone health and can 

be used as a strategy to aid bone accrual. Despite this, negative effects of exercise on bone 

phenotypes have been reported. Due to the vast amount of data exemplifying the hereditary 

aspects of bone, genotype has been suggested as a mediator of bone responses. However, 

despite a large amount of research conducted into genetic susceptibility to adverse bone 

health, very little is known about the extent of the genetic mediation of bone turnover, bone 

accrual or stress fracture injury. The absence of any candidate SNP studies relating to stress 

fracture injury in elite athletes makes it unclear whether any genetic predisposition to such 

injuries occurs. The thesis will give further insight into this area.  
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3.0. General Methods 
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This Chapter describes the methodological development, biochemical and genetic analyses 

that were undertaken as part of this thesis. All studies had approval from the Nottingham 

Trent University Ethical Advisory Committee.  Study 2 (Chapter 5) had dual approval by the 

Northampton National Research Ethics Service Committee and by the Nottingham Trent 

University Ethical Advisory Committee.  

 

3.1. Methodological Development of Genotyping Method  

 

In order to genotype a relatively large amount of samples (total number of samples collected 

n=640) for a substantial number of SNPs (total SNPs investigated n=26) in a suitable time 

frame, a cost effective, reliable, time effective, high throughput process was sought to ensure 

a realistic time frame was used for PhD completion.  

 

Initially, restriction fragment length polymorphism (RFLP) was used. The first SNPs to be 

genotyped were Gln460Arg and Glu496Ala located on exon 13 within the P2X7R. Due to 

their close proximity, primers were designed that encompassed both restriction sites. 1µL of 

genomic DNA (~10ng), 0.5µL of forward primer (5’-AGACCTGCGATGGACTTCAC),  

0.5µL of reverse primer (5’- GATTCTTGTGCCTCAGCCTC), 25µL of Mango Mix 

containing Mango Taq DNA polymerase, buffer, dNTPs and MgCl2 (Bioline, London, UK) 

were mixed together with  23µL of water to form a 50µL reaction volume. The reaction was 

then denatured for 5 min at 94
o
C, then thermocycled for 20 s at 94

 o
C, for 5 s at 55

 o
C and 60 

s at 72
 o

C, repeating 40 times, followed by a final 10 min at 72
 o

C. Following PCR, the 

product was visualised via electrophoresis before subsequent restriction digest was carried 

out. AluI restriction enzyme (0.2µL) was added to 2µL of buffer, 10 µL of PCR product and 

7.8µL of water, before reactions were incubated in a water bath for 2 hours at 37
 o

C. 
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Following digestion, products were visualised on 3% agarose gel via electrophoresis. Despite 

the method being designed as a time effective way of genotyping, the immediacy of the bands 

made it difficult to visualise the results. Despite increasing the percentage of the gel, 

precipitation of the sample and experimenting with a polyacrylamide gel approach, results 

were not clearly visualised and consistent enough to rely on this method for the genotyping of 

a large cohort. As a consequence, genotyping using RFLP and restriction digest (using a 

single SNP) were investigated. This produced successful and reliable results and was used to 

genotype ~300 samples for Gln460Arg in the P2X7R gene. However, as this method was 

labour intensive and time consuming, it was decided that this would not be appropriate for the 

quantity of samples and number of SNPs that were identified to be genotyped in forthcoming 

studies.  

 

Allele-specific PCR was considered and experimented with in order to find a more time 

efficient approach.  This involved the design of a primer related to the polymorphic area and 

one mismatched primer. Each sample was amplified by PCR twice, once with the primer 

corresponding to the common allele and once with a primer corresponding to the variant 

allele. Visualisation of a band was taken as evidence of the allele being present;  

amplification of both samples related to heterozygotes while amplification on only one 

sample related to homozygotes for the variant or common allele. Despite this being a more 

time effective approach in comparison to RFLP, the need for two PCR reactions to be run per 

sample to define each allele limited the scope of this method for a large cohort.     

 

In the continued effort to find a high throughput method of analysis Matrix Assisted Laser 

Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) was 

investigated. This method is very high throughput with the potential of analysing 384 samples 
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in ~60 min, and can be used with the product resulting from mass extension PCR. Mass 

extension PCR comprises a single complementary base being added to the product in 

accordance with the sequence of the site of interest. MALDI-TOF MS is then used to 

determine the mass of the extended primer. As allelic variants have different molecular 

weights (e.g., alleles A and T differ by 9Da whereas A and C differ by 24Da), the mass 

indicates the sequence and therefore the alleles present. The method comprised of: an initial 

PCR comprising of 1µL of genomic DNA ( 0ng), a biotinylated forward primer (5’- 

AGACCTGCGATGGACTTCAC) and reverse primer (5’- 

CAACCTCTGCCTCCCGGGTTC), 25µL of Mango Mix containing Mango Taq DNA 

polymerase, buffer, dNTPs and MgCl2 (Bioline, London, UK) mixed together with  23µL of 

water to become a 50µL reaction volume. The reaction was then denatured for 5 min at 94
o
C, 

then theromocycled for 30s at 68
o
C, for 10s at 65

o
C and 60s at 72

o
C, repeating 35 times, 

followed by a final 10min at 72
o
C. The resulting PCR product was then heated at 95

o
C for 

5min and then placed on ice. 40µL of PCR product was then added to 50µL of freshly 

washed streptavidin-coated magnetic beads, re-suspended in sodium chloride-sodium citrate 

buffer and mixed. The mixed solution was then placed in a magnetic stand and the 

supernatant was removed, the remaining beads attached to a single strand of DNA were then 

washed with double distilled water. Another PCR was then carried out: 1µL of PCR product 

was added to 1µL of each dNTP (100mM), 1µL of MgCl2 (2mM), 2µL of buffer, 1µL of 

reverse primer that is aligned to the last base of the SNP (5’- 

CGCCTCCTTTCTAAGCAGCC), 0.1µL of Go Taq and 0.9µL of water to form a 10µL 

solution. The reaction was then denatured for 2min at 94
o
C, then theromocycled for 10sec at 

94
o
C, for 60s at 55

o
C and 60s at 72

o
C, repeating 35 times, followed by a final 10min at 72

 o
C. 

Following PCR the product was heated at 90
o
C for 1min and transferred onto ice before the 

mass extended supernatant was removed from the beads to be used in subsequent steps.  The 
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mass extended product was desalted to remove impurities and added to 1µL of 3-

hydroxypicolinic acid matrix, which was then spotted on a 384 well anchor chip. This was 

then analysed using MALDI-TOF MS (Bruker, Brenman, Germany).  

 

Methodological problems were encountered, such as drying difficulties on the anchor chip 

and the peaks created on the MALDI-TOF output differed from the molecular weight 

expected (Figure 3.1.). The differing weights were presumed to be due to the presence of ion 

adducts which also carry a specific molecular weight. Due to the time constraints of the PhD 

process it was decided that this method development would not be practical given the applied 

focus of the programme, as such this method was not adopted.  

 

     

 
Figure 3.1. Graph output from the MALDI-TOF MS showing time (nanoseconds) and 

corresponding peak height. 
 

 

As a time effective, cost effective method of analysis could not be found during the process 

of methodological development, RFLP methods of analysis were performed to ensure 

analysis was progressing. In conjunction with this, due to the cost and time efficiencies, 

samples were sent to LGC genomics for genotyping using Kompetitive Allele Specific PCR 

(KASP).   
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3.2. Saliva Collection 

 

Four different DNA collection methods were investigated in Chapter 4 and based on the 

results shown, the following method was decided upon. Saliva was collected using 

commercially available saliva collection, preservation and isolation kits (Norgen Biotek 

Corp, Saliva DNA Collection kit Thorold, Canada). Participants were instructed not to eat, 

chew, drink or smoke 30 min prior to saliva collection. A water mouth rinse was also 

provided 10min prior to saliva collection. A collection funnel was mounted on the collection 

tube and the participant was advised to spit and/or dribble 2mL of saliva into the tube. The 

funnel was then discarded and the preservative ampoule was inserted into the collection tube 

and the screw cap connected. The tube was then shaken for 10 seconds to ensure the saliva 

and preservative ampoule were well mixed. The samples were then stored at room 

temperature and then subsequently frozen at -20ºC before further analysis.  

 

3.2.1. DNA Extraction  

 

The collection tube was water incubated for 1h at 55
o
C followed by gentle inversion and 

shaking. An aliquot of 500µL was then added to 10µL of proteinase K and mixed by vortex 

in a 1.5mL centrifugable tube before incubating for a further 30 min at 55
o
C. An equal 

sample volume of isopropanol was added and mixed by inversion followed by 5min 

centrifugation at 13,000rpm. The supernatant was then removed and replaced by an equal 

sample volume of 70% ethanol followed by a final centrifugation for 1min at 13,000rpm.  

Following the removal of ethanol, each eppendorf was placed upside-down on a paper towel 

for >60min to remove any excess ethanol. Finally 100µL of TE buffer was added to rehydrate 

the DNA and was mixed by vortex for 10s and left overnight at room temperature to ensure 

complete rehydration. Samples were stored at -20
o
C until subsequent analysis. 
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3.3. DNA Quantification 

 

DNA was quantified using a NanoDrop spectrophotometer (NanoDrop technologies, 

Wilmington DE). The computer was switched on and the NanoDrop software uploaded. The 

nucleic acid option was selected and the spectrophotometer performed an initial clarification 

of wavelength. The pedestal arm was raised and 1.5µL of TE buffer was added to the 

spectrophotometer followed by a lowering of the pedestal arm  The ‘blank’ option was 

selected in order to run the blank baseline measurement. After this measurement was 

complete, the top and bottom of the measurement pedestal were wiped clean with a tissue. A 

sample volume of 1µL was then applied to the pedestal, the arm was lowered and the 

measure button was clicked. The subsequent display showed the concentration of DNA 

ng·µL
-1

 and quality was quantified using the OD260/OD280 and OD260/OD230 ratios as a 

measure of DNA purity against proteins (OD280) and salts and alcohol (OD230). This 

process was repeated for each sample with a ‘blank’ applied after every ten samples    

 

3.4. Database Coding 

 

Each saliva sample collection tube (Study 2 and 3) or blood sample collection tube (Study 4) 

was encoded with a unique five digit code. Each code corresponded to a questionnaire (Study 

3) or pQCT scan (Study 3). In Study 3, the page of the questionnaire representing the unique 

code was removed following data input and only the code was used in the remaining analysis 

ensuring complete anonymity for each participant.     
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3.5. Genotyping  

 

Genotyping was conducted by two different methods: 

Kompetitive Allele Specific PCR (KASP). DNA sample was mixed with target specific 

KASP forward and reverse primers. The two forward primers have competing tail sequences 

and a common reverse primer. KASP master mix containing two unique FRET cassettes that 

correspond to the tail sequences on each forward primer was then added. Following the initial 

period of denaturing the forward primer binds to the correct nucleotide primer, this enables 

the Taq polymerase to bind and elongate the strand. The common reverse primer then creates 

a complement to the opposite DNA strand. This creates an amplicon that incorporates the 

forward primer. A second round of PCR is then carried out in which the common reverse 

primer, which binds to the amplicon. During subsequent rounds of PCR, the FRET cassette 

gets incorporated into the amplicon; as the quencher is now removed the dye begins to 

fluoresce and increases in fluorescence as more copies are made. The level of fluorescence is 

then determined on a plate reader.     

          

3.5.1. IL6 Genotyping 

 

In studies 1 and 3 a 198 base pair fragment of the IL6 gene was genotyped containing the IL6 

174-G/C (rs1800795) SNP. This was amplified using PCR using 50µL reactions containing 

~20ng of genomic DNA, 25µL of Mango Mix (Bioline, London, UK), 0.25µL of forward 

primer 5’- TGACTTCAGCTTTACTCTTTGT -3’, 0.25µL of reverse primer 5’-

CTGATTGGAAACCTTATTAAG-3’ (Fernadez-Real et al., 2000) and 23.5µL of ultra-pure 

water. After an initial denaturation at 94
o
C for 10min, 35 cycles of 94

o
C for 1min 

(denaturation), 55
o
C for 35s (annealing) and 72

o
C for 1min (extension) followed by 72

o
C for 

10min. 10µL of PCR product was added to 7.8µL nuclease free water, 2µL of buffer, 0.2µL 
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of SfaNI enzyme and 0.1µL of Bovine Serum Albumin (BSA) and digested for 37
o
C for 4h. 

Following digestion the product was visualised via electrophoresis on a 2% agarose gel. 

Genotypes were identified according to their restriction sites. Homozygotes for the presence 

of the site (GG) elicited 140 and 58 bp products, heterozygotes (GC) 198, 140, 58 bp and 

homozygotes for the absence 198bp. 

       

3.6. Statistical Methods 

 

The statistics used are reported in the methodological section of each Chapter. P values of 

<0.05 were deemed significant.  
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Chapter 4.0. Determination of the most 

Suitable Method for DNA Collection 

from Elite Athletes. 
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4.1. Introduction  

 

Before starting the experimental trials a reliable, non-invasive and cost effective method of 

DNA collection needed to be confirmed to maximise the number of elite athletes that could 

be recruited. A high through-put, cost effective method in which DNA could be genotyped 

also needed to be selected in order to maximise the number of SNPs that could be genotyped.     

 

The prevalence of stress fracture injury in athletes is 14 −   % (Bennell et al., 1996) and  

large cohorts are, therefore, recruited in order to identify any genetic associations. Elite 

athletes have demanding schedules involving high intensity training and match play, which 

often constitutes a high amount of travel. The method of DNA collection from this cohort 

needed to be reliable, robust and produce a high yield of genomic DNA as the opportunity to 

collect DNA from the same individual twice was unlikely. Blood drawing is the preferred 

method of collection due to high yield, reliability and the relative in-expense of collection 

and extraction procedures. However, collecting blood from a large cohort of athletes has a 

number of limitations: short-time periods for sample collection requiring numerous 

phlebotomists; trained phlebotomists need to be present for all samples, potentially 

eliminating athletes based outside of the researchers geographical area; aversion to needles 

may lead to participants refraining from participation; the storage conditions of blood are not 

conducive to transportation. 

 

For these reasons, DNA collection via saliva and buccal cells has become popular in large 

epidemiologic studies, as it provides a reliable non-invasive method of DNA collection 

(Carlson et al., 2004). Several studies have had success in obtaining DNA from mouthwash 

protocols (Andrisin et al., 2002; Lum and Marchand 1998), cytobrushes (Satia-Abouta et al., 

2002), fast technology for analysis (FTA) cards (McClure et al., 2009) and custom 
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manufactured saliva collection kits (Rogers et al., 2007). As such, a pilot study was 

conducted to evaluate the DNA yield, purity and success of use in polymerase chain reaction 

(PCR) and restriction digest protocols of DNA extracted from blood, a mouthwash protocol, 

the  ragene saliva collection device ( ragene™ DNA collection kit, DNA Genotek, Inc , 

Ottawa, Ontario, Canada) and the Norgen saliva collection device (Norgen Biotek, Thorold, 

ON, Canada). In a previous study at Nottingham Trent University (Hennis et al., unpublished 

observations), (FTA) cards (GE Healthcare, Buckinghamshire, UK) were used for DNA 

collection. However, inconsistences in DNA yield that have been previously been reported 

(Hanson et al., 2007) were apparent. Due to these inconsistences in yield, cytobrushes 

(Steinburg et al., 2002) and FTA cards were not evaluated in this study. 

  

4.2. Method 

 

Eight male participants volunteered to give a blood sample, which would be used as a marker 

to compare with the other methods. Each participant also gave 3 separate saliva samples 

which were collected by three separate means (Oragene, Norgen and a standard mouth wash 

protocol (Lum and Le Marchand 1998). Ethical approval was granted by the Nottingham 

Trent University Ethical Review committee.  

   

Blood samples were collected via venepuncture, DNA was extracted in accordance with 

manufacturer guidelines using Wizard DNA extraction kits (Promega, USA). Saliva samples 

(Oragene, Norgen) were collected in accordance with manufacturer guidelines. The 

mouthwash protocol was carried out in line with previous literature (Lum and Le Marchand 

1998). The Oragene and Norgen protocol used a custom made collection decive and required 

a preservation liquid to be mixed with the collected saliva, while the mouthwash protocol 
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involved rinsing the mouth with a branded mouthwash, and collection of the spittle.  All 

saliva collected was stored at room temperature for 2d prior to analysis to replicate potential 

study conditions.  

 

DNA yield and quality were assessed using a NanoDrop spectrophotometer (Nanodrop 

technologies, Wilmington DE). OD260/OD280 and OD260/OD230 ratios were assessed as a 

measure of DNA purity against proteins (OD280), salts and alcohol (OD230). Values above 

1.6 for OD260/OD280 and close to 1 for OD260/OD230 were favoured. 

 

After purity and quantification analysis, DNA was amplified for ACE genotype using PCR. 

Primers - 5’-CATCCTTTCTCCCATTTCTC-3; 5’-ATTTCAGAGCTGGAATAAAATT- 3’; 

5’-TGGGATTACAGGCGTGATACAG- 3’ were used (Evans et al., 1994). The PCR 

conditions were as follows: initial denaturation at 94ºC for 5min, with 30 cycles of 94ºC for 

60s, and 55ºC for 60s, followed by 55ºC for 5min. PCR product was visualised via 

electrophoresis using 2% agarose gel. ACE was used due to previous experience of successful 

genotyping of this SNP in previous research projects. 

 

4.3. Results 

 

The results of the four different DNA collection and analysis methods are shown in Table 

4.1. Five DNA samples collected using a standard mouthwash protocol were unsuccessfully 

extracted.  

 

All collection methods yielded mean 260/280 ratios above the preferred 1.6 value. The 

260/230 ratios were also in the preferred range for blood, Oragene and Norgen methods. All 
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samples collected via blood, Oragene and Norgen methods were successfully visualised via 

electrophoresis.         

 

Table 4.1. Comparative results of DNA quality and quantity between blood and saliva 

collection methods: Mean (range)  

Method of DNA 

collection 
Blood Oragene Norgen Mouthwash 

Samples (n) 8 8 8 8 

Successful samples(n) 8 8 8 3 

Mean Concentration 

(ug·ml) 
56.8 (27.2-117.7) 77.1 (35.7-120.4) 94 (17.2-208.7) 22.9(0-95.5) 

Mean 260/280 nm ratio  1.7 (1.5-2.0) 1.7(1.4-2.0) 1.7 (1.4-1.9) 
1.8(1.4-2.0) *3 

samples 

Mean 260/230 nm ratio  0.9(0.4-1.1) 0.9(0.6-1.1) 0.8 (0.6-1.0) 
2.2 (0.7-3.1)  *3 

samples 

Successful 

genotyping % 
100 100 100 12.5 

 

4.4. Discussion 

 

DNA concentration, purity and genotyping success for blood and the custom manufactured 

saliva collection devices are comparable to previous research (Hanson et al., 2007; Rogers et 

al., 2007). The failure of the mouthwash protocol to produce results may be due to the 

storage of samples at room temperature for 48h prior to DNA extraction. This may have been 

due to the absence of a preservative solution that is added to the Oragene and Norgen 

collection devices. The prolonged room temperature storage time was added to the standard 

protocol in order to replicate sample collection from participants, which may be sent via 

courier or collected away from the facilities needed for analyses.  

 

The results showed that both Oragene and Norgen collection devices are equal to blood 

collection in terms of yield, purity and success genotyping. As both collection devices 
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performed similarly, the preferred collection device was determined by practical 

considerations such as cost and availability.   

 

In summary, commercially manufactured saliva collection and extraction kits (Oragene, 

Norgen) are feasible non-invasive alternatives to blood for DNA collection that needs to be 

taken in a field setting, when time is at a premium and a sufficient number of specialist 

phlebotomists are not available. Saliva collection by Oragene or Norgen kits has the potential 

to maximise the number of participants recruited, while not compromising or reducing the 

quality of DNA.  

 

Following this study, Norgen saliva collection kits were used in studies 2 and 3 (Chapter 5 

and 6) in order to maximise the number of participants willing to take part in the studies 

without compromising on DNA quality and yield.     
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Chapter 5.0. Genotype Dependent 

Changes in Bone Phenotypes in 

Academy Footballers 
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5.1. Introduction  

 

Long-term weight bearing exercise has a primarily anabolic effect on bone phenotypes 

(Please see section 2.3.2.). Despite the consistent demonstration of the anabolic effects of 

weight-bearing exercise on bone, there remain some uncertainties over the level of stimulus 

needed to cause bone adaptations and the mechanisms by which these adaptations occur. 

Physical activity during growth periods has been shown to cause changes in many bone 

characteristics and act as a preventative mechanism against stress fracture injury (Please see 

section 2.3.2.3.), thus making the adolescent population relevant in investigations into bone 

response to exercise. The osteogenic effects of  football are greater than in other sports (Ferry 

et al., 2013; Ferry et al., 2011; Morgan et al., 2011; Mudd et al., 2006; Creighton et al., 

2001), most likely due to the high magnitude, frequency and multi-directional nature of the 

movements that football training and match play necessitate (Vicente-Rodriguez et al., 2003). 

BMC (Morgan et al., 2011; Vicente-Rodriguez et al., 2004), areal BMD (Ferry et al., 2012; 

Helge et al., 2010; Krustrup et al., 2010), cortical CSA, circumference and thickness (Nilsson 

et al., 2012), as well as bone strength (Ferry et al., 2011) have all been shown to be increased 

in recreational football players compared to sedentary Control populations, in both 

prospective and cross sectional studies.  

 

Despite mainly anabolic findings, negative outcomes as a result of weight-bearing exercise 

have been reported. Collegiate athletes (football, volleyball, cross country running) showed a 

reduced volumetric BMD at the tibia when compared to sedentary individuals (Weidauer et 

al., 2012). Similarly, elite footballers showed lower cortical BMD at the tibia compared to 

swimmers (Schipilow et al., 2013). Although sport selection bias could be evident due to the 

cross sectional nature of previous studies, one reason for the differences is thought to be due 

to increased bone remodelling, caused by loading, leading to a delay in secondary 
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mineralisation (Seeman and Delmas, 2006). Factors such as rapid increases in training 

volume have also been implicated in negative effects on bone phenotypes, including stress 

fracture injury (Bennell et al., 1999). The reasons for exercise eliciting both positive and 

negative changes to bone structural properties are multi-faceted and are likely to involve the 

mode, intensity and volume of exercise, as well as various intrinsic and extrinsic factors 

(Please see sections 2.4.2. and 2.4.3.). Indeed, there is a lack of literature investigating the 

specific aspect of training that is associated with bone structural characteristics, as previous 

studies are either cross-sectional (Ferry et al., 2012; Helge et al., 2010; Krustrup et al., 2010) 

or introduce an intervention that is unaccustomed and increases exercise volume, intensity 

and duration (Dhamrait et al., 2003; Evans et al., 2013).     

 

Despite the wealth of cross sectional studies on the long-term bone adaptations in association 

with habitual participation in various sports, there is a lack of information relating to the 

mechanisms that may regulate these adaptations. Genotype has been associated with bone 

turnover (Garnero et al., 1995; Roshandel et al., 2010) and bone structural adaptations 

(Havill et al., 2013). It has been suggested that genotype may mediate the bone response to 

exercise and may explain some of the variability observed in bone adaptations (Please see 

section 2.5.). Despite evidence of genetic factors being associated with bone phenotypes, 

little is known about how genotype mediates the bone responses to increased training load.   

 

The aim of the present study is to investigate whether genotype is associated with phenotypic 

bone adaptations, quantified by pQCT, in adolescent academy footballers following 12 weeks 

of increased football-specific training. 
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5.2. Method 

5.2.1. Participants  

 

First year, full-time academy footballers (n=94) were recruited through previously 

established relationships with Nottingham Trent University and by word of mouth from five 

full-time football academies. Participants were deemed eligible for the study if they were 

aged ≥16 y, not currently taking any medication that influenced bone metabolism and had not 

received a joint replacement or prostheses. After reading the participant information sheet 

(Appendix 5.1.) and being fully briefed and having the opportunity to ask questions, 

participants signed a statement of informed consent (Appendix 5.2.), completed a pre-scan 

screening form (Appendix 5.3.) and completed a health screen questionnaire (Appendix 5.4.), 

which was scrutinised in order to confirm they met the inclusion/exclusion criteria. 

Participants detailed their playing position, age at which they first played competitive football 

and the amount of hours they spent training prior to full-time academy enrolment (Appendix 

5.5.).  

 

Following study completion, the respective coach and/or physiotherapist of the football club 

provided information related to each individual’s training time, which included time missed 

as a result of injury for the previous 12 weeks. Fourteen players who received an initial scan 

were lost to the follow-up scan for a variety of reasons (Figure 5.1.), leaving a cohort of n=80  

who completed both scans.  
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Figure 5.1. Academy footballers assessed and analysed depicted in a consort chart.  

 

5.2.2. Experimental Design 

 

All participants were recently enrolled full-time academy football players. Participants were 

tested for baseline variables during the first week of pre-season training including height, 

body mass and bone characteristics using pQCT. Participants then conducted 12weeks 

football specific training with their respective club followed by a repeat of the baseline 

assessments.     

    

5.2.3. Procedures  

 

5.2.3.1. Anthropometrics  

 

Height was measured to the nearest 0.2cm (Stadiometer, Seca, Hamburg, Germany). 

Participants removed footwear and stood flat footed with their heels against a back plate. 
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Body mass was recorded with participants wearing minimal clothing (shorts, t-shirt) to the 

nearest 0.05kg using electronic scales (Seca, Birmingham, U.K.).  

 

5.2.3.2. Training Intervention 

 

Academy footballers that were deemed of a suitable standard graduated through the academy 

to become first year scholars. Although habitually accustomed to football training and match-

play as part of their representation of the academy in younger age groups, the start of the 

study was timed to coincide with their first experience of full-time training.  Football specific 

training (including, high intensity running drills, small-sided games and technique based 

drills) and match play was conducted by qualified coaches at the respective clubs.   

 

5.2.3.3. pQCT 

 

pQCT scans were conducted using an XCT 2000 (Stratec Medizintechnik, Pforzheim, 

Germany) to assess the bone characteristics of the tibia of the dominant leg (leg the 

participant most comfortably kicks a ball with) (Figure 5.2.). Before scanning commenced 

the scanner was calibrated using a phantom of known density in accordance with 

manufacturer guidelines. The participant’s tibial length was measured to the nearest 1 mm; 

defined as the midpoint of the medial malleolus to the medial aspect of the tibial plateau. The 

participants leg was then placed in the scanner with their foot secured in a purpose built 

attachment. The leg was aligned and a clamp was placed to the knee to reduce the possibility 

of artefacts by minimising any movement of the limb. The participant was instructed to 

remain as still as possible for the duration of the scan. Initially, a preliminary reference point 

locating scout-view scan was performed in the frontal plane to confirm the location of the 

middle of the distal end plate, which would act as a positioning line. Sectional images, 2 mm 
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thick were then obtained at the 4%, 14%, 38% and 66% sites of the tibia from this reference 

line with a voxel size set at 0.5mm for all measurements (Figure 5.4.). These sites are 

typically used to analyse trabecular and cortical characteristics of the tibia. A contour mode, 

with a threshold of 180mg·cm
-3

, was used to separate soft tissue and bone. To analyse 

trabecular bone, a constant default threshold of 711mg·cm
-3

 was used to identify and remove 

cortical bone. The integral XCT 2000 software (version 6.20A) was used to analyse the 

pQCT images. 

 

                  

Figure 5.2. Example images from pQCT scanner at 4%, 14%, 38% and 66 % of tibial length. 

 

5.2.3.3.1. Bone characteristics  

 

The following measures were analysed at each site of the tibia: 

4%: total cross sectional area (Tot CSA, mm
2
) and trabecular mineral density (mg·cm

-3
).14% 

and 38%: Tot CSA, (mm
2
), cortical CSA (mm

2
), cortical mineral density (mg·cm

-3
), cortical 

thickness (mm), periosteal circumference (mm) and stress strain index (SSI,mm
-3

). 66%: Tot 

CSA, (mm
2
) and cortical mineral density (mg·cm

-3
). 

 

The SSI was determined using the bone threshold of 1200mg·cm
-3

. SSI is the density-

weighted polar section modulus of a cross-section and reflects the strength of the long bone 
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with respect to torsion (multi-plane bending), the formula for SSI calculation is shown in 

Figure 5.3. 

 

SSI = ∑ (d
2
 x A x vBMDvox/vBMDmax) 

     d max 

    

Figure 5.3. Equation for the calculation of Strength Strain Index. A = CSA of the voxel, d = 

distance of the voxel from the centre of gravity, vBMDvox = vBMD in the voxel (mg·cm
3
), 

vBMDmax = maximum therorectical vBMD of human bone (mg·cm
3
) and d max =  maximum 

distance of any of the voxels of the cortical CSA to the centre of gravity. 

 

The same operator performed all pQCT measurements. If any movement artefacts 

(inaccuracies in the measurement caused by motion) were present following the scan the 

image was classed as invalid and a repeat measure was performed. If an artefact was present 

in the second image the participant was removed from the study in line with the radiation 

exposure guidelines. 

 

Figure 5.4. Scanned regions of the tibia in academy footballers. 
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5.2.4. Genetic Procedures  

 

 

Methods of saliva sample collection, DNA extraction and genotyping are described in 

sections 3.4 – 3.8. 

 

5.2.5. Statistical analysis 

 

All data are presented as mean ± SD. Distributions of genotypes were tested for maintenance 

of Hardy-Weinberg equilibrium (HWE) using chi-squared. 
 
Paired sample t-tests were used to 

compare participant characteristics and bone characteristics at baseline and following the 

training period. Genotype related associations with bone phenotypes at baseline were 

analysed by one-way ANOVA. Repeated measures ANOVA was used to assess any bone 

phenotypic changes that occurred in relation to genotype as a result of the training period.  P 

values of <0.05 were considered statistically significant. Multiple comparison testing was not 

applied due to the conservative nature of the Bonferroni correction increasing the likelihood 

of a type I error and the absence of an appropriate statistical test to consider previous and 

future analysis. All statistical analysis was performed with Statistical Package for the Social 

Sciences (SPSS) version 13.0 (SPSS, Inc., Chicago, IL, USA).   

 

5.3. Results 

 

Eighty participants were available for the follow-up procedure (Figure 5.1.). All SNPs were 

in accordance with HWE, produced call rates ≥ 89% and had minor allele frequencies 

comparable to previous literature (Table 5.1.).  Participants were made up from a variety of 

ethnicities (54 Caucasian, 14 Caucasian/black dual heritage, 7 black Caribbean, 4 black 

African and 1 Asian) and composed of differing playing positions (35 midfielders, 22 

defenders, 16 forwards and 7 goalkeepers).     
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Table 5.1. SNPs for which academy footballers were genotyped, along with Hardy-Weinberg 

Equilibrium (HWE) P value, call rate % and minor allele frequency (MAF).  

  HW P-value Call Rate % MAF % 

RANKL rs9594759 0.15 91 45 

RANK rs3018362 0.24 93 32 

RANKL rs1021188 0.39 96 25 

P2X7 rs3751143 0.47 91 16 

P2X7 rs1718119 0.82 95 42 

Wnt16 rs2707466 0.16 90 50 

RANKL rs9594738 0.25 95 49 

SOST rs1877632 0.55 89 21 

MP3K rs8065345 0.82 95 15 

IL6 rs13447445 0.06 98 42 
 

 

5.3.1. Participant characteristics 

 

Participants body mass significantly increased post intervention however, tibial length did not 

significantly change (Table 5.2). The amount of training hours per week significantly 

increased (106%) following full-time academy induction. Participant characteristics for each 

genotype are shown in Appendix 5.6. 

 

Table 5.2. Characteristics of academy footballers analysed pre and post 12 wk of increased 

training volume: mean (SD). * denotes a significant difference (P<0.01).  

Characteristics (n=80) Pre Post P value 

Height (m) 1.76±6.6 1.77±6.2 >0.05 

Body Mass (kg) 70.3±8.1 71.2±8.2 <0.01* 

Tibia length (mm) 387.3±21.3 387.4±21.1 >0.05 

Age when first played competitively (y) 9.5±2.0 N/A N/A 

Training (h/wk) 5.8±2.3 11.9±1.3 <0.01* 

  
 

5.3.2. Bone Response to Increased Training 

 

Trabecular (4% of tibial length) and cortical density (14%, 38% of tibial length), cortical 

CSA (14%, 38% of tibial length), total CSA (66% of tibial length), cortical thickness (14%, 
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38% of tibial length) and SSI (14%, 38% of tibial length) significantly increased following 12 

weekk of increased volume training (P<0.05) (Table 5.3.).  

 

Table 5.3. Bone phenotypes (mean±SD) at 4%, 14%, 38% and 66% of the tibia measured 

prior to and following 12 wk football specific training. (CSA) = cross sectional area. A 

significance level of P<0.05 used. * was used to denote significance. 

    Football n=80    

 Bone Phenotype Pre Post % Change P value 

4% site   
  

  

Trabecular Density (mg·cm
3
) 285.7±33.0 290.9±31.7 1.8↑ <0.01* 

Total CSA (mm
2
) 1334.1±149.7 1345.3±149.9 0.8↑ 0.10 

14% site        

Cortical Density (mg·cm
3
) 1060.4±33.9 1066.5±30.4 0.6↑ <0.01* 

Total CSA (mm
2
) 570.1±80.4 572.5±80.0 0.4↑ 0.09 

Cortical CSA (mm
2
) 214.1±23.9 216±23.2 0.9↑ <0.01* 

Cortical Thickness (mm) 2.86±0.39 2.88±0.38 0.7↑ 0.02* 

Periosteal Circumference (mm) 84.44±5.82 84.62±5.79 0.2↑ 0.08 

SSI 
 

2038.2±368.6 2064.5±372.9 1.3↑ 0.04* 

38% site        

Cortical Density (mg·cm
3
) 1111.0±30.9 1116.6±27.6 0.5↑ <0.01* 

Total CSA (mm
2
) 487.4±62.5 488.3±61.3 0.2↑ 0.29 

Cortical CSA (mm
2
) 357.2±41.6 360.3±40.6 0.9↑ <0.01* 

Cortical Thickness (mm) 6.05±0.52 6.11±0.52 1.0↑ <0.01* 

Periosteal Circumference (mm) 78.10±4.95 78.18±4.85 0.1↑ 0.23 

SSI 
 

2055.8±399.5 2104.0±398.5 2.3↑ <0.01* 

66% site        

Cortical Density (mg·cm
3
) 839.5±115.2 838.7±106.8 0.1↓ 0.84 

Total CSA (mm
2
) 1076.9±27.4 1082.3±25.5 0.5↑ <0.01* 

 

 

 

5.3.3. Bone Phenotypes Genotype Associations 

 

Of the 480 comparisons made, 15 significant associations were shown between SNPs in the 

proximity of the RANK/RANKL/OPG, P2X7R and Wnt signalling pathways and bone 

phenotypes were shown at baseline and post training, a genotype-dependent change bone 

phenotypic response to training was also shown (P<0.05). No significant associations were 

shown in MAP3K14 rs8065345 SNP or IL6 rs13447445 SNP (P<0.05).  
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5.3.3.1. RANK/RANKL/OPG 

 

SNPs rs1021188, rs9594738 and rs9594759 within the RANK/RANKL/OPG signalling 

pathway were associated with bone phenotypes at baseline and post increased training 

(P<0.05, Table 5.4.). No genotype dependent differences were shown in relation to RANK 

SNP rs3018362. Despite evidence of various trends, no significant genotype x time 

interactions were shown (P>0.05). 

 

Homozygotes for the T allele of rs9594738 was associated with cortical CSA showing a 

10.2mm
2
 (5.0%) and 16.5mm

2
 (8.1%) decrease compared to homozygosity for the common 

allele and heterozygotes at baseline (P>0.05). Post training, homozygotes for the T allele had 

lower cortical CSA at the 14% (8.6mm
2
, 4.0%; 16.6mm

2
, 7.4%) tibial site (P>0.05). 

 

Mean cortical CSA was significantly higher (13.3mm
2
; 6%) in homozygotes for the common 

allele of RANKL SNP rs1021188 in comparison to the heterozygotes and homozygotes for the 

rare allele at baseline (P <0.05). Post training, decreases of 6.4% (13.7mm
2
) and 6.7% 

(6.7mm) were shown in cortical CSA and cortical thickness at the 14% site when 

homozygosity for the common allele of rs1021188 was compared to heterozygotes and 

homozygosity for the rare allele (P <0.05). 

 

Cortical density at the 66% site was also significantly less in homozygotes of the rare allele 

of RANKL SNPs rs9594759 post training in comparison to homozygotes of the common 

allele (-18.5 mg/cm
3
, -1.7%) (P <0.05). 
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Table 5.4. Baseline and post training bone phenotypes in academy footballers compared by genotype. Bone phenotypes are shown for each SNP 

genotyped and comparisons between genotypes are assessed pre and post training. Comparisons between genotypes and the change in bone 

phenotype is also displayed. *BOLD depicts significance (P <0.05) and # depicts trends (P<0.10). P values of  >0.05 are not reported. 

