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Abstract 

 

In this work a novel micro-fading instrument has been developed that has increased structural 

stability, hence increasing the portability over previously reported instruments of this type.  

Using this instrument several new experimental methods have been developed and applied for 

the investigation of the photosensitivity of painted samples and coloured works of art (with 

particular focus on the effects of anoxic housing). 

 

The colour fading and reversion behaviour of a traditional Prussian blue pigment ground in gum 

Arabic was investigated for the first time in 0%, 2%, 3.5%, 5%, 10% or 21% oxygen 

concentrations.  Results from this investigation indicated that the previously reported deleterious 

effects of reduced oxygen concentrations (hypoxia) for Prussian blue may only become relevant 

at oxygen lower levels (beginning at an hypoxic oxygen level above 2% and below 3.5%). An 

extension of the investigation to a large sample set of Prussian blues indicated that relatively low 

concentrations of oxygen (around 5%) may be tolerated by Prussian-blue containing works of 

art.   

 

The novel investigation of the effect of reduced oxygen housing using the microfading technique 

was extended to a very large varied sample set of traditional watercolour pigments ground in 

gum Arabic. This new avenue of investigation for the conservation of art work produced 

encouraging results to overcoming some of the problems of anoxic storage for a wider variety of 

watercolour pigments. This broad investigation also led to a better understanding of how much 

light exposure, in and out anoxia, is permissible for different types of watercolour pigments.  

 

Incorporating a linear variable filter into the design enabled the investigation of the wavelength 

dependence of fading of many samples to a greater degree of resolution than had previously 

been attempted. The wavelength dependence of fading for the samples tested was found to 

correlate well with the absorption spectra although an exception was found when testing a 

sample of Prussian blue pigment, where the degree of fading decreased with the wavelength of 

incident radiation. 

 



1 

 

Table of Contents 
 
 
 

1.         Introduction ________________________________________________ 5 

1.1                      Background  ____________________________________________ 5 

1.2                      Accelerated aging  ________________________________________ 6 

1.3                      Range and class of stability of samples _______________________ 7 

1.4                      Theoretical aspects of photochemical deterioration ____________ 8 

1.4.1                                  Photochemical degradation  ______________________________ 8 

1.4.2                                  Principles of photochemical degradation  _____________________ 9 

1.4.3                                  The influence of wavelength  ____________________________  12 

1.4.4                                  The influence of oxygen concentration on degradation  ___________ 12 

1.5                      Quantifying colour change ________________________________ 13 

1.5.1                                  Commission Internationale d'Eclairage colour matching functions  _____ 14 

1.5.2                                  Calculating chromacity coordinates ________________________ 14 

1.5.3                                  CIE 1976 L* a* b* ___________________________________ 16 

1.5.4                                  CIEDE2000 _______________________________________ 16 

1.6                      Photometric and radiometric units _________________________ 17 

1.7                      Pigment samples tested and their provenance  _______________ 19 

1.8                      Thesis layout  __________________________________________ 20 

 

 

 

2          Micro-fading spectroscopy  _______________________________ 22 

2.1                      The Micro-fading technique  ______________________________ 22 

2.2                      Instrument characterisation and analysis  ___________________ 23 

2.2.1                                  Instrument design  ___________________________________ 23 

2.2.2                                  Colour measurement  _________________________________ 25 

2.2.3                                  Probe alignment  ____________________________________ 26 

2.2.4                                  Light source behaviour ________________________________ 27 



2 

 

2.2.5                                 Probe position sensitivity _______________________________ 30 

2.2.6                                 Sample visibility and size _______________________________ 33 

2.3                      Results and discussion  __________________________________ 36 

2.3.1                                 The rate of fading ____________________________________ 36 

2.3.2                                 Temperature increase __________________________________ 37 

2.3.3                                 Repeatability of results _________________________________ 38 

2.3.4                                 Propagation of error  __________________________________ 41 

 

 

3.0        The wavelength dependence of fading __________________ 44 

3.1                       Introduction ___________________________________________ 44 

3.2                       Technique introduction  __________________________________45 

3.2.1                                   Experimental arrangement____________________________________ 45 

3.2.2                                   Experimental method_________________________________ 47 

3.3                        Sample sets____________________________________________ 47 

3.3.1                                    Artists‟ pigments __________________________________________ 47  

3.3.2                                    Light dosimeters and standards _______________________________ 49 

3.4                        Light exposure_________________________________________ 50   

3.5                        Results _______________________________________________ 51 

3.5.1                                   Appraisal of the technique ____________________________________51 

3.5.2                                   Comparison of results with reflection spectra__________________ 55 

3.6                        Discussion ______________________________________ 61 

 

 

 

 

 

4             Investigation of Prussian blue __________________________ 64 

4.1                       Introduction ___________________________________________ 64 

4.1.1                                  The prevalence of the pigment ___________________________ 64 



3 

 