RANKL rs9594759  Football n=73               

 
  Pre   P value Post   P value P value 

 Genotype       CC = 18 CT = 30 TT =25 Pre CC = 18 CT = 30 TT =25 Post Change 

4% site            

Trabecular Density (mg·cm
3
) 282.2±32.8 290.5±30.6 290.2±34.6 0.66 286.1±33.7 296.0±28.8 295.7±32.0 0.52 0.63 

Total CSA (mm
2
) 1313.7±183.4 1360.1±134.6 1306.1±129.9 0.35 1316.0±177.9 1366.9±148.0 1319.9±122.4 0.39 0.80 

14% site                     

Cortical Density (mg·cm
3
) 1056.4±32.2 1063.3±31.0 1063.9±35.2 0.73 1064.6±27.0 1069.1±30.5 1068.8±30.3 0.86 0.64 

Total CSA (mm
2
) 564.8±85.8 583.7±90.0 554.4±56.9 0.38 564.4±85.4 586.8±92.1 556.7±49.2 0.34 0.65 

Cortical CSA (mm
2
) 209.4±22.1 222.8±23.9 210.1±24.5 0.08 211.9±21.4 224.5±24.4 212.5±22.3 0.09 0.80 

Cortical Thickness (mm) 2.81±0.39 2.94±0.37 2.84±0.43 0.46 2.84±0.37 2.96±0.40 2.86±0.37 0.50 0.80 

Periosteal Circumference (mm) 84.02±6.35 85.41±6.43 83.36±4.18 0.41 83.99±6.32 85.63±6.58 83.56±3.70 0.37 0.64 

Stress Strain Index   2021.9±376.0 2143.2±436.4 1947.2±231.6 0.14 2056.6±382.2 2160.5±441.3 1973.2±244.2 0.18 0.88 

38% site                     

Cortical Density (mg·cm
3
) 1104.1±32.9 1114.3±26.0 1117.4±30.4 0.32 1109.5±30.1 1119.7±24.0 1123.4±25.1 0.22 0.95 

Total CSA (mm
2
) 488.8±55.0 501.2±71.3 474.4±54.2 0.29 488.7±53.4 503.3±69.3 474.8±52.4 0.22 0.57 

Cortical CSA (mm
2
) 345.86±35.6 372.0±46.5 350.4±36.6 0.13 358.6±35.6 375.0±45.1 352.3±36.4 0.10 0.34 

Cortical Thickness (mm) 5.98±0.51 6.25±0.53 6.03±0.50 0.15 6.06±0.44 6.29±0.52 6.07±0.51 0.17 0.63 

Periosteal Circumference (mm) 78.26±4.36 79.17±5.62 77.09±4.34 0.30 78.26±4.23 79.35±5.45 77.13±4.22 0.23 0.53 

Stress Strain Index  2039.4±355.1 2162.8±471.4 1983.3±317.8 0.24 2107.0±356.8 2205.6±463.8 2025.8±337.8 0.25 0.72 

66% site                     

Cortical Density (mg·cm
3
) 1065.5±25.8 1081.4±25.9 1083.6±26.3 0.06 1071.2±23.6 1085.8±25.1 1089.7±23.6 0.04 0.58 

Total CSA (mm
2
) 857.7±124.2 863.1±122.7 803.0±80.6 0.11 849.1±86.5 866.3±122.1 802.7±77.8 0.07 0.52 
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RANK rs3018362 Football n=74               

 
  Pre 

  
P value Post 

  
P value P value 

Genotype       AA =10 AG=28 GG=36 Pre AA =10 AG=28 GG=36 Post Change 

4% site   
         

Trabecular Density (mg·cm
3
) 238.4±34.4 284.6±29.3 289.8±34.9 0.77 290.2±29.8 288.8±30.2 295.0±33.0 0.72 0.53 

Total CSA (mm
2
) 1340.8±160.7 1337.9±121.4 1333.6±165.1 0.98 1333.4±155.4 1333.2±127.3 1355.3±162.5 0.82 0.10 

14% site                    

Cortical Density (mg·cm
3
) 1051.1±21.7 1063.9±33.9 1061.0±32.9 0.56 1059.9±20.8 1069.7±31.8 1066.6±28.0 0.65 0.72 

Total CSA (mm
2
) 578.3±94.0 572.1±81.8 568.0±72.1 0.93 581.7±92.7 573.8±82.4 570.2±70.2 0.92 0.94 

Cortical CSA (mm
2
) 209.6±29.9 214.8±23.4 217.1±23.4 0.69 211.5±30.5 217.2±22.1 219.3±22.6 0.66 0.96 

Cortical Thickness (mm) 2.75±0.34 2.86±0.39 2.91±0.41 0.53 2.77±0.34 2.89±0.39 2.93±0.39 0.49 0.87 

Periosteal Circumference (mm) 85.0±6.83 84.60±5.78 84.32±5.34 0.94 85.26±6.72 84.72±5.82 84.49±5.22 0.93 0.92 

Stress Strain Index   2076.3±474.6 2058.2±370.8 2037.6±342.0 0.95 2110.9±484.1 2074.6±348.4 2067.9±369.0 0.95 0.86 

38% site                   

Cortical Density (mg·cm
3
) 1110.9±16.2 1110.2±33.7 1114.3±27.8 0.85 1115.3±18.0 1115.8±30.9 1120.6±23.6 0.72 0.73 

Total CSA (mm
2
) 485.5±70.6 490.6±61.1 489.6±59.9 0.97 488.4±72.1 492.4±60.3 489.0±57.1 0.97 0.31 

Cortical CSA (mm
2
) 356.8±53.5 362.7±37.8 359.5±41.0 0.92 360.4±53.6 365.9±37.8 361.3±40.0 0.89 0.24 

Cortical Thickness (mm) 6.03±0.60 6.14±0.44 6.08±0.56 0.83 6.09±0.57 6.20±0.45 6.12±0.53 0.78 0.90 

Periosteal Circumference (mm) 77.92±5.65 78.38±4.76 78.30±4.76 0.97 78.15±5.74 78.53±4.70 78.26±4.55 0.97 0.32 

Stress Strain Index 
 

2097.5±479.6 2059.1±413.2 2078.4±362.3 0.96 2131.5±484.5 2120.1±407.3 2120.2±371.3 0.99 0.72 

66% site                   

Cortical Density (mg·cm
3
) 1072.2±17.2 1079.5±30.9 1078.1±24.5  0.75 1077.7±19.2 1083.6±29.6 1084.5±21.6 0.74 0.35 

Total CSA (mm
2
) 853.5±116.2 840.5±109.3 841.8±112.6  0.95 859.8±120.5 845.6±109.5 834.1±89.9 0.76 0.26 
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RANKL rs1021188 Football n=76               

 
  Pre 

  
P value Post 

  
P value P value 

 Genotype       CC/CT = 24 GG = 52 Pre CC/CT = 24 GG = 52 Post Change 

4% site   
         

Trabecular Density (mg·cm
3
) 285.5±30.2 

 
290.0±36.7 0.58 291.0±36.7 

 
294.5±34.8 0.64 0.55 

Total CSA (mm
2
) 1322.2±139.0 1354.5±160.8    0.37 1337.0±142.1 1347.5±158.8    0.77 0.11 

14% site                     

Cortical Density (mg·cm
3
) 1060.6±33.9 1062.3±32.9      0.84 1066.2±30.6 1069.9±29.0        0.62 0.46 

Total CSA (mm
2
) 564.3±71.9 

 
576.9±90.7 0.51 568.1±72.6 

 
575.2±87.8 0.71 0.07 

Cortical CSA (mm
2
) 210.9±23.5 

 
224.2±21.8 0.02 213.0±22.7 

 
226.7±21.2 0.01 0.75 

Cortical Thickness (mm) 2.82±0.38 
 

2.99±0.37 0.07 2.84±0.37 
 

3.03±0.35 0.04 0.36 

Periosteal Circumference (mm) 84.05±5.24 
 

84.90±6.55 0.54 84.33±5.28 
 

84.79±6.37 0.74 0.07 

Stress Strain Index   2008.6±358.6 2112.8±380.1    0.25 2043.6±365.7 2117.2±387.7      0.42 0.27 

38% site                     

Cortical Density (mg·cm
3
) 1112.8±30.3 1111.4±30.0      0.85 1118.9±26.8 1115.7±26.6        0.62 0.31 

Total CSA (mm
2
) 480.5±59.3 

 
501.5±65.9 0.17 481.0±57.4 

 
503.6±64.6 0.13 0.40 

Cortical CSA (mm
2
) 352.9±39.2 

 
371.8±43.1 0.06 356.0±38.4 

 
374.2±42.9 0.07 0.51 

Cortical Thickness (mm) 6.02±0.51 
 

6.24±0.52 0.09 6.09±0.49 
 

6.27±0.51 0.15 0.24 

Periosteal Circumference (mm) 77.6±4.72 
 

79.22±5.21 0.17 77.61±4.56 
 

79.39±5.11 0.13 0.40 

Stress Strain Index 
 

2007.1±385.9 2180.4±397.9 0.08 2062.9±378.3 2211.8±426.3      0.13 0.37 

66% site                     

Cortical Density (mg·cm
3
) 1078.0±27.5 1077.2±25.7       0.90 1084.0±25.3 1081.6±24.6         0.70 0.33 

Total CSA (mm
2
) 835.5±114.2 846.9±112.1       0.69 833.0±100.3 849.4±113.2         0.53 0.55 
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RANKL rs9594738 Football n=76               

 
  Pre 

  
P value Post 

  
P value P value 

 Genotype      CC = 21 CT = 32 TT = 23 Pre CC = 21 CT = 21 TT = 23 Post Change 

4% site   
         

Trabecular Density (mg·cm
3
) 875.9±54.9 892.5±54.2 890.3±54.4 0.50 884.3±50.5 898.8±51.7 898.4±50.6 0.64 0.41 

Total CSA (mm
2
) 1325.2±175.7 1352.7±136.7 1308.8±134.9 0.54 1340.8±176.7 1350.0±145.3 1335.2±125.9 0.93 0.22 

14% site                     

Cortical Density (mg·cm
3
) 1059.6±28.7 1062.9±35.9 1058.8±34.4 0.89 1068.1±21.4 1068.5±35.7 1063.8±28.5 0.84 0.55 

Total CSA (mm
2
) 571.2±88.5 573.8±82.4 555.2±59.1 0.66 572.8±91.3 575.5±82.7 559.4±52.3 0.74 0.76 

Cortical CSA (mm
2
) 214.7±19.9 221.0±24.8 204.5±21.9 0.03 215.5±19.6 223.5±24.2 206.9±19.9 0.02 0.37 

Cortical Thickness (mm) 2.87±0.38 2.94±0.37 2.76±0.41 0.22 2.89±0.39 2.97±0.38 2.77±0.35 0.14 0.59 

Periosteal Circumference (mm) 84.48±6.54 84.72±5.88 83.42±4.34 0.69 84.59±6.72 84.84±5.89 83.75±3.93 0.77 0.66 

Stress Strain Index   2082.4±380.1 2091.4±404.7 1894.0±207.8 0.09 2122.4±397.0 2106.0±401.9 1921.9±218.1 0.11 0.72 

38% site                     

Cortical Density (mg·cm
3
) 1108.2±26.7 1113.6±33.2 1113.5±29.1 0.79 1114.3±24.4 1118.6±30.4 1119.8±23.8 0.78 0.77 

Total CSA (mm
2
) 501.8±57.3 488.5±66.6 465.5±53.2 0.13 501.4±55.1 490.7±65.3 465.6±51.1 0.12 0.39 

Cortical CSA (mm
2
) 364.0±36.5 363.1±45.2 345.0±36.0 0.19 366.5±34.8 366.3±44.3 347.2±36.0 0.16 0.68 

Cortical Thickness (mm) 6.01±0.52 6.18±0.54 6.00±0.47 0.43 6.11±0.44 6.23±0.53 6.05±0.49 0.41 0.99 

Periosteal Circumference (mm) 79.29±4.54 78.28±5.26 76.37±4.25 0.13 79.27±4.35 78.36±5.14 76.39±4.11 0.11 0.37 

Stress Strain Index 2137.5±362.9 2089.5±453.5 1907.9±281.6 0.11 2193.3±347.9 2129.7±446.8 1957.0±321.1 0.11 0.88 

66% site                     

Cortical Density (mg·cm
3
) 1071.2±21.4 1080.4±31.6 1080.2±24.7  0.43 1076.8±18.8 1085.1±30.5 1086.5±21.5 0.38 0.65 

Total CSA (mm
2
) 869.6±120.0 840.8±114.9 794.1±82.0  0.07 860.6±86.6 844.6±115.4 793.3±79.0 0.059 0.41 
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P2X7R rs3751143 Football n=73   

      
 

  Pre 
  

P value Post 
 

 

P value P value 

 Genotype       CC/CT = 22 TT = 51 Pre CC/CT = 22 TT = 51 Post Change 

4% site         

Trabecular Density (mg·cm
3
) 281.6±35.3 

 
289.6±33.0 0.33 288.1±33.8 

 
294.0±32.1 0.45 0.21 

Total CSA (mm
2
) 1324.0±146.7 1340.3±155.8     0.67 1340.0±138.7 1345.8±160.3       0.88 0.47 

14% site                     

Cortical Density (mg·cm
3
) 1057.0±33.8 1065.0±30.4       0.29 1063.8±32.3 1069.7±27.9         0.42 0.36 

Total CSA (mm
2
) 553.1±66.5 

 
582.1±87.6 0.20 554.9±56.1 

 
584.2±89.7 0.19 0.94 

Cortical CSA (mm
2
) 215.4±29.8 

 
215.7±21.6 0.96 218.3±28.7 

 
217.3±21.3 0.89 0.33 

Cortical Thickness (mm) 2.94±0.51 
 

2.84±0.34 0.38 2.96±0.47 
 

2.86±0.35 0.34 0.79 

Periosteal Circumference (mm) 83.23±4.92 
 

85.30±6.30 0.20 83.40±4.22 
 

85.44±6.45 0.21 0.89 

Stress Strain Index   1959.0±251.3 2114.7±405.7     0.12 2000.4±298.4 2130.1±404.6       0.20 0.39 

38% site                     

Cortical Density (mg·cm
3
) 1106.0±34.5 1115.4±26.9       0.22 1114.1±31.0 1119.5±25.0         0.41 0.04 

Total CSA (mm
2
) 485.5±61.1 

 
497.6±63.9 0.34 480.3±57.3 

 
499.1±63.4 0.28 0.40 

Cortical CSA (mm
2
) 354.5±43.6 

 
364.1±40.3 0.38 356.4±43.1 

 
367.2±39.6 0.31 0.24 

Cortical Thickness (mm) 6.08±0.68 
 

6.09±0.47 0.83 6.11±0.63 
 

6.16±0.48 0.67 0.39 

Periosteal Circumference (mm) 77.56±4.88 
 

78.92±5.04 0.33 77.56±4.60 
 

79.04±4.98 0.28 0.43 

Stress Strain Index 
 

1987.6±425.2 2134.6±425.5     0.17 2051.2±357.5 2175.0±417.2       0.26 0.41 

66% site                     

Cortical Density (mg·cm
3
) 1074.0±31.5 1080.3±24.0       0.33 1080.6±28.3 1084.9±23.5          0.48 0.20 

Total CSA (mm
2
) 831.8±116.9 854.5±115.1       0.49 822.0±80.1 857.3±115.0  0.22 0.15 
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P2X7R rs1718119 Football n=76               

 
  Pre 

  
P value Post P value 

 
P value P value 

Genotype        CC = 25 CT = 38 TT =13 Pre CC = 25 CT = 38 TT =13 Post Change 

4% site   
         

Trabecular Density (mg·cm
3
) 290.6±37.5 283.9±31.6 286.9±30.0 0.74 296.2±35.9 289.2±30.5 290.1±30.0 0.69 0.52 

Total CSA (mm
2
) 1323.9±158.0 1330.4±140.5 1360.7±164.9   0.76 1333.2±158.2 1339±144.6 1364.7±160.4  0.82 0.96 

14% site                     

Cortical Density (mg·cm
3
) 1062.5±27.6 1060.9±33.4 1068.4±33.4     0.77 1070.1±24.2 1065.7±31.1 1072.8±32.2    0.70 0.50 

Total CSA (mm
2
) 560.3±89.1 573.9±79.1 583.8±72.2 0.67 559.8±84.6 578.3±79.7 584.1±74.9 0.59 0.29 

Cortical CSA (mm
2
) 220.4±24.1 209.6±23.9 222.1±18.7 0.11 223.4±23.1 210.6±22.6 225.7±20.0 0.04 0.10 

Cortical Thickness (mm) 3.0±0.41 2.77±0.39 2.92±0.28 0.08# 3.03±0.39 2.78±0.37 2.98±0.30 0.02 0.09# 

Periosteal Circumference (mm) 83.67±6.56 84.74±5.59 85.50±5.31 0.63 83.65±6.26 85.06±5.63 85.51±5.50 0.55 0.29 

Stress Strain Index   2045.0±366.5 2020.8±373.3 2159.3±356.8   0.53 2095.6±397.9 2045.0±373.4 2147.8±335.2  0.67 0.25 

38% site                     

Cortical Density (mg·cm
3
) 1110.9±24.1 1113.9±34.1 1116.0±22.4     0.86 1116.2±20.6 1118.8±31.7 1121.4±19.4    0.85 0.95 

Total CSA (mm
2
) 494.64±75.4 484.1±56.8 499.2±54.1 0.69 495.0±72.1 485.9±57.4 499.0±52.1 0.75 0.63 

Cortical CSA (mm
2
) 366.4±47.5 351.1±37.3 372.9±31.7 0.15 369.1±45.8 353.5±36.8 376.8±33.1 0.12 0.55 

Cortical Thickness (mm) 6.20±0.58 5.94±0.54 6.28±0.30 0.05 6.25±0.50 5.98±0.54 6.38±0.35 0.02 0.33 

Periosteal Circumference (mm) 78.62±6.03 77.87±4.45 79.01±4.27 0.70 78.67±5.77 78.02±4.48 79.09±4.12 0.75 0.67 

Stress Strain Index 
 

2105.8±448.7 2025.8±373.3 2087.3±317.1   0.88 2161.9±463.1 2045.0±377.1 2171.7±328.0  0.67 0.26 

66% site                     

Cortical Density (mg·cm
3
) 1076.4±19.7 1079.5±29.6 1081.0±25.6     0.85 1081.4±16.5 1085.0±28.0 1085.8±26.9   0.86 0.90 

Total CSA (mm
2
) 852.9±134.5 837.4±104.1 850.3±108.0     0.86 844.9±113.7 838.6±101.9 857.0±107.3   0.82 0.39 
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Wnt16 rs2707466 Football n=72                

 
  Pre 

  
P value Post 

   
P value P value 

Genotype        AA = 21 AG = 30 GG = 21 Pre AA = 21 AG = 30 GG = 21 
 

Post Change 

4% site   
        

 
 

Trabecular Density (mg·cm
3
) 293.8±30.0 286.0±30.8 278.8±33.8 0.32 298.8±27.6 289.0±29.8 287.2±33.2 0.40 0.01 

Total CSA (mm
2
) 1319.5±147.2 1357.9±145.0 1313.8±157.1 0.52 1329.9±146.9 1358.4±149.8 1330.7±155.7 0.74 0.60 

14% site                      

Cortical Density (mg·cm
3
) 1054.3±39.7 1062.6±33.5 1069.0±22.2 0.35 1061.9±32.6 1069.4±33.4 1072.4±18.4 0.50 0.43 

Total CSA (mm
2
) 583.7±74.6 578.5±83.8 552.1±71.9 0.37 584.9±77.1 578.0±79.8 558.9±74.4 

 
0.53 0.14 

Cortical CSA (mm
2
) 214.3±25.2 213.2±23.3 217.0±21.7 0.85 217.0±23.1 216.4±23.5 217.5±21.4 

 
0.99 0.11 

Cortical Thickness (mm) 2.82±0.42 2.81±0.32 2.96±0.38 0.32 2.86±0.41 2.85±0.31 2.94±0.37 
 

0.65 0.06 

Periosteal Circumference (mm) 85.57±5.41 85.06±5.96 83.13±5.38 0.36 85.55±5.59 85.04±5.68 83.63±5.54 
 

0.52 0.14 

Stress Strain Index   2101.0±350.0 2070.0±403.2 2001.7±327.5 0.67 2152.7±353.8 2105.4±418.0 1983.6±302.8 0.32 0.12 

38% site                      

Cortical Density (mg·cm
3
) 1102.3±31.6 1114.4±32.4 1123.5±17.3 0.06 1108.4±27.9 1120.3±28.6 1127.9±15.5 

 
0.05 0.71 

Total CSA (mm
2
) 505.9±54.5 492.4±71.8 471.9±47.7 0.20 507.6±55.1 491.2±67.9 474.8±48.9 

 
0.21 0.14 

Cortical CSA (mm
2
) 367.1±28.2 358.9±45.1 354.6±37.1 0.61 370.0±37.3 362.2±44.4 356.4±36.6 

 
0.56 0.45 

Cortical Thickness (mm) 6.06±0.49 6.03±0.51 6.16±0.53 0.66 6.11±0.46 6.12±0.50 6.17±0.52 
 

0.91 0.08 

Periosteal Circumference (mm) 79.62±4.30 78.47±5.65 76.91±3.87 0.20 79.75±4.34 78.39±5.33 77.15±3.96 
 

0.21 0.16 

Stress Strain Index 
 

2001.3±364.0 2067.5±454.4 1971.0±300.7 0.17 2238.7±355.3 2140.4±467.6 1997.0±285.9 0.14 0.29 

66% site                      

Cortical Density (mg·cm
3
) 1071.8±25.8 1078.2±31.2 1084.3±18.3 0.35 1077.7±22.2 1083.9±30.7 1089.0±16.6 0.36 0.60 

Total CSA (mm
2
) 857.5±92.6 859.2±133.9 816.3±89.3 0.32 860.2±94.0 853.1±112.8 818.4±90.7 

 
0.35 0.78 
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SOST rs1877632 Football  n=71               

 
  Pre 

  
P value Post 

  
P value P value 

Genotype        GG = 45   GA/AA = 26 Pre GG = 45   GA/AA = 26 Post Change 

4% site   
         

Trabecular Density (mg·cm
3
) 281.6±29.6 

 
298.1±36.7 0.04 286.2±28.8 

 
303.6±33.2 0.03 0.58 

Total CSA (mm
2
) 1333.6±163.0 1316.9±105.9 0.64 1347.0±162.2 1316.9±111.0 0.40 0.35 

14% site                     

Cortical Density (mg·cm
3
) 1064.6±28.9 1058.2±32.5 0.41 1071.0±27.4 1061.8±28.3 0.20 0.27 

Total CSA (mm
2
) 571.9±84.8 

 
562.7±67.9 0.64 573.7±83.7 

 
565.8±68.4 0.68 0.70 

Cortical CSA (mm
2
) 214.4±20.1 

 
216.3±30.1 0.75 216.0±19.9 

 
219.4±28.8 0.55 0.19 

Cortical Thickness (mm) 2.86±0.37 
 

2.90±0.41 0.68 2.88±0.37 
 

2.94±0.40 0.53 0.40 

Periosteal Circumference (mm) 84.56±6.12 
 

83.96±4.94 0.67 84.70±6.06 
 

84.19±4.98 0.71 0.70 

Stress Strain Index   2049.9±359.4 2041.0±392.7 0.92 2078.3±371.6 2059.2±393.2 0.84 0.72 

38% site                     

Cortical Density (mg·cm
3
) 1113.5±27.0 1112.9±26.7 0.93 1118.9±24.0 1117.4±24.2 0.82 0.62 

Total CSA (mm
2
) 490.7±63.0 

 
486.2±65.6 0.77 490.5±60.2 

 
489.2±66.0 0.94 0.09 

Cortical CSA (mm
2
) 361.4±38.6 

 
360.9±47.0 0.96 364.0±37.9 

 
364.0±46.4 0.97 0.68 

Cortical Thickness (mm) 6.11±0.45 
 

6.15±0.61 0.76 6.17±0.43 
 

6.19±0.60 0.86 0.50 

Periosteal Circumference (mm) 78.37±4.95 
 

78.0±5.27 0.74 78.37±4.73 
 

78.24±5.29 0.92 0.09 

Stress Strain Index 
 

2063.7±387.6 2081.7±441.2 0.86 2122.4±401.4 2114.7±425.3 0.94 0.36 

66% site                     

Cortical Density (mg·cm
3
) 1079.4±25.2 1078.0±23.7 0.59 1085.1±24.3 1082.4±21.9 0.65 0.38 

Total CSA (mm
2
) 846.1±119.2 830.6±106.7 0.83 841.9±103.8 834.9±108.4 0.79 0.34 
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MP3K rs8065345 Football n=76               

 
  Pre 

  
P value Post 

  
P value P value 

Genotype       AA = 55   AG/GG = 21 Pre AA = 55   AG/GG = 21 Post Change 

4% site   
         

Trabecular Density (mg·cm
3
) 285.3±32.1 

 
289.8±36.5 0.60 290.6±31.1 

 
294.7±34.8 0.61 0.85 

Total CSA (mm
2
) 1339.0±142.8 1335.5±178.0 0.93 1345.1±144.7 1348.1±175.5 0.94 0.65 

14% site                  

Cortical Density (mg·cm
3
) 1058.5±33.7 1064.8±32.0 0.46 1064.6±29.1 1071.5±32.0 0.37 0.85 

Total CSA (mm
2
) 567.4±72.9 

 
581.2±102.6 0.51 569.8±74.3 

 
582.5±97.9 0.55 0.74 

Cortical CSA (mm
2
) 214.3±25.7 

 
216.6±18.8 0.70 216.3±25.1 

 
219.0±18.0 0.66 0.80 

Cortical Thickness (mm) 2.86±0.41 
 

2.87±0.35 0.96 2.89±0.41 
 

2.90±0.34 0.94 0.90 

Periosteal Circumference (mm) 84.28±5.30 
 

85.16±7.38 0.57 84.45±5.40 
 

85.28±7.05 0.59 0.83 

Stress Strain Index   2022.3±345.3 2120.9±425.5 0.30 2040.5±335.3 2164.6±460.0 0.20 0.38 

38% site                  

Cortical Density (mg·cm
3
) 1111.0±32.3 1112.4±26.0 0.86 1116.4±29.3 1118.5±22.2 0.77 0.71 

Total CSA (mm
2
) 484.9±57.7 

 
500.1±76.4 0.35 486.5±57.8 

 
499.7±72.0 0.41 0.32 

Cortical CSA (mm
2
) 355.2±39.2 

 
370.1±45.0 0.16 358.1±39.6 

 
372.7±41.8 0.16 0.70 

Cortical Thickness (mm) 6.03±0.56 
 

6.23±0.48 0.15 6.08±0.56 
 

6.28±0.36 0.14 0.99 

Periosteal Circumference (mm) 77.92±4.60 
 

79.05±6.01 0.38 78.06±4.59 
 

79.05±5.66 0.43 0.37 

Stress Strain Index 
 

2038.6±356.3 2152.0±495.5 0.27 2084.1±350.8 2205.5±506.9 0.24 0.78 

66% site                  

Cortical Density (mg·cm
3
) 1076.7±28.0 1078.3±25.4 0.82 1082.0±26.1 1084.8±23.3 0.67 0.46 

Total CSA (mm
2
) 831.1±101.7 871.0±144.8 0.18 834.5±102.1 859.4±119.0 0.37 0.86 
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 IL6 rs13447445   Football n=78               

 
  Pre 

  
P value Post 

 
 

P value P value 

Genotype        CC = 18 CG = 30 GG = 30 Pre CC = 18 CG = 30 GG = 30 Post Change 

4% site   
      

   Trabecular Density (mg·cm
3
) 282.9±41.2 287.7±28.0 286.9±33.7   0.88 288.1±39.5 293.3±27.1 291.8±32.4   0.86 0.91 

Total CSA (mm
2
) 1347.6±153.6 1323.4±163.9 1326.8±131.8      0.85 1352.9±159.7 1331.7±157.4 1346.2±137.7      0.88 0.69 

14% site                    

Cortical Density (mg·cm
3
) 1052.6±30.1 1060.5±31.2 1067.2±36.0        0.33 1057.3±29.2 1066.4±26.0 1073.2±34.0       0.22 0.91 

Total CSA (mm
2
) 548.0±68.7 577.7±92.7 575.3±75.2     0.43 550.1±72.0 579.9±88.7 578.3±76.6      0.41 0.97 

Cortical CSA (mm
2
) 214.6±28.3 211.1±22.6 217.4±22.5     0.59 216.5±27.9 214.2±21.4 218.6±22.7      0.77 0.28 

Cortical Thickness (mm) 2.93±0.46 2.80±0.40 2.88±0.32     0.46 2.96±0.47 2.83±0.36 2.89±0.34      0.50 0.66 

Periosteal Circumference (mm) 82.83±5.15 84.96±6.62 84.86±5.46     0.43 82.98±5.37 85.14±6.34 85.07±5.55      0.40 0.97 

Stress Strain Index   1950.6±363.4 2058.9±396.8 2079.0±343.4      0.49 1986.0±389.4 2077.3±396.6 2105.9±354.8     0.56 0.88 

38% site                    

Cortical Density (mg·cm
3
) 1111.4±28.5 1107.9±30.0 1115.5±33.2        0.63 1116.4±26.4 1113.2±26.2 1121.1±30.2       0.55 0.96 

Total CSA (mm
2
) 471.3±58.4 492.8±73.4 492.7±54.5     0.46 471.7±54.8 493.4±72.6 494.1±54.3      0.42 0.89 

Cortical CSA (mm
2
) 349.0±40.8 361.8±42.5 358.4±42.2     0.59 352.2±39.5 365.0±42.1 361.2±40.6      0.58 0.92 

Cortical Thickness (mm) 6.05±0.65 6.09±0.39 6.02±0.64     0.86 6.18±0.60 6.17±0.38 6.07±0.60      0.76 0.82 

Periosteal Circumference (mm) 76.82±4.73 78.49±5.77 78.57±4.33     0.45 76.87±4.44 78.55±5.70 76.68±4.30      0.42 0.91 

Stress Strain Index 
 

1947.7±362.3 2090.3±463.2 2091.7±362.4      0.42 2004.2±354.9 2151.3±478.3 2122.2±345.0     0.46 0.53 

66% site                    

Cortical Density (mg·cm
3
) 1072.9±27.4 1078.1±25.6 1079.8±29.0        0.70 1077.6±26.0 1083.9±23.1 1084.7±28.0       0.62 0.74 

Total CSA (mm
2
) 821.7±136.3 838.2±122.5 854.4±98.1     0.64 809.7±93.7 841.2±122.1 856.4±99.9      0.35 0.27 
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5.3.3.2. Wnt Signalling  

 

 

Trabecular density at the 4% site was associated with the rare allele of the SOST SNP 

rs1877632 (P<0.05). Carriers of at least one rare allele were shown to have a 16.5 mg·cm
3
 

(5.9%) greater trabecular density when compared to homozygotes for the common allele 

prior to the start of 12 weeks increased training volume (P<0.05). Following training these 

differences in trabecular density at the 4% site remained (17.4mg·cm
3
, 6.1%) (P<0.05).   

 

Wnt16 SNP rs2707466 was associated with cortical density at the 38% site following training 

(P<0.05). Homozygotes of the C allele was associated with an increase (19.5mg·cm
3
, 1.8%) 

in comparison to homozygotes of the A allele (Table 5.4.). A significant time x genotype 

interaction effect was also shown for rs2707466 in relation to trabecular density at the 4% 

site and cortical thickness at the 14% site (P<0.05) (Table 5.4.).  Homozygotes of the C allele 

showed a greater increase in trabecular density at the 4% site in comparison to other allele 

combinations (P<0.05)  (Table 5.4.). 

   

5.3.3.3. P2X7R 

 

P2X7R SNPs rs1718119 showed a significant association with cortical thickness at the 38% 

site (P<0.05) at the baseline scan. Homozygotes of the rare, gain of function allele was 

significantly associated with a 0.34mm (5.4%) increase in comparison to heterozygotes 

(P<0.05). Phenotypes assessed at the 12 weeks scan also showed a similar 0.40mm (6.3%) 

increase in cortical thickness at the 38% site in comparison to the rare allele of rs1718119. 

rs1718119 heterozygotes showed lower cortical thickness at the 14% site post training in 

comparison to homozygotes for the rare (0.2mm, 7.2%) and common (0.25mm, 9%) allele. A 

significantly lower cortical CSA (38% site) was also evident in heterozygotes when 
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compared to homozygotes for the rare (12.8mm
2
, 6.1%) and common (15.1mm

2
, 7.2%) allele 

(P<0.05). Despite no significant associations being shown at the pre or post scan 

measurements, heterozygosity and homozygosity for the rare allele of rs3751143 was shown 

to have a greater increase in cortical density at the 38% site (8.1mg·cm
-3

 compared to 

4.1mg·cm
-3

, significant time x genotype interaction). 

 

5.4. Discussion 

 

This study shows, for the first time, that specific SNPs are associated with trabecular density, 

cortical thickness, cortical CSA and density of the tibia in adolescent, male, elite academy 

footballers. The associations of SNPs with distinct bone phenotypes at different tibial sites 

highlight the complexity of the genetic contribution to bone morphology. Cross-sectional 

studies in non-athletic adults have shown SNPs to have an association with bone phenotypes 

at rest (Havill et al., 2013; Paternoster et al., 2010; Styrkarsdottir et al., 2008; Richards et al., 

2008). Similarly, studies conducted in military recruits have shown genotype to be associated 

with bone accrual in response to 10 weeks basic training (Dhamrait et al., 2003).  

 

5.4.1. RANK/RANKL/OPG signalling pathway  

 

An association between SNP rs9594738 and bone size was shown, with homozygotes of the 

T allele associated with lower cortical CSA. It has previously been reported that the T allele 

was associated with lower BMD at the femur and lumbar spine (Kemp et al., 2013; 

Styrkarsdottir et al., 2008) and associated with a greater hip fracture risk (Zhang et al., 2011). 

However, Guo et al (2012) reported beneficial effects of the T allele, showing it to be 

protective for osteoporotic hip fracture. The reason for the contrasting findings may be due to 

the ethnicity of the population, as the positive effects of the T allele have only been shown in 
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a Chinese population. As only 1% of the participants in the current study were from Asian 

heritage (self-reported), the present data follow previously published findings showing an 

association between the variant allele of rs9594738 and adverse bone phenotypes (Table 

2.3.). Although there is no known mechanism for the effects of rs9594738 on bone 

remodelling and structural differences, the variance in genotype may inhibit RANK - RANKL 

binding and, therefore, influence osteoclast differentiation and activation, subsequently 

mediating bone resorption (Boyle et al., 2003). rs9594738 may also have a functional role in 

bone homeostasis through its regulation of how other factors influence the 

RANK/RANKL/OPG signalling pathway. It has been suggested that allelic differences in the 

rs9594738 SNP may have a mediatory role in the process by which 1,25-(OH)2D induces 

RANKL expression in osteoblast and osteoblast precursor cells (Yostovitz et al., 2013). The 

key role of rs9594738 is further supported by the absence of linkage disequilibrium with 

other known functional RANK/RANKL/OPG SNPs. rs9594738 is located in a different 

haplotype block and has different transcription factor binding sites to other previously studied 

RANK/RANKL/OPG SNPs, meaning it is unlikely to act as a proxy for these SNPs, increasing 

the likelihood that its effects are divergent. 

 

The minor allele of RANKL SNP rs1021188 was associated with lower cortical CSA and 

cortical thickness at 14% of the tibia pre and post increased training. A trend was also evident 

for time x genotype interaction, showing the minor allele to be associated with increased 

periosteal circumference and total CSA at the 14% tibial site (Table 5.4). These data are in 

accordance with large scale GWAS, reporting an association between the minor allele and 

lower cortical BMD (Paternoster et al., 2010) and volumetric BMD (Paternoster et al., 2013). 

The minor allele of rs1021188 has been associated  a greater cortical porosity at the tibia 

(Paternoster et al., 2013) and increased circulating free RANKL (Paternoster et al., 2010), 
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possibly increasing osteoclastogenesis and bone resorption in carriers of the minor allele. 

Although speculative, the association of the minor allele of rs1021188 with lower cortical 

CSA and cortical thickness, could suggest an uncoupling of bone turnover resulting from 

increased bone resorption, providing a possible mechanistic explanation for the findings.  

 

Homozygotes of the minor allele of RANKL SNP rs9594759 was associated with lower 

cortical density at the 66% site of the tibia following 12 weeks of increased volume of 

football training. As cortical density is a factor in bone strength, carriers of the minor allele 

might experience bone weakness and deficiencies that may lead to bone injury. The minor 

allele being associated with lower cortical density is contrary to previous research showing 

the minor allele of rs9594759 to be associated with greater BMD at the lumbar spine, hip and 

calcaneus (Styrkarsdottir et al., 2008; Roshandel et al., 2010). The reason for the difference 

in findings may be related to the age of the participants. Styrkarsdottir et al. (2008) and 

Roshandel et al. (2010) conducted studies demonstrating the positive effects of the minor 

allele in aged populations (mean age ~60 y, male and female). Previous studies have not 

alluded to the activity levels of their participants, although due to the age of the cohorts used 

it is likely that they are not currently elite athletes. The active status of the cohort in the 

present study may have also influenced the direction of the SNP’s effect. This is speculative 

as gene-environment interactions are not well understood. Recent evidence suggests that the 

minor allele of rs9594759 is related to an impairment of neuromuscular function and 

muscular characteristics (Alfred et al., 2013). It is possible that the effect of rs9594759 on 

bone is indirect and is due to impairment in muscular function that affects the amount of 

strain placed upon the bone. Bone and muscle act as a unit in the creation and application of 

strain, and this unit may have influenced the bone phenotypes measured in the present and in 

previous studies. Muscle is known to absorb some of the impact created by mechanical 
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loading and also exerts strain upon the bone during muscular contractions (Schoenau, 2005; 

Schipilow et al., 2013), a deficiency in the muscles ability to do this may have resulted in the 

bone undergoing a higher degree of strain. The effect of the genotype may only convey subtle 

differences that are not shown in young elite athletes but over time may explain the greater 

BMD shown in the elderly participants investigated in previous studies (Styrkarsdottir et al., 

2008; Roshandel et al., 2010).        

 

5.4.2. Wnt Signalling  

 

Following 12 weeks of increased training, cortical density, trabecular density and cortical 

thickness were associated with Wnt16 SNP rs2707466. The Wnt signalling pathway is a 

major regulator of bone metabolism, having a significant role in the mediation of the 

differentiation and longevity of osteoblasts. The specific role of Wnt ligands and genes that 

are involved in the Wnt signalling process remain poorly understood. However, the influence 

of several SNPs on bone phenotypes (Zheng et al., 2012; García-Ibarbia et al., 2013) may be 

due to a mediating role in osteoblastic activity. SOST and Wnt16 are two such genes that have 

previously been shown to influence bone phenotypes. Wnt16 signals through the non-

canonical pathway and the molecular mechanisms of its actions have been associated with 

stem cell regulation (Clements et al., 2011). Following 12 weeks of increased training, 

homozygotes for the C allele was associated with greater cortical density at the 38% site of 

the tibia, while the change in trabecular density (4%) was also associated with homozygotes 

for the C allele. These data are in accordance with previous research showing the C allele to 

be associated with a bone phenotypes in two large samples in both young and old participants 

at the tibia and radius (Zheng et al., 2012). A copy of the C allele has also been associated 

with a greater osteoporotic fracture risk (García-Ibarbia et al., 2013). While homozygosity for 
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the C allele was associated with increased trabecular density in response to training, 

associations only existed in cortical density post training at the 38% site. Although, as the 

38% site may be the most functionally relevant site in terms anatomical position of stress 

fracture injury (Wall and Feller, 2006), any changes shown at this site may be of the most 

clinical significance. The data related to BMD is equivocal, while the C allele has been 

associated with a lower BMD at the femoral neck and lumber spine (García-Ibarbia et al., 

2013), data from a larger, replication cohort showed no significant difference (Zheng et al., 

2012). The lack of agreement in the findings may highlight the site specific effects genotype 

has on bone composition and anatomical site. These data, taken together, substantiate the 

important role of Wnt16 SNP rs2707466 in relation to bone phenotypes, particularly cortical 

thickness. As cortical thickness has previously been associated with stress related bone 

injuries (Newsham-West et al., 2013), it could be suggested that Wnt16 SNP rs2707466 

genotype may have a role in the mediation of susceptibility to stress fracture injury. However, 

the magnitude of change in bone characteristics needed for clinical significance and clinical 

effects is not currently known.   

 

 

The association of SOST rs1877632 with trabecular density, suggests that this SNP may 

mediate early bone remodelling in response to exercise. Expressed primarily in osteocytes, 

sclerostin has a key role in Wnt signalling as it acts as a negative regulator of bone formation 

(Krishnan et al., 2006). The SOST gene has been associated with increased bone formation, 

BMD and increased trabecular bone mass in sclerostin null mice (Li et al., 2008). In 

accordance with the present findings, carriers of the rare allele have previously been shown to 

display a greater BMD at the lumbar spine, an area made up of predominantly trabecular 

bone (Yerges et al., 2009). Although the previous studies cohorts were elderly (mean age ~75 

y) compared to the present population (mean age 16 y), the % difference was similar (5.9% 



134 

 

and 6.1% compared to 6.0% and 10.2%), showing the effect of the SNP may influence bone 

density in various populations. This suggests that the SNPs affect is demonstrated in early 

age and maintained throughout the lifespan, which may have implications for the early 

diagnosis of individuals at a heightened risk of bone disorders. As the bone mass and density 

achieved in childhood are predictive of bone mass and density in adulthood (Bonnet and 

Ferrari, 2010), it could be speculated that rs1877632 is an important determinant of these 

characteristics. If this association in confirmed, preventative measures, such as modification 

of training and exercise, could be put in place in order to maximise bone gain in those with 

unfavourable allelic variants.   

 

5.4.3. P2X7R  

 

 

Associations between the gain of function allele of rs1718119 and increased bone phenotypes 

were shown in academy footballers. Increased cortical thickness were shown at the 38% tibial 

site at baseline and following 12 weeks of increased volume training. Stress fracture injuries 

commonly occur in the vicinity of the 38% site of the tibia (Wall and Feller, 2006) and low 

CSA and cortical thickness are associated with stress fracture incidence (Popp et al., 2009; 

Newsham-West et al., 2013). This suggests that the rare allele of rs1718119 may provide a 

protective mechanism against stress fracture injury by increasing bone structural 

characteristics related to bone strength. Recent in vivo studies have shown variants in 

rs1718119 to be related to bone phenotypes. These include increased BMD in middle aged 

(≥50y) osteoporotic men and women (Wesselius et al., 2012, Husted et al., 2013) and a 

reduced susceptibility to vertebral fracture in post-menopausal women and osteoporotic men 

and women (Jorgenson et al., 2012; Husted et al., 2013). This is the first known study, 

however, to show associations between rs1718119 and bone geometry in a young, active 
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population. The rs1718119 SNP is located in transmembrane domain 2 of P2X7R; an allelic 

variation results in increased receptor functioning related to monocyte activation and 

increases in interleukin-1 alpha and beta release from monocytes and macrophages (Stokes et 

al., 2010). The close proximity to a permeability gating region is demonstrated in the 

mediation of pore formation (Sun et al., 2009) and increased permeability to K
+
 and 

ethidium
+
 in comparison to P2X7R wild-type mice (Stokes et al., 2010). As well as the 

differences observed between homozygosity of the rare allele and heterozygotes, increased 

cortical thickness and CSA at the 14% site were also seen when comparing homozygotes of 

the common allele and heterozygotes. These differences are surprising as the rare allele 

would have been expected to show gain of function characteristics based on its known 

mechanistic function (Please see section 2.5.2.1.3.2.2.). It can be speculated that gene-gene 

and/or gene-environment interactions may have occured in which those homozygous for the 

common allele may be compensated for the loss of function by another SNP. It is difficult to 

substantiate this in the present study, but recent data in mice demonstrated gene-gene and 

gene-environment modulation related to exercise (Kelly et al., 2014).    

 

Homozygosity for the variant allele of SNP rs3751143 was associated with a greater cortical 

density at the 38% site of the tibia in response to 12 weeks of increased volume training. 

rs3751143 has a known cellular function and research has shown allelic variations to have 

bone phenotypic consequences (Wesselius et al., 2012; Ohlendorff et al., 2007). rs3751143 is 

associated with a loss of function when glutamic acid is substituted with alanine. 

Homozygosity for the variant allele of rs3751143 has been shown to cause a complete loss of 

receptor function, whereas heterozygotes have half of the receptor functionality (Gu et al., 

2002), meaning that a linear dose response relationship is evident. In vitro, rs3751143 

variations are associated with osteoclast apoptosis (Ohlendorff et al., 2007), reduced pore 

formation (Gu et al., 2002) and a reduction in pro-inflammatory cytokine secretion (Sluyter 
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et al., 2004). In vivo rs3751143 variants are associated with lower hip BMD (Husted et al., 

2013) and a greater risk of fracture (Wesselius et al., 2012; Ohlendorff et al., 2007), which 

are contrary to the greater bone strength shown in the present study. The reason for the 

differences may be related to the population assessed and/or the location of the bone 

phenotype. Previous studies assessed primarily elderly and osteoporotic patients (Husted et 

al., 2013; Ohlendorff et al., 2007) who have divergent bone characteristics and environmental 

stresses compared to the younger athletic cohort in the present study. Trabecular bone (hip, 

lumbar spine) were the main sites identified in previous studies, whereas the present study 

showed no association with trabecular BMD at the epiphysis of the tibia, while the rest of the 

measurements were taken on predominantly cortical bone.  

 

The genotype dependent morphology of bone structural properties in the present study may 

have implications for bone health, and injury risk. Cortical bone size is an important factor in 

the determination of bone strength (Seeman and Delmas, 2006). Decreased bone size has 

been associated with increased fracture risk (Newsham-West et al., 2013), while BMD is a 

commonly used predictor of fracture risk (Duncan and Brown, 2008). Decreased or inferior 

bone phenotypic responses to exercise training may reflect a delay in structural adaptations or 

may highlight an area of weakness in the bone remodelling response. This may be 

symptomatic of the early stages of bone injury or may reflect subtle bone weakness, which 

could potentially lead to bone disease in later life. The findings showing a genotype 

dependent response to football specific training may also have implications for weight-

bearing exercise being used as a treatment and preventative measure for bone disease. The 

present study showed a genotype dependent response to increased training volume in P2X7R 

rs3751143 and Wnt16 rs2707466 and that several bone phenotypes were associated with SNP 

related differences at baseline (Table 5.4.). Although the specific training stimulus each 
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individual encountered, in terms of intensity, was not known, these data suggest that there 

may be a genotype dependent bone phenotypic response to football training. This highlights 

that different directional and magnitudinal loads may occur in adolescent footballers 

encountering the same training volume. This supports the premise that individualised training 

regimes may be required in order to elicit positive bone adaptations in all.  

 

Significant associations between genotype and participant characteristics were shown 

(Appendix 5.6.). Higher training hours were significantly associated with RANK rs3018362 

prior to the intervention and P2X7R rs1718119 prior to and following the intervention. As 

previously reviewed (Please see section 2.3.1.), differences in training volume and type 

correspond to differences in bone phenotypes, although the associations were not related to 

corresponding bone phenotypic changes in the present study. Although body mass and 

training hours increased in the whole cohort after 12 weeks (Table 5.2.), no genetic 

associations were shown with any of the demographic data recorded (Appendix 5.6.). These 

results are not unexpected due to the large environmental influences on body mass and 

training volume and the highly polygenic nature of height (Yang et al., 2010). Although some 

demographic differences are likely to be associated with genotype and may indirectly have an 

influence on bone phenotype, none of the SNPs investigated in the present study have been 

previously associated with the demographic data recorded. It is unclear how the demographic 

data impacts on, or mediates, the measured bone phenotypes. It could be speculated that as 

body mass and presumed muscle mass increase as a result of training, so too does the strain 

exerted on the bone through an increase in ground reaction forces and bone strain as a result 

of muscular contractions, although there are likely to be a vast amount of genes and SNPs 

that mediate this process. Gene-environment interactions remain a poorly understood area of 

investigation and warrant genome wide exploration in large, heterogeneous populations with 
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the use of bioinformatics resources to examine how various genetic and environmental 

interactions combine.     

 

Overall, 12 weeks of increased volume football training showed an anabolic effect on 

numerous bone phenotypes at a range of tibial sites (Table 5.3.). The present study shows; 1) 

an anabolic effect from an increased training volume in an already habitually active cohort 

who have an history of football specific training; 2) bone morphological effects of increased 

training in elite adolescent footballers. These prospective data in adolescent footballers are in 

line with cross sectional (Morgan et al., 2011; Ferry et al., 2012; Nilsson et al., 2012) and 

longitudinal (Helge et al., 2010; Krustrup et al., 2010; Vicente-Rodriguez et al., 2004) 

studies showing the osteogenic effects of football specific training. The observed response is 

thought to be due to the high magnitude, irregular impacts that football specific training 

necessitates (Vicente-Rodriguez et al., 2003). Although anabolic adaptations were evident 

across the group as a whole, a degree of individual response was evident, in keeping with 

previous data (Nilsson et al., 2012; Krustrup et al., 2010; Vicente-Rodriguez et al., 2004).  

 

Despite being the largest known study to undertake such an investigation, it is not without 

limitation. Ethnicity and specific training stimulus (academy players were from 5 different 

clubs, and played in numerous positions) were not controlled. However, the study cohort was 

homogenous; the participants were of equivalent age and all male, they had similar lifetime 

and recent training histories and environment variables, such as the time of year the scan took 

place and dietary habits (participants ate two meals per day together at respective club), were 

also comparable. As there was a 12 week time difference between the first and second scan, 

participant maturation may have influenced the findings. However, no significant differences 

occurred in tibial length, ensuring the same tibial site was being scanned during both visits.  
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Due to the relatively short follow-up period (12 weeks) maturation is unlikely to have 

influenced the findings (Meiring et al., 2014). Despite significant genotype dependent 

differences observed in bone phenotypes, such as cortical thickness, CSA and density, it is 

unclear whether these differences are clinically significant in terms of heightened 

susceptibility to bone injury. Lower BMD (Wentz et al., 2012), cortical CSA (Popp et al., 

2009) and cortical thickness (Newsham-West et al., 2013) have all previously been 

associated with stress fracture injury, although these associations were not made in 

adolescent footballers. As sports and activities have different levels of loading caused by 

differences in training and match-play, bone phenotypic differences have also been shown to 

occur (Please see section 2.3.2.). Therefore, an injury risk threshold for bone phenotypes is 

yet to be characterised in this specific population. Only the tibia was assessed in the present 

study and so, the bone changes shown cannot be generalised to changes in bone structure at 

other anatomical locations. However, by using pQCT, important differentiations between 

cortical and trabecular bone could be made, clarifying the specific impact football training 

has on the components of bone. Due to the number of comparisons made, there is a 

possibility that the findings occurred by chance, however as the majority of the results are in 

the same direction as previously published literature and a mechanistic explanation can be 

offered, the chances of a type II error are unlikely. 

 

5.4.5. Conclusions 

 

An increase in bone phenotypes following 12 weeks of increased volume football training is 

evident. Individual SNPs were associated with bone phenotypes at baseline, following the 

intervention and the change between pre and post measurements thus, highlighting the 

genotype dependent bone phenotypic response to the same training stimulus. These data add 
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to our understanding of the genetic contribution to bone phenotypic responses and 

morphology in response to mechanical loading. It also highlights possible mechanisms to 

which pharmaceutical interventions may be applied in the hope of strengthening bone to 

improve bone health.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 

 

Chapter 6.0. Genetic Associations with 

Stress Fracture Injury in Elite Athletes 
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6.1. Introduction  

 

Study 2 showed that specific SNPs were associated with bone phenotypes before and after 

increased training and, in some cases, were associated with the change in bone phenotypic 

responses to an increased training volume in elite adolescent footballers. It remains to be seen 

whether the genotype related associations shown are of clinical significance in relation to the 

manifestation of bone injury, such as stress fracture.      

 

Stress fractures arise following the inability of bone to tolerate repeated mechanical loading 

and are characterised by damage to the bone micro-architecture (Warden et al., 2006), 

thought to be caused by an imbalance in osteoblastic bone formation and osteoclastic bone 

resorption. The subsequent micro-damage results in a net bone loss and localised bone 

weakening, prompting stress fracture development (Fyhrie et al., 1998). Stress fracture 

incidence in elite athletes and military recruits ranges from 14 to 21% (Lappe et al., 2001; 

Bennell et al., 1996) and most commonly manifests in the lower limbs (Gaeta et al., 2005). 

Elite athletes and military recruits have an increased risk of stress fracture injury in 

comparison to the general population due to the high rate and amplitude of mechanical 

loading in their training.  

 

Stress fracture injury in athletes is likely to have a complex aetiology involving numerous 

factors. For example, prior training (Tenforde et al., 2013) and biomechanical variables (e.g., 

running kinematics) (Milner et al., 2006) are implicated in stress fracture risk. Susceptibility 

may also have a genetic component, supported by reports of monozygotic twins developing 

similar stress fracture injuries (Singer et al., 1990; Van Meensal and Peers, 2010), multiple 

stress fractures occurring in the same individual (Lambros and Alder 1997), stress fractures in 

some individuals but not in others undertaking identical training protocols (Lappe et al., 
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2001; Bennell et al., 1996) and a family history of stress fracture injury acting as a risk factor 

(Loud et al., 2007).  

 

No published literature exists in relation to genetic associations with stress fracture injury in 

elite athletes. Genetic associations with stress fracture incidence have been investigated in 

military personnel using a variety of SNPs previously associated with receptors known to 

influence bone mineralisation (Garnero et al., 1996), remodelling (Garnero et al., 1996) and 

endocrine abnormalities (Beilin et al., 2000). Associations were shown for SNPs and 

haplotype blocks within the vitamin D receptor (Chatzipapas et al., 2009; Korvala et al., 

2010) and an androgen receptor repeat sequence (Yanovich et al., 2011).  Other studies have 

shown no associations for the same SNPs in other military populations (Cosman et al., 2013; 

Valimaki et al., 2005). The reason for the disparity may be due to the range of SNPs analysed 

and small numbers of stress fracture cases in some studies (e.g., n=64, Chatzipapas et al., 

2009). Given that disturbance in bone remodelling and the inability of bone to withstand 

continued bouts of mechanical loading are implicated in the development of stress fracture 

injury (Warden et al., 2006), SNPs consistently associated with these bone phenotypes in 

large-scale studies would appear worthy of focused study. As all previous studies have used 

military personnel, studies involving alternative cohorts with a similarly high incidence of 

stress fracture injury (e.g., athletes) may provide insights into both the aetiology and genetic 

susceptibility to stress fracture injury.  

 

Many genes and SNPs are candidates for influencing stress fracture injury risk from 

previously published literature on genetic associations with fracture, BMD and biochemical 

markers of bone turnover (Please see section 2.5.2.1.3.; Table 2.3.). Many SNPs are thought 
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to influence Wnt (Study 2 and please see section 2.5.2.1.3.1.) and RANK/RANKL/OPG (Study 

2 and please see section 2.5.2.1.3.2.) signalling pathways . 

 

Other less established genes/SNPs may also demonstrate genetic associations with stress 

fracture injury; these include P2X7R (Study 2 and Please see section 2.5.2.1.3.2.2.) and VDR 

(Please see section 2.5.2.1.3.2.1.2.), which have been shown to influence RANKL expression 

(Gartland et al., 2003; Yoskovitz et al., 2013). Amongst other hypothesised mechanisms, the 

kallikrein-kinin system has been shown to regulate bone remodelling (Lerner, 1994). Kinin 

agonists appear to increase bone resorption through the stimulation of osteoclasts enhancing 

mineral mobilisation and matrix degradation (Lerner, 1994). Functional variants of SNPs 

within this system have been associated with large decreases in bone remodelling in vivo and 

in vitro (Slim et al., 2002).   

 

The present study will determine whether SNPs that have previously been associated with 

other bone phenotypes (Please see section 2.5.2.1.3.; Table 2.3.) are associated with the 

occurrence of stress fracture injury in elite athletes. 

 

6.2. Method 

6.2.1. Participants 

 

518 elite athletes, 449 male and 69 female, were recruited from professional sports clubs and 

elite sporting associations based in North America and the United Kingdom to form the 

Stress Fracture in Elite Athletes (SFEA) cohort (see Table 6.1. for participant characteristics). 

Participating elite athletes competed in various sports including football, cricket, track and 

field, rowing, boxing, tennis, hockey and gymnastics. Professional athletes were classified as 
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elite due to their full time participation in sport; non-professional athletes were classified as 

elite if they regularly competed at international or national level. Each participant completed 

a statement of informed consent and a health status questionnaire, which was followed by an 

athletic status questionnaire detailing age, playing position (if applicable), the average hours 

trained per week, number of appearances for their country, the first time they competed at an 

elite level and for how many years. A fracture history questionnaire was also completed 

containing questions on both fracture and stress fracture history, method of stress fracture 

confirmation, time, date, location and treatment of stress fracture, training prior to stress 

fracture, recurrence details and family history (Appendix 6.1.). The stress fracture group was 

made up of athletes that were classified as having a radiologically confirmed stress fracture 

injury (e.g., X-ray, MRI, CT). Athletes who reported stress fracture injuries without 

radiological confirmation were not included in the statistical analysis. The Control group was 

made up of athletes who had never had a stress fracture injury and had no reported history of 

stress fracture symptoms. Case and Control athletes were present in each sport. Ethical 

approval was granted by the Nottingham Trent University Ethical Review Committee 

(Humans).   

 

Data were sub-classified into male, female, cases of multiple stress fracture, invasion sports 

(football / hockey), cricketers, runners, stress fractures occurring before the age of 21 y and 

leg stress fractures, excluding the metatarsals, for the purposes of analyses. Sub-

classifications were made due to the suspected sport specific aetiology of stress fracture, the 

assumed greater genetic element in cases of multiple stress fracture, the reportedly distinct 

anatomically specific mediation of bone by genotype, previously shown bone phenotypic sex 

specific associations with SNPs and the number of athletes in each sub-classification. Stress 
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fracture injury occurrence was recorded at various anatomical sites; lower limb (56.8%), 

lumbar spine (33.5%), rib (6.5%) pelvic area (1.6%) and upper limb (1.6%). 

 

Of the 518 athletes who volunteered to take part in the study, 17 were removed from the 

analysis due to inconclusive stress fracture diagnosis (e.g., stress reactions, presumed stress 

fractures not radiologically confirmed). Analysis was carried out on 125 (98 men and 27 

women) athletes with a radiologically confirmed stress fracture injury and 376 (335 men and 

41 women) athletes who reported to have never experienced a stress fracture or stress related 

bone injury. The stress fracture group were significantly older than the non-stress fracture 

group at the time of collecting the saliva sample and at the age at which the elite level was 

reached across the whole cohort (P<0.01) (Table 6.1.). These differences remained significant 

along with height, body mass and hours training when only males were analysed (P<0.01). Of 

the other sub-classifications analysed, age (runners, cricketers, cases of multiple stress 

fracture, leg stress fractures excluding the metatarsals), height, (runners, cricketers, leg stress 

fractures excluding the metatarsals), weight (females, runners, cricketers, leg stress fractures 

excluding the metatarsals), BMI (cricketers, cases of multiple stress fracture, leg stress 

fractures excluding the metatarsals), age at elite status (female) and hours spent training per 

week (female) were significantly different when stress fracture cases were compared to 

Controls (Appendix 6.2.) 
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Table 6.1. Participant characteristics for stress fracture and non-stress fracture groups. A 

significance level of P<0.05 was used. P values of  greater than 0.05 are stated as >0.05. * 

was used to denote significance. 

 Characteristics 
Stress fracture 

(n=125) 

Non-stress 

fracture 

(n=376)  

P-value  

Age (y) 27.7±7.5 24.4±5.4 <0.01* 

Age at stress fracture (y)       19.9±3.9 -  

Height (m) 1.82±10 1.81±8.3 0.45 

Body Mass(kg) 77.3±14.5 77.8±10.5 0.72 

BMI 23.2±2.7 23.7±2.2 0.07 

Age at elite (y) 18.2+4.2 17±2.2 <0.01* 

Training (h/wk) 20±11.3 18.2±10.1 0.12 

Alcohol consumption 

(units/wk) 

5.2±6.9 4.1±6.1 0.15 

    
6.2.2. Genetic Procedures  

 

Methods of saliva sample collection, DNA extraction and genotyping are described in 

sections 3.4 – 3.8. 

 

6.2.3. Statistical Analysis 

 

Student’s t-test was used for the analysis of descriptive variables. Pearson Chi-square test (χ ) 

was used to assess the observed frequency of each genotype with what would be expected in 

accordance with Hardy-Weinberg Equilibrium (HWE) and differences in stress fracture 

occurance between genotypes. Odds ratios and corresponding 95% confidence intervals were 

calculated for stress fracture injury risk. P<0.05 was considered statistically significant in the 

principal analysis. Multiple comparisons testing was not applied due to the conservative 

nature of the Bonferroni correction increasing the likelihood of a type I error and the absence 

of an appropriate statistical test to consider previous and future analysis. All statistical 

analyses were performed using Statistical Package for the Social Sciences (SPSS) version 

13.0 (SPSS, Inc., Chicago, IL, USA).   
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6.3. Results  

 

All SNPs were in accordance with HWE with the exception of rs4355801 (OPG), which 

produced call rates ≥ 91% and had minor allele frequencies comparable to previous literature 

(Table 6.2.). The method of genotyping is robust and has a high level of internal validation 

and reliability, making errors in genotyping an unlikely reason for the deviance. 

 

Table 6.2. HWE P value, call rate and minor allele frequency (MAF) of SNPs analysed in 

stress fracture and non-stress fracture groups. A significance level of P<0.05 was used. * was 

used to denote significance.  

SNP Gene HW P-value Call Rate % MAF % 

rs2230912 P2X7R 0.16 94.6 17 

rs208294 P2X7R 0.07 97 2 

rs1653624 P2X7R 0.53 96.5 3 

rs3751143 P2X7R 0.16 94 16 

rs1718119 P2X7R 0.1 91.3 40 

rs3736228 LRP5 0.93 96.5 15 

rs1544410 VDR 0.94 94.3 39 

rs731236 VDR 0.85 94.5 37 

rs7975232 VDR 0.09 94 47 

rs10735810 VDR 0.26 93.9 33 

rs1801197 CTR 0.39 94.6 28 

rs1877632 SOST 0.14 93.1 30 

rs3018362 RANK 0.53 95.8 35 

rs1021188 RANKL 0.11 96.2 18 

rs9594738 RANKL 0.24 96 42 

rs4355801 OPG *0.04 95.6 41 

rs7041 GC 0.12 96.2 49 

rs4588 GC 0.79 95.8 28 

rs1800012 COL1A1 0.83 97 15 

rs16987491 Kallikrein 0.56 97.8 47 

rs1799722 Bradykinin  0.11 91.6 50 

rs3801387 Wnt16 0.71 95 28 

 

Of the 533 comparisons made, 67 significant associations were shown (Table 6.3.). Of the 22 

SNPs investigated, 12 were significantly associated with stress fracture injury in one or more 

of the classifications explored (Table 6.3.). Significant associations (P<0.05) with stress 

fracture injury were shown with SOST, LRP5, P2X7R, RANK/RANKL/OPG, Bradykinin and 
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VDR allele variations. No significant differences were seen in the other SNPs investigated 

(P>0.05) (Data shown in Appendix 6.3.). Odds ratio and 95% confidence intervals for all 

classifications are shown in Appendix 6.4.    

 

6.3.1. RANK/RANKL/OPG 

 

Four of the SNPs genotyped in close proximity to genes in the RANK/RANKL/OPG 

signalling pathway were associated with stress fracture injury occurrence in one or more sub-

classifications (P<0.05). rs3018362 (RANK) was the most prominent; homozygotes for the 

rare allele combined with heterozygotes was significantly associated with a greater stress 

fracture risk in the whole cohort, males and runners (P<0.05). A copy of the variant A allele 

was also associated with stress fracture occurrence in the whole cohort, males and with stress 

fractures occurring before the age of 21 y (P<0.05).  

 

Of the RANKL SNPs analysed, those homozygous for the rare allele of rs1021188 reported a 

greater occurrence of stress fracture injury in the whole cohort (OR 2.93; UCI 7.28- LCI 

1.18), and in male (OR 3.38; UCI 9.35- LCI 1.22), multiple stress fracture (OR 3.28; UCI 

10.11- LCI 1.06) and with stress fracture occurring before the age of 21y (OR 1.37; UCI 

1.63- LCI 0.36) sub-classifications in comparison to the non-stress fracture Control groups 

(P<0.05). The rare allele frequency of rs1021188 was also associated with a greater stress 

fracture injury occurrence in football and hockey players (P<0.05). rs9594738 was associated 

with increased stress fracture occurrence in cricket players (homozygotes for the rare allele) 

and football/hockey player sub-classifications (homozygotes of the rare allele, allele 

frequency and rare allele combined with heterozygotes) (P<0.05). The rare allele combined 

with heterozygotes of OPG SNP rs4355801 was significantly associated with increased stress 
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fracture occurrence in runners and cases of multiple stress fracture when compared to 

homozygotes of the common allele, while the frequency of the rare allele was significantly 

increased in leg stress fracture (excluding metatarsal) and runners (P<0.05).  

 

Exploratory analysis of allele combinations were conducted for multiple SNPs in close 

proximity to genes in the RANK/RANKL/OPG signalling pathway to examine how potential 

gene-gene interactions may affect stress fracture injury risk. However, due to the cohort size 

and in some cases the relatively low minor allele frequency, meaningful findings could not be 

deduced and therefore, no further analysis was undertaken.  

 

6.3.2. Wnt Signalling     

 

SOST SNP rs1877632 heterozygotes were associated with stress fracture risk in the whole 

cohort, cases of multiple stress fracture, football/hockey players, and runners when compared 

to homozygotes of the common allele (P<0.05). Significant associations were also shown 

when heterozygotes were combined with homozygotes of the rare allele and compared to 

homozygotes of the common allele in the same sub-classifications (with the exception of the 

running classification) (P<0.05). The frequency of the rare allele was significantly greater in 

stress fracture sufferers in the whole cohort, cases of multiple stress fracture and 

football/hockey stress fracture groups in comparison to non-stress fracture Control groups 

(P<0.05). The frequency of the rare allele of LRP5 SNP rs3736228 was significantly 

associated with greater stress fracture occurrence in the running sub-classification (P<0.05).   
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6.3.3. P2X7R  

 

Of the P2X7R SNPs only rs3751143 and rs1718119 were associated with stress fracture 

occurrence (P<0.05). Significant associations occurred across multiple sub-classifications 

(Table 6.3.). Greater stress fracture occurrence was detected when homozygotes for the rare 

allele were combined with heterozygotes of rs3751143 and compared to common allele 

homozygotes in the whole cohort and leg stress fracture (excluding metatarsal) sub-

classifications (P<0.05). The frequency of the rare allele was also significantly greater in leg 

stress fracture (excluding metatarsal) and the cricketer stress fracture group in comparison to 

non-stress fracture Controls (P<0.05). Homozygosity for the variant, gain of function allele of 

rs1718119 was significantly associated with a reduced stress fracture risk in cases of multiple 

stress fracture and runners when compared to non-stress fracture Control groups (P<0.05). 

The gain of function allele of rs1718119 was also significantly greater in the non-stress 

fracture groups of both the multiple stress fracture and running cohorts (P<0.05). 

 

6.3.4. Bradykinin 

 

A significant association between stress fracture occurrence and the bradykinin 2 receptor 

insertion/deletion sequence rs1799722 was shown in the whole cohort, males, 

football/hockey players, females and stress fractures occurring before the age of 21 (P<0.05). 

Insertions (+9) were significantly associated with a greater occurrence of stress fracture risk 

in male, stress fractures occurring before the age of 21 y and football/hockey player sub-

classifications (P<0.05). When insertions and insertion/deletions were combined, a 

significantly greater stress fracture risk was shown in the whole cohort, males and 

football/hockey players in comparison to those with the deletion sequence (-9) (P<0.05).  
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Table 6.3. Association of SNPs with stress fracture injury in elite athletes for the whole cohort, males, multiple stress fractures and leg stress fractures 

excluding metatarsal fractures. (Gene) = closest gene; (EA) = effect allele; (P) = P value; (Homo) = homozygote for the variant allele;  (Combined with 

Heterozygote) = homozygote for the variant allele combine with heterozygote; (AF) = allele frequency; (-) = insufficient participants with variant allele to 

perform appropriate statistics.  BOLD depicts significance (P<0.05). 

    

Whole cohort. P Males. P Multiple Stress Fractures. P Leg excluding metatarsal. P 

RS 

Number Location Gene EA Homo 

Combined  

with 

Heterozygote AF Homo 

Combined 

with 

Heterozygote AF Homo 

Combined 

with 

Heterozygote AF Homo 

Combined  

with 

Heterozygote AF 

rs2230912  12q24.3 P2x7 G 0.53 0.92 0.81 0.60 0.92 0.83 0.55 0.78 0.58 0.55 0.54 0.39 

rs208294  12q24.3 P2x7 T - 0.32 0.10 - 0.52 0.21 - 0.70 0.37 - 0.39 0.16 

rs1653624  12q24.3 P2x7 T - - - - - - - - - - - - 

rs3751143  12q24.3 P2x7 G 0.12 0.05 0.06 0.27 0.81 0.08 0.66 0.62 0.45 0.08 0.02 0.02 

rs1718119  12q24.3 P2x7 A 0.34 0.60 0.18 0.63 0.67 0.34 0.04 0.11 0.01 0.07 0.91 0.26 

rs3736228 11q13.4 LRP5 T 0.46 0.27 0.44 0.82 0.73 0.75 0.10 0.11 0.47 0.82 0.59 0.52 

rs1544410 12q13.11 VDR b 0.46 0.27 0.44 0.39 0.26 0.51 0.10 0.11 0.47 0.02 0.01 0.01 

rs731236 12q13.11 VDR t 0.50 0.36 0.61 0.45 0.53 0.97 0.01 0.02 0.21 0.03 0.01 0.01 

rs7975232 12q13.11 VDR a 0.62 0.54 0.92 0.39 0.28 0.64 0.50 0.97 0.52 0.17 0.17 0.04 

rs10735810 12q13.11 VDR f 0.17 0.20 0.03 0.35 0.62 0.21 0.01 0.00 0.02 0.06 0.15 0.02 

rs1801197 7q21.3 CTR C 0.72 0.74 0.48 0.57 0.53 0.30 0.99 0.88 0.87 0.69 0.84 0.57 

rs1877632 17q11.2 SOST G 0.05 0.02 0.04 0.28 0.12 0.11 0.05 0.02 0.05 0.30 0.66 0.16 

rs3018362 18q22.1 RANK A 0.08 0.05 0.00 0.07 0.04 0.00 0.17 0.14 0.38 0.68 0.43 0.35 

rs1021188 13q14 RANKL A 0.02 0.98 0.27 0.03 0.85 0.21 0.01 0.31 0.98 0.13 0.49 0.96 

rs9594738 13q14 RANKL T 0.26 0.26 0.67 0.32 0.18 0.39 0.74 0.81 0.86 0.99 0.92 0.93 

rs4355801 8q24 OPG G 0.66 0.40 0.28 0.82 0.57 0.45 0.13 0.04 0.07 0.08 0.24 0.02 

rs7041 4q12-q13 DBP G 0.50 0.99 0.84 0.71 0.84 0.74 0.53 0.32 0.21 0.53 0.68 0.79 

rs4588  4q12-q14 DBP A 0.31 0.22 0.39 0.65 0.09 0.18 0.88 0.88 0.95 0.41 0.33 0.58 

rs1800012 17q21.33 COL1A1 s 0.38 0.93 0.57 0.67 0.96 0.81 0.33 0.61 0.94 0.52 0.99 0.71 

rs16987491  19q13.41 Kallikrein  A - 0.23 0.64 - 0.20 0.63 - 0.76 0.92 - 0.19 0.65 

rs1799722 14q32.1 Bradykinin 9 0.06 0.04 0.00 0.01 0.03 0.00 0.47 0.35 0.72 0.26 0.54 0.14 

rs3801387 7q31.31 WNT16 G 0.30 0.45 0.14 0.30 0.29 0.09 0.62 0.40 0.31 0.39 0.93 0.62 
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        Cricket Football and hockey Running Female Pre 21 stress fracture 

RS Number Location Gene EA Alone 

Combined  

with 
Heterozygote AF Alone 

Combined  

with 
Heterozygote AF Alone 

Combined  

with 
Heterozygote AF Alone 

Combined  

with 
Heterozygote AF Alone 

Combined  

with 
Heterozygote AF 

rs2230912 12q24.3 P2x7 G 0.58 0.62 0.77 0.87 0.59 0.56 - 0.14 0.08 - 0.61 0.53 0.47 0.36 0.48 

rs208294 12q24.3 P2x7 T - - - - 0.12 0.10 - - - - - - - 0.39 0.32 

rs1653624 12q24.3 P2x7 T - - - - - - - - - - - - - - - 

rs3751143 12q24.3 P2x7 G 0.27 0.16 0.03 0.25 0.40 0.72 - 0.42 0.31 0.70 0.42 0.95 0.65 0.55 0.39 

rs1718119 12q24.3 P2x7 A 0.95 0.80 0.88 0.98 0.88 0.94 0.03 0.36 0.00 0.61 0.95 0.57 0.95 0.78 0.85 

rs3736228 11q13.4 LRP5 T 0.55 0.49 0.45 0.89 0.68 0.61 - 0.29 0.02 - 0.73 0.90 0.70 0.67 0.75 

rs 1544410 12q13.11 VDR b 0.33 0.09 0.16 0.29 0.14 0.12 0.90 0.96 0.69 0.79 0.84 0.54 0.22 0.10 0.18 

rs 731236 12q13.11 VDR t 0.18 0.10 0.04 0.33 0.14 0.15 0.95 0.67 0.77 0.52 0.42 0.17 0.17 0.10 0.28 

rs 7975232 12q13.11 VDR a 0.24 0.15 0.04 0.51 0.68 0.77 0.80 0.70 0.36 0.58 0.30 0.30 0.29 0.37 0.98 

rs 10735810 12q13.11 VDR f 0.89 0.83 0.99 0.76 0.85 0.88 0.19 0.21 0.00 0.24 0.09 0.04 0.59 0.62 0.39 

rs1801197 7q21.3 CTR C 0.90 0.95 0.86 0.21 0.29 0.66 0.36 0.23 0.23 0.63 0.46 0.54 0.50 0.86 0.48 

rs1877632 17q11.2 SOST G 0.52 0.79 0.41 0.03 0.03 0.00 0.05 0.07 0.23 0.18 0.10 0.17 0.66 0.57 0.83 

rs3018362 18q22.1 RANK A 0.33 0.14 0.07 0.06 0.40 0.81 - 0.01 0.10 0.96 0.94 0.82 0.16 0.09 0.03 

rs1021188 13q14 RANKL A 0.28 0.97 0.43 0.11 0.14 0.03 - 0.15 0.14 - 0.69 0.84 0.04 0.16 0.14 

rs9594738 13q14 RANKL T 0.05 0.06 0.43 0.04 0.01 0.02 0.55 0.30 0.13 0.45 0.90 0.49 0.45 0.27 0.51 

rs4355801 8q24 OPG G 0.36 0.27 0.07 0.27 0.29 0.07 0.10 0.03 0.00 0.56 0.33 0.54 0.93 0.76 0.91 

rs7041 4q12-q13 DBP G 0.16 0.58 0.62 0.20 0.10 0.64 0.40 0.96 0.21 0.73 0.54 0.87 0.44 0.66 0.83 

rs4588 4q12-q14 DBP A 0.45 0.11 0.13 0.21 0.20 0.46 - 0.08 0.07 - 0.72 0.62 0.54 0.32 0.42 

rs1800012 17q21.33 COL1A1 s 0.37 0.83 0.45 0.41 0.40 0.56 0.27 0.25 0.26 - 0.40 0.13 0.29 0.71 0.34 

rs16987491 19q13.41 Kallikrein A - 0.74 0.33 - 0.67 0.28 - 0.41 0.68 - 0.97 0.98 0.10 0.54 - 

rs1799722 14q32.1 Bradykinin 9 0.28 0.89 0.24 0.00 0.00 0.00 0.48 0.30 0.38 0.69 0.88 0.04 0.05 0.09 0.01 

rs3801387 7q31.31 WNT16 G 0.65 0.55 0.77 0.30 0.08 0.20 0.62 0.54 0.13 - 0.60 0.74 0.56 0.42 0.25 
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The frequency of those with the insertion sequence was greater in the whole cohort, male,  

female, stress fractures occurring before the age of 21 and football/hockey player stress 

fracture groups in comparison to non-stress fracture Control groups (P<0.05).  