4.1.2                                  Fading and reversion characteristics ________________________ 65 

4.1.3                                  Prussian blue manufacture and chemical structure _______________ 65 

4.1.4                                  The fading and reversion mechanisms ______________________ 66 

4.2                        Experimental method ___________________________________ 67 

4.2.1                                  The micro-fadometer arrangement_________________________ 67 

4.2.2                                  Error connected with the method _________________________ 69 

4.2.3                                  Results __________________________________________ 69 

4.2.4                                  Reversion behaviour __________________________________ 69 

4.2.5                                  Modelling reversion behaviour ___________________________ 71 

4.2.6                                  Effect of oxygen concentration on behaviour __________________ 72 

4.2.7                                  Influence of fade duration upon ΔEf, ΔE0, and β _________________74 
 
4.2.8                                 Influence of O2 concentration upon ΔEf , β. ___________________ 75 

4.3                       Experimental extension to other Prussian blue samples _______ 77 

4.3.1                                 Experimental technique ________________________________ 77 

4.3.2                                 Results ___________________________________________ 79 

4.3.2.1                              Fading and reversion in air ______________________________ 80 

4.3.2.2                                             Fading and storage in anoxia and reversion in air ____________ 82 

4.3.2.3                                             Fading and storage in hypoxia and reversion air ____________ 84 

4.3.2.4                                            Comparison of the 3 environments for fading and storage  _______ 86 

4.3.2.5                                            Comparison of the degree of fading ____________________ 86 

4.3.2.6                                            Reversion within modified environments _________________ 87 

4.3.2.7                                            Reversion after exposure to air _______________________ 88 

4.4                        Discussion ____________________________________________ 90 

 

 

5          Reduced oxygen for other watercolour pigments  ______92 

5.1                        Introduction ___________________________________________ 92 

5.2                        The pigments selected for study __________________________ 93 

5.3                        The experimental method _______________________________ 95 



4 

 

5.4                        Results _______________________________________________ 96 

5.4.1                                    Fugitive characterised pigment groups _____________________ 96 

5.4.2                                    Light stable characterised pigment groups __________________ 138 

5.4.3                                    Poorly identified pigments ____________________________ 142 

5.4.4                                    Uncharacterised stable pigments ________________________ 150 

5.5                        Discussion ___________________________________________ 153 

 
 

6.            Conclusions ______________________________________________155 

 

7.            References _______________________________________________ 158 

 

 
 
 

Appendix 

A.          Parts List ____________________________________________________ 173 

B.          Accuracy measurements _________________________________________  174 

C.          Modeling of the fading of Prussian blue _____________________________  178 

D.          Reversion plots of Prussian blue sample _____________________________ 179 

E.          Pigment samples: sources and suppliers ____________________________   182 

F.          List of publications arising from this research _________________________  194 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 

 

1. Introduction 

 

1.1 Background 

 

Those within museums responsible for the world's cultural treasures have a duty to ensure 

preservation of these works whilst allowing public access. Often these two duties result in 

museum policy being driven in opposing directions. As a result many art galleries and 

museums are under considerable pressure with regards to this area of policy. There is a 

need to attract the public, while a restriction is placed on lighting for the wholly necessary 

cause of conservation of works (despite lighting limits reducing the duration and appeal of 

display). An approach to addressing this problem has been to darken the general 

environment of the gallery to such a degree that the illuminated objects appear bright 

enough to attract attention, while allowing visual adaption to take place, by means of visitor 

control measures. This can be considered far from a perfect solution. 

 

At present nearly all works of art on paper are regarded as equally sensitive to light (see 

Ashley-Smith et al. 2002). This is due to lack of detailed knowledge. There is therefore a 

need for a portable, well characterised research tool capable of directly and rapidly 

discriminating the degree of photosensitivity or lightfastness of objects. This information 

can then enable informed decisions to be made which will lead to safe increases in intensity 

of illumination and duration of display. 

 

The need to illuminate (for display) photo-sensitive works of art on paper is an example of 

an impasse that justifies the application of research and technology.  An attempt to solve 

this problem could be via the construction and application of oxygen free (anoxic) 

environments. The potential for such a system has massive scope for employment as it may 

make both longer display times and a reduction in the rate of degradation possible. It was 

hoped this research would lead to a better understanding of how much light exposure, in 

and out of anoxia, is safe for different types of traditional watercolour materials. It is also 

necessary to highlight those materials that perform poorly under anoxic conditions and if 

possible provide solutions to the obstacles those materials pose when they are contained 

within art works that would otherwise potentially benefit from anoxia.   

 

The necessity of this research can be neatly illustrated by figure 1.1. These works already 

display considerable colour changes due to light exposure: they were once covered by a 
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„close frame‟ or mount that has over many years shielded the edges of the works. This has 

meant that the colour is less faded in that region. Those areas that were beneath the frame 

were largely protected from photochemical degradation. 

 

 

 
Figure 1.1. J.M.W. Turner, Loch Fyne with Inveraray Castle (D03635) (left) and Fisherman on a Loch 
(D03636) (right). Light exposure has caused severe fading of blue pigment(s) and considerable yellowing of 
the paper support. © Tate 2010 
 

It is hoped this work will contribute to making it possible for safer display of collections – 

and perhaps also lead to longer or more frequent display of iconic but delicate artworks.  