 

6.3.5. VDR 

 

A significant association between VDR SNP rs10735810 and increased occurrence of 

multiple stress fracture injury was shown in homozygotes of the rare f allele when compared 

to homozygotes of the common allele combined with heterozygotes (P<0.05). Stress fracture 

occurrence was also associated with the frequency of the rare allele in the following sub-

classifications; cases of multiple stress fracture, male, leg stress fracture (excluding 

metatarsal) and runners (P<0.05). VDR SNP rs15444410 was significantly associated with leg 

stress fracture excluding metatarsal (P<0.05) with the frequency of the rare b allele was over-

represented in stress fracture cases. Heterozygotes and heterozygotes combined with 

homozygotes of the rare allele, were associated with greater stress fracture occurrence 

(P<0.05). Carriers of the rare allele of rs731236 were associated with greater stress fracture 

occurrence in cases of multiple stress fractures and in leg fractures excluding the metatarsals 

(P<0.05). Conversely, the common allele of rs731236 was more frequent in the stress fracture 

group of the cricketer sub-classification in comparison to the non-stress fracture Control 

group (P<0.05). The rare allele frequency of rs7975232 was significantly associated with 

stress fracture occurrence in the cricket sub-classification (P<0.05). However, the opposite 

was true for the leg fractures (excluding the metatarsals) sub-classification, as the greater 

frequency of the common allele was associated with stress fracture injury risk (P<0.05).  
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6.4. Discussion 

 

This is the first study to examine the genetic associations with stress fracture injury in elite 

athletes, with all other studies to date being from cohorts of military personnel. This study 

shows that SNPs associated with bone phenotypic alterations are associated with stress 

fracture injury in elite athletes. 12 novel SNPs, which have never been associated with stress 

fracture injury, in close proximity to SOST, P2X7R, RANK, RANKL, OPG, Bradykinin and 

VDR genes, were significantly associated with stress fracture injury in the whole cohort and 

various sub-classifications. The locality of the SNPs to major bone formation (Wnt) and bone 

resorption (RANK/RANKL/OPG) signalling pathways, together with some SNPs having a 

known functional effect on BMUs (P2X7R) may explain some of the contributory factors in 

the aetiology of stress fracture injury.  

 

The association of different SNPs with distinct sub-classifications illustrates the complexity 

of stress fracture injury aetiology. Due to the diversity of the SNPs associated, the point at 

which the signalling pathway cascade is affected is still to be established. Although the exact 

mechanism of the association is awaiting discovery, alterations in bone remodelling and 

various mechanotransductive responses in bone to mechanical loading are two prominent 

theories for their effect. These findings add to previous research and meta-analyses that have 

shown these SNPs to be associated with other bone phenotypes (Table 2.3.).  

 

6.4.1. RANK/RANKL/OPG  

 

The association of the rare allele of RANK SNP rs3018362 with stress fracture injury risk 

adds to previous studies investigating the association of this SNP with other bone phenotypes. 

Individual studies and meta-analyses have shown the rare allele of SNP rs3018362 to be 
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associated with Paget’s disease (Albagha et al., 2005), and BMD at the tibia (Paternoster et 

al., 2010), hip (Styrkarsdottir et al., 2008; Liu et al., 2010) lumbar spine (Liu et al., 2010) 

and femoral neck (Shang et al., 2013). Although rs3018362 has no known functional effect, 

the range of bone phenotypes it is associated with suggest it may impact on a range of 

different molecular mechanisms. The RANK/RANKL/OPG signalling pathway is known to 

have a key role in bone resorption as a result of its mediation of osteoclast functioning 

(Please see section 2.5.2.1.3.2.) and has been repeatability associated with BMD. Its 

important role is further emphasised by the association of the anti-RANKL drug denosumab 

with greater BMD and a reduction in fracture risk (Bone et al., 2011).  Although BMD is 

multi-factorial and is known to be influenced by factors such as age and diet, genetic 

variations in BMD determinates, such as cortical porosity, may be the reason for the 

associations shown (Paternoster et al., 2010). As low BMD has been associated with stress 

fracture injury (Wentz et al., 2012), this provides a plausible mechanism for the associations 

shown in the present study.   

 

RANKL SNP rs1021188 was associated with increased stress fracture occurrence in several 

sub-classifications (Table 6.3.) and cortical CSA and thickness of the tibia in Study 2. These 

data provide a possible mechanism, in which reduced bone area and thickness may be 

associated with the pathophysiology of stress fracture. RANKL SNP rs1021188 has 

previously been associated with cortical porosity at the tibia in the GOOD cohort (Paternoster 

et al., 2013), circulating free RANKL, and both cortical (Paternoster et al., 2010) and 

volumetric BMD (Paternoster et al., 2013) at the tibia in GWAS meta-analyses covering a 

range of populations. As circulating RANKL and cortical porosity were both associated with 

rs1021188 (Paternoster et al., 2010), this suggests that mineralisation and bone resorption 

may be rs1021188 dependent.  
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Despite not being in linkage disequilibrium, high recombination rates have previously been 

shown between rs1021188 and rs9594738 (Paternoster et al., 2010), suggesting information 

is being exchanged between the SNPs. However, rs1021188 and rs9594738 were associated 

with different stress fracture sub-classifications (football/hockey players the only common 

sub-classifications) (Table 6.3.) and were also associated with different bone phenotypes in 

Study 2. These data suggest that these SNPs may have loading specific effects on different 

aspects of bone, despite evidence of an interaction (Paternoster et al., 2010). The association 

of rs9594738 with stress fracture injury in only cricket and football/hockey sub-

classifications may reflect the loading patterns experienced in these sports. The high 

incidence of stress fracture injury in skeletal regions consisting of mainly trabecular bone in 

cricketers (lumbar spine) adds substance to this premise although, it should be acknowledged 

that the exact location of stress fracture injury in the lumbar spine was not known and the 

lumbar spine consists of both trabecular and cortical bone. RANKL SNP rs9594738 has 

previously been associated with phenotypes including tibial CSA (Study 2) and BMD 

(Styrkarsdottir et al., 2008), while OPG SNP rs4355801 has been associated with 

osteoporotic fracture (Richards et al., 2008). The present data showing these SNPs to be 

associated with stress fracture injury adds further evidence in support of their role in the 

regulation of bone phenotypic alterations and bone injury. As well as the differences in 

aetiology of injury between stress fracture and osteoporotic fracture, data from GWAS have 

shown bone phenotypic associations with rs4355801 and rs9594738 in areas mainly 

consisting of trabecular bone (Table 2.3.), whereas stress fractures occur predominantly in the 

tibial diaphysis and metatarsals (Iwamoto et al., 2011), sites mainly comprised of cortical 

bone. The association of rs9594738 with stress fracture injury in cricketers, but not the whole 

cohort, may be explained by the frequency of stress fractures occurring at the lumbar spine 

(an area of mostly trabecular bone, caused by the unique nature of the cricket bowling action) 
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in cricketers (71% in the present study) in comparison to the whole cohort (33% in the 

present study). This suggests that rs9594738 may mediate the early stages of the 

mechanotranductive process predominantly acting upon trabecular bone. 

 

The current findings in relation to stress fracture injury, together with the evidence from 

previous studies into other bone phenotypes, suggest that the SNPs analysed are important 

regulators of the RANK/RANKL/OPG signalling pathway (Please see section 2.5.2.1.3.2.). 

The variance in genotype might affect the binding process between RANK and RANKL, 

influencing osteoclast differentiation and activation (Boyle et al., 2003); subsequently 

mediating bone resorption. The exact mechanism of how these SNPs regulate bone turnover, 

however, is not known. If bone formation fails to keep pace with bone resorption during 

periods of mechanical loading (training), bone loss and ultimately bone weakness are likely 

to occur, possibly increasing injury risk. This mechanism of injury seems plausible in the 

current elite athlete cohort, given the high amount of repetitive mechanical loading 

undertaken throughout training and match-play and the short periods of recovery between 

exercise sessions.  

 

The influence of exercise on the RANK/RANKL/OPG signalling pathway, circulating RANKL 

and OPG concentrations and RANK density may also introduce confounding effects due to 

the athletic cohort used in the present study. Circulating free RANKL is notoriously difficult 

to measure (Hegedus et al., 2002), whereas the influence of exercise on OPG, an  analyte that 

is readily quantified, is more widely reported (Scott et al., 2010; 2011a). The outcome of 

exercise on OPG concentrations is variable; concentrations of serum OPG have been shown 

to increase following running  in recreationally active males (Scott et al., 2010; 2011a) and 

are elevated in habitually active females (West et al., 2009). Conversely, OPG concentrations 
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were not altered in obese males following a 6-month training programme (Davenport et al., 

2012). As the SFEA cohort was comprised of elite athletes from different sports, the different 

training regimes undertaken may have influenced OPG concentrations differently and, 

therefore, confounded any genetic associations. There is always the possibility that OPG 

fluctuations do not solely relate to effects on bone, since OPG is not bone specific and can be 

produced by muscle and endothelial cells (Collin-Osdoby, 2004), as well as osteoblasts that 

secrete OPG in response to exercise through inflammation or muscle damage.  

 

6.4.2. Wnt Signalling  

 

The Wnt signalling pathway is a predominant regulator of bone metabolism, having a 

particularly significant role in the mediation of the differentiation and longevity of osteoblasts 

thus affecting bone formation (Please see section 2.5.2.1.3.1.). The importance of SOST 

rs1877632 in stress fracture injury risk adds to data from Study 2 and previous research 

(Balemans et al., 2001; Uitterlinden et al., 2004; Yerges et al., 2009) showing associations 

between this genotype and other bone phenotypes. While the rare allele was associated with 

stress fracture risk in the present study, an increase in trabecular density was shown in Study 

2. The reason for these contrasting findings in relation to the directional influence of the 

SOST SNP may be due to the anatomical location of measurement. Study 2 only shows 

differences in trabecular density, while previous research has shown areas of predominantly 

trabecular bone (lumber spine) to be affected (Yerges et al., 2009). As stress fractures most 

commonly occur in locations made up of cortical bone, it is not surprising that the present 

study data does not follow previous associations. Interestingly, in the cricket sub-

classification, where a large proportion of stress fractures occur in the lumbar spine, no 

associations were shown. This further highlights the premise that SNPs may act on distinct 
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types of bone and have divergent effects on different bone compositions. The mechanisms of 

how the rare allele increases stress fracture risk is not known, however the variant allele has 

been associated with an increase in bone formation (Li et al., 2008) thus, offering a potential 

mechanistic explanation. As sclerostin inhibits Wnt signalling and as result, reduces bone 

formation (Please see section 2.5.2.1.3.1.), it can be hypothesised that the rare allele of 

rs1877632 down regulates sclerostin expression. Athletes in weight bearing sports secrete 

higher levels of sclerostin in comparison to their non-weight bearing equivalents, suggesting 

there may be a mechanostransductive element of sclerostin mediation (Fazeli et al., 2013). 

The reason for this is not known, but theories include; the result of a larger number of 

sclerostin expressing osteocytes in the bone of weight-bearing athletes due to their higher 

bone mineral content and increased sclerostin levels acting as a safety mechanism to limit 

‘excessive’ increases in bone formation as the result of high volume loading (Fazeli et al., 

2013). Hitherto, the effect mechanical loading has on SOST expression has been equivocal 

(Lombardi et al., 2012; Amrein et al., 2012). The impact of high volume and high magnitude 

mechanical loading, resulting in increasing sclerostin concentrations, which will have been 

regularly experienced by elite athletes in the present study, combined with genetic variation 

in the SOST gene, could also be the reason for observed findings.  

 

The rare allele of LRP5 SNP rs3736228 was associated with the running sub-classification in 

the present study. Association studies between variants in rs3736228 SNP and bone 

phenotypes are common due to a role of rs3736228 in a range of bone phenotypes (Please see 

section 2.5.2.1.3.1.3.), including osteoblast differentiation (Kato et al., 2002) and 

osteoblast/osteocyte apoptosis (Javaheri et al., 2011). The functional effects of rs3736228 

suggest the reason for the association with stress fracture injury risk might be due to 

inadequate bone formation, which could lead to long-term bone weakness.   
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6.4.3. P2X7R 

 

The current data shows an association between stress fracture injury incidence and functional 

polymorphisms within P2X7R. The loss of function variant allele of rs3751143 was 

associated with stress fracture injury in the elite athlete cohort as a whole, cricketers and in 

stress fractures occurring in the leg (excluding metatarsals). The gain of function variant in 

rs1718119 was associated with a reduction in stress fracture risk in runners and cases of 

multiple stress fracture.  

 

The association of rs3751143 allelic variants with stress fracture occurrence is supported by a 

known cellular function and previous research showing associations with bone phenotypes 

(Please see section 2.5.2.1.3.2.2.). The rs3751143 polymorphism is associated with a 

substantial loss of function when glutamic acid is substituted with alanine. In vitro, the 

variant allele of rs3751143 is associated with osteoclast apoptosis (Ohlendorff et al., 2007), 

reduced pore formation (Gu et al., 2002) and reductions in pro-inflammatory cytokine 

secretion (Sluyter et al., 2004).  In vivo, rs3751143 variants are associated with lower BMD 

(Husted et al., 2013) and an increased risk of fracture (Wesselius et al., 2012; Ohlendorff et 

al., 2007). The present data, showing that the gain of function allele is associated with lower 

stress fracture injury incidence, are in accordance with data from the previous study showing 

that cortical thickness at the 38% site of the tibia is greatest in homozygotes for the rare 

allele. Recent studies have also shown variations in rs1718119 to be related to bone 

phenotypes (Wesselius et al., 2012; Husted et al., 2013; Jorgenson et al., 2012).  

 

Individual non-synonymous functional SNPs within the P2X7R regulate bone remodelling 

and the mechanisms by which this is mediated (Grol et al., 2009). In response to mechanical 

loading, P2X7Rs are stimulated by extracellular ATP, which in activates osteoblasts causing 
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increases in bone formation and induces apoptosis in osteoclasts reducing bone resorption 

(Grol et al., 2009). Thus, bone cell differentiation and longevity, as well as 

mechanotransduction, may have an element of P2X7R governance. rs1718119 and rs3751143 

have previously been shown to have functional effects on both receptor functioning (Stokes 

et al., 2010; Ohlendorff et al., 2007) and human bone adaptations (Husted et al., 2013). The 

rs1718119 polymorphism is located in the transmembrane domain 2 of P2X7R; a variation 

results in increased receptor functioning as a result of monocyte activation and increases in 

interleukin-1 alpha and interleukin-1 beta release from monocytes and macrophages (Stokes 

et al., 2010). The close proximity of the variant to a permeability gating region is 

demonstrated in the mediation of pore formation (Sun et al., 2009) and permeability to K
+
 

and ethidium
+
 in excess of P2X7R wild-type mice (Stokes et al., 2010). Homozygotes for the 

variant allele of rs3751143 have a complete loss of receptor function, whereas heterozygotes 

have half of the receptor functionality (Gu et al., 2002), meaning that a linear dose response 

relationship is evident. The variant allele of rs3751143 was significantly over-represented in 

the elite athlete stress fracture cohort, and heterozygosity was also increased, although not 

significantly. The reason for this curious finding is not immediately apparent, although it 

could be hypothesised that another part of the receptor compensates for the loss of receptor 

function, thus preventing any adverse consequences and subsequent predisposition to stress 

fracture injury. 

 

P2X7R is expressed in all bone cells, and for this reason the specific mechanism of how 

P2X7R influences stress fracture injury is difficult to determine and may be multi-factorial. 

The pathophysiology of stress fracture injury is related to repetitive loading cycles causing 

damage to bone micro-architecture. As a result of allelic variations in P2X7R SNPs, 

impairment in sensitivity to mechanical loading may cause genotype specific alterations in 
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mechanotransduction (Li et al., 2005). P2X7R SNPs regulate suppression and activation of 

interleukin-1 beta secretion (Sluyter et al., 2004), which increases/decreases pore formation 

(Gu et al., 2002). Consequently, carriers of the rs1718119 and rs3751143 variant alleles 

suffer altered receptor surface expression (Sun et al., 2010) leading to bone gain/loss (Ke et 

al., 2003), which could also act as a mechanism for increasing susceptibility to stress fracture 

injury. Furthermore, higher interleukin-1 concentrations are likely in the cohort of the present 

study due to their activity status (Please see section 2.2.2.1.4.). The increase in 

osteoclastogenesis as a result of an increase in interleukin-1 secretion from continued training 

and match-play coupled with the increase in activation of interleukin-1, as a result of P2X7R 

genotype, may be the reason for the greater stress fracture injury susceptibility.    

 

No significant associations were shown between the other P2X7R SNPs analysed and stress 

fracture injury despite previous evidence that they are associated with cell function and bone 

phenotypic changes (Stokes et al 2010; Husted et al 2013; Jorgensen et al 2012). The reason 

for the lack of association may be due to the use of aged or post-menopausal populations in 

previous studies, the anatomical site measured, or that the SNPs may act as a proxy for other, 

not studied, SNPs that directly regulate bone adaptation. Complete absence of P2X7R 

functionality has been shown in homozygotes for the variant allele of rs1653624 SNP (Wiley 

et al., 2003) making it a pertinent SNP to investigate, despite its previously reported low 

minor allele frequency (Ohlendorff et al., 2007). Homozygotes for the rare allele have been 

shown to have an greater vertebral fracture risk and an accelerated rate of bone loss in post-

menopausal women (Ohlendorff et al., 2007). Unfortunately, the lack of homozygosis for the 

variant allele in the present study (<1%) prevented statistical analysis from being performed.  
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6.4.4. Bradykinin  

 

Stress fracture injury susceptibility was associated with the +9 variant of the BK2R in the 

cohort as a whole and in males, females, football/hockey players and those suffering from 

stress fractures before the age of 21. This is in contrast to murine models where increased 

bone mineral loss was shown to be associated with the -9 variant (Kakoki et al., 2010).  

 

The kallikrein-kinin system has been implicated in bone resorption through the stimulation of 

kininogen to form bradykinin. The metabolic effects of bradykinin are mediated through the 

osteoblast expressed (Kondo et al., 2004) bradykinin receptors (Sharma et al., 2006) and are 

thought to have an important role in bone resorption as a result of increased IL1 stimulation 

and resulting prostaglandin formation (Lerner, 1994). A functional SNP exists in the tissue 

kallikrein gene and heterozygosity leads to a considerable loss of function (Slim et al., 2002). 

The 9 base pair repeat sequence of the gene encoding the bradykinin 2 receptors (BK2R) is 

associated with a significant increase in mRNA expression (Braun et al., 1996) and skeletal 

muscle performance (Williams et al., 2004).  

 

In vitro, studies have shown BK2R to be involved in osteoblast synthesis causing the release 

of prostaglandin E2 and IL6 (Kondo et al., 2004), which subsequently cause differentiation 

and stimulation of osteoclasts, leading to increased bone resorption (Lerner, 1994). Due to the 

high training loads exercised by the elite athletes in the present study causing heightened IL6 

concentration (Please see section 2.2.2.1.4.), it can be hypothesised that this is amplified in 

+9 carriers, causing an increase in bone resorption. As IL6 has been shown to remain 

heightened 1-5 days following intense exercise (Neubauer et al., 2008), adequate bone 

recovery time may not be allowed due to the nature of elite athlete training and match-play, 

which may lead to site specific bone weaknesses at locations under continued stress. This 
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may cause an increase in damage to the bones micro-architecture, and greater stress fracture 

risk, although future human studies investigating BK2R are required to confirm these 

findings. 

 

6.4.5. VDR 

 

VDR SNPs rs1544410, rs731236, rs7975232 and rs10735810 were significantly associated 

with stress fracture injury in specific sub-classifications. The role of vitamin D status and the 

VDR gene in bone homeostasis and stress fracture prevalence is a contentious issue (Please 

see section 2.5.2.1.3.2.1.2.). The present data in elite athletes showing the rare allele of 

rs1544410 and rs10735810 to be associated with stress fracture injury is in line with previous 

research in military personnel (Chatzipapas et al., 2009). The confirmation of these SNPs role 

in stress fracture injury in a different population that necessitates different training demands 

underlines its importance in bone homeostasis and suggests the need for further investigation 

into the role of these SNPs in bone regulatory mechanisms.        

 

The common allele of rs7975232 was associated with greater stress fracture susceptibility in 

the leg, excluding the metatarsal sub-classification, while the same allele was associated with 

a reduced risk of stress fracture in cricketers. Similarly, the rare allele of rs731236 was 

associated with stress fracture injury in the leg (excluding metatarsal) group and cases of 

multiple stress fracture, while also being associated with reduced stress fracture injury risk in 

cricketers. The high rate of stress fractures occurring at the lumbar spine in cricketers may be 

the reason for the differences shown and reflect diverse genetic mediation of different bone 

compositions.  Previous studies have shown the rare allele of rs731236 (Nguyen et al., 2005) 

to be associated with reductions in bone phenotypes consisting of mainly trabecular bone and 
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Study 2 also showed both trabecular and cortical bone, to be associated with different SNPs. 

As adaptations to loading in trabecular bone occur before cortical bone it may be that the 

SNPs associated with trabecular bone have a mechanism linked to the speed of 

mechanostanduction while the SNPs associated with greater cortical bone phenotypes may be 

linked to pathways that reduce excessive bone resorption. The reason for the conflicting 

findings may be due to the anatomical location of bone phenotype measurement and, in the 

present study, a potential difference in the aetiology of injury in different sports due to the 

specific actions some sports require.   

 

Despite the significant associations in the present study, it is difficult to compare the findings 

to previous research due to the large amount of contrasting evidence. It seems that VDR SNPs 

have a role in stress fracture incidence in elite athletes, although the mechanisms of how 

susceptibility is affected remain unclear. The absence of any VDR SNPs consistently 

associated with bone phenotypes in GWAS studies suggest the VDR SNPs could be a proxy 

for other functional SNPs, and/or the associations are restricted to certain populations (Please 

see section 2.5.2.1.3.2.1.2.). Also, the majority of the candidate gene studies focusing on 

VDR can be characterised by relatively small cohorts, which is particularly the case in those 

examining the association with stress fracture incidence (n=64, Chatzipapas et al., 2009; 

n=192, Korvala et al., 2010), increasing the likelihood of erroneous findings.     

 

6.4.6. Summary of Genetic Associations with Stress Fracture Injury 

 

The number of SNPs associated with stress fracture injury highlights the polygenic nature of 

stress fracture injury and the multiple pathways that could be involved. The fact that SNPs 

are associated with varying population classifications outlines the influence of gene-
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environment interactions on stress fracture injury and suggests that some SNPs may mediate 

specific compositions of bone. 

 

GWAS have shown two main biological pathways to be related to bone mineral density and 

fracture risk (Estrada et al., 2013); the RANK/RANKL/OPG signalling pathway and the Wnt-

signalling pathway. The majority of SNPs associated with stress fracture incidence in the 

present study are either directly related to or have a downstream influence on these pathways, 

adding substantiation to their role as major regulatory pathways in bone health.  

 

Even though stress fracture injuries cause significant discomfort, a loss of valuable training 

time and have a significant financial impact on the athlete and club, this is the first study to 

investigate genetic associations with stress fracture injury in an athlete cohort. The studies 

conducted previously have focused on military personnel (Korvala et al., 2010; Cosman et 

al., 2013). The challenging nature of recruiting elite athletes due to the lack of athlete 

availability, as a result of demanding training regimes and competition calendars, maybe a 

reason for the lack of published data. Stress fracture incidence in the present study (24.9% in 

the whole cohort) was higher than previously reported (0.5% in elite football players; 

Ekstrand and Torstveit 2010), although this might be the result of participation bias. The 

sports clubs, associations and individual athletes approached may have been more likely to 

volunteer if there was a history of stress fracture injury. The predominant site of stress 

fracture occurrence was the lower limb (56.8%), which is consistent with previously 

published data (Iwamoto et al., 2011), although this is likely to be sport dependent. 
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6.4.7. Demographic Associations with Stress Fracture Injury  

 

The stress fracture group were on average 3.3 y older at data collection (Table 6.3.), although 

it can be suggested that the additional time this allowed to have suffered a stress fracture 

injury is unlikely to have affect the findings of the study given that the average age at stress 

fracture injury was 20±4 y. The whole cohort, male, and female stress fracture groups were 

also significantly older at the age of achieving elite status. It can be speculated that this may 

have been due to a stress fracture causing a prolonged absence from training, thus delaying 

their development. Alternatively, the earlier uptake of elite training during growth periods 

could have increased bone accrual, cortical geometry and BMD (Lorentzon et al., 2005), 

which could have strengthened the bone and provided a preventative mechanism against 

stress fracture injury (Tenforde et al., 2013). Although the precise stimulus needed to cause 

stress fracture injury is likely to be individual, increased training has been shown to increase 

stress fracture risk (Warden et al., 2006) making it difficult to ascertain the reason for 

significant differences.  

 

In the various sub-classifications, there was an association between stress fracture injury 

incidence and height, BMI and body mass, however, the direction of difference was sport 

dependent (e.g., stress fractures were associated with heavier and taller cricketers but also 

associated with smaller and lighter runners; Appendix 6.2.). This may reflect a sport specific 

aetiology of injury due to the different loading cycles that specific sports necessitate. Stress 

fracture incidence in the present study was also associated with the number of weekly hours 

spent training in the male and female only cohorts (Appendix 6.2.). However, stress fracture 

incidence was associated with greater training hours in males and lower training hours in 

females. Both groups participated in a considerable amount of training per week (21.6±11.9 h 

and 14.4±6.6 h), although the lack of training load data make it difficult to confirm how 
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training hours affected stress fracture incidence in the present study. It is recommended that 

the influence of gene-environment interactions are explored in future studies. 

 

6.4.8. Limitations 

 

Although this is the largest study investigating genetic associations with stress fracture 

incidence to date, it is not without limitations. Whilst heterogeneity in sport type and training 

load are acknowledged as variable factors in the present study, it is currently unavoidable 

given the low number of elite athletes available to participate in such studies and the 

difficulty in recruiting participants due to perceived disruption of training schedules. 

Investigation of large numbers of single sport groups in the future will be required to confirm 

or refute our findings. As with all retrospective studies, there is a possibility that recall bias 

may have occurred, although, in the present study, this is unlikely given that a stress fracture 

is a significant injury that causes a prolonged absence from training and competition (Ranson 

et al., 2010). As such, is likely to be well recalled by the athlete. Although the results are in 

the same direction as previously published literature, the number of comparisons made 

suggest there is a possibility the findings occurred by chance. 

 

6.4.9. Conclusion 

 

In conclusion, stress fracture incidence in elite athletes was associated with 12 of the 22 SNPs 

investigated. These novel findings show SNPs previously associated with bone phenotypes 

were associated with stress fracture injury. These data suggest an important role for SNPs 

within the RANK/RANKL/OPG and Wnt signalling pathways in the regulation of bone 

strength and adaption to mechanical loading. However, stress fracture injury is certainly not a 

monogenic trait, and further gene-gene and gene-environment interactions need to be 
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explored. Further studies are needed to establish the underpinning mechanisms that explain 

how these SNPs are associated with stress fracture injury as it is not clear how allelic 

variations influence bone adaptations and subsequently escalate stress fracture risk. 
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Chapter 7.0. A Preliminary 

Investigation into Genetic Associations 

with Bone Resorption Following 

Treadmill Running 
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7. 1. Introduction 

 

Genetic associations with bone phenotypes in response to an increased training volume and 

several genetic associations with stress fracture injury occurrence were shown in studies 2 

and 3. The influence of bone metabolism on bone accrual and bone health is well known. 

Therefore, genetic mediation of bone metabolism may provide a mechanistic explanation for 

the phenotypic differences shown in studies 2 and 3.  

  

Despite the known positive outcomes of exercise on bone (Study 2), the mode, intensity and 

duration of exercise needed to promote osteogenic effects are not clearly defined (Please see 

section 2.3.1.1. and 2.3.2.). This may be due to bone remodelling being a complex process in 

which many molecular mechanisms remain poorly understood. Long-term weight-bearing 

exercise is associated with an osteogenic effect in excess of non-weight-bearing activities 

(Nikander et al., 2006; Greene et al., 2012). Sports which necessitate high impact loading, 

such as football and gymnastics, elicit a greater increase in bone strength, size and BMD in 

comparison to non-weight-bearing sports, such as swimming and water polo (Nikander et al., 

2006; Greene et al., 2012). It remains to be seen whether the actual impact of the loading or 

the intracellular shear stress and pressure created as a result of forceful muscle contractions 

are the main drivers in this process. Recent data (Schipilow et al., 2013) seems to suggest that 

the key factor in osteogenesis is the impact of loading, as the correlation between bone 

strength and muscular strength was shown to be minimal in comparison to mechanical 

loading. 

 

To gain a better insight into the mechanisms of how exercise promotes adaptive processes in 

bone, single-bout exercise studies have been conducted. Studies conducted involving weight-

bearing exercise, lasting in excess of 60 min and a relatively high percentage of   O2max have 
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been shown to influence the bone remodelling cycle (Please see section 2.3.1.1.). Due to the 

subtle changes expected following a single-bout of exercise, biochemical markers of bone 

turnover are used to examine bone remodelling as an alternative to imaging and radiological 

scans that are commonly used to assess longitudinal changes. Markers of bone resorption 

have been demonstrated as an important tool in assessing the effectiveness of osteoporosis 

treatment (Garnero, 2008) and as a predictor of fragility fracture (Vasikaran et al., 2011). 

Altered bone resorption activity can cause an uncoupling of the bone remodelling cycle, 

which is associated with bone micro-architectural damage and has been purported to lead to 

the manifestation of stress fracture injury (Warden et al., 2006).   

 

The degree of bone resorption following a period of prolonged mechanical loading may 

highlight subtle differences in the bone remodelling process, which may be undetectable in 

sedentary conditions. The detection of these differences may provide information in relation 

to the risk of injury and disease. Despite different bone turnover markers being used and 

disparities in the range of control measures undertaken, treadmill running of a relatively high 

intensity (≥ 0%   O2max) over a prolonged period (1h +) has been shown to affect bone 

turnover, favouring a net increase in bone resorption (Scott et al., 2010; 2011a). Increased 

bone resorption in the elderly (~65y) has been related to fracture risk and osteoporosis 

(Vasikaran et al., 2011). Conversely, increased bone resorption in adolescents, when at rest, 

has been positively associated with periosteal expansion and, therefore, increased bone 

diameter (Kemp et al., 2013).  

 

Although the usefulness of biochemical markers of bone turnover have been regularly 

demonstrated (Please see section 2.3.1.1.1.), the response of bone to varying forms of 

exercise still remains equivocal. This may be due to the high degree of biological variability 
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that exists in the biochemical markers of bone turnover (Clowes et al., 2002), including 

response to feeding (Guillemant et al., 2004), circadian rhythm (Fraser et al., 2010) and 

fluctuations based on sex hormone concentrations (Camacho and Kleerekoper, 2006). Despite 

this, studies controlling for confounding variables, and using IOF and IFCC recommended 

markers of bone turnover, have reported individual variation in biochemical markers of bone 

turnover (Scott et al., 2010; 2011a; 2012a). Another potential reason for the individual 

variation in bone marker responses could be genotype. SNPs have been associated with bone 

phenotypes (Please see section 2.5.2.1.3.) and biochemical markers of bone turnover (Please 

see section 2.3.1.1.1.). Although genetic associations have been shown, the specific genes 

and SNPs that mediate the response and the magnitude of the genetic effect are not well 

established.  

 

At present, no published data exists in relation to the role of genotype in explaining the 

variability in the bone resorption response to exercise. The present study will determine 

whether specific SNPs are associated with bone resorption (β-CTX) prior to, and following, 

120 min of treadmill running and attempt to offer a mechanistic explanation to the findings in 

studies 2 and 3.  

 

7.2. Methods 

7.2.1. Participants 

 

Healthy, male participants (n=42; Age, 23±4y; Height, 1.77±0.10m, Body Mass, 77.3±14.5 

kg;   O2max, 51.6±5.9mL·kg
-1

·min
-1

) were recruited from within Nottingham Trent University 

by email, poster advertising and by word of mouth. Participants were recruited if they took 
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part in at least three exercise sessions per w, were non-smokers, aged 18-35y and not taking 

medication that influenced bone metabolism. Ethical approval was granted by the 

Nottingham Trent University Ethical Review Committee (Humans) and informed consent 

(Appendix 7.1.) and a health screen questionnaire (Appendix 7.2.) were completed prior to 

participation.   

 

 

7.2.2. Design 

 

Participants completed a familiarisation session during which they became accustomed with 

the trial procedures, followed by the determination of   O2max. Following the familiarisation 

session ( ≥  d), participants completed a seven day experimental trial consisting of a three 

day lead in period, an exercise intervention conducted on day four (D4) and three follow-up 

days (Figure 7.1.).    

 

Figure 7.1. Timeline of 7 day experiemental trial for genetic associations with bone 

resorption following treadmill running. Adjoined boxes denote consecutive days (D1-D7).  

 

7.3.1. Preliminary measures 

7.3.1.1. Sub-maximal Incremental Treadmill Test 

 

To ensure participants were running at the same relative intensity (70%   O2max), participants 

completed a sub-maximal incremental treadmill test, consisting of a speed lactate test and a 
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  O2max test (Jones and Doust, 1996) to determine the relationship between running speed and 

oxygen consumption.  

 

7.3.1.1.1. Speed Lactate 

 

Both speed lactate and   O2max tests were conducted on a motorised treadmill (HP Cosmos, 

Germany). The speed lactate test was conducted at a 1% gradient and consisted of three min 

stages with an initial running speed of 9km·h
-1

. The treadmill speed was increased by 1km·h
-1 

at the end of each three min stage. During the final min of each stage, expired air was 

collected using a Douglas Bag (Plysu Protection Systems, Milton Keynes, U.K.) for 

determination of oxygen consumption and carbon dioxide production. Heart rate (Polar, 

Finland) and rating of perceived exertion (RPE) (Borg, 1976) were also recorded in the final 

min of each stage. At the end of each three min stage, a finger prick blood sample was taken 

in order to analyse blood lactate concentration (Yellowstone Scientific Instruments, Big Sky, 

Montana). The test concluded when lactate concentrations were equal to, or in excess of 

1mmol·L
-1

 higher than the preceding sample. On test completion, the running speed at each 

stage was plotted against oxygen consumption (mL·kg·
-1

min
-1

) to determine the sub-maximal 

relationship between speed and oxygen consumption. The participant then had a 10 min rest 

period before the commencement of the   O2max  test.  

 

7.3.1.1.2.   O2max testing procedure   

 

The speed at which the   O2max test was conducted was defined as the speed before the lactate 

increase was 1mmol·L
-1

 higher than the preceding sample in the speed lactate test. The 

  O2max test began at 0% gradient, which was increased by 1 % each min until volitional 

fatigue (Jones and Doust, 1996). Expired air was collected via Douglas Bag during the final 
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min of the test. On completion of the test, maximum heart rate was recorded and the expired 

air sample was analysed for oxygen consumption, carbon dioxide production and volume. 

Maximal oxygen uptake was determined and, by using the results from the speed lactate test, 

it was possible to equate the speed that would elicit the required percentage of maximal 

oxygen uptake to be used during the main trial. 

 

7.3.3.1.3. Analysis of Expired Air Samples 

 

Expired air samples were analysed for oxygen consumption and carbon dioxide production 

using a paramagnetic oxygen analyser and an infra-red carbon dioxide analyser (Series 1400: 

Servomex, East Sussex, UK). Analysers were initially calibrated using known concentrations 

of nitrogen and an oxygen and carbon dioxide mixture. The volume of expired air was 

measured with a dry gas meter (Harvard Apparatus, Kent, UK) and corrected to standard 

temperature and pressure.   

 

7.3.4. Experimental Trial 

 

Participants completed a 3 day lead in period (D1-D3) in which they refrained from any 

prolonged (<15 min) or intense physical activity in order to provide adequate study control. 

On D4, participants arrived at the laboratory at 08:30 following an overnight fast. 

Measurements of resting expired air, height and weight were recorded, followed by a venous 

blood sample taken from the antecubital vein in the forearm. Participants rested in a supine 

position before the insertion of a venepuncture needle (Valu-set, Becton Dickinson, 

Plymouth, UK). Venous blood was collected using disposable syringes (Plastipak, Becton 

Dickinson UK) and immediately dispensed into blood collection tubes (Sarstedt, Leicester, 

U.K) coated with ethylenediaminetetraacetic acid (EDTA). Blood samples were spun for 10 
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min at 3000 rpm in a refrigerated centrifuge at 4ºC (AccuSpin 1R, Thermo Fisher Scientific 

Inc, Loughborough, UK).  Following centrifugation, the plasma was dispensed using a 

Pasteur pipette into 1.5mL tubes, which were stored at -80ºC until further analysis. The 

participants commenced treadmill running (HP Cosmos, Germany) at 09:00am at speed 

equivalent to 70%   O2max for 120 min. Heart rate and RPE were recorded at 10 min intervals, 

while 1 min expired air samples were collected using a Douglas bag at 18, 38, 58, 78, 98 and 

118 min. VO2 (L·min
-1

) and VCO2 (L·min
-1

) were calculated, followed by the calculation of 

Respiratory Exchange Ratio (RER) (VCO2/ VO2), carbohydrate (g·min
-1

) and fat metabolism 

(g·min
-1

) (x = carbohydrate and y = fat metabolism, VO2 = 0.828 x + 1.989 y, VCO2 = 0.828 

x + 1.419 y) and energy expenditure (kJ·min
-1

) (energy expenditure = [(y*39) + (x*17)]. 

During the run, 200mL of water was consumed every 20 min. Following run completion, 

participants remained in a fasted state and a further venous sample was taken. Body mass was 

also recorded and participants were given water equating to 150% of lost body mass. On 

completion of the final blood sample participants left the laboratory and consumed lunch. 

 

Participants returned to the laboratory following an overnight fast on days 5, 6 and 7 (D5-D7) 

at 08:30 for further venous blood samples, which were prepared in the same way as 

previously described. Throughout the experimental trial participants recorded and maintained 

their dietary intake, physical activity, lifestyle activity and refrained from alcohol and 

caffeine comsumpton (D4 only) and prolonged (>15 min) or intense physical activity.    

       

7.3.5. Biochemical Analysis of β-CTx   

 

Quantification of β-CTx was determined using a commercially available enzyme linked 

immunosorbent assay (ELISA) (serum CrossLaps® ELISA Immuno Diagnostic Systems 
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[IDS]). The assay detects collagen type I fragments created as a result of bone resorption and 

uses monoclonal antibodies recognizing C-telopeptide fragments of collagen type I a1 chains 

containing the epitope Glu-Lys-Ala-His-Asp--Gly-Gly-Arg in an isomerised form (IDS, 

serum CrossLaps® ELISA manual). The ELISA was conducted in accordance to the 

following steps: 1) following preparation and equilibration of solutions at room temperature, 

50µL of standards, controls and unknown samples were pipetted into the wells; 2) 150µL of 

the antibody solution was then added to each well before the immunostrips were covered with 

sealing tape and incubated for 120 min on plate mixing apparatus (Thermostar, BMG 

Labtech, Allmendgruen, Germany) at 300rpm and 21
o
C; 3) Immunostrips were then taken 

washed with 300µL of washing buffer (this was repeated five times); 4) 100µL of the 

substrate solution was added to each well, sealed with sealing tape and mixed on plate mixing 

apparatus at 300rpm and 21
o
C for 15min; 5) 100µL of stopping solution was added to each 

well; 6) finally, absorbance was measured at 450nm with 650nm as a reference on a plate 

reader (Elx800, BioTek Instruments, Vermont, USA). The ELISA had a detection limit of 

0.020ng·mL
-1

, with a reference range of 0.000-2.494ng·mL. To ensure reliable results were 

obtained 10% of the sample were duplicated. Inter-Assay and intra-Assay coefficient of 

variations were 2.5% and 1.8%.  

 

7.3.6. Genotyping 

 

DNA was isolated from whole blood samples in accordance with manufacturer guidelines 

using Wizard DNA extraction kits (Promega, USA). Quantification and analysis were 

conducted as outlined in section 3.5. 
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7.3.7. Statistical Analysis  

 

All data are presented as mean ± SD. Distribution of genotypes was tested for maintenance of  

HWE using chi-squared. 
 
Paired sample t-tests were used to compare exercise related 

variables. Genotype related differences in β-CTX were analysed by t-test and one-way 

ANOVA, while area under the curve (AUC) was used to assess differences over the entire 

testing period. P values of <0.05 were considered statistically significant. All statistical 

analysis was performed with Statistical Package for the Social Sciences (SPSS) version 13.0 

(SPSS, Inc., Chicago, IL, USA).   

   

7.4. Results 

7.4.1. Physiological Response to Treadmill Running 

 

Based on 70%   O2max, the average running speed was 11.2±4.2km·h
-1

. Participants body 

mass was reduced by an average of 1.8kg following run completion (post run body mass 

75.5±9.6kg).  

 

As expected, RER, carbohydrate metabolism, fat metabolism, energy expenditure, heart rate 

and RPE increased with the onset of exercise and remained increased in comparison to 

baseline, for the duration of the treadmill run (P<0.05) (Table 7.1.). However, no significant 

differences were shown between time points during the running protocol (P>0.05).   
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Table 7.1. RER, carbohydrate metabolism, fat metabolism and energy expenditure before and 

during 120 min of treadmill running. * depicts P<0.05, ** depicts P<0.001. 

  Baseline 18 min 38 min 58 min 78 min 98 min 118 min 

RER 0.80±0.25 0.92±0.07* 0.90±0.07 0.90±0.06 0.89±0.06 0.89±0.06 0.89±0.07 

CHO 

Metabolism 

(g·min-1) 

0.33±0.35 2.18±0.73** 2.12±0.79 2.17±0.67 2.10±0.71 2.12±0.70 2.02±0.71 

FAT 

Metabolism 

(g·min-1) 

0.03±0.14 0.34±0.33** 0.45±0.39 0.47±0.32 0.53±0.38 0.51±0.33 0.56±0.41 

Energy 

Expenditure 

(kJ·min-1) 

6.56±3.35 48.19±11.35** 51.33±10.44 52.94±11.25 54.35±11.76 53.76±11.66 54.24±127 

 

 

 

7.4.1.1. Glucose and Lactate 

 

There was no effect of exercise on glucose concentrations at any time point following 

exercise. Lactate concentrations showed a significant increase from baseline immediately 

following exercise (P<0.05). Concentrations on the follow-up days showed no difference to 

baseline (P>0.05).        

 

 
Figure 7.2. β-CTx concentrations for the entire group, expressed as a percentage of baseline 

(BASE) values immediately post exercise (POST) and in the 3 follow-up days (FU1-FU3). 
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7.4.1.2. β-CTX 

 

There were no significant differences in β-CTX in response to 120 min of treadmill running 

when absolute values were compared (BASE 0.67±0.30ng·mL
-1

; POST 0.69±0.32ng·mL
-1

; 

FU1 0.68±0.37ng·mL
-1

; FU2 0.71±0.40ng·mL
-1

; FU3 0.74±0.42ng·mL
-1

) (P>0.05) or when 

calculated as a percentage change from baseline (P>0.05).  

 

7.4.2. Genotype and β-CTX  

 

All SNPs genotyped were in accordance with HWE (P>0.05), call rates and minor allele 

frequencies are shown in Table 7.2. 

Table 7.2. SNPs for which the participants involved in 120 min of treadmill running were 

genotyped, along with HWE, P value, call rate % and minor allele frequency (MAF). P 

values  >0.05 are not stated. 

 HWE P value Call Rate % MAF % 

RANKL rs9594759 0.86 95 13 

RANK rs3018362 0.07 95 3 

RANKL rs1021188 0.29 95 3 

P2X7 rs3751143 0.54 95 6 

P2X7 rs1718119 0.34 93 10 

RANKL rs9594738 0.1 90 16 

MP3K rs8065345 0.51 95 8 

IL6 rs13447445 0.35 93 15 

 

Participants were grouped based on individual genotype for the purposes of analyses. Of the 

190 comparisons made, no significant differences were shown in β-CTX when compared by 

genotype for time or genotype x time interactions (P<0.05) (Table 4.3.). Baseline β-CTX 

concentrations and AUC analysis also showed no association with genotype (P<0.05) (Table 

4.3. and 4.4.). 
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Table 7.3. Absolute β-CTX concentrations for each genotype at the different time points 

measured before and following 120 min of treadmill running. P values <0.05 were deemed 

significant. 

RANKL rs9594759 PRE POST FU1 FU2 FU3 

P 

Value 

Time 

P Value 

Genotype x 

Time 

interaction 

 
CC n=5 0.71±0.31 0.61±0.22 0.74±0.23 0.89±0.48 0.84±0.46   

 
CT n=19 0.69±0.31 0.70±0.31 0.69±0.29 0.72±0.36 0.73±0.43   

 
TT n=16 0.61±0.31 0.70±0.38 0.63±0.45 0.64±0.44 0.75±0.42   

 P value 0.68 0.86 0.81 0.48 0.82 0.23 0.62 

 

RANK rs3018362 PRE POST FU1 FU2 FU3 
  

 
AA/AG n=22 0.69±0.28 0.66±0.33 0.68±0.36 0.74±0.37 0.74±0.32   

 
GG n=18 0.66±0.34 0.75±0.32 0.68±0.40 0.70±0.44 0.77±0.52   

 P value 0.76 0.39 0.99 0.78 0.64 0.49 0.78 

 

RANKL rs1021188 PRE POST FU1 FU2 FU3 
  

 
CC/TT n=7 0.71±0.27 0.74±0.15 0.70±0.29 0.73±0.36 0.64±0.22   

 
TT n=33 0.66±0.32 0.67±0.34 0.68±0.39 0.71±0.42 0.74±0.42   

 P value 0.67 0.60 0.88 0.94 0.65 0.75 0.87 

 

P2X7R rs3751143 PRE POST FU1 FU2 FU3 
  

 
TG/GG n=19 0.63±0.28 0.71±0.35 0.67±0.33 0.73±0.32 0.78±0.39   

 
TT n=21 0.70±0.34 0.66±0.29 0.70±0.42 0.74±0.46 0.68±0.40   

 P value 0.51 0.62 0.78 0.77 0.66 0.63 0.47 

 

P2X7R rs1718119 PRE POST FU1 FU2 FU3 
  

 
CC n=14 0.62±0.28 0.70±0.37 0.60±0.33 0.62±0.39 0.73±0.41   

 
CT/TT n=25 0.71±0.32 0.70±0.31 0.74±0.40 0.78±0.41 0.76±0.45   

 P value 0.36 0.94 0.25 0.26 0.55 0.73 0.56 

 

RANKL rs9594738 PRE POST FU1 FU2 FU3 
  

 
CC n=8 0.68±0.31 0.76±0.41 0.75±0.40 0.86±0.43 0.81±0.43   

 
CT n=24 0.64±0.33 0.64±0.30 0.65±0.37 0.65±0.41 0.66±0.41   

 
TT n=6 0.78±0.30 0.79±0.32 0.76±0.44 0.83±0.40 0.77±0.37   

 P value 0.65 0.50 0.74 0.37 0.51 0.76 0.89 

 

MP3K rs8065345 PRE POST FU1 FU2 FU3 
  

 
AA n=24 0.62±0.27 0.64±0.31 0.61±0.34 0.64±0.36 0.74±0.41   

 
GA/GG n=16 0.76±0.35 0.79±0.33 0.80±0.41 0.83±0.44 0.77±0.45   

 P value 0.15 0.17 0.12 0.15 0.67 0.63 0.57 

 

IL6 rs13447445  PRE POST FU1 FU2 FU3 
  

 
CC n=6 0.58±0.26 0.64±0.32 0.65±0.40 0.71±0.43 0.88±0.48   

 
CG n=16 0.70±0.35 0.74±0.35 0.77±0.46 0.81±0.47 0.75±0.43   

 
GG n=18 0.65±0.31 0.64±0.31 0.61±0.29 0.64±0.35 0.63±0.35   

 P value 0.72 0.68 0.49 0.49 0.28 0.34      0.41 
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Table 7.4. Percentage change from baseline (100% = basline) β-CTX concentrations for each 

genotype at the different time points measured before and following 120 min of treadmill 

running. P values <0.05 were deemed significant. 

RANKL rs9594759 POST FU1 FU2 FU3 P-Value AUC 

 
CC n=5 90±25 98±33 120±30 128±81  

 
CT n=19 107±33 106±30 108±39 126±74  

 
TT n=16 119±32 103±32 100±29 151±119 0.91 

 

RANK rs3018362 POST FU1 FU2 FU3  

 
AA/AG n=22 99±32 98±28 106±38 123±99  

 
GG n=18 122±28 107±33 107±29 128±78 0.74 

 

RANKL rs1021188 POST FU1 FU2 FU3  

 
CC/TT n=7 110±20 99±24 99.7±27 93.8±38  

 
TT n=33 108±33 106±31 109±34 140±114 0.87 

 

P2X7R rs3751143 POST FU1 FU2 FU3  

 
TG/GG n=19 114±29 109±32 110±38 135±105  

 
TT n=21 103±33 100±28 104±28 111±70 0.24 

 

P2X7R rs1718119 POST FU1 FU2 FU3  

 
CC n=14 117±36 100±40 95±33 112±51  

 
CT/TT n=25 103±28 103±23 110±33 123±97 0.33 

 

RANKL rs9594738 POST FU1 FU2 FU3  

 
CC n=8 115±41 108±31 126±27 143±100  

 
CT n=24 108±31 105±33 100±37 112±91  

 
TT n=6 100±16 93±18 104±13 103±40 0.39 

 

MP3K rs8065345 POST FU1 FU2 FU3  

 
AA n=24 111±36 101±29 105±39 135±100  

 
GA/GG n=16 108±26 105±32 108±26 111±70 0.82 

 

IL6 rs13447445 POST FU1 FU2 FU3  

 
CC n=6 117±35 110±35 121±41 169±105  

 
CG n=16 109±27 109±24 117±35 127±106  

 
GG n=18 106±35 98±34 95±26 102±59 0.14 

 

7.5. Discussion 

Despite the significant associations between genotype and bone phenotypes in studies 2 and 3 

no associations between the SNPs genotyped and β-CTX were shown in response to 120 min 

of treadmill running at any of the time points measured. This is in contrast to previous cross-

sectional studies that have shown various bone phenotypes (Zheng et al., 2012; Lorentzon et 
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al., 2000; Garnero et al., 2002; Ferrari et al., 2003), including β-CTX (Roshandel et al., 

2010; Kemp et al., 2013), to be associated with genotype. 

 

7.5.1. Genotype and β-CTX 

 

Despite evidence that genotype is associated with bone turnover (Kemp et al., 2013) and 

individual variability is shown in bone resorption following exercise (Scott et al., 2010; 

2011a), this is the first study to assess the association of genotype with bone resorption 

following exercise. At present, no SNPs have been shown to have direct functional influence 

on β-CTX, for this reason the SNPs were selected for analysis based on a potential influence 

on bone resorption and/or a previously established association with bone phenotypes. The 

RANK/RANKL/OPG signalling pathway is known to have an important role in bone 

remodelling (Boyce et al., 2003). SNPs thought to influence these pathways have previously 

been associated with bone phenotypes in response to increased training volume (Study 2), 

stress fracture injury (Study 3), BMD, bone mass, risk of fragility fracture and β-CTX 

concentrations (Paternoster et al., 2010; Kemp et al., 2013). For example, circulating 

RANKL and cortical porosity have both been associated with rs1021188 (Paternoster et al., 

2010), which suggests that mineralisation and bone resorption is rs1021188 dependent. 

Despite this, no associations were shown.  

 

The reason for no association between the SNPs investigated and β-CTX may relate to the 

exercise component of the present study. Prolonged exercise has been shown to alter bone 

resorption from resting levels (Please see section 2.3.1.1.) and may have impacted on any 

genotype related differences due to the complex mechanisms by which weight-bearing 

exercise influences bone metabolism (Please see section 2.3.). Genotype was proposed to 
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partitailly explain the speed of the bone resorption response and the variance in β-CTX 

fluctuation (Kemp et al., 2013). However, as bone remodelling involves several molecular 

mechanisms (Please see section 2.2.2.) numerous gene-gene and SNP-SNP interactions in 

addition to the SNPs studied may have influenced the β-CTX concentrations. This premise is 

supported by previous studies that have shown associations between genotype and β-CTX, 

using participants in a resting state (Roshandel et al., 2010; Kemp et al., 2013).   

 

Another reason for the lack of association in the present study may also be related to the 

acute nature of the exercise (single bout) and the relatively short follow-up period (three 

days). The largest amount of variability in the present study was seen in FU3 (Figure 7.2.) 

suggesting that the effect of the intervention might take longer than three days to manifest in 

some participants. The three day follow-up period may have been insufficient to show any 

delayed fluctuations in bone resorption. It may be that to detect genotype specific effects, 

persistent, cumulative loading is required over a longer period of time. This type of loading 

has been shown to cause bone phenotypic structural adaptions (Dhamrait et al., 2003; Evans 

et al., 2013) and has also been associated with the pathophysiology of stress fracture injury 

(Warden et al., 2006). However, the extension of the controlled follow-up period in a larger 

cohort would be challenging. As some of the SNPs genotyped have a known functional 

effect, it is surprising that no associations with bone resorption were shown. The reason for 

this may have been due to the differences being too subtle to detect or to confounding factors.  

 

This is the only known study to investigate genetic associations with β-CTX, but is not 

without limitation. Due to the study being a preliminary investigation, only 42 participants 

were analysed. The addition of further participants may have increased the likelihood of 

detecting subtle differences in β-CTX variation in response to exercise. Future studies should 
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increase the sample size of the cohort however, it should be noted that the recruitment and 

administration of studies of this nature is diffuclt thus, making it challenging to a achevie a 

sample size of 100+. Only one biochemical marker of bone turnover (β-CTX) was chosen for 

analysis. This was decided based on the validity of the marker (IOF, IFCC) and previous 

associations between β-CTX and genotype (Kemp et al., 2013). Other markers were not 

analysed due to a lack of evidence for a genetic association and financial constraints. As no 

measure of bone formation was analysed, it is impossible to draw conclusions over whether 

uncoupling of the bone remodelling response occurred. Gravitational forces, as well as 

muscular strain (Kohrt et al., 2009) and gait characteristics (Martin and Marsh, 1992) can 

contribute to the magnitude of the impact received by the bone and the anatomical site to 

which the strain is applied. These factors were not determined in the present study, but may 

have influenced the individual variability in bone resorption shown. There was no change in 

β-CTX in response to 120 min of treadmill running at 70% of   O2max. Scott et al, (2011a) 

showed a 45% increase in β-CTX immediately following similar exercise procedures (1 h 

run, but followed by exercise to exhaustion) at a similar intensity (65-70%   O2max). The 

different assay methods for quantifying β-CTX, may be a reason for the lack of similarity in 

the results. Although no change in β-CTX was shown as a result of 120 min of treadmill 

running, β-CTX is known to have a distinct circadian rhythm (Fraser et al., 2010). As such, 

the present results may have differed from a non-exercising Control population. However, as 

the a priori aim of the study was to assess if β-CTX concentrations are associated with 

genotype, a non-exercising Control population was not sought. Dietary intake in the days 

prior to the study and energy availability has also been associated with bone turnover (Ihle 

and Loucks, 2004). The type, intensity or lack of an exhaustive element to the current 

protocol may also be the reason for the differences shown between the current study and 

previous investigations.      
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7.5.2. Conclusion  

 

Despite previous evidence (Please see section 2.5.2.1.), and data from studies 2 and 3 that 

bone phenotypes and bone resorption has a genetic component, in this exercise study, no 

significant associations were shown with SNPs previously implicated in bone phenotypes 

following 120 min of treadmill running. The reason for the lack of association may be due to 

an acute bout of exercise not being of sufficient intensity to induce a genotype specific effect 

and the size of the cohort not being sufficient to detect small effects.    
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Chapter 8.0. General Discussion  
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The aim of this thesis was to investigate the effects of genotype on 1) adaptations in bone 

structure as a result of increased training load, 2) stress fracture injury susceptibility in elite 

athletes and 3) bone metabolism following prolonged mechanical loading. This thesis adds 

novel insights to the current knowledge base relating to the association of specific SNPs with 

stress fracture injury and bone phenotypic alterations and shows how genotype may be a 

mediating factor in the structural adaptations that occur to bone in response to exercise in 

elite athletes (As depicted in Table 8.1.; Figure 8.1.). A sudden increase in training volume, 

long-term habitual exercise and a single bout of treadmill running were investigated to 

explore the association of genotype with bone structural adaptions (increased training 

volume), incidence of stress fracture injury (long-term habitual exercise) and bone 

metabolism (single bout).  

 

Genotype has previously been associated with altered bone remodelling and bone structural 

adaptations (Please see section 2.5.2.1.) (Table 8.1.). Additionally, a potential genetic 

contribution to stress fracture risk is supported by findings on the development of multiple 

stress fractures at various skeletal sites (Lambros and Alder, 1997), comparable stress 

fracture injuries occurring in monozygotic twins (Singer et al., 1990; Van Meensal and Peers, 

2010), high stress fracture recurrence rates (Gehrmann and Renard, 2006) and the variation in 

stress fracture incidence in participants with comparable training loads (Giladi et al., 1986).   

However, the specific genes and SNPs associated with these phenotypes are not clearly 

defined. As athletes were used in studies 2 and 3, the level of remodelling experienced by 

these participants is likely to be in excess of the general public. Due to the high levels of bone 

remodelling, subtle genotype dependent bone alterations may be evident that would have 

been undetectable in other populations and may be indicative of underlining bone conditions.  

 



191 

 

Stress fracture injuries cause significant discomfort, result in a prolonged loss of training time 

(Ranson et al., 2010) and can have a significant detrimental financial effect on the athlete 

and/or the club/organisation. Examples include; the stress fracture injuries which distrupted 

Paula Racliffe’s running career causing her to miss and under perform at serveral major 

championships, prevented Jessica Ennis’ participation in the  008 Beijing Olympics, and 

ruled Tim Bresnan out of England’s  0 3 Ashes series against Australia  Despite this, no 

published research exists on how genotype may affect bone injury susceptibility in an elite 

athlete population. After investigating the genotype dependent association with bone 

phenotypes in both a laboratory based and an applied setting, several SNPs were associated 

with bone structural adaptations (Study 2) and stress fracture injury occurrence (Study 3). In 

particular, risk alleles in SNPs in close proximity to RANKL, P2X7R and SOST genes were 

associated with bone phenotypic differences and stress fracture injury incidence.  
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Table 8.1. An outline of previous research and data from the present thesis in relation to SNP associations with bone phenotypes. WC= Whole 

cohort, MC= Cases of multiple stress fracture, FH = Football/Hockey, P21 = Pre 21 stress fractures, C = Cricket, EM = Leg stress fracture 

excluding metatarsals, R = Running. Highlighted sections refer to the studies conducted in this thesis. 

SNP Study Population Bone phenotypes involved 

RANKL rs1021188       

 

Varley, Study 3 
Elite Athletes (n=518) WC, male, MC, FH and 

P21. 
Stress Fracture injury 

 

Varley, Study 2 Adolescent Academy Footballers (n=76)  Cortical thickness and CSA 

 

Paternoster et al., 2010 
Meta-Analysis of ALSPAC, GOOD and MrOS 

Sweden cohorts (n=5789) 

Cortical BMD                           

Cortical Thickness 

 

Paternoster et al., 2010 ALSPAC (n = 37) RANKL concentration  

 

Paternoster et al., 2013 
Meta-Analysis of ALSPAC, GOOD and MrOS 

Sweden cohorts (n=5789) 

Cortical porosity                 

Cortical vBMD 

RANKL rs9594738       

 

Varley, Study 3 Elite Athletes (n=518) C and FH Stress Fracture injury 

 

Varley, Study 2 Adolescent Academy Footballers (n=76)  Cortical CSA 

 

Styrkarsdottir et al., 2008 

Middle to old aged (59-85 yr) 5861 and 

replication cohorts of 4165 cohorts 2269, and 

1491 

Lumbar spine BMD 

  
Zhang et al., 2011 700 (~69 yr) (350 cases 350 Control)  Osteoporotic fracture  

P2X7R rs3751143 
   

 

Varley, Study 3 Elite Athletes (n=518) WC, EM and C Stress Fracture injury 

 

Varley, Study 2 Adolescent Academy Footballers (n=76)  Cortical BMD 

 

Husted et al., 2013 Men and women (n=574) (>59 yr) 
BMD (hip in women and lumbar 

spine in men) 

 

Wesselius et al., 2012 Men and women (n=9  ) (≥50 yr) BMD  

  Ohlendorff et al., 2007 Postmenopausal women (n=1764) Osteoporotic fracture, osteoclast 
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apoptosis 

P2X7R rs1718119       

 

Varley, Study 3 Elite Athletes (n=518) MC and R Stress Fracture  

 

Varley, Study 2 Adolescent Academy Footballers (n=76)  Cortical CSA, Cortical Thickness 

 

Jorgenson et al., 2012 Women (45-58 y) (n=1694) Osteoporotic fracture  

 

Husted et al., 2013 
Men (n =120, 63 cases, 57 Control) (mean age 

60.2 and 59.3) 
Osteoporotic fracture, BMD 

  Wesselius et al., 2012 Men and women (n=9  ) (≥50 yr) BMD 

SOST rs1877632       

 

Varley, Study 3 Elite Athletes (n=518) WC, MC, FH and R Stress Fracture injury 

 

Varley, Study 2 Adolescent Academy Footballers (n=76)  Trabecular Density 

 

Zmuda et al., 2011 Male (~65 yr) (n=650) Vertebral BMD  

  Yerges et al., 2009 Male (+65) (n=862) Vertebral BMD  
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Figure 8.1. Simplified schematic of the process by which a stress fracture injury may occur in 

elite athletes based on genetic susceptibility. The red line indicates an individual without a 

genetic susceptibility to stress fracture injury. Orange boxes represent undesirable effects and 

blue boxes represent desirable effects. The bone remodelling cycle is maintained following a 

loading stimulus that results in a positive adaptation (increase in bone strength). The blue line 

indicates an individual with a genetic susceptibility to stress fracture injury where loading 

causes an uncoupling of the bone remodelling cycle, leading to site specific bone weakness, 

micro-damage and stress fracture injury. The green arrows indicate environmental factors 

(both intrinsic and extrinsic) that may interact with genetic factors and increase or decrease 

stress fracture risk.     

 

8.1. Overview of Key Findings 

 

Following 12weeks of increased volume football training, a number of phenotypes 

(trabecular density, cortical density, cortical CSA, cortical thickness, total CSA and SSI)  

were significantly greater in academy footballers at multiple tibial sites. SNPs in the 

proximity of genes in P2X7R and the RANK/RANKL/OPG signalling and Wnt signalling 

pathways were associated with bone phenotypes. Genotype dependent differences were 

shown before, after and as a result of 12 weeks increased volume football training in 
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adolescent academy footballers. Differences were shown at multiple tibial sites over a range 

of bone phenotypes. SNPs in close proximity to SOST, P2X7R, RANK, RANKL, OPG, 

Bradykinin and VDR genes were associated with stress fracture injury in various sub-

classifications of elite athletes. Despite a large degree of individual variability, genotype was 

not associated with the bone resorption marker β-CTX prior to, immediately following or in 

the 3 d following 120min of treadmill running. 

 

Of the SNPs analysed many were associated with specific bone structural phenotypes (Study 

2) and stress fracture injury (Study 3). In Study 3, SNPs were associated with stress fracture 

injury in a range of different sporting sub-classifications suggesting that each SNP may be 

specific to a distinct aetiology of injury. The range of bone phenotypes and the different sites 

of the tibia that were associated with genotype suggest that different compositions of bone 

may be under different genetic mediation. Although previous studies have shown bone 

resorption (Roshandel et al., 2011), and more specifically β-CTX, to be associated with SNPs 

in the proximity of the RANK/RANKL/OPG signalling pathway in a resting state (Kemp et 

al., 2013), no significant associations were shown following exercise in the present thesis. 

This may indicate the role of specific SNPs in bone resorption is only detectable following 

repeated exercise bouts.  

 

Individual SNPs from within SOST, P2X7R and RANKL genes were all associated with, 

variation in bone phenotypes and stress fracture injury incidence in elite athletes. This adds to 

previously published literature on non-athletes showing these genes to have a role in bone 

phenotypic adaptations.  
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8.2. RANK/RANKL/OPG Signalling Pathway    

 

RANKL SNPs rs1021188 and rs9594738 were associated with cortical CSA, cortical 

thickness (rs1021188), cortical CSA (rs9594738) and incidence of stress fracture injury 

(Study 3). The minor C allele of rs1021188 was associated with 6% lower cortical CSA at 

baseline, and a 6.4% and 6.7% lower cortical thickness at baseline and following 12 weeks of 

increased training volume (Study 2). The C allele was also associated with greater stress 

fracture risk in the whole cohort and in males, cases of multiple stress fractures, 

football/hockey and stress fractures occurring pre-21 sub-classifications. The combination of 

with cortical CSA and thickness, together with greater stress fracture injury occurrence 

suggest a potential determinant in the pathophysiology of stress fracture injury. As cortical 

CSA and thickness are requisites of bone strength, it may be that decreases in these 

phenotypes leads to bone weakening, which might increase stress fracture injury risk. Despite 

showing associations with bone phenotype in academy footballers and stress fracture 

incidence in elite athletes, no significant associations between rs1021188 and the bone 

resorption marker β-CTX were shown in response to an initial investigation into the effect of 

120 min of treadmill running (Study 4). This may indicate that multiple exercise bouts are 

required for the effects of genotype related associations to be detectable, or that the effect of 

an exercise bout on bone resorption may manifest beyond the 72-h follow-up period that was 

used in the present study. This premise is substantiated by the greatest amount of variability 

in β-CTX response shown in FU3 (Study 4). However, as Study 4 is a preliminary 

investigation it may have been underpowered to detect genotype dependent changes in β-

CTX and therefore it cannot be concluded that the SNPs analysed are not associated with β-

CTX. Previously, rs1021188 has been shown to be associated with cortical BMD and cortical 

thickness in a meta-analysis involving four large cohorts (Paternoster et al., 2010). The 

association of cortical thickness is consistent with the current findings, although no 
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associations with cortical BMD were shown in the adolescent academy footballers, in Study 

2. The reason for the contrasting findings may be due to the activity status and the rapid 

increase in training experienced by the academy footballers creating a distinct bone response. 

However, it is difficult to compare these findings to that of the meta-analysis as the activity 

levels in the cohorts studied were not provided.   

 

Despite a functional role of these SNPs not being clearly defined, the key role of the 

RANK/RANKL/OPG signalling pathway in osteoclast differentiation and activation is widely 

reported (Boyle et al., 2003). Although circulating free RANKL is notoriously difficult to 

measure (Hegedus et al., 2002), the association of increased circulating free RANKL in those 

possessing the C allele of rs1021188 (Paternoster et al., 2010) seems to support this SNPs 

role in the mediation of osteoclast activity. As an increase in RANKL would lead to increased 

bone resorption, a potential uncoupling of the bone remodelling cycle may have also 

occurred. Although speculative, the difference in bone resorption may have led to a net bone 

loss and could provide a pathophysiological cause of stress fracture development and 

decrease in cortical CSA and thickness. This mechanism of injury seems plausible in the 

current elite athlete cohort given the high amount of repetitive mechanical loading undertaken 

throughout training and match-play and the short periods of recovery between exercise 

sessions. It has also been suggested that allelic differences in the RANK/RANKL/OPG SNPs 

may have a mediatory role in the process by which vitamin D status induces RANKL 

expression in osteoblast and osteoblast precursor cells (Yoskovitz et al., 2013), thus 

providing another possible mechanism of effect.                          

 

Although rs1021188 and rs9594738 are not in linkage disequilibrium, high recombination 

rates have been shown between these SNPs (Paternoster et al., 2010). RANKL SNP 
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rs9594738 was associated with cortical CSA at the tibia and stress fracture occurrence in 

cricket and football/hockey player sub-classifications. The minor C allele was protective 

against stress fracture injury (OR 0.80, 95%CI: 0.30-2.17 in cricketers and OR 0.40, 95%CI: 

0.83-0.19 in football/hockey players) and was associated with greater cortical CSA in 

adolescent footballers. These findings are in accordance with previous research showing the 

C allele to have a protective affect against osteoporotic fracture (Zhang et al., 2011) and to be 

associated with greater BMD at the lumbar spine (Yoskovitz et al., 2013).          

 

The present results showing associations between SNPs in close proximity to genes in the 

RANK/RANKL/OPG signalling pathway and bone phenotypes in elite athletes are the first to 

show SNPs in this pathway to be associated with stress fracture injury risk and phenotypic 

adaptations as a result of exercise. Together, this underlines the importance of these SNPs in 

various populations in the maintenance of bone health and in the mediation of bone structural 

adaptations. These associations are important for sports medicine in helping to explain the 

aetiology of stress fracture incidence. The SNPs could be used as targets for further studies in 

the pursuit of pharmaceutical preventive interventions and therapeutic treatments in order 

accelerate recovery from stress fracture injury.     

 

 

8.3. SOST  

 

The minor allele of the SOST SNP rs1877632 was associated with increased trabecular BMD 

at the 4% site of the tibia (Study 2) and a greater stress fracture injury incidence in the whole 

cohort and in cases of multiple stress fracture, football/hockey players and running sub-

classifications (Study 3). This is the first time that rs1877632 has been investigated in 



199 

 

association with stress fracture injury. The findings in relation to trabecular BMD are 

complemented by previous research in non-athletic populations (Yerges et al., 2009), 

showing carriers of the rare allele to have a greater trabecular BMD in comparison to those 

carrying the common allele. Although the study by Yerges et al (2009) used an older 

population (mean age ~75y) compared to the present population (mean age 16y), the BMD 

based on allelic differences were similar (5.9% and 6.1% compared to 6% and 10.2%), 

showing that the effect of the SNP may be of influence across various populations. A greater 

BMD may confer an increase in bone strength and potentially provide a protective 

mechanism against stress fracture injury manifestation. However, the rare allele was also 

associated with stress fracture injury incidence in Study 2. Since greater BMD and stress 

fracture occurrence were associated with the rare allele, it could be speculated that a loading 

threshold may exist in which carriers of the rare allele may have augmented bone phenotypes 

in the short-term but if loading is sustained, a heighten long-term susceptibility to bone 

weakness occurs. This is due to the bone not being given a sufficient amount of time to 

recover and as a result increase in secondary mineralisation (Seeman, 2008). Secondary 

mineralisation may create a period of short-term bone weakness, as a result of heightened 

bone resorption and might thus, increase stress fracture injury susceptibility. However, no 

genetic associations with bone resorption were shown in Study 4. An alternative hypothesis 

may be that as stress fracture injuries do not commonly occur at the 4% site of the tibia 

(Green et al., 1985), the mechanism by which greater trabecular density was shown in Study 

2 and the occurrence of stress fracture injury (Study 3) may be different. Although 

interconnected, it is not uncommon for genotype (Kemp et al., 2013), exercise (Wilks et al., 

2009; Schipilow et al., 2013) and pharmaceutical interventions (Seeman et al., 2010) to have 

divergent effects on trabecular and cortical bone. Trabecular bone phenotypes are less of a 
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determinant of bone strength relative to cortical bone (Martin, 1991), which may also explain 

the seemingly contrary findings.   

 

8.4. P2X7R 

 

Loss of function P2X7R SNP rs3751143 and gain of function P2X7R SNP rs1718119 were 

associated with bone phenotypic differences (Study 2) and stress fracture injury occurrence 

(Study 3). The rare allele of rs3751143 was associated with an increased cortical density in 

response to training at the 38% site of the tibia (8.1mg·cm
-3 

compared to 4.1mg·cm
-3

), in 

contrast to the findings of lower hip BMD by Husted et al. (2013) and an increased risk of 

osteoporotic fracture (Wesselius et al., 2012; Ohlendorff et al., 2007). The reason for the 

contradictory findings could relate to the population studied, the composition of bone 

analysed and the cross sectional nature of previous studies. The previous phenotypic 

associations have been shown in mainly elderly and osteoporotic patients (Husted et al., 

2013; Ohlendorff et al., 2007) who have different bone phenotypes compared to the young 

athletic cohort used in the present study. Also, the location of previous associations has 

mainly been restricted to trabecular bone (hip, lumbar spine), while the present study showed 

no association with trabecular BMD at the epiphysis of the tibia. 

 

In the present thesis, greater stress fracture injury occurrence was seen in the whole cohort 

and in cricketers and leg stress fracture sub-classifications (Study 3, Odds Ratios are shown 

in Appendix 6.4.). These findings may seem somewhat contradictory as BMD is a component 

of bone strength and associations between stress fracture injury and lower BMD have been 

shown in previous research (Wentz et al., 2012), although the association of low BMD with 

stress fracture injury is far from established. As a result of the data in the present thesis it 
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could be speculated that cortical BMD may not be related to the pathophysiology of stress 

fracture injury and that other mechanisms may increase risk, such as lower cortical area 

(Popp et al., 2009). The association of the rare allele of rs3751143 with stress fracture injury 

is also in accordance with data showing that bone size is an important factor in the 

determination of bone strength (Evans et al., 2008). rs3751143 has been associated with 

osteoclast apoptosis (Ohlendorff et al., 2007), reduced pore formation (Gu et al., 2002) and 

reductions in pro-inflammatory cytokine secretion (Sluyter et al., 2004). Homozygotes for the 

common allele would be expected to have a higher rate of bone resorption in comparison to 

those possessing an allelic variation, as new bone is less dense than old bone, the decreased 

rate of bone resorption may explain the rare allele being associated with cortical density in 

the present study. The findings in relation to stress fracture injury are more difficult to 

explain. Previous studies related to rs3751143 and bone phenotypes have investigated cohorts 

at risk of osteoporosis opposed to athletic populations. As the P2X7 receptors are important 

factors in ATP signalling, as a result of mechanotransduction, the increased loading that is 

likely to have been experienced by the cohort in the present study may have caused different 

effects of the receptor. The influence of increased mechantransduction is unlikely to have 

altered the function of rs3751143, but repeated loading may have changed receptor 

functioning to facilitate this process.      

 

Gain of function P2X7R SNP rs1718119 was associated with increased cortical thickness and 

CSA as well as lower stress fracture injury risk in multiple stress fracture cases and runners 

(Study 3). These data are in keeping with previous research showing the gain of function 

allele to be associated with protection against osteoporotic fracture (Jorgenson et al., 2012; 

Husted et al., 2013) and greater BMD (Wesselius et al., 2012; Husted et al., 2013). Although 

the sub-classifications were extremely homogeneous, both cases of multiple fracture and 
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running cohorts had relativity low sample sizes (particularly the running cohort), creating the 

need for replication cohorts. Also, those homozygous for the gain of function allele were 

unexpectedly associated with greater cortical thickness and CSA in comparison to 

heterozygotes; there was no difference between homozygotes for the rare or common allele. 

Thus, further investigations are required in large cohorts of athletes in order to replicate these 

findings.   

 

8.5. Limitations  

 

Whilst heterogeneity in traits such as lifestyle factors are acknowledged as variable factors in 

the present thesis, it is currently unavoidable given the size of the cohorts needed for each 

study. The specific limitations to each study are discussed in the relevant experimental 

Chapters of the thesis. Globally there is a need for studies examining genetic associations to 

have large participant numbers and be as homogenous as possible to reduce the impact of 

confounding environmental factors. Study 2 achieves this by containing a cohort of 

footballers aged 16 y with similar current and previous training histories. As exercise in 

pubertal stages is known to be associated with bone phenotypes in adulthood (Lorentzon et 

al., 2007), this makes elite athletes a homogenous population and offers an advantage over 

studies using military recruits and the general population, who are likely to have vastly 

different physical activity histories. Similarly, in Study 3, despite being from different sports, 

elite athletes all have high training loads and it can be confidently presumed they have been 

participating from a young age in sporting pursuits in order to achieve elite status. Study 3 is 

the largest study to date examining the genetic associations with stress fracture injury 

occurrence and the only study to use a cohort of elite athletes. Ideally, a replication cohort 

would be sought to confirm or refute these findings, although this would be challenging in the 
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absence of a large-scale, multi-centred investigation, which was not possible in the current 

thesis. As the majority of the SNPs were selected on statistical results from GWAS, the 

functional effects of some SNPs is unknown, making it possible that these SNPs are in high 

linkage disequalilibrum with other SNPs that do cause a functional affect. Further research, 

both in vivo and in vitro, is needed including prospective studies investigating genetic 

associations with stress fracture injury in large heterogenic populations and knockout mice 

loading models exploring the mechanism of the SNPs that have been associated with stress 

fracture injury. Although the results are mainly in the same direction as previously published 

literature, the number of comparisons made suggest there is a possibility that some of the 

findings occurred by chance. 

 

8.6. Conclusion 

 

SNPs located near pathways known to influence bone remodelling were significantly 

associated with bone phenotypic alterations and stress fracture injury in elite adolescent 

footballers and elite athletes. These data, together with previously reported associations with 

other bone phenotypes, suggest an important role for these SNPs in the regulation of bone 

strength and the adaptation to mechanical loading. Stress fracture injuries are both common 

and incapacitating for athletes and military recruits, affecting large numbers of otherwise 

healthy and active individuals. The lack of understanding in relation to the aetiology and 

pathophysiology of injury also limits our capacity to prevent or treat sufferers. These novel 

findings are not only important for sports medicine in helping to explain the aetiology of 

stress fracture injury incidence, but also have implications for occupational health (For 

example, military populations) and orthopaedic surgery potentially leading to the 

development of individualised training and medicine based on genotype. Although stress 
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fracture injury occurs relatively infrequently in the general population, based on the aetiology 

of injury, some of the phenotypes associated with stress fracture may be common in 

osteoporotic fractures and other bone disorders. Therefore, the SNPs associated with both 

stress fracture and bone phenotypes may be pertinent in relation to common fracture and bone 

healing. However, stress fracture injury is not a monogenic trait and further gene-gene and 

gene-environment interactions need to be explored. The specific mechanisms of how these 

SNPs are associated with stress fracture injury are not clear, and further studies are needed to 

establish the underpinning factors of how these allelic variations influence bone adaptations 

and subsequently heighten stress fracture risk.  

 

8.7. Future Investigations 

 

This thesis expands the knowledge base on the role of genotype in bone adaptation and stress 

fracture injury. The association of common SNPs with bone structural differences and stress 

fracture injury may indicate that the effects of theses SNPs may be of clinical relevance, 

although the extent to which genotype governs this mediation remains unclear. Future 

investigations should include: 

 

 The examination of stress fracture injury aetiology in sports that require irregular 

movement patterns (e.g., football) and single plane movements (e.g. middle distance 

track running) would provide further understanding into the bone adaptations that 

occur as a result of specific training protocols and may give further insight into how 

gene-environment interactions occur.   

 

 Gene-gene interactions exploring allele combinations is needed with larger cohorts 

are required. Bioinformatics expertise may also be needed to tease out complex and 
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hidden gene-gene interactions. Epigenetic factors, such as DNA methylation should 

be explored and may have the potential to influence the findings.   

 

 The targeting of the specific SNPs shown to be associated with bone adaptations and 

stress fracture injury in the present thesis are needed both in vivo and in vitro. 

Investigating mechanotransduction and rate of bone remodelling over time to try and 

understand the mechanisms by which these SNPs are able to mediate the bone 

response to exercise.  

 

 GWAS and prospective studies in elite athletes in order to replicate the current 

findings, although the limited population that is able to be called on in studies of this 

nature may restrict the cohort size. To overcome this issue it is likely that multi-

centred investigations will be required.  

 

 The genetic exploration of stress fracture injuries at specific anatomical sites as 

different compositions of bone may be under the control of different genetic 

mediators. 

 

 A continuation of the prolonged treadmill running study (Study 4) with a larger cohort 

and the assessment of a greater number of biochemical markers of bone turnover to 

investigate genetic associations with net bone turnover.      
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5.1. Appendix. Participant information sheet: Genotype Dependent Changes in Bone 

Phenotypes in Academy Footballers 
Ian Varley 

Ian.Varley@ntu.ac.uk 
07956346937 

School of Science and Technology 
Nottingham Trent University 

Clifton campus 

Participant Information Sheet 

Project Title Genetic dependent changes in bone assessed by bone scan.  

Principal investigator: Ian Varley Nottingham Trent University  

 
We would like to invite you to volunteer in our research study. Before you decide we would like 
you to understand why the research is being done and what it would involve for you. Ian Varley 
will go through the information sheet with you and answer any questions you may have. 
Please feel free to talk to others about the study if you wish. You have 4 weeks to make a decision 
on whether you would like to participate.     

Please ask if anything is not clear.  
 

Project description  Increases in training cause the amount of loading placed on bone to 
increase. As a result of this, the amount of bone repair is likely to accelerate, possibly contributing 

to injuries, such as stress fractures. The current study looks to establish how different people’s 
bones respond to football training. 

 

What is the purpose of the study? 

The study is part of a PhD thesis investigating genetic susceptibility to stress related bone injuries 

in elite athletes. The aim of the study is to investigate if there are any differences in bone after 12 
weeks football training.  

 

Why have I been invited? 

As an academy footballer you partake in a high volume of training in a sport which has a relatively 
high prevalence of stress related bone injuries. At 16 years of age your training increases, this 
increase may cause variations in bone properties which may differ between individuals. We hope 
to recruit 120 academy footballers.     

 

Do I have to take part? 

It is up to you to decide to join the study. We will describe the study and go through this 
information sheet. If you agree to take part, we will then ask you to sign a consent form. You are 
free to withdraw at any time, without giving a reason. 

 

What will happen to me if I take part? 
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We will ask you to visit Nottingham Trent University on two separate occasions separated by 12 
weeks. Each visit will involve having a bone scan (this will be in the form of pQCT or peripheral 

quantitative computed tomography which is used for making measurements of bone mass and 
size), for each scan you will be required to sit stationary in a chair with your dominant leg inside 

the scanner for approximately 10 minutes. Giving the saliva sample will involve placing a small 
amount of saliva into a tube. Each visit will last a maximum of 30 minutes in total.  

Expenses and Payments 

You won’t receive any payments for you participation in the study.  

 

What will I have to do? 

We will ask you to have two bone scans separated by 12 weeks (training as normal during the 12 
weeks). These will take place at Nottingham Trent University, scans take approximately 10min and 
are completely pain free. The two scans that take place will be exactly the same. We will also ask 
you to provide a saliva sample.   

  

What are the possible disadvantages and risks of taking part? 

During the process of being scanned you will receive a small dose of radiation (<5 μSv) which is 

very small compared to other X-ray procedures and is the equivalent to the additional cosmic 
radiation dose received from a flight from the UK to Spain.  
 

All genetic information will be linked anonymous, therefore you will not be informed of their 
specific genetic information. 

 

What are the possible benefits of taking part? 

We cannot promise the study will help you but the information we get from this study will help 
advance the pool of knowledge related to stress related bone injuries suffered by elite athletes. 
The results may also lead to the prevention and/or early diagnosis of bone injury.     

 

What happens when the research study stops? 

The information from the study will be fedback to your club as a whole. Unfortunately, individual 
data cannot be disclosed.   

 

What if relevant new information becomes available? 

If new information comes available that is applicable to the safety of the study we will inform you 
of this information. If the study is stopped for any reason, you to be informed with regard to the 
reasons. 

 

What will happen if I don’t want to carry on with the study? 

You are free to withdraw from the study at any point. If you withdraw from the study, we will 
destroy all your identifiable samples and data. 

 

What if there is a problem? 

If you have a concern about any aspect of this study, you should ask to speak to the researchers 
who will do their best to answer your questions, tel: 0115 8483820. If you remain unhappy and 
wish to complain formally, you can do this by contacting Nottingham Trent University’s technical 

manager, Mark Cosgrove tel: 0115 8486691, who is independent of the research program and 
will take you through the complaints procedure.  

 

Will my taking part in this study be kept confidential? 

Your data will be collected via information received from your bone scan and DNA extracted from 
your saliva sample. All information will be coded and stored securely and anonymously. All data 
will be used for analysis in the present study. All data will be retained for 5 years before being 
destroyed via incineration. 

tel:0115
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Involvement of the General Practitioner/Family doctor (GP) 

You may wish is seek advice from your GP however, we will not inform your GP. 

 

What will happen to any samples I give? 

Your saliva sample will be collected in a coded tube; DNA will be extracted from the saliva. Saliva 
samples provided will be coded by way of a unique number which will not be traceable to you.  
Saliva and DNA samples will be stored in locked cabinets (Saliva) and freezers (DNA) with only the 

lead researcher, director of studies and senior technician having access. Your data from the bone 
scan will be stored on a password protected university computer.   

You will not be able to be identified from the saliva or DNA sample. 

Your samples will be stored for 5 year before destruction via incineration. 

Your samples will be analysed within Nottingham Trent University.  

In the future, your linked anonymous data and linked anonymous saliva/DNA samples may be 

shared with researchers outside the UK and outside the European Union. We would like to do this 
to ensure the best and widest use of the time you helped us conduct this project. You will not have 
any financial gain from your data being shared with other researchers.  

If you do not wish for your data and samples to be shared, please let us know and indicate this on 
your consent form. 

 

Will any genetic tests be done? 

Your DNA will be analysed from the saliva sample you provide. Some research suggests the 
involvement individual variation in the bones response to exercise. The current study looks to 
establish the specific genetic differences that may alter the bones response to football training.  

Your DNA will be analysed for a variety of genes associated with bone repair and growth. 

The sample we wish you to provide and the subsequent DNA extracted will be coded and stored 
linked anonymously with the source of the DNA unknown to the experimenting team therefore, no 
individual feedback can be provided. 

There is remote likelihood of any commercial significance arising from this study, you would not 
benefit financially if any commercial significance did arise. 

 

What will happen to the results of the research study? 

The results of the study will be fedback to your club and also published in a peer reviewed 
academic journal. Information will be provided as to the location of the publication when this 
information is known.  

   You will not be identified in any report or publication.  
 

Who is organising and funding the research? 

The research is funded by Nottingham Trent University. 

 

Who has reviewed the study?  
 

The research is looked at by an independent group of people, called a Research Ethics Committee, 
to protect your interests. This study has been reviewed and given favourable opinion by (will 

include when appropriate)Research Ethics Committee.  
   

Further information and contact details 

All participants will be given an information form and signed consent form. 

 

I’m unsure whether to participant or not? 
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Please take time to consider if you would like to participate. You have 4 weeks in which you may 
seek any advice you see fit. If you have any questions please don’t hesitate to contact me on any 

of the methods listed below. 
 

Contact Details: 

Ian Varley, MRes      Email: Ian.Varley@ntu.ac.uk   

Postgraduate Researcher 
Biomedical, Life and Health Sciences Research Centre 
School of Science and Technology, 
Nottingham Trent University, 
Erasmus Darwin Building, 
Clifton Lane, 
Nottingham, UK. 

NG11 8NS.  
Tel: 0115 8483820 
 
Craig Sale, MSc, PhD      Email: Craig.Sale@ntu.ac.uk   

Reader in Applied Physiology 
Biomedical, Life and Health Sciences Research Centre 

School of Science and Technology, 
Nottingham Trent University, 
Erasmus Darwin Building, 
Clifton Lane, 
Nottingham, UK. 
NG11 8NS.  
Tel: 0115 8483505 
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5.2. Appendix. Pre Scan Screening form: Genotype Dependent Changes in Bone 

Phenotypes in Academy Footballers   

 

Pre Scan Screening  
 
 
 
Q1) Have you been subjected to any medical radiation exposures in the last 12 months? Y/N 

 

If yes, please specify the number of scans, the type of scans and where they were performed.  
 
__________________________________________________________ 
(Note for Operator: If the participant has received diagnostic x-ray exposures only (e.g. dental / 
medical x-rays) then they are free to participate, if they indicate that they have received 
radiotherapy or similar high dose treatments for cancer then they should not be allowed to 
participate.) 

 
Q2) Have you been a volunteer for studies using the pQCT scanner at Nottingham Trent University 
in the last 12 months? Y/N 
 
If yes, please specify the number of scans and the type of scans. 
 
___________________________________________________________ 

(Note for Operator: If the participant has been scanned using the pQCT  on 2 previous occasions in 
12 months do not continue with the scan and contact RPS; other scans which have a higher 

effective dose should be discussed with RPS.) 
 
        
Q3) Are you subjected to any other form of radiation exposure other than background (e.g at 

work)?  If yes, please provide details.  
______________________________________________________________________________
________________________________________ 
(Note for Operator: Contact RPS before scanning if a participant answers yes to the above) 
 
 

I understand that relevant sections of my medical notes and data collected during the study may 
be looked at by individuals from Nottingham Trent University, from regulatory authorities or from 
the NHS Trust, where it is relevant to my taking part in this research. I give permission for these 

individuals to have access to my records.    
 
Participant:    
Name _________________________ 

Date___________________________ 
Signature_______________________ 
 

 
Researcher taking consent: 
Name _________________________ 
Date___________________________ 
Signature_______________________ 
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5.3. Appendix. Informed Consent: Genotype Dependent Changes in Bone Phenotypes in 

Academy Footballers  

 

INFORMED CONSENT FORM 
 
Title of study: Genotype dependent changes in bone phenotypes assessed 
via pQCT 

 
Name of Principal Investigator: Ian Varley 

Study number: 1  

REC approval number: 12/EM/0183  
  
  
Participant Name:……………………………  

 
Thank you for reading the information about our research project. If you would like to take part, 
please read and sign this form. 
 
Consent for the current study 
 
PLEASE INITIAL THE BOXES IF YOU AGREE WITH EACH SECTION: 

 
I have read the information sheet version ... dated  __/__/__ for the above 
study and have been given a copy to keep. I have had the opportunity to 
consider the information, ask questions and have had these answered 
satisfactorily. 
 
I understand that my participation is voluntary and that I am free to withdraw 

at any time without giving any reason, without my medical care or legal rights 
being affected. 
 
I agree to give a sample of saliva for research in this study. I understand how 
the sample will be collected, that giving a sample for this research is voluntary 
and that I am free to withdraw my approval for use of the sample at any time.  

 
I agree to have a bone scan for research purposes. I understand what this will 
involve and that I will be exposed to a low level of radiation. 
 

I understand that all my data will be stored confidentially and that my 
anonymous data may be shared with other parties. 
 

 
I understand my training record may be accessed.    
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I agree to participate in this study.  
Participant:                                                      Researcher taking consent: 

Name _________________________                Name _________________ 
Date___________________________               Date__________________ 

Signature_______________________               Signature_______________ 

 

 
 

 

 

 

 

5.4. Appendix. Health Screen: Genotype Dependent Changes in Bone Phenotypes in 

Academy Footballers   

 

HEALTH SCREEN 

 

Name  ....……………… 
 

Please complete this brief questionnaire to confirm fitness to participate: 
 

1.At present, do you have any health problem for which you are: 

(a)on medication, prescribed or otherwise                                                                Yes     No      

(b)attending your general practitioner                                                                       Yes     No      

(c)on a hospital waiting list                                                                                       Yes     No      
 

2.In the past two years, have you had any illness which require you to: 

(a)consult your GP                                                                                                     Yes     No      

(b)attend a hospital outpatient department                                                                 Yes     No      

(c)be admitted to hospital                                                                                           Yes     No      
 

3.Have you ever had any of the following? 

(a)Convulsions/epilepsy                                                                                             Yes     No      

(b)Asthma                                                                                                                   Yes     No      

(c)Eczema                                                                                                                   Yes     No      

(d)Diabetes                                                                                                                  Yes     No      

(e)A blood disorder                                                                                                     Yes     No      

(f)Head injury                                                                                                             Yes     No      

(g)Digestive problems                                                                                                 Yes     No      

(h)Heart problems                                                                                                       Yes     No      

(i)Problems with bones or joints                                                                                Yes     No      

(j)Disturbance of balance / coordination                                                                    Yes     No      

(k)Numbness in hands or feet                                                                                     Yes     No      

(l)Disturbance of vision                                                                                              Yes     No      

(m)Ear / hearing problems                                                                                          Yes     No      

(n)Thyroid problems                                                                                                   Yes     No      
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(o)Kidney or liver problems                                                                                        Yes     No      

(p)Allergy to nuts, alcohol etc                                                                                     Yes     No      
 

4.Has any, otherwise healthy, member of your family under the age of 35died suddenly during or 

soon after exercise?                                                                                                      Yes     No      

5.Are there any reasons why blood sampling may be difficult?                                  Yes       No      

6.Have you had a blood sample taken previously?                                                       Yes       No      

7. Have you had a cold or flu or any flu like symptoms in the last month?                  Yes       No     

  

 

5.5. Appendix. Althletic Status Questionnaire: Genotype Dependent Changes in Bone 

Phenotypes in Academy Footballers 

 

 
 

Nottingham Trent University, School of Science and 
Technology. 

 
Athletic status questionnaire 

Personal information: 
Athlete ID number (Researcher use only): 
 
Date of Birth (dd/mm/yyyy)         /         /                  

 
 
 

 

 
 
Which of the following best describes your ethnicity? 
 
     White       Mixed white     Black African  

 

     Black Caribbean      Asian       Other  

 
If other, please state……………………………………. 
 

  

Weight: kgs     OR      stone      lbs 

Height: cms    OR      feet     ins 
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Athletic Status: 
 

At what age did you first play competitive football? 
 
 
What is your regular playing position? 
e.g. Central Defender or Goalkeeper  

 
How many hours a week do you spend training during a regular 
week? 
Please take the time to think about this carefully



250 

 

5.6. Appendix. Characteristics of Academy Footballers Pre and Post 12 Weeks of Increased Training Volume Divided by Genotype  

Characteristics of academy footballers pre and post 12 weeks of increased training volume divided by genotype: mean ± SD. A significance level 

of P<0.05 used. P values are stated other that those <0.01. * was used to denote significance. 

RANKL rs9594759 CC = 18 CT = 30 TT = 25 P value CC = 18 CT = 30 TT = 25 P value Interaction 

 

Pre Pre Pre 

 

Post Post Post 

  Height (m) 1.76±5.14 1.77±6.93 1.74±6.66 0.60 1.76±5.19 1.78±6.83 1.74±6.52 0.91 0.16 

Weight (kg) 69.7±5.7 71.9±8.7 68.8±7.2 0.30 70.5±6.2 73.0±8.6 69.4±7.3 0.22 0.83 

Training (h/wk) 5.9±2.6 5.9±3.6 6.3±2.4 0.89 12.0±1.2 12.0±1.2 11.5±1.4 0.31 0.55 

Tibial length (mm) 394.1±18.7 390.7±18.7 377.2±21.3 0.11 394.6±16.4 390.7±18.7 377.6±20.1 0.16 0.91 

Age at elite status (y)  9.2±2.1 8.5±2.3 10.0±2.2 0.05           

           RANK rs3018362 AA = 10 AG = 28 GG = 36 P value AA = 10 AG = 28 GG = 36 P value Interaction 

 

Pre Pre Pre 

 

Post Post Post 

  Height (m) 1.75±7.12 1.77±6.65 1.77±6.51 0.65 1.76±6.94 1.77±6.16 1.77±6.57 0.73 0.54 

Weight (kg) 69.9±8.6 70.7±8.9 70.3±6.0 0.96 70.0±9.2 72.0±8.5 71.2±6.4 0.76 0.43 

Training (h/wk) 5.3±2.7 5.1±2.3 7.0±3.2 0.03 11.9±1.4 11.7±1.2 11.9±1.4 0.77 0.06 

Tibial length (mm) 385.3±17.0 389.8±19.4 386.0±21.5 0.71 385.3±17.0 389.9±18.3 386.3±20.3 0.68 0.87 

Age at elite status (y)  8.6±2.3 9.4±2.1 9.4±2.2 0.57           

           

           

RANKL rs1021188 

CC/CT = 

24 GG = 52 P value 

CC/CT = 

24 GG = 52 P value Interaction Interaction 

 

Pre Pre 

 

Post Post 

   Height (m) 1.78±6.25 1.75±6.88 0.12 1.79±6.31 1.76±6.48 0.11 0.93 0.16 

Weight (kg) 72.2±7.3 69.2±7.6 0.12 73.0±7.7 70.2±7.7 0.15 0.79 0.39 

Training (h/wk) 5.7±2.3 6.2±3.2 0.47 12.1±1.3 11.7±1.3 0.18 0.21 0.05 

Tibial length (mm) 387.4±20.8 386.9±20.8 0.91 387.7±20.3 387.2±20.4 0.87 0.97 0.89 

Age at elite status (y)  9.0±2.2 9.4±2.2 0.74           
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           RANKL rs9594738 CC = 21 CT = 32 TT = 23 P value CC = 21 CT = 32 TT = 23 P value Interaction 

 

Pre Pre Pre 

 

Post Post Post 

  Height (m) 1.78±6.22 1.77±6.95 1.75±6.91 0.43 1.78±5.74 1.77±6.92 1.75±6.77 0.49 0.40 

Weight (kg) 70.8±5.7 70.9±8.9 68.9±6.0 0.64 71.8±6.0 71.5±9.1 70.0±8.1 0.71 0.82 

Training (h/wk) 5.5±2.4 6.3±3.6 6.9±8.3 0.63 12.1±1.2 11.8±1.3 11.5±1.3 0.36 0.34 

Tibial length (mm) 397.6±16.9 385.5±18.9 378.9±22.3 0.01 397.6±16.9 385.7±19.3 379.2±22.1 0.02 0.59 

Age at elite status (y)  9.2±1.9 9.0±2.4 9.8±2.2 0.36             

           

           

           WNT16 rs2707466 AA = 21 AG = 30 GG = 21 P value AA = 21 AG = 30 GG = 21 P value Interaction 

 

Pre Pre Pre 

 

Post Post Post 

  Height (m) 1.75±6.23 1.76±6.38 1.77±7.84 0.54 1.76±5.84 1.77±6.13 1.78±7.74 0.56 0.44 

Weight (kg) 70.2±6.2 70.7±8.3 70.2±7.8 0.97 70.1±6.4 71.1±8.2 72.7±8.1 0.60 0.01 

Training (h/wk) 5.6±2.4 6.4±3.6 5.9±2.4 0.65 11.7±1.3 11.8±1.4 11.9±1.2 0.91 0.69 

Tibial length (mm) 393.4±22.3 383.8±17.0 386.7±23.5 0.27 393.4±22.3 384.2±16.2 387.1±23.1 0.31 0.94 

Age at elite status (y)  9.7±1.8 9.2±2.3 9.1±2.5 0.63           

           

           

MP3K rs8065345 AA = 55 

AG/GG = 

21 P value AA = 55 

AG/GG = 

21 P value Interaction 

  

 

Pre Pre 

 

Post Post 

    Height (m) 1.76±6.85 1.75±6.58 0.51 1.77±6.61 1.76±6.54 0.41 0.30 

  Weight (kg) 70.3±7.5 70.2±8.5 0.98 71.5±7.7 70.2±8.7 0.53 0.07 

  Training (h/wk) 6.1±3.1 6.0±2.7 0.86 11.8±1.2 11.7±1.5 0.81 0.95 

  Tibial length (mm) 387.6±20.8 385.8±21.5 0.75 387.8±19.9 385.9±21.6 0.71 0.94 

  Age at elite status (y)  9.5±2.2 8.6±2.2 0.09         
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SOST rs1877632 GG = 45 

GA/AA = 

26 P value GG = 45 

GA/AA = 

26 P value Interaction 

  

 

Pre Pre 

 

Post Post 

    Height (m) 1.76±7.63 1.76±6.18 0.86 1.77±7.12 1.77±6.94 0.78 0.52 

  Weight (kg) 71.3±7.6 69.2±7.6 0.28 72.5±7.6 69.6±7.6 0.13 0.26 

  Training (h/wk) 5.8±2.5 6.0±2.6 0.78 11.8±1.3 12.0±1.4 0.5 0.94 

  Tibial length (mm) 387.3±19.7 385.7±32.3 0.75 387.5±19.9 385.9±32.5 0.75 0.94 

  Age at elite status (y)  9.1±2.2 9.3±2.3 0.65         

  

           

           IL6  rs13447445 CC = 18 CG = 30 GG = 30 P value CC = 18 CG = 30 GG = 30 P value Interaction 

 

Pre Pre Pre 

 

Post Post Post 

  Height (m) 1.78±6.22 1.75±7.61 1.73±6.39 0.48 1.79±6.14 1.76±7.12 1.77±6.37 0.44 0.46 

Weight (kg) 70.3±7.8 69.9±8.8 70.9±7.9 0.89 71.7±8.1 70.8±8.9 71.6±7.9 0.92 0.68 

Training (h/wk) 5.7±2.6 6.4±2.6 6.0±3.5 0.75 12.1±1.5 11.6±1.3 11.8±1.2 0.47 0.51 

Tibial length (mm) 386.4±17.7 384.1±23.0 391.0±21.3 0.45 386.4±17.7 384.6±22.4 391.4±21.6 0.51 0.94 

Age at elite status (y)  10.1±2.2 9.0±2.2 9.0±2.3 0.22           

 

Characteristics of academy footballers pre and post 12 weeks of increased training volume divided by genotype: mean (SD). * denotes a 

significant difference (P<0.05). 
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6.1. Appendix. Informed Consent, Health Screen and Stress Fracture Questionnaire: 

Genetic Associations with Stress Fracture Injury  

 

Nottingham Trent University, School of Science and Technology. 
 

Informed Consent for the participation in the study entitled: 

 

Genetic associations in stress fracture injury. 

 
 

Researchers: Ian Varley, Dr Craig Sale and Dr David C. Hughes 

 

Background Information 
 

Stress fractures are injuries to bone that are commonly suffered by athletes and military personnel 

who are performing strenuous weight bearing exercise.  These injuries can cause significant 

discomfort, a loss of valuable training time and can have a significant financial impact.  The exact 

reasons why people suffer stress fracture injury is not clear, although several predisposing 

mechanical, and environmental factors have been proposed.  In addition, there is some indirect 

evidence which suggests the involvement of genetic factors in the development of stress fractures. 

Despite this there is relatively little published material that has addressed this issue. The current 

study looks to establish the specific genetic differences (polymorphisms) that mean that some 

individuals develop stress fractures whilst others with very similar activity patterns and training 

loads do not.   

 

Plan of Study 

Subjects are required to give a saliva sample.  This will involve placing a small amount of saliva 

into a tube.  In addition, you will be asked to complete a questionnaire asking you a few questions 

about whether or not you have suffered a stress fracture injury in the past. From the DNA sample 

we will determine selected genetic variations that might potentially be associated with the 

incidence of stress fracture injury. 

 

Potential Risks of taking part in this study, include 

There are ethical implications in discovering your own genetic profile; therefore, individuals will not 

be informed of their specific genetic information. 

 
Yours Faithfully, 
 

Ian Varley 
ian.varley@ntu.ac.uk 
07956346937 
School of Science and Technology 
Nottingham Trent University 
Clifton campus 
Nottingham 

mailto:ian.varley@ntu.ac.uk
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Statement of consent to participate in investigation entitled: 
 

Genetic Associations with Stress Fracture 
 

I (subject name) …………………………………. have read the information provided and 

agree to partake, in the proposed study. I am fully aware of the procedures to 

be carried out and have been informed in relation to the protocol. I agree to 

obey the universities regulations and the investigators instructions with regard 

to safety matters. 

 

I am aware that I may withdraw my consent to participate in the research at any 

time without any obligation to explain why or any prejudice towards them. 

 

I also understand that any personal information will not be passed on to any 

other parties. 

 

I understand I will not be informed of any data concerning my specific genetic 

profile. 

 

I have completed the health screening questionnaire and know of no other 

reasons, medical or otherwise, that will prevent me form taking part in this 

research. 

 

Signed (Subject) ……………………………………………………. Date………………………. 

 

Signed (Independent witness)………………………………. Date……………………….   

 
Signed (Primary researcher) ………………………………….  Date………………………… 
 

 

 

 

 



255 

 

 

 

 

 
 

Athletic Status and Stress Fracture Injury 
Questionnaire 

 

 
 
This questionnaire will only take you about 10 minutes to complete. 
 
 
Your answers to this questionnaire are strictly confidential and will not be 
seen by anyone other than the study investigators. The number on your 
saliva collection tube should be written in the box below. The 
questionnaire is completely anonymous and so please do not put your 
name anywhere on the form.  Your information will only be identified by 
the unique number on your saliva collection pot.   
 
Please be as honest, accurate and thorough as you can with your 
answers. If in doubt then please always give more information rather 
than less. If you would rather not answer a question please state ‘no 
comment’ and if you do not know the answer to a question please state 
’don’t know’. Thank you for taking part. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Please write Number (from saliva collection tube) in the box provided 
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Personal information: 
 
Date of Birth (dd/mm/yyyy)         /         /                  

 
 

 Sex        Male        Female 

 

 
 

 
  
 
Which of the following best describes your ethnicity? 
 
     White       Mixed white     Black African  

 

     Black Caribbean      Asian       Other  

 
If other, please state……………………………………. 
 

 

 
Typical weekly alcohol intake:____________ (units / wk) 
Standard Pint of beer (4%ABV) 2.3 units, Sprits 1.5 units, Glass of wine (standard 250ml) 

3 units)  
  

 
Athletic Status: 
 

At what age did you first compete at an elite level? 
 
 
What is your regular sport / playing position if applicable? 
e.g. marathon running/ NA OR basketball/ point guard  

 
 
How many hours a week do you spend training during a regular 
week? 
Please take the time to think about this carefully. 
 

Height: cms    OR      feet     ins 

Weight: kgs     OR      stone      lbs 
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How many years have you competed at National level? 
 

     0-3 years      4-6 years     7-9 years         10+ years 

 
 
How many times have you represented you country?  
   

     0-10 apps      11-20 apps      21-30 apps  

 

     31-40apps             41-50 apps            50+ apps 

 
 
Skeletal Injury: 

 

Have you ever broken or fractured a bone?  

 
 

    Yes      No 

 
 
If yes, please give details of the bone/bones you broke and at what age you broke it. 
 

Age Bone 

                       18 e.g. Upper leg / femur   

  

  

  

  

  

  

 

Have you ever been told that you have had a STRESS FRACTURE 
injury? 
This might have been called a micro-fracture  
 

    Yes      No 
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If yes, please give details of the bone/bones where the stress fracture occurred 
and at what age the fracture occurred. If no, please go to question 3.  

 
 

Bone Age Date of 
injury 

Recalled  Weight 
at time of fracture 

e.g. Upper leg 
/ femur   

18 25/12/210                    70kg     

    

    

    

    

 
If you have had more than one stress fracture, please complete the 
following questions for each stress fracture occurrence.  Further 
questions can be found on the continuation sheet at the back of the 
questionnaire.   
 
FIRST Stress Fracture  
 
If yes, was it confirmed by a bone scan? 
e.g. MRI scan, X-ray, CT scan, other radiological scan   
      

        Yes      No 

 

 
How long did you have pain in the area of stress fracture before 
confirmation of stress fracture _____________ (Weeks) 
 
 _____________ (Months) 
          
 
 
How long was it until the stress fracture stopped causing you pain  
__________ (weeks)__________ (months) 
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How long was it until the doctor advised it was healed__________ 
(weeks)__________ (months) 
 
 
 
How long was it before you were able to get back to full training? 
__________ (weeks)__________ (months) 
 
 
How was your stress fracture treated?    
 
    Rest        Operation  

If yes, how long did     If yes, how long after      you rest 
for?      stress fracture?           
 
Weeks__________    Weeks__________  

   
Months_________    Months_________ 

 
 
Did you change your training in the 2 months before your stress fracture 
injury? 
(if so, please provide details below) 
___________________________________________ 
 
Were you taking any medication at the time of injury? 
(if so, please provide details below) 
___________________________________ 
   
 
Have you ever had a recurrence (another stress fracture in exactly the 
same place)?  
    Yes      No 
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Females Only: 
 
Were you taking an oral contraceptive pill or did you have an implant at 
time of stress fracture?    
     Yes      No 

 
 
 
At what age did your first menstrual period occur?: ________ 
 
Were you having regular menstrual periods at the time of your stress 
fracture?:      Yes      No 

 
Had you been through the menopause at time of stress fracture?: 
       Yes      No 

__________________________________________________________________ 

 
 Have you ever suffered from prolonged shin pain during exercise 
that doesn’t go away for several weeks?  
 

    Yes      No 

 

Does anyone in your close family (Mother/Father/ Brother 
/Sister/Aunt/Uncle) suffer OSTEOPOROSIS OR FRAGILE bones? 
 

    Yes      No     Don‘t know 

   

Has anyone in your close family (Mother/Father/ 
Brother/Sister/Aunt/Uncle) ever had a STRESS FRACTURE?  
 

    Yes      No     Don‘t know 

 
6. Have you lived anywhere outside of the UK for more than 3 years? 
 
    Yes      No 

  

      If yes, please state the city/town and countries. 
Please provide more than one answer if appropriate 

Example: New York, United States  

………………………………………………………………………. 
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Athletic status and stress fracture injury health screen  
 

Number   ....……………… 
 

Please complete this brief questionnaire to confirm fitness to participate: 
 

1.At present, do you have any health problem for which you are: 

(a)on medication, prescribed or otherwise Yes     No      

(b)attending your general practitioner Yes     No      

(c)on a hospital waiting list Yes     No      
 

2.In the past two years, have you had any illness which require you to: 

(a)consult your GP   Yes     No      

(b)attend a hospital outpatient department Yes     No      

(c)be admitted to hospital   Yes     No      
 

3.Have you ever had any of the following? 

(a)Convulsions/epilepsy Yes     No      

(b)Asthma Yes     No      

(c)Eczema Yes     No      

(d)Diabetes Yes     No      

(e)A blood disorder Yes     No      

(f)Head injury Yes     No      

(g)Digestive problems Yes     No      

(h)Heart problems Yes     No      

(i)Problems with bones or joints    Yes     No      

(j)Disturbance of balance / coordination Yes     No      

(k)Numbness in hands or feet Yes     No      

(l)Disturbance of vision Yes     No      

(m)Ear / hearing problems Yes     No      

(n)Thyroid problems Yes     No      

(o)Kidney or liver problems Yes     No      

(p)Allergy to nuts, alcohol etc Yes     No      

(q)Any problems affecting your nose e.g. recurrent nose bleeds Yes     No       

(r)Any nasal fracture or deviated nasal septum Yes     No      
 

4.Has any, otherwise healthy, member of your family under the age of 50 died suddenly during or soon after 

exercise?  Yes     No      

5.Have you ever smoked for a period of 5 years or longer ? Yes     No      

6. Have you had a cold or flu or any flu like symptoms in the last month?                                  Yes     No     

  

Women only   

7. Are you pregnant or trying to become pregnant?           Yes      No      
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If YES to any question, please describe briefly if you wish (eg to confirm problem was/is short-lived, 

insignificant or well controlled.)  ......................... 
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6.2. Appendix. Participant Characteristics for the Whole Cohort and each Stress 

Fracture Group Sub-Classification   

Participant characteristics for each sub-classification. A significance level of P<0.05 was used. P 

values are stated other that those <0.01. * was used to denote significance.  

Whole cohort 

 Characteristics 
Stress fracture 

(n=125) 

Non-stress 

fracture (n=376)  
P-value  

Age (y) 27.7±7.5 24.4±5.4 <0.01* 

Height (m) 1.82±10 1.81±8.3 0.45 

Weight (kg) 77.3±14.5 77.8±10.5 0.72 

BMI 23.2±2.7 23.7±2.2 0.07 

Age at elite (y) 18.2±4.2 17±2.2 <0.01* 

Training (h/wk) 20±11.3 18.2±10.1 0.12 

Alcohol consumption 

(units/wk) 

5.2±6.9 4.1±6.1 0.15 

    Male only 

 

Stress fracture 

(n=98) 

Non-stress 

fracture (n=335)  
P-value  

Age (y) 27.2±6.9 24.2±5.5 <0.01* 

Height (m) 1.85±7.2 1.82±7.1 <0.01* 

Weight (kg) 82.9±10.6 79.6±9.4 <0.01* 

BMI 24.1±2.1 23.9±2.1 0.46 

Age at elite (y) 18.2±4.3 17±2.2 <0.01* 

Training (h/wk) 21.6±11.9 18.2±10.5 <0.01* 

Alcohol consumption 

(units/wk) 

5.6±7.3 4.2±6.2 0.12 

 

Female 

 Characteristics 
Stress fracture 

(n=41) 

Non-stress 

fracture (n=27)  
P-value  

Age (y) 29.4±9.4 26.2±4.1 0.06 

Height (m) 1.69±7.4 1.69±7.7 0.78 

Weight (kg) 56.5±5.8 63.5±7.6 <0.01* 

BMI 16.8±1.6 18.2±3.5 0.07 

Age at elite (y) 19.4±7.3 18.4±5.5 <0.01* 

Training (h/wk) 14.4±6.6 16.9±2.4 0.05* 

Alcohol consumption 

(units/wk) 

3.9±5.1 2.6±3.4 0.37 

    Runners  

 

Stress fracture 

(n=27) 

Non-stress 

fracture (n=35)  
P-value  

Age (y) 32.8±9.7 26.1±6.3 0.03* 

Height (m) 1.73±8.8 1.78±9.7 0.03* 

Weight (kg) 61.8±10.3 68.6±11.2 <0.01* 
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BMI 17.9±2.5 19.1±2.4 0.06 

Age at elite (y) 21.3±8.4 17.4±3.1 0.55 

Training (h/wk) 16.0±6.3 14.4±7.4 0.34 

Alcohol consumption 

(units/wk) 

3.9±6.4 1.2±2.7 0.72 

 

Cricket Players 

 Characteristics 
Stress fracture 

(n=42) 

Non-stress 

fracture (n=113)  
P-value  

Age (y 26.6±5.0 23.9±5.4 <0.01* 

Height (m) 1.88±7.0 1.82±7.5 <0.01* 

Weight (kg) 88.1±9.4 80.1±9.1 <0.01* 

BMI 23.4±1.9 21.9±2.0 0.01* 

Age at elite (y) 17.8±1.6 17.3±2.2 0.23 

Training (h/wk) 28.8±12.4 26.0±12.4 0.20 

Alcohol consumption 

(units/week) 

7.7±8.6 7.6±7.9 0.90 

    Football and Hockey Players 

 

Stress fracture 

(n=36) 

Non-stress 

fracture (n=208)  
P-value  

Age (y) 24.8±5.8 24.5±5.5 0.75 

Height (m) 1.82±8.2 1.81±8.1 0.30 

Weight (kg) 79.8±10.4 78.1±10.0 0.36 

BMI 21.9±2.1 21.6±2.1 0.47 

Age at elite (y) 17.0±2.3 16.6±1.8 0.25 

Training (h/wk) 12.7±4.2 13.1±4.1 0.64 

Alcohol consumption 

(units/wk) 

3.0±5.5 1.8±3.0 0.12 

 

Multiple stress fractures (in comparison to non-stress fractures). 

 Characteristics 
Stress fracture 

(n=49) 
P-value  

Age (y) 28.5±5.5 <0.01* 

Height (m) 1.80±11.4 0.49 

Weight (kg) 75.6±16.3 0.18 

BMI 20.2±3.2 <0.01* 

Age at elite (y) 18.2±5.1 0.91 

Training (h/wk) 23.3±10.2 0.16 

Alcohol consumption 

(units/wk) 

3.9±4.7 0.82 

    Pre 21 stress fractures (in comparison to non-stress fractures). 

 Characteristics 
Stress fracture 

(n=80) 
P-value  

Age (y) 25.2±5.3 0.29 
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Height (m) 1.83±9.1 0.10 

Weight (kg) 78.9±13.4 0.50 

BMI 21.5±2.9 0.93 

Age at elite (y) 16.7±2.1 0.22 

Training (h/wk) 20.5±11.5 0.85 

Alcohol consumption 

(units/wk) 

4.7±7.1 0.49 

    Leg stress fractures excluding metatarsal (in comparison to non-stress fractures). 

 Characteristics 
Stress fracture 

(n=48) 
P-value  

Age (y) 30.3±8.8 <0.01* 

Height (m) 1.78±11.5 <0.03* 

Weight (kg) 72.7±15.3 <0.01* 

BMI 20.2±3.2 <0.01* 

Age at elite (y) 19.2±6.4 0.55 

Training (h/wk) 19.9±11.7 0.34 

Alcohol consumption 

(units/wk) 

4.5±6.5 0.72 
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6.3. Appendix. Genotype Distribution Between Stress Fracture Sufferers and Non-

Stress Fracture Controls for the Whole Cohort and Sub-Classifications 

 

Genotype distribution between stress fracture sufferers and non-stress fracture controls for 

the whole cohort and sub-classifications. (N/A) = insufficient participants with variant allele 

to perform appropriate statistics. P values <0.01 are reported as 0.00.  

  

Stress 

fracture 

Non-

stress 

Fracture Total 

% 

 Allele 

Stress 

fracture 

Non-

stress 

Fracture % 

Whole Cohort                              Genotype distribution    Allele frequency 

 

VDR rs10735810          

          

 FF 49 169 218 0.46  F 148 483 0.69 

 Ff 50 145 195 0.41  f 90 221 0.31 

 ff 20 38 58 0.12  Total 238 704  

 Total 119 352 471       

           

   p value      p value  

   0.17      0.03  

           

P2X7 rs2230912          

          

 AA 78 243 321 0.68  A 193 593 0.83 

 GA 37 107 144 0.30  G 39 125 0.17 

 GG 1 9 10 0.02  Total 232 718  

 Total 116 359 475       

           

   p value      p value  

   0.53      0.81  

           

DBP rs4588         

          

 AA 8 29 37 0.08  A 71 193 0.27 

 CA 55 135 190 0.40  C 171 525 0.73 

 CC 58 195 253 0.53  Total 242 718  

 Total 121 359 480       

           

   p value      p value  

   0.31      0.39  

           

RANK  rs3018362         

          

 AA 21 43 64 0.13  A 98 242 0.33 

 GA 56 156 212 0.44  G 138 482 0.67 

 GG 41 163 204 0.43  Total 236 724  

 Total 118 362 480       

           

   p value      p value  

   0.09      0.01  

           

OPG rs4355801          

        

          

 AA 43 138 181 0.38  A 139 432 0.60 

 GA 53 156 209 0.44  G 105 284 0.40 

 GG 26 64 90 0.19  Total 244 716  
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 Total 122 358 480       

           

   p value      p value  

   0.66      0.28  

           

RANKL rs1021188         

          

 AA 10 10 20 0.04  A 48 122 0.17 

 GA 28 102 130 0.27  G 198 600 0.83 

 GG 85 249 334 0.69  Total 246 722  

 Total 123 361 484       

           

   p value      p value  

   0.03      0.27  

           

DBP rs7041         

          

 GG 29 98 127 0.26  G 119 361 0.49 

 TG 61 165 226 0.46  T 121 377 0.51 

 TT 30 106 136 0.28  Total 240 738  

 Total 120 369 489       

           

   p value      p value  

   0.50      0.84  

           

LRP5 rs3736228          

          

 CC 86 267 353 0.73  C 207 620 0.86 

 TC 35 86 121 0.25  T 39 102 0.14 

 TT 2 8 10 0.02  Total 246 722  

 Total 123 361 484       

           

   p value      p value  

   0.56      0.44  

VDR rs1544410          

          

 Bb 17 56 73 0.15  B 94 278 0.39 

 Bb 60 166 226 0.48  B 134 440 0.61 

 BB 37 137 174 0.37  Total 228 718  

 Total 114 359 473       

           

   p value      p value  

   0.47      0.44  

           

VDR rs731236          

          

 Tt 13 46 59 0.13  t 87 260 0.37 

 Tt 61 168 229 0.49  T 141 452 0.63 

 TT 40 142 182 0.39  Total 228 712  

 Total 114 356 470       

           

   p value      p value  

   0.50      0.61  

           

P2X7 rs1653624          

 

          

 AA 0 0 0 0.00  A 2 25 0.03 
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 TA 2 25 27 0.06  T 240 703 0.97 

 TT 119 339 458 0.94  Total 242 728  

 Total 121 364 485       

           

   p value      p value  

   N/A      N/A  

           

P2X7 rs1718119          

          

 GG 47 128 175 0.38  G 148 403 0.59 

 GA 54 147 201 0.44  A 84 275 0.41 

 AA 15 64 79 0.17  Total 232 678  

 Total 116 339 455       

           

   p value      p value  

   0.35      0.18  

           

VDR rs7975232          

          

 aa 31 102 133 0.28  a 127 378 0.53 

 Aa 65 174 239 0.50  A 113 332 0.47 

 AA 24 79 103 0.22  Total 240 710  

 Total 120 355 475       

           

   p value      p value  

   0.62      0.92  

           

COL1A1 rs1800012          

          

 SS 88 261 349 0.72  S 209 614 0.84 

 Ss 33 92 125 0.26  s 35 114 0.16 

 ss 1 11 12 0.02  Total 244 728  

 Total 122 364 486       

           

   p value      p value  

   0.39      0.57  

           

CTR rs1801197          

          

 CC 8 33 41 0.09  C 62 204 0.29 

 TC 46 138 184 0.39  T 172 510 0.71 

 TT 63 186 249 0.53  Total 234 714  

 Total 117 357 474       

           

   p value      p value  

   0.72      0.48  

           

WNT16 rs3801387          

          

 AA 60 188 248 0.52  A 168 517 0.73 

 GA 48 141 189 0.40  G 76 191 0.27 

 GG 14 25 39 0.08  Total 244 708  

 Total 122 354 476       

           

   p value      p value  

   0.30      0.14  

           

RANKL rs9594738         
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 CC 45 114 159 0.33  C 144 420 0.58 

 TC 54 192 246 0.51  T 98 302 0.42 

 TT 22 55 77 0.16  Total 242 722  

 Total 121 361 482       

           

   p value      p value  

   0.27      0.67  

           

P2X7 rs208294          

          

 CC 120 348 468 0.96  C 242 712 0.98 

 TC 2 16 18 0.04  T 2 18 0.02 

 TT 0 1 1 0.00  Total 244 730  

 Total 122 365 487       

           

   p value      p value  

   0.32      0.10  

           

Bradykinin rs1799722          

          

 9 39 86 125 0.27  9 132 330 0.48 

 9/-9 54 158 212 0.46  -9 98 356 0.52 

 -9 22 99 121 0.26  Total 230 686  

 Total 115 343 458       

           

   p value      p value  

   0.06      0.01  

           

Kallikrein rs16987491          

          

 AA 0 0 0 0.00  G  226 694 0.97 

 GA 10 19 29 0.06  A 10 19 0.03 

 GG 113 347 460 0.94  Total 236 714  

 Total 123 366 489       

           

   P value      p value  

   0.23      0.64  

           

P2X7 rs3751143          

          

 GG 4 13 17 0.04  G 46 108 0.15 

 TG 38 82 120 0.25  T 188 604 0.85 

 TT 75 261 336 0.71  Total 234 712  

 Total 117 356 473       

           

   p value      p value  

   0.13      0.05  

           

SOST  rs1877632          

          

 CC 50 191 241 0.50  C 159 513 0.71 

 TC 59 131 190 0.39  T 85 207 0.29 

 TT 13 38 51 0.11  Total 244 720  

 Total 122 360 482       

           

   p value      p value  

   0.05      0.04  
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Male           

 

Stress 

fracture 

Non-

stress 

Fracture Total %  Allele 

Stress 

fracture 

Non-

stress 

Fracture 

% 

       

                                      Genotype distribution   Allele frequency   

          

 FF 42 150 192 0.47  F 120 429 0.69 

 Ff 36 129 165 0.41  f 66 195 0.31 

 ff 15 33 48 0.12  Total 186 624  

 Total 93 312 405       

           

   p value      p value  

   0.35      0.21  

 

P2X7 rs2230912          

          

 AA 61 211 272 0.66  A 153 521 0.82 

 GA 31 99 130 0.32  G 33 117 0.18 

 GG 1 9 10 0.02  Total 186 638  

 Total 93 319 412       

           

   p value      p value  

   0.60      0.83  

           

DBP rs4588          

          

 AA 7 27 34 0.08  A 61 176 0.27 

 CA 47 122 169 0.41  C 131 466 0.73 

 CC 42 172 214 0.51  Total 192 642  

 Total 96 321 417       

           

   p value      p value  

   0.16      0.18  

           

RANK rs3018362          

          

 AA 18 39 57 0.14  A 80 214 0.33 

 GA 44 136 180 0.43  G 108 430 0.67 

 GG 32 147 179 0.43  Total 188 644  

 Total 94 322 416       

           

   p value      p value  

   0.07      0.00  

           

OPG rs4355801          

          

 AA 35 125 160 0.39  A 112 384 0.61 

 GA 42 134 176 0.43  G 80 246 0.39 

 GG 19 56 75 0.18  Total 192 630  

 Total 96 315 411       

           

   p value      p value  
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   0.82      0.46  

           

RANKL rs1021188         

        

 AA 8 8 16 0.04  A 39 108 0.17 

 GA 23 92 115 0.27  G 155 538 0.83 

 GG 66 223 289 0.69  Total 194 646  

 Total 97 323 420       

           

   p value      p value  

   0.03      0.21  

           

DBP rs7041          

          

 GG 21 84 105 0.25  G 88 313 0.48 

 TG 46 145 191 0.45  T 100 339 0.52 

 TT 27 97 124 0.30  Total 188 652  

 Total 94 326 420       

           

   p value      p value  

   0.71      0.74  

           

LRP5 rs3736228          

          

 CC 71 243 314 0.75  C 167 561 0.87 

 TC 25 75 100 0.24  T 27 85 0.13 

 TT 1 5 6 0.01  Total 194 646  

 Total 97 323 420       

           

   p value      p value  

   0.82      0.75  

           

VDR rs1544410          

          

 bb 13 52 65 0.16  b 74 250 0.39 

 Bb 48 146 194 0.48  B 104 388 0.61 

 BB 28 121 149 0.37  Total 178 638  

 Total 89 319 408       

           

   p value      p value  

   0.39      0.51  

           

VDR rs731236          

          

 tt 9 43 52 0.13  t 66 235 0.37 

 Tt 48 149 197 0.48  T 112 401 0.63 

 TT 32 126 158 0.39  Total 178 636  

 Total 89 318 407       

           

   p value      p value  

   0.45      0.97  

           

P2X7 rs1653624          

          

 AA 0 0 0 0.00  A 1 22 0.03 

 TA 1 22 23 0.05  T 189 628 0.97 

 TT 94 303 397 0.95  Total 190 650  

 Total 95 325 420       
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   p value      p value  

   N/A      N/A  

           

P2X7 rs1718119          

        

 GG 36 112 148 0.38  G 113 354 0.59 

 GA 41 130 171 0.44  A 69 250 0.41 

 AA 14 60 74 0.19  Total 182 604  

 Total 91 302 393       

           

   p value      p value  

   0.62      0.34  

           

VDR rs7975232          

          

 aa 23 94 117 0.29  a 99 339 0.54 

 Aa 53 151 204 0.50  A 91 291 0.46 

 AA 19 70 89 0.22  Total 190 630  

 Total 95 315 410       

           

   p value      p value  

   0.39      0.64  

           

COL1A1 rs1800012          

        

 SS 70 237 307 0.73  S 165 553 0.85 

 Ss 25 79 104 0.25  s 27 95 0.15 

 ss 1 8 9 0.02  Total 192 648  

 Total 96 324 420       

           

   p value      p value  

   0.67      0.81  

           

CTR rs1801197          

          

 CC 5 28 33 0.08  C 46 185 0.29 

 TC 36 129 165 0.40  T 136 459 0.71 

 TT 50 165 215 0.52  Total 182 644  

 Total 91 322 413       

           

   p value      p value  

   0.58      0.30  

           

WNT16 rs3801387          

          

 AA 45 164 209 0.51  A 131 455 0.72 

 GA 41 127 168 0.41  G 65 175 0.28 

 GG 12 24 36 0.09  Total 196 630  

 Total 98 315 413       

           

   p value      p value  

   0.30      0.09  

           

RANKL rs9594738         

          

 CC 37 101 138 0.33  C 116 370 0.58 

 TC 42 168 210 0.51  T 74 268 0.42 
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 TT 16 50 66 0.16  Total 190 638  

 Total 95 319 414       

           

   p value      p value  

   0.32      0.39  

           

P2X7 rs208294          

          

 CC 94 312 406 0.96  C 190 638 0.98 

 TC 2 14 16 0.04  T 2 16 0.02 

 TT 0 1 1 0.00  Total 192 654  

 Total 96 327 423       

           

   p value      p value  

   0.52      0.21  

           

BRADYKININ rs1799722          

          

 9 33 75 108 0.27  9 111 289 0.48 

 9/-9 45 139 184 0.46  -9 73 319 0.52 

 -9 14 90 104 0.26  Total 184 608  

 Total 92 304 396       

           

   p value      p value  

   0.01      0.00  

           

KALLIKREIN rs16987491          

           

 AA 0 0 0 0.00  A  8 16 0.03 

 GA 8 16 24 0.06  G 184 636 0.97 

 GG 88 310 398 0.94  Total 192 652  

 Total 96 326 422       

           

   p value      p value  

   0.20      0.63  

           

P2X7 rs3751143          

          

 GG 4 12 16 0.04  G 34 89 0.14 

 TG 26 65 91 0.22  T 150 545 0.86 

 TT 62 240 302 0.74  Total 184 634  

 Total 92 317 409       

           

   p value      p value  

   0.27      0.08  

           

SOST  rs1877632            

           

 CC 43 172 215 0.52  C 128 458 0.72 

 TC 42 114 156 0.38  T 64 180 0.28 

 TT 11 33 44 0.11  Total 192 638  

 Total 96 319 415       

           

   p value      p value  

   0.28      0.11  
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Cricket 

 

Stress 

fracture 

Non-

stress 

Fracture Total 

% 

 Allele 

Stress 

fracture 

Non-

stress 

Fracture % 

       

                                      Genotype distribution   Allele frequency   

 

VDR rs10735810          

          

 FF 18 51 69 0.48  F 53 144 0.68 

 Ff 17 42 59 0.41  f 25 68 0.32 

 ff 4 13 17 0.12  Total 78 212  

 Total 39 106 145       

           

   p value      p value  

   0.89      0.99  

           

P2X7 rs2230912          

          

 AA 20 60 80 0.53  A 60 168 0.76 

 GA 20 48 68 0.45  G 20 52 0.24 

 GG 0 2 2 0.01  Total 80 220  

 Total 40 110 150       

           

   p value      p value  

   0.58      0.77  

           

DBP rs4588          

        

 AA 3 8 11 0.07  A 28 59 0.27 

 CA 22 43 65 0.43  C 54 161 0.73 

 CC 16 59 75 0.50  Total 82 220  

 Total 41 110 151       

           

   p value      p value  

   0.25      0.13  

           

RANK rs3018362          

          

 AA 9 18 27 0.18  A 38 82 0.37 

 GA 20 46 66 0.43  G 44 140 0.63 

 GG 12 47 59 0.39  Total 82 222  

 Total 41 111 152       

           

   p value      p value  

   0.33      0.08  

           

OPG rs4355801          

          

 AA 13 47 60 0.40  A 44 138 0.63 

 GA 18 44 62 0.41  G 38 80 0.37 

 GG 10 18 28 0.19  Total 82 218  

 Total 41 109 150       
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   p value      p value  

   0.36      0.07  

           

RANKL rs1021188         

          

 AA 4 4 8 0.05  A 16 36 0.16 

 GA 8 28 36 0.23  G 68 190 0.84 

 GG 30 81 111 0.72  Total 84 226  

 Total 42 113 155       

           

   p value      p value  

   0.28      0.43  

           

DBP rs7041          

          

 GG 8 35 43 0.28  G 42 122 0.54 

 TG 26 52 78 0.51  T 40 104 0.46 

 TT 7 26 33 0.21  Total 82 226  

 Total 41 113 154       

           

   p value      p value  

   0.16      0.62  

           

LRP5 rs3736228          

          

 CC 29 83 112 0.74  C 71 192 0.87 

 TC 13 26 39 0.26  T 13 28 0.13 

 TT 0 1 1 0.01  Total 84 220  

 Total 42 110 152       

           

   p value      p value  

   0.55      0.45  

           

VDR rs1544410          

          

 bb 5 23 28 0.19  b 26 100 0.45 

 Bb 16 54 70 0.47  B 48 122 0.55 

 BB 16 34 50 0.34  Total 74 222  

 Total 37 111 148       

           

   p value      p value  

   0.33      0.09  

           

VDR rs731236          

          

 tt 3 17 20 0.14  t 24 89 0.42 

 Tt 18 55 73 0.50  T 56 125 0.58 

 TT 19 35 54 0.37  Total 80 214  

 Total 40 107 147       

           

   p value      p value  

   0.18      0.04  

           

P2X7 rs1653624          

          

 AA 0 0 0 0.00  A 0 8 0.04 

 TA 0 8 8 0.05  T 84 218 0.96 
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 TT 42 105 147 0.95  Total 84 226  

 Total 42 113 155       

           

   p value      p value  

   N/A      N/A  

           

P2X7 rs1718119          

          

 GG 16 39 55 0.37  G 49 125 0.59 

 GA 17 47 64 0.44  A 33 87 0.41 

 AA 8 20 28 0.19  Total 82 212  

 Total 41 106 147       

           

   p value      p value  

   0.95      0.88  

           

VDR rs7975232          

          

 aa 8 34 42 0.28  a 37 121 0.56 

 Aa 21 53 74 0.50  A 45 95 0.44 

 AA 12 21 33 0.22  Total 82 216  

 Total 41 108 149       

           

   p value      p value  

   0.24      0.04  

           

COL1A1 rs1800012          

          

 SS 30 78 108 0.70  S 72 185 0.83 

 Ss 12 29 41 0.27  s 12 39 0.17 

 ss 0 5 5 0.03  Total 84 224  

 Total 42 112 154       

           

   p value      p value  

   0.37      0.45  

           

CTR rs1801197          

          

 CC 4 14 18 0.12  C 23 67 0.30 

 TC 15 39 54 0.35  T 57 159 0.70 

 TT 21 60 81 0.53  Total 80 226  

 Total 40 113 153       

           

   p value      p value  

   0.90      0.86  

           

WNT16 rs3801387          

          

 AA 22 53 75 0.50  A 59 155 0.70 

 GA 15 49 64 0.42  G 23 65 0.30 

 GG 4 8 12 0.08  Total 82 220  

 Total 41 110 151       

           

   p value      p value  

   0.65      0.77  

           

RANKL rs9594738         
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 CC 15 24 39 0.26  C 45 113 0.52 

 TC 15 65 80 0.54  T 35 105 0.48 

 TT 10 20 30 0.20  Total 80 218  

 Total 40 109 149       

           

   p value      p value  

   0.05      0.43  

           

P2X7 rs208294          

          

 CC 41 109 150 0.97  C 83 221 0.99 

 TC 1 3 4 0.03  T 1 3 0.01 

 TT 0 0 0 0.00  Total 84 224  

 Total 42 112 154       

           

   p value      p value  

   0.92      0.91  

           

BRADYKININ rs1799722          

          

 9 11 28 39 0.26  9 46 108 0.50 

 9/-9 24 52 76 0.51  -9 36 110 0.50 

 -9 6 29 35 0.23  Total 82 218  

 Total 41 109 150       

           

   p value      p value  

   0.28      0.24  

           

KALLIKREIN rs16987491          

          

 AA 0 0 0 0.00  A  3 4 0.02 

 GA 3 4 7 0.05  G 79 218 0.98 

 GG 38 107 145 0.95  Total 82 222  

 Total 41 111 152       

           

   p value      p value  

   0.33      0.74  

           

P2X7 rs3751143          

          

 GG 3 3 6 0.04  G 15 24 0.11 

 TG 9 18 27 0.19  T 63 188 0.89 

 TT 27 85 112 0.77  Total 78 212  

 Total 39 106 145       

           

   p value      p value  

   0.27      0.03  

           

SOST  rs1877632          

           

 CC 22 56 78 0.51  C 62 156 0.70 

 TC 18 44 62 0.40  T 22 68 0.30 

 TT 2 12 14 0.09   84 224  

 Total 42 112 154   Total    

           

   p value      p value  

   0.52      0.41  
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Multiple stress 

fractures           

 

Stress 

fracture 

Non-

stress 

Fracture Total 

% 

 Allele 

Stress 

fracture 

Non-

stress 

Fracture % 

       

                                      Genotype distribution   Allele frequency   

 

 

VDR rs10735810          

           

 FF 14 169 183 0.46  F 49 483 0.69 

 Ff 21 145 166 0.42  f 45 221 0.31 

 Ff 12 38 50 0.13  Total 94 704  

 Total 47 352 399       

           

   p value      p value  

   0.01      0.02  

           

P2X7 rs2230912          

          

 AA 32 243 275 0.68  A 78 593 0.83 

 GA 14 107 121 0.30  G 14 125 0.17 

 GG 0 9 9 0.02  Total 92 718  

 Total 46 359 405       

           

   p value      p value  

   0.55      0.58  

           

DBP rs4588          

          

 AA 3 29 32 0.08  A 25 193 0.27 

 CA 19 135 154 0.38  C 69 525 0.73 

 CC 25 195 220 0.54  Total 94 718  

 Total 47 359 406       

           

   p value      p value  

   0.88      0.95  

           

RANK rs3018362          

          

 AA 4 43 47 0.12  A 34 242 0.33 

 GA 26 156 182 0.45  G 56 482 0.67 

 GG 15 163 178 0.44  Total 90 724  

 Total 45 362 407       

           

   p value      p value  

   0.17      0.38  

           

OPG rs4355801          

          

 AA 11 138 149 0.37  A 48 432 0.60 

 GA 26 156 182 0.45  G 46 284 0.40 
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 GG 10 64 74 0.18  Total 94 716  

 Total 47 358 405       

           

   p value      p value  

   0.13      0.07  

           

RANKL rs1021188         

          

 AA 5 10 15 0.04  A 17 122 0.17 

 GA 7 102 109 0.27  G 83 600 0.83 

 GG 38 249 287 0.70  Total 100 722  

 Total 50 361 411       

           

   p value      p value  

   0.01      0.98  

           

DBP rs7041          

          

 GG 15 98 113 0.27  G 51 361 0.49 

 TG 21 165 186 0.45  T 41 377 0.51 

 TT 10 106 116 0.28  Total 92 738  

 Total 46 369 415       

           

   p value      p value  

   0.53      0.21  

           

LRP5 rs3736228          

          

 CC 35 267 302 0.74  C 81 620 0.86 

 TC 11 86 97 0.24  T 15 102 0.14 

 TT 2 8 10 0.02  Total 96 722  

 Total 48 361 409       

           

   p value      p value  

   0.71      0.67  

           

VDR rs1544410          

          

 bb 5 56 61 0.15  b 39 278 0.39 

 Bb 29 166 195 0.48  B 53 440 0.61 

 BB 12 137 149 0.37  Total 92 718  

 Total 46 359 405       

           

   p value      p value  

   0.10      0.47  

           

VDR rs731236          

          

 tt 3 46 49 0.12  t 37 260 0.37 

 Tt 31 168 199 0.50  T 49 452 0.63 

 TT 9 142 151 0.38  Total 86 712  

 Total 43 356 399       

           

   p value      p value  

   0.01      0.21  

           

P2X7 rs1653624          
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 AA 0 0 0 0.00  A 1 25 0.03 

 TA 1 25 26 0.06  T 95 703 0.97 

 TT 47 339 386 0.94  Total 96 728  

 Total 48 364 412       

           

   p value      p value  

   N/A      N/A  

           

P2X7 rs1718119          

          

 GG 23 128 151 0.39  G 67 403 0.59 

 GA 21 147 168 0.44  A 25 275 0.41 

 AA 2 64 66 0.17  Total 92 678  

 Total 46 339 385       

           

   p value      p value  

   0.04      0.01  

           

VDR rs7975232          

          

 aa 13 102 115 0.29  a 52 378 0.53 

 Aa 26 174 200 0.50  A 40 332 0.47 

 AA 7 79 86 0.21  Total 92 710  

 Total 46 355 401       

           

   p value      p value  

   0.50      0.53  

           

COL1A1 rs1800012          

          

 SS 32 261 293 0.71  S 79 614 0.84 

 Ss 15 92 107 0.26  s 15 114 0.16 

 ss 0 11 11 0.03  Total 94 728  

 Total 47 364 411       

           

   p value      p value  

   0.33      0.94  

           

CTR rs1801197          

          

 CC 4 33 37 0.09  C 25 204 0.29 

 TC 17 138 155 0.39  T 65 510 0.71 

 TT 24 186 210 0.52  Total 90 714  

 Total 45 357 402       

           

   p value      p value  

   0.99      0.87  

           

WNT16 rs3801387          

          

 AA 28 188 216 
0.54  

Allele 

feq 73 517 0.73 

 GA 17 141 158 0.39  G 21 191 0.27 

 GG 2 25 27 0.07  Total 94 708  

 Total 47 354 401       

           

   p value      p value  

   0.62      0.31  
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RANKL rs9594738         

          

 CC 16 114 130 0.32  C 55 420 0.58 

 TC 23 192 215 0.53  T 41 302 0.42 

 TT 9 55 64 0.16  Total 96 722  

 Total 48 361 409       

           

   p value      p value  

   0.74      0.86  

           

P2X7 rs208294          

          

 CC 47 348 395 0.96  C 95 712 0.98 

 TC 1 16 17 0.04  T 1 18 0.02 

 TT 0 1 1 0.00  Total 96 730  

 Total 48 365 413       

           

   p value      p value  

   0.70      0.37  

           

BRADYKININ rs1799722          

          

 9 10 86 96 0.25  9 45 330 0.48 

 9/-9 25 158 183 0.47  -9 45 356 0.52 

 -9 10 99 109 0.28  Total 90 686  

 Total 45 343 388       

           

   p value      p value  

   0.47      0.72  

           

KALLIKREIN rs16987491          

           

 AA 0 0 0 0.00  A  3 19 0.03 

 GA 3 19 22 0.05  G 93 694 0.97 

 GG 45 347 392 0.95  Total 96 713  

 Total 48 366 414       

           

   p value      p value  

   0.76      0.92  

           

P2X7 rs3751143          

          

 GG 2 8 10 0.02  G 17 112 0.16 

 TG 13 96 109 0.27  T 75 604 0.84 

 TT 31 254 285 0.71  Total 92 716  

 Total 46 358 404       

           

   p value      p value  

   0.66      0.45  

           

SOST  rs1877632          

          

 CC 15 175 190 0.46  C 58 493 0.68 

 TC 28 143 171 0.42  T 40 229 0.32 

 TT 6 43 49 0.12  Total 98 722  

 Total 49 361 410       
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   p value      p value  

   0.05      0.05  

           

 

 

Stress fracture 

pre 21 years 

           

 

Stress 

fracture 

Non-

stress 

Fracture Total 

% 

 Allele 

Stress 

fracture 

Non-

stress 

Fracture % 

       

                                      Genotype distribution   Allele frequency   

VDR rs10735810          

          

 FF 35 169 204 0.47  F 102 483 0.69 

 Ff 32 145 177 0.41  f 54 221 0.31 

 ff 11 38 49 0.11  Total 156 704  

 Total 78 352 430       

           

   p value      p value  

   0.69      0.39  

           

P2X7 rs2230912          

          

 AA 46 243 289 0.67  A 119 593 0.83 

 GA 27 107 134 0.31  G 29 125 0.17 

 GG 1 9 10 0.02  Total 148 718  

 Total 74 359 433       

           

   p value      p value  

   0.47      0.48  

           

DBP rs4588          

          

 AA 6 29 35 0.08  A 47 193 0.27 

 CA 35 135 170 0.39  C 111 525 0.73 

 CC 38 195 233 0.53  Total 158 718  

 Total 79 359 438       

           

   p value      p value  

   0.54      0.42  

           

RANK rs3018362          

          

 AA 14 43 57 0.13  A 65 242 0.33 

 GA 37 156 193 0.44  G 91 482 0.67 

 GG 27 163 190 0.43  Total 156 724  

 Total 78 362 440       

           

   p value      p value  

   0.16      0.03  

           

OPG rs4355801          

          

 AA 30 138 168 0.38  A 96 432 0.60 

 GA 36 156 192 0.44  G 62 284 0.40 

 GG 13 64 77 0.18  Total 158 716  

 Total 79 358 437       
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   p value      p value  

   0.93      0.91  

           

RANKL rs1021188         

          

 AA 7 10 17 0.04  A 34 122 0.17 

 GA 20 102 122 0.28  G 126 600 0.83 

 GG 53 249 302 0.68  Total 160 722  

 Total 80 361 441       

           

   p value      p value  

   0.04      0.14  

           

DBP rs7041          

          

 GG 17 98 115 0.26  G 75 361 0.49 

 TG 41 165 206 0.46  T 81 377 0.51 

 TT 20 106 126 0.28  Total 156 738  

 Total 78 369 447       

           

   p value      p value  

   0.43      0.83  

           

LRP5 rs3736228          

          

 CC 57 267 324 0.73  C 136 620 0.86 

 TC 22 86 108 0.24  T 24 102 0.14 

 TT 1 8 9 0.02  Total 160 722  

 Total 80 361 441       

           

   p value      p value  

   0.70      0.75  

           

VDR rs1544410          

          

 bb 12 56 68 0.16  b 66 278 0.39 

 Bb 42 166 208 0.48  B 84 440 0.61 

 BB 21 137 158 0.36  Total 150 718  

 Total 75 359 434       

           

   p value      p value  

   0.22      0.18  

           

VDR rs731236          

          

 tt 8 46 54 0.13  t 58 260 0.37 

 Tt 42 168 210 0.49  T 84 452 0.63 

 TT 21 142 163 0.38  Total 142 712  

 Total 71 356 427       

           

   p value      p value  

   0.17      0.28  

           

P2X7 rs1653624          

          

 AA 0 0 0 0.00  A 1 25 0.03 

 TA 1 25 26 0.06  T 157 703 0.97 
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 TT 78 339 417 0.94  Total 158 728  

 Total 79 364 443       

           

   p value      p value  

   N/A      N/A  

           

P2X7 rs1718119          

          

 GG 27 128 155 0.37  G 88 403 0.59 

 GA 34 147 181 0.44  A 62 275 0.41 

 AA 14 64 78 0.19  Total 150 678  

 Total 75 339 414       

           

   p value      p value  

   0.95      0.84  

           

VDR rs7975232          

          

 aa 19 102 121 0.28  a 85 378 0.53 

 Aa 47 174 221 0.51  A 75 332 0.47 

 AA 14 79 93 0.21  Total 160 710  

 Total 80 355 435       

           

   p value      p value  

   0.29      0.98  

           

COL1A1 rs1800012          

          

 SS 59 261 320 0.72  S 139 614 0.84 

 Ss 21 92 113 0.25  s 21 114 0.16 

 ss 0 11 11 0.02  Total 160 728  

 Total 80 364 444       

           

   p value      p value  

   0.29      0.38  

           

CTR rs1801197          

          

 CC 4 33 37 0.09  C 40 204 0.29 

 TC 32 138 170 0.39  T 114 510 0.71 

 TT 41 186 227 0.52  Total 154 714  

 Total 77 357 434       

           

   p value      p value  

   0.50      0.48  

           

WNT16 rs3801387          

          

 AA 38 188 226 0.52  A 109 517 0.73 

 GA 33 141 174 0.40  G 49 191 0.27 

 GG 8 25 33 0.08  Total 158 708  

 Total 79 354 433       

           

   p value      p value  

   0.56      0.25  

           

RANKL rs9594738         
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 CC 30 114 144 0.33  C 96 420 0.58 

 TC 36 192 228 0.52  T 62 302 0.42 

 TT 13 55 68 0.15  Total 158 722  

 Total 79 361 440       

           

   p value      p value  

   0.45      0.51  

           

P2X7 rs208294          

          

 CC 78 348 426 0.96  C 158 712 0.98 

 TC 2 16 18 0.04  T 2 18 0.02 

 TT 0 1 1 0.00  Total 160 730  

 Total 80 365 445       

           

   p value      p value  

   0.66      0.32  

           

BRADYKININ rs1799722          

          

 9 26 86 112 0.27  9 89 330 0.48 

 9/-9 37 158 195 0.47  -9 61 356 0.52 

 -9 12 99 111 0.27  Total 150 686  

 Total 75 343 418       

           

   p value      p value  

   0.05      0.01  

           

KALLIKREIN rs16987491          

           

 AA 0 0 0 0.00  A  8 19 0.03 

 GA 8 19 27 0.06  G 152 713 0.97 

 GG 72 347 419 0.94  Total 160 732  

 Total 80 366 446       

           

   p value      p value  

   0.10      0.54  

           

P2X7 rs3751143          

          

 GG 3 8 11 0.03  G 28 112 0.16 

 TG 22 96 118 0.27  T 126 604 0.84 

 TT 52 254 306 0.70  Total 154 716  

 Total 77 358 435       

           

   p value      p value  

   0.65      0.39  

           

SOST  rs1877632          

          

 CC 36 175 211 0.48  C 108 493 0.68 

 TC 36 143 179 0.41  T 52 229 0.32 

 TT 8 43 51 0.12  Total 160 722  

 Total 80 361 441       

           

   p value      p value  

   0.66      0.83  
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Female 

 

 

Stress 

fracture 

Non-

stress 

Fracture Total 

% 

 Allele 

Stress 

fracture 

Non-

stress 

Fracture % 

       

                                      Genotype distribution   Allele frequency   

VDR rs10735810          

           

 FF 7 19 26 0.39  F 28 54 0.68 

 Ff 14 16 30 0.45  f 24 26 0.33 

 ff 5 5 10 0.15  Total 52 80  

 Total 26 40 66       

           

   p value      p value  

   0.24      0.04  

           

P2X7 rs2230912          

          

 AA 17 31 48 0.77  A 40 70 0.90 

 GA 6 8 14 0.23  G 6 8 0.10 

 GG 0 0 0 0.00  Total 46 78  

 Total 23 39 62       

           

   p value      p value  

   0.61      0.53  

           

DBP rs4588          

          

 AA 1 2 3 0.05  A 10 17 0.23 

 CA 8 13 21 0.34  C 40 57 0.77 

 CC 16 22 38 0.61  Total 50 74  

 Total 25 37 62       

           

   p value      p value  

   0.93      0.62  

           

RANK rs3018362          

          

 AA 3 4 7 0.11  A 18 28 0.36 

 GA 12 20 32 0.51  G 30 50 0.64 

 GG 9 15 24 0.38  Total 48 78  

 Total 24 39 63       

           

   p value      p value  

   0.96      0.82  

           

OPG rs4355801          

          

 AA 8 12 20 0.30  A 27 46 0.56 

 GA 11 22 33 0.49  G 25 36 0.44 

 GG 7 7 14 0.21  Total 52 82  

 Total 26 41 67       

           

   p value      p value  
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   0.56      0.54  

           

RANKL rs1021188         

          

 AA 2 2 4 0.06  A 9 14 0.18 

 GA 5 10 15 0.23  G 43 62 0.82 

 GG 19 26 45 0.70  Total 52 76  

 Total 26 38 64       

           

   p value      p value  

   0.77      0.84  

           

DBP rs7041          

          

 GG 8 14 22 0.33  G 31 48 0.59 

 TG 15 20 35 0.52  T 21 34 0.41 

 TT 3 7 10 0.15  Total 52 82  

 Total 26 41 67       

           

   p value      p value  

   0.73      0.87  

           

LRP5 rs3736228          

          

 CC 15 24 39 0.61  C 40 59 0.78 

 TC 10 11 21 0.33  T 12 17 0.22 

 TT 1 3 4 0.06  Total 52 76  

 Total 26 38 64       

           

   p value      p value  

   0.64      0.90  

           

VDR rs1544410          

          

 bb 4 4 8 0.13  b 20 28 0.36 

 Bb 12 20 32 0.50  B 30 50 0.64 

 BB 9 15 24 0.38  Total 50 78  

 Total 25 39 64       

           

   p value      p value  

   0.79      0.55  

           

VDR rs731236          

          

 tt 4 3 7 0.11  t 21 25 0.33 

 Tt 13 19 32 0.51  T 29 51 0.67 

 TT 8 16 24 0.38  Total 50 76  

 Total 25 38 63       

           

   p value      p value  

   0.52      0.17  

           

P2X7 rs1653624          

          

 AA 0 0 0 0.00  A 1 3 0.04 

 TA 1 3 4 0.06  T 51 75 0.96 

 TT 25 36 61 0.94  Total 52 78  

 Total 26 39 65       
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   p value      p value  

   N/A      N/A  

           

P2X7 rs1718119          

          

 GG 11 16 27 0.44  G 35 49 0.66 

 GA 13 17 30 0.48  A 15 25 0.34 

 AA 1 4 5 0.08  Total 50 74  

 Total 25 37 62       

           

   p value      p value  

   0.61      0.57  

           

VDR rs7975232          

        

          

 aa 8 8 16 0.25  a 28 38 0.49 

 Aa 12 22 34 0.53  A 22 40 0.51 

 AA 5 9 14 0.22  Total 50 78  

 Total 25 39 64       

           

   p value      p value  

   0.58      0.30  

           

COL1A1 rs1800012          

          

 SS 18 23 41 0.63  S 44 59 0.76 

 Ss 8 13 21 0.32  s 8 19 0.24 

 ss 0 3 3 0.05  Total 52 78  

 Total 26 39 65       

           

   p value      p value  

   0.32      0.13  

           

CTR rs1801197          

          

 CC 3 5 8 0.13  C 16 20 0.27 

 TC 10 10 20 0.32  T 36 54 0.73 

 TT 13 22 35 0.56  Total 52 74  

 Total 26 37 63       

           

   p value      p value  

   0.63      0.54  

           

WNT16 rs3801387          

          

 AA 17 23 40 0.62  A 41 60 0.77 

 GA 7 14 21 0.32  G 11 18 0.23 

 GG 2 2 4 0.06  Total 52 78  

 Total 26 39 65       

           

   p value      p value  

   0.72      0.74  

           

RANKL rs9594738         
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 CC 8 12 20 0.30  C 28 48 0.59 

 TC 12 24 36 0.54  T 24 34 0.41 

 TT 6 5 11 0.16  Total 52 82  

 Total 26 41 67       

           

   p value      p value  

   0.45      0.49  

           

P2X7 rs208294          

          

 CC 26 35 61 0.97  C 52 72 0.97 

 TC 0 2 2 0.03  T 0 2 0.03 

 TT 0 0 0 0.00  Total 52 74  

 Total 26 37 63       

           

   p value      p value  

   0.23      0.23  

           

BRADYKININ rs1799722          

          

 9 7 10 17 0.27  9 24 39 0.51 

 9/-9 10 19 29 0.46  -9 26 37 0.49 

 -9 8 9 17 0.27  Total 50 76  

 Total 25 38 63       

           

   p value      p value  

   0.69      0.64  

           

KALLIKREIN rs16987491          

           

 AA 0 0 0 0.00  A  2 3 0.04 

 GA 2 3 5 0.08  G 52 75 0.96 

 GG 25 36 61 0.92  Total 54 78  

 Total 27 39 66       

           

   p value      p value  

   0.97      0.98  

           

P2X7 rs3751143          

          

 GG 0 1 1 0.02  G 12 19 0.24 

 TG 12 17 29 0.45  T 38 59 0.76 

 TT 13 21 34 0.53  Total 50 78  

 Total 25 39 64       

           

   p value      p value  

   0.70      0.95  

           

SOST  rs1877632          

           

 CC 7 18 25 0.39  C 31 52 0.68 

 TC 17 16 33 0.52  T 21 24 0.32 

 TT 2 4 6 0.09  Total 52 76  

 Total 26 38 64       

           

   p value      p value  

   0.18      0.17  
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leg - ex metatarsal  

          

 

Stress 

fracture 

Non-

stress 

Fracture Total 

% 

 Allele 

Stress 

fracture 

Non-

stress 

Fracture % 

       

                                      Genotype distribution   Allele frequency   

VDR rs10735810          

           

 FF 14 169 183 0.47  F 44 483 0.69 

 Ff 16 145 161 0.41  f 34 221 0.31 

 ff 9 38 47 0.12  Total 78 704  

 Total 39 352 391       

           

   p value      p value  

   0.06      0.02  

           

P2X7 rs2230912          

        

 AA 29 243 272 0.68  A 69 593 0.83 

 GA 11 107 118 0.30  G 11 125 0.17 

 GG 0 9 9 0.02  Total 80 718  

 Total 40 359 399       

           

   p value      p value  

   0.55      0.39  

           

DBP rs4588          

          

 AA 2 29 31 0.08  A 22 193 0.27 

 CA 18 135 153 0.39  C 52 525 0.73 

 CC 17 195 212 0.54  Total 74 718  

 Total 37 359 396       

           

   p value      p value  

   0.41      0.58  

           

RANK rs3018362          

          

 AA 6 43 49 0.12  A 30 242 0.33 

 GA 18 156 174 0.43  G 48 482 0.67 

 GG 15 163 178 0.44  Total 78 724  

 Total 39 362 401       

           

   p value      p value  

   0.68      0.35  

           

OPG rs4355801          

          

 AA 8 138 146 0.37  A 37 432 0.60 

 GA 21 156 177 0.45  G 41 284 0.40 

 GG 10 64 74 0.19  Total 78 716  

 Total 39 358 397       

           

   p value      p value  

   0.08      0.02  
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RANKL rs1021188         

          

 AA 3 10 13 0.03  A 13 122 0.17 

 GA 7 102 109 0.27  G 65 600 0.83 

 GG 29 249 278 0.70  Total 78 722  

 Total 39 361 400       

           

   p value      p value  

   0.13      0.96  

           

DBP rs7041          

        

 GG 8 98 106 0.26  G 37 361 0.49 

 TG 21 165 186 0.46  T 41 377 0.51 

 TT 10 106 116 0.28  Total 78 738  

 Total 39 369 408       

           

   p value      p value  

   0.53      0.79  

           

LRP5 rs3736228          

          

 CC 27 267 294 0.74  C 65 620 0.86 

 TC 11 86 97 0.24  T 13 102 0.14 

 TT 1 8 9 0.02  Total 78 722  

 Total 39 361 400       

           

   p value      p value  

   0.82      0.52  

           

VDR rs1544410          

          

 bb 8 56 64 0.16  b 40 278 0.39 

 Bb 24 166 190 0.48  B 36 440 0.61 

 BB 6 137 143 0.36  Total 76 718  

 Total 38 359 397       

           

   p value      p value  

   0.02      0.01  

           

VDR rs731236          

          

 tt 7 46 53 0.13  t 39 260 0.37 

 Tt 25 168 193 0.49  T 39 452 0.63 

 TT 7 142 149 0.38  Total 78 712  

 Total 39 356 395       

           

   p value      p value  

   0.03      0.01  

           

P2X7 rs1653624          

          

 AA 0 0 0 0.00  A 1 25 0.03 

 TA 1 25 26 0.06  T 77 703 0.97 

 TT 38 339 377 0.94  Total 78 728  

 Total 39 364 403       
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   p value      p value  

   N/A      N/A  

           

P2X7 rs1718119          

          

 GG 14 128 142 0.38  G 50 403 0.59 

 GA 22 147 169 0.45  A 26 275 0.41 

 AA 2 64 66 0.18  Total 76 678  

 Total 38 339 377       

           

   p value      p value  

   0.07      0.26  

           

VDR rs7975232          

          

 aa 15 102 117 0.30  a 49 378 0.53 

 Aa 19 174 193 0.49  A 27 332 0.47 

 AA 4 79 83 0.21  Total 76 710  

 Total 38 355 393       

           

   p value      p value  

   0.17      0.04  

           

COL1A1 rs1800012          

          

 SS 28 261 289 0.72  S 67 614 0.84 

 Ss 11 92 103 0.26  s 11 114 0.16 

 ss 0 11 11 0.03  Total 78 728  

 Total 39 364 403       

           

   p value      p value  

   0.52      0.71  

           

CTR rs1801197          

          

 CC 2 33 35 0.09  C 20 204 0.29 

 TC 16 138 154 0.39  T 58 510 0.71 

 TT 21 186 207 0.52  Total 78 714  

 Total 39 357 396       

           

   p value      p value  

   0.69      0.57  

           

WNT16 rs3801387          

          

 AA 21 188 209 0.53  A 55 517 0.73 

 GA 13 141 154 0.39  G 23 191 0.27 

 GG 5 25 30 0.08  Total 78 708  

 Total 39 354 393       

           

   p value      p value  

   0.39      0.62  

           

RANKL rs9594738         

          

 CC 12 114 126 0.32  C 45 420 0.58 

 TC 21 192 213 0.53  T 33 302 0.42 

 TT 6 55 61 0.15  Total 78 722  
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 Total 39 361 400       

           

   p value      p value  

   0.99      0.93  

           

P2X7 rs208294          

          

 CC 39 348 387 0.96  C 78 712 0.98 

 TC 0 16 16 0.04  T 0 18 0.02 

 TT 0 1 1 0.00  Total 78 730  

 Total 39 365 404       

           

   p value      p value  

   0.39      0.16  

           

BRADYKININ rs1799722          

          

 9 11 86 97 0.26  9 42 330 0.48 

 9/-9 20 158 178 0.47  -9 32 356 0.52 

 -9 6 99 105 0.28  Total 74 686  

 Total 37 343 380       

           

   p value      p value  

   0.26      0.14  

           

KALLIKREIN rs16987491          

          

 AA 0 0 0 0.00  A  4 19 0.03 

 GA 4 19 23 0.06  G 74 713 0.97 

 GG 35 347 382 0.94  Total 78 732  

 Total 39 366 405       

           

   p value      p value  

   0.19      0.65  

           

P2X7 rs3751143          

          

 GG 2 13 15 0.04  G 18 108 0.15 

 TG 14 82 96 0.24  T 54 604 0.85 

 TT 20 261 281 0.72  Total 72 712  

 Total 36 356 392       

           

   p value      p value  

   0.08      0.02  

           

SOST  rs1877632          

          

 CC 16 191 207 0.52  C 50 513 0.71 

 TC 18 131 149 0.37  T 28 207 0.29 

 TT 5 38 43 0.11  Total 78 720  

 Total 39 360 399       

           

   p value      p value  

   0.36      0.16  
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Runners 

 

 

Stress 

fracture 

Non-

stress 

Fracture Total 

% 

 Allele 

Stress 

fracture 

Non-

stress 

Fracture 

% 

       

                                      Genotype distribution   Allele frequency   

 

VDR rs10735810          

           

 FF 11 13 24 0.39  F 37 38 0.70 

 Ff 15 12 27 0.44  f 31 16 0.30 

 ff 8 2 10 0.16  Total 68 54  

 Total 34 27 61       

           

   p value      p value  

   0.19      0.00  

           

P2X7 rs2230912          

          

 AA 24 16 40 0.67  A 56 44 0.79 

 GA 8 12 20 0.33  G 8 12 0.21 

 GG 0 0 0 0.00  Total 64 56  

 Total 32 28 60       

           

   p value      p value  

   0.14      0.08  

           

DBP rs4588          

          

 AA 2 1 3 0.05  A 11 14 0.26 

 CA 7 12 19 0.31  C 57 40 0.74 

 CC 25 14 39 0.64  Total 68 54  

 Total 34 27 61       

           

   p value      p value  

   0.14      0.07  

           

RANK rs3018362          

          

 AA 4 1 5 0.08  A 29 16 0.30 

 GA 21 14 35 0.58  G 37 38 0.70 

 GG 8 12 20 0.33  Total 66 54  

 Total 33 27 60       

           

   p value      p value  

   0.18      0.01  

           

OPG rs4355801          

          

 AA 9 10 19 0.31  A 33 35 0.65 

 GA 15 15 30 0.49  G 35 19 0.35 

 GG 10 2 12 0.20  Total 68 54  

 Total 34 27 61       

           

   p value      p value  

   0.10      0.00  
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RANKL rs1021188         

          

 AA 2 1 3 0.05  A 9 11 0.20 

 GA 5 9 14 0.23  G 59 43 0.80 

 GG 27 17 44 0.72  Total 68 54  

 Total 34 27 61       

           

   p value      p value  

   0.22      0.14  

           

DBP rs7041          

        

 GG 15 8 23 0.37  G 44 32 0.57 

 TG 14 16 30 0.48  T 24 24 0.43 

 TT 5 4 9 0.15  Total 68 56  

 Total 34 28 62       

           

   p value      p value  

   0.40      0.21  

           

LRP5 rs3736228          

          

 CC 23 22 45 0.74  C 56 49 0.91 

 TC 10 5 15 0.25  T 12 5 0.09 

 TT 1 0 1 0.02  Total 68 54  

 Total 34 27 61       

           

   p value      p value  

   0.38      0.02  

           

VDR rs1544410          

          

 bb 5 3 8 0.13  b 26 20 0.37 

 Bb 16 14 30 0.50  B 40 34 0.63 

 BB 12 10 22 0.37  Total 66 54  

 Total 33 27 60       

           

   p value      p value  

   0.90      0.69  

           

VDR rs731236          

          

 tt 5 4 9 0.15  t 26 22 0.39 

 Tt 16 14 30 0.51  T 36 34 0.61 

 TT 10 10 20 0.34  Total 62 56  

 Total 31 28 59       

           

   p value      p value  

   0.96      0.67  

           

P2X7 rs1653624          

          

 AA 0 0 0 0.00  A 1 1 0.02 

 TA 1 1 2 0.03  T 65 55 0.98 

 TT 32 27 59 0.97  Total 66 56  

 Total 33 28 61       
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   p value      p value  

   N/A      N/A  

           

P2X7 rs1718119          

          

 GG 13 7 20 0.33  G 46 26 0.50 

 GA 20 12 32 0.53  A 22 26 0.50 

 AA 1 7 8 0.13  Total 68 52  

 Total 34 26 60       

           

   p value      p value  

   0.03      0.00  

           

VDR rs7975232          

          

 aa 11 8 19 0.32  a 38 29 0.54 

 Aa 16 13 29 0.49  A 26 25 0.46 

 AA 5 6 11 0.19  Total 64 54  

 Total 32 27 59       

           

   p value      p value  

   0.80      0.36  

           

COL1A1 rs1800012          

          

 SS 26 17 43 0.70  S 59 44 0.81 

 Ss 7 10 17 0.28  s 9 10 0.19 

 ss 1 0 1 0.02  Total 68 54  

 Total 34 27 61       

           

   p value      p value  

   0.27      0.26  

           

CTR rs1801197          

          

 CC 2 1 3 0.05  C 14 15 0.28 

 TC 10 13 23 0.38  T 52 39 0.72 

 TT 21 13 34 0.57  Total 66 54  

 Total 33 27 60       

           

   p value      p value  

   0.36      0.23  

           

WNT16 rs3801387          

        

 AA 18 17 35 0.56  A 47 43 0.77 

 GA 11 9 20 0.32  G 21 13 0.23 

 GG 5 2 7 0.11  Total 68 56  

 Total 34 28 62       

           

   p value      p value  

   0.62      0.13  

           

RANKL rs9594738         

          

 CC 7 9 16 0.26  C 34 33 0.59 

 TC 20 15 35 0.56  T 34 23 0.41 

 TT 7 4 11 0.18  Total 68 56  
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 Total 34 28 62       

           

   p value      p value  

   0.55      0.13  

           

P2X7 rs208294          

          

 CC 33 27 60 1.00  C 66 54 1.00 

 TC 0 0 0 0.00  T 0 0 0.00 

 TT 0 0 0 0.00  Total 66 54  

 Total 33 27 60       

           

   p value      p value  

   n/a      n/a  

           

BRADYKININ rs1799722          

          

 9 9 9 18 0.35  9 35 26 0.62 

 9/-9 17 8 25 0.48  -9 27 16 0.38 

 -9 5 4 9 0.17  Total 62 42  

 Total 31 21 52       

           

   p value      p value  

   0.48      0.38  

           

KALLIKREIN rs16987491          

           

 AA 0 0 0 0.00  A  3 1 0.04 

 GA 3 1 4 0.06  G 67 53 0.96 

 GG 32 26 58 0.94  Total 70 54  

 Total 35 27 62       

           

   p value      p value  

   0.44      0.68  

           

P2X7 rs3751143          

          

 GG 1 1 2 0.03  G 14 9 0.16 

 TG 12 7 19 0.31  T 54 47 0.84 

 TT 21 20 41 0.66  Total 68 56  

 Total 34 28 62       

           

   p value      p value  

   0.68      0.31  

           

SOST  rs1877632          

           

 CC 10 14 24 0.39  C 42 37 0.69 

 TC 22 9 31 0.51  T 26 17 0.31 

 TT 2 4 6 0.10  Total 68 54  

 Total 34 27 61       

           

   p value      p value  

   0.05      0.23  
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Football/hockey 

 

 

Stress 

fracture 

Non-

stress 

Fracture Total %  Allele 

Stress 

fracture 

Non-

stress 

Fracture % 

       

                                      Genotype distribution   Allele frequency   

 

VDR rs10735810    
 

     

          

 FF 17 97 114 0.50  F 46 275 0.71 

 Ff 12 81 93 0.41  f 20 115 0.29 

 ff 4 17 21 0.09  Total 66 390  

 Total 33 195 228       

           

   p value      p value  

   0.76      0.88  

           

P2X7 rs2230912          

          

 AA 27 148 175 0.76  A 60 338 0.86 

 GA 6 42 48 0.21  G 8 56 0.14 

 GG 1 7 8 0.03  Total 68 394  

 Total 34 197 231       

           

   p value      p value  

   0.87      0.56  

           

DBP rs4588          

          

 AA 2 19 21 0.09  A 22 109 0.28 

 CA 18 71 89 0.38  C 48 287 0.72 

 CC 15 108 123 0.53  Total 70 396  

 Total 35 198 233       

           

   p value      p value  

   0.21      0.46  

           

RANK rs3018362          

          

 AA 7 20 27 0.12  A 22 124 0.31 

 GA 8 84 92 0.39  G 46 276 0.69 

 GG 19 96 115 0.49  Total 68 400  

 Total 34 200 234       

           

   p value      p value  

   0.06      0.81  

           

OPG rs4355801          

          

 AA 18 74 92 0.40  A 49 233 0.59 

 GA 13 85 98 0.42  G 21 159 0.41 

 GG 4 37 41 0.18  Total 70 392  

 Total 35 196 231       

           

   p value      p value  

   0.27      0.07  
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RANKL rs1021188         

          

 AA 3 5 8 0.03  A 18 66 0.17 

 GA 12 56 68 0.30  G 50 326 0.83 

 GG 19 135 154 0.67  Total 68 392  

 Total 34 196 230       

           

   p value      p value  

   0.11      0.03  

           

DBP rs7041          

          

 GG 4 45 49 0.21  G 21 178 0.44 

 TG 13 88 101 0.43  T 45 224 0.56 

 TT 16 68 84 0.36  Total 66 402  

 Total 33 201 234       

           

   p value      p value  

   0.20      0.40  

           

LRP5 rs3736228          

          

 CC 26 145 171 0.73  C 59 338 0.85 

 TC 7 48 55 0.24  T 9 62 0.16 

 TT 1 7 8 0.03  Total 68 400  

 Total 34 200 234       

           

   p value      p value  

   0.89      0.61  

           

VDR rs1544410          

          

 bb 6 30 36 0.16  b 30 145 0.37 

 Bb 18 85 103 0.45  B 36 249 0.63 

 BB 9 82 91 0.40  Total 66 394  

 Total 33 197 230       

           

   p value      p value  

   0.29      0.15  

           

VDR rs731236          

          

 tt 5 25 30 0.13  t 27 137 0.35 

 Tt 17 87 104 0.46  T 35 257 0.65 

 TT 9 85 94 0.41  Total 62 394  

 Total 31 197 228       

           

   p value      p value  

   0.33      0.15  

           

P2X7 rs1653624          

          

 AA 0 0 0 0.00  A 0 16 0.04 

 TA 0 16 16 0.07  T 68 384 0.96 

 TT 34 184 218 0.93  Total 68 400  

 Total 34 200 234       

           

   p value      p value  
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   N/A      N/A  

           

P2X7 rs1718119          

          

 GG 12 69 81 0.38  G 37 219 0.59 

 GA 13 81 94 0.44  A 25 151 0.41 

 AA 6 35 41 0.19  Total 62 370  

 Total 31 185 216       

           

   p value      p value  

   0.98      0.94  

           

VDR rs7975232          

          

 aa 9 57 66 0.29  a 38 206 0.53 

 Aa 20 92 112 0.48  A 32 186 0.47 

 AA 6 47 53 0.23  Total 70 392  

 Total 35 196 231       

           

   p value      p value  

   0.51      0.77  

           

COL1A1 rs1800012          

          

 SS 24 152 176 0.74  S 59 350 0.87 

 Ss 11 46 57 0.24  s 11 54 0.13 

 ss 0 4 4 0.02  Total 70 404  

 Total 35 202 237       

           

   p value      p value  

   0.41      0.56  

           

CTR rs1801197          

          

 CC 1 16 17 0.08  C 19 105 0.27 

 TC 17 73 90 0.40  T 45 281 0.73 

 TT 14 104 118 0.52  Total 64 386  

 Total 32 193 225       

           

   p value      p value  

   0.21      0.66  

           

WNT16 rs3801387          

          

 AA 15 105 120 0.53  A 45 282 0.73 

 GA 15 72 87 0.38  G 25 102 0.27 

 GG 5 15 20 0.09  Total 70 384  

 Total 35 192 227       

           

   p value      p value  

   0.30      0.20  

           

RANKL rs9594738         

        

 CC 20 69 89 0.38  C 52 240 0.60 

 TC 12 102 114 0.49  T 18 158 0.40 

 TT 3 28 31 0.13  Total 70 398  

 Total 35 199 234       
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   p value      p value  

   0.04      0.02  

           

P2X7 rs208294          

          

 CC 35 188 223 0.94  C 70 389 0.96 

 TC 0 13 13 0.05  T 0 15 0.04 

 TT 0 1 1 0.00  Total 70 404  

 Total 35 202 237       

           

   p value      p value  

   0.12      0.10  

           

BRADYKININ rs1799722          

          

 9 17 45 62 0.28  9 45 176 0.46 

 9/-9 11 86 97 0.43  -9 21 204 0.54 

 -9 5 59 64 0.29  Total 66 380  

 Total 33 190 223       

           

   p value      p value  

   0.00      0.00  

           

KALLIKREIN rs16987491          

          

 AA 0 0 0 0.00  A  5 13 0.04 

 GA 4 13 17 0.07  G 66 395 0.96 

 GG 31 191 222 0.93  Total 70 408  

  35 204 239       

           

   p value      p value  

   0.28      0.67  

           

P2X7 rs3751143          

          

 GG 0 8 8 0.03  G 12 68 0.17 

 TG 12 52 64 0.28  T 52 330 0.83 

 TT 20 139 159 0.69  Total 64 398  

 Total 32 199 231       

           

   p value      p value  

   0.25      0.72  

           

SOST  rs1877632          

           

 CC 11 105 116 0.51  C 36 281 0.72 

 TC 14 71 85 0.37  T 30 111 0.28 

 TT 8 20 28 0.12  Total 66 392  

 Total 33 196 229       

           

   p value      p value  

   0.03      0.00  
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6.4 Appendix. Odds Ratio and 95% Confidence Intervals for the Association of Each 

SNP with Stress Fracture Injury  

 

Whole Cohort 

 SNP Odds ratio 95% CI upper 95% CI lower 

rs2230912 1.02 1.59 0.65 

rs1653624                             N/A N/A N/A 

rs208294 N/A N/A N/A 

rs1718119 1.57 3.01 0.81 

rs3751143 1.54 2.40 0.99 

rs1021188 2.93 7.28 1.18 

rs9594738 1.01 1.85 0.55 

rs3018362 1.94 3.62 1.04 

rs4355801 1.30 2.31 0.74 

rs1544410 1.12 2.16 0.59 

rs731236 1.00 2.04 0.49 

rs10735810 1.82 3.40 0.97 

rs7975232 1.00 1.84 0.54 

rs4588 0.93 2.14 0.40 

rs7041 1.05 1.87 0.59 

rs1800012 0.98 1.55 0.62 

rs1801197 0.72 1.63 0.31 

rs3736228 1.22 1.92 0.78 

rs1877632 1.31 2.64 0.65 

rs3801387 1.75 3.59 0.86 

rs1799722 2.04 3.71 1.12 

rs16987491 1.62 3.58 0.73 

 

Male 

 SNP Odds ratio 95% CI upper 95% CI lower 

rs2230912 1.04 1.70 0.64 

rs1653624                               N/A N/A N/A 

rs208294 N/A N/A N/A 

rs1718119 1.38 2.75 0.69 

rs3751143 1.51 2.50 0.91 

rs1021188 3.38 9.35 1.22 

rs9594738 0.87 1.72 0.44 

rs3018362 2.12 4.17 1.08 

rs4355801 1.21 2.30 0.64 

rs1544410 1.08 2.25 0.52 

rs731236 0.82 1.86 0.36 

rs10735810 1.62 3.27 0.81 

rs7975232 1.11 2.19 0.56 

rs4588 1.06 2.60 0.43 

rs7041 0.90 1.70 0.47 
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rs1800012 1.01 1.69 0.61 

rs1801197 0.59 1.61 0.22 

rs3736228 1.11 1.86 0.66 

rs1877632 1.33 2.85 0.62 

rs3801387 1.82 3.93 0.85 

rs1799722 2.83 5.67 1.41 

rs16987491 1.76 4.25 0.73 

 

Female 

SNP Odds ratio 95% CI upper 95% CI lower 

rs2230912 1.37 4.60 0.41 

rs1653624                              N/A N/A N/A 

rs208294 N/A 4.93 0.33 

rs1718119 0.97 2.70 0.35 

rs3751143 1.08 2.94 0.39 

rs1021188 0.80 2.41 0.26 

rs9594738 1.80 7.96 0.41 

rs3018362 1.04 2.97 0.37 

rs4355801 1.50 5.95 0.38 

rs1544410 1.11 3.15 0.39 

rs731236 1.55 4.46 0.54 

rs10735810 0.37 1.67 0.08 

rs7975232 1.80 7.81 0.41 

rs4588 0.83 2.35 0.29 

rs7041 1.17 3.35 0.41 

rs1800012 0.64 1.82 0.22 

rs1801197 1.47 4.03 0.53 

rs3736228 1.26 3.49 0.45 

rs1877632 2.44 7.16 0.83 

rs3801387 0.76 2.13 0.27 

rs1799722 1.27 6.17 0.15 

rs16987491                             N/A          N/A          N/A 

 

Runners 

SNP Odds ratio 95% CI upper 95% CI lower 

rs2230912 0.44 1.33 0.15 

rs1653624                              N/A N/A N/A 

rs208294 N/A N/A N/A 

rs1718119 1.68 5.09 0.55 

rs3751143 1.55 4.52 0.53 

rs1021188 0.44 1.38 0.14 

rs9594738 1.83 5.76 0.58 

rs3018362 2.50 7.51 0.83 

rs4355801 1.63 4.87 0.55 

rs1544410 1.03 2.96 0.36 

rs731236 1.17 3.43 0.40 
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rs10735810 1.94 5.51 0.68 

rs7975232 0.61 2.71 0.14 

rs4588 0.39 1.13 0.13 

rs7041 0.51 1.47 0.17 

rs1800012 1.91 5.82 0.63 

rs1801197 0.53 1.49 0.19 

rs3736228 2.10 7.04 0.63 

rs1877632 2.58 7.43 0.90 

rs3801387 1.37 3.79 0.50 

rs1799722 0.55 1.74 0.17 

rs16987491                            N/A          N/A         N/A 

 

Football/Hockey Players 

SNP Odds ratio 95% CI upper 95% CI lower 

rs2230912 0.78 1.91 0.32 

rs1653624                              N/A N/A N/A 

rs208294 N/A N/A N/A 

rs1718119 1.01 2.93 0.35 

rs3751143 1.39 3.02 0.64 

rs1021188 1.75 3.67 0.83 

rs9594738 0.40 0.83 0.19 

rs3018362 1.77 4.77 0.66 

rs4355801 0.57 1.18 0.28 

rs1544410 1.82 5.55 0.60 

rs731236 1.89 6.15 0.58 

rs10735810 0.93 1.95 0.45 

rs7975232 0.81 2.44 0.27 

rs4588 1.60 3.31 0.77 

rs7041 0.54 1.14 0.26 

rs1800012 1.39 3.05 0.64 

rs1801197 1.50 3.19 0.71 

rs3736228 0.81 1.90 0.35 

rs1877632 3.82 10.68 1.36 

rs3801387 2.33 7.35 0.74 

rs1799722 4.46 13.00 1.53 

rs16987491                            N/A         N/A          N/A 

 

Multiple stress fracture 

SNP Odds ratio 95% CI upper 95% CI lower 

rs2230912 0.92 1.78 0.47 

rs1653624                              N/A N/A N/A 

rs208294 N/A N/A N/A 

rs1718119 1.65 3.06 0.89 

rs3751143 1.18 2.28 0.61 

rs1021188 3.28 10.11 1.06 

rs9594738 1.17 2.80 0.48 
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rs3018362 1.64 3.15 0.85 

rs4355801 1.96 4.85 0.79 

rs1544410 1.02 3.03 0.34 

rs731236 2.51 5.39 1.17 

rs10735810 3.81 8.90 1.63 

rs7975232 0.70 1.82 0.26 

rs4588 1.05 1.92 0.57 

rs7041 1.62 3.78 0.70 

rs1800012 1.19 2.29 0.62 

rs1801197 0.95 1.77 0.51 

rs3736228 1.06 2.08 0.54 

rs1877632 2.01 5.51 0.73 

rs3801387 0.77 1.43 0.41 

rs1799722 1.15 2.90 0.46 

rs16987491 1.22 4.28 0.35 

 

Cricket Players 

  Odds ratio 95% CI upper 95% CI lower 

rs2230912 1.20 2.48 0.58 

rs1653624 N/A N/A N/A 

rs208294 N/A N/A N/A 

rs1718119 1.03 2.80 0.38 

rs3751143 1.80 4.13 0.78 

rs1021188 1.41 3.07 0.65 

rs9594738 0.80 2.17 0.30 

rs3018362 1.96 5.44 0.71 

rs4355801 2.01 5.39 0.75 

rs1544410 0.46 1.44 0.15 

rs731236 0.54 1.13 0.26 

rs10735810 1.08 2.26 0.52 

rs7975232 2.43 6.92 0.85 

rs4588 1.81 3.75 0.87 

rs7041 1.18 3.66 0.38 

rs1800012 1.09 2.38 0.50 

rs1801197 1.02 2.11 0.50 

rs3736228 1.38 3.02 0.63 

rs1877632 0.91 1.85 0.45 

rs3801387 0.80 1.65 0.39 

rs1799722 0.53 1.62 0.17 

rs16987491 N/A          N/A          N/A 

 

Leg excluding metatarsal  

  Odds ratio 95% CI upper 95% CI lower 

rs2230912 0.79 1.65 0.38 

rs1653624                               N/A N/A N/A 

rs208294 N/A N/A N/A 



306 

 

rs1718119 1.17 2.36 0.58 

rs3751143 2.20 4.42 1.09 

rs1021188 1.37 1.63 0.36 

rs9594738 1.04 2.91 0.37 

rs3018362 1.52 4.14 0.56 

rs4355801 2.70 7.15 1.02 

rs1544410 3.26 9.83 1.08 

rs731236 3.09 9.27 1.03 

rs10735810 2.86 7.09 1.15 

rs7975232 0.62 1.23 0.31 

rs4588 1.40 2.76 0.71 

rs7041 0.87 2.28 0.33 

rs1800012 1.00 2.07 0.48 

rs1801197 0.93 1.81 0.48 

rs3736228 1.26 2.59 0.61 

rs1877632 1.57 4.55 0.54 

rs3801387 1.79 5.17 0.62 

rs1799722 2.11 5.95 0.75 

rs16987491 2.09 6.48 0.67 

N/A depicts insufficient population number for analysis.  
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7.1. Appendix. Informed Consent: Genetic Associations with Bone Turnover Following 

120 minutes of Treadmill Running   

 
 

 

Statement of consent to participate in the investigation entitled:  
 

Genetic associations with bone turnover following 120 

minutes of treadmill running 
 

Researchers: Mr Ian Varley, Dr Craig Sale 

 

I (subject name) ……………………………………… have read the information provided and agree 

to partake, as a subject in the proposed research entitled: Genetic associations with 

bone turnover following 120 minutes of treadmill running. I am fully aware of the 

procedures to be carried out and have been informed of any risks that they may present. 

I agree to obey the Universities regulations and the investigators instructions regarding 

safety matters. 

 

I am aware that I may withdraw my consent to participate in the research at any time 

without any obligation to explain why or without any prejudice towards me. 

 

I also understand that any personal information regarding myself will not be passed to 

any other parties. 

 

I have completed the health screening questionnaire and know of no other reasons, 

medical or otherwise, that will prevent me from partaking in this research. 

 

Signed (Subject)………………………………………………………………….    Date ………………………. 

 

Signed (Independent Witness)………………………………………….    Date…………………………. 

 

Signed (Primary Researcher) …………………………………………….    Date…………………………. 
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7.2. Appendix. Health Screen: Genetic Associations with Bone Turnover Following 120 

minutes of Treadmill Running  

HEALTH SCREEN 

 

Name  ....... ……………… 
 

Please complete this brief questionnaire to confirm fitness to participate: 
 

1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise                                                                Yes     No      

(b) attending your general practitioner                                                                       Yes     No      

(c) on a hospital waiting list                                                                                       Yes     No      
 

2. In the past two years, have you had any illness which require you to: 

(a) consult your GP                                                                                                     Yes     No      

(b) attend a hospital outpatient department                                                                 Yes     No      

(c) be admitted to hospital                                                                                           Yes     No      
 

3. Have you ever had any of the following? 

(a) Convulsions/epilepsy                                                                                             Yes     No      

(b) Asthma                                                                                                                   Yes     No      

(c) Eczema                                                                                                                   Yes     No      

(d) Diabetes                                                                                                                  Yes     No      

(e) A blood disorder                                                                                                     Yes     No      

(f) Head injury                                                                                                             Yes     No      

(g) Digestive problems                                                                                                 Yes     No      

(h) Heart problems                                                                                                       Yes     No      

(i) Problems with bones or joints                                                                                Yes     No      

(j) Disturbance of balance / coordination                                                                    Yes     No      

(k) Numbness in hands or feet                                                                                     Yes     No      

(l) Disturbance of vision                                                                                              Yes     No      

(m) Ear / hearing problems                                                                                            Yes     No      

(n) Thyroid problems                                                                                                    Yes     No      

(o) Kidney or liver problems                                                                                        Yes     No      

(p) Allergy to nuts, alcohol etc                                                                                     Yes     No      
 

4. Has any, otherwise healthy, member of your family under the age of 35 

 died suddenly during or soon after exercise?                                                        Yes     No      

5. Are there any reasons why blood sampling may be difficult?                              Yes       No      

6. Have you had a blood sample taken previously?                                                  Yes       No      

7.  Have you had a cold or flu or any flu like symptoms in the last month?              Yes       No     

  

Women only   

8. Are you pregnant or trying to become pregnant?   Yes       No      
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If YES to any question, please describe briefly if you wish (eg to confirm problem was/is short-

lived, insignificant or well controlled.)  

................................................................................................................................…… ………

……………. ………………………………………………………………………………… 

 

 