 

1.2 Accelerated aging 

 

Photochemical deterioration is induced by exposure to visible and near-ultraviolet 

radiation. Accelerated aging aims to selectively increase the underlying chemical processes 

of this deterioration, without introducing or over-emphasising other processes that would 

not take place under natural ageing conditions. When it is successful it provides a useful 

indication of „life expectancy‟ under certain conditions. 

 

This can be done via increasing light intensity in order to simulate a larger number of hours 

of exposure of the sample under test, or via an acceleration of thermally initiated 

deterioration via prolonged temperature increase of the sample (though the latter was not 

used in this research). Typically the time scale and intensity of fading illumination in any set 

of accelerated-aging tests is related to years of display at recommended illuminance, which 

for watercolours is 50-80 lux for long-term display (Feller 1994). Note that for the 

unfamiliar a discussion of radiometric and photometric units can be found in section 1.6. 
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The American Society for Testing Materials introduced a procedure for classifying 

lightfastness of pigments over 20 to 100 years (ASTM 2006). Accelerated-aging tests are 

typically considered to be conducted for three major purposes. The most fundamental and 

easiest to achieve is to establish the relative degree to which the materials under test are 

fugitive or prone to degradation. 

 

A second and more ambitious goal could be to predict the long-term behaviour of the 

material under test. 

 

A third goal is to shed light on the degradation pathway or the mechanism that is increased 

via the experiment.  

 

There are limitations to the technique and differences between facilities that make 

interlaboratory comparison difficult. When 9 types of accelerated light aging regimes at 5 

institutions were compared, no strong similarity in the results for the same set of samples 

(including lake pigments on paper) and exposure was found (for a description of lake 

pigments see section 5.2). This was thought to be due to variation in the spectral power 

distribution of the illuminant used and also the differing temperatures at which they were 

faded (Saunders and Kirby 2001). This is a concern for repeatability and therefore in this 

work whenever possible samples were compared with others that were faded in similar 

conditions to make relative statements about light sensitivity. 

 

Due to the very large number and variety of the samples studied in this work, it was 

necessary to place limitations on the objectives and depth of study of the accelerated aging 

tests conducted, therefore this work should not be considered a photochemical study. Any 

insight into the mechanism of fading is limited and the research herein is largely connected 

with the first two objectives of accelerated aging previously stated. 

 

1.3 Range and class of  stability of  samples. 

 

Feller (1975) suggested 4 classes of photochemical stability. The 4 Classifications (A, B, C 

& T) were equivalent to an intended useful lifetime of the sample. According to Tate 

lighting policy objects are grouped into similar categories according to photosensitivity. 

 

High photo-sensitivity. Suitable for illumination at either 50 or 80 lux.  
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This includes works of art with paper supports, paintings with exposed canvas, textiles, 

objects with colorants of known poor lightfastness, and works with evidence of previous 

light damage.   

    

Medium sensitivity; suitable for illumination at 100 lux. 

Contemporary photographs, works on good quality paper. 

 

Low sensitivity; suitable for illumination at 200 lux.  

This includes oil paintings, painted sculpture, exposed wood, Perma-prints. 

 

Not photo-sensitive; suitable for illumination greater than 200 lux, in practice up to 1500 

lux. This includes metal, stone, plaster sculpture without colorants. 

 

Within a 4 year period, the maximum accumulated duration of display of a high or medium 

photosensitive work of art at its recommended lux level is 2 years.  

 

A typical museum environment was defined by Thomson (1967).  The average annual 

exposure of the National Gallery, London was estimated. A figure of 1.5 Mlxh (million lux 

hours) was given (average intensity of 320 lux).  

 

1.4 Theoretical aspects of  photochemical deterioration 
 

1.4.1 Photochemical degradation 
 

Damage to pigments by light is the result of numerous degradation pathways (due to their 

complexity few are fully understood). The pathways consist of a series of complex 

photochemical processes (Thomson 1964). For the absorbed photon to initiate chemical 

change, threshold energy of the receiving molecule must be exceeded. This threshold 

energy is known as the activation energy. 

 

When a photon of sufficient energy is absorbed an electron exits the ground state and 

enters the excited state. The excited molecule may then lose the absorbed energy 

(relaxation) via the photophysical processes of heat dissipation,  by the emission of radiant 

energy in the form of fluorescence or phosphorescence, or by the photochemical processes 

of undergoing a chemical change within the molecule (Geuskens 1975).  
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Many materials found in art museum collections are cellulosic or proteinaceous materials 

(for example support materials for paintings, paint media and traditional and synthetic 

varnishes).  During light aging they undergo a number of reactions indicative of oxidation. 

The first 3 stages of degradation follow a common pathway;  absorption of a photon, the 

formation of a free radical and then combination of the free radical with an oxygen 

molecule (Thomson 1978).  Photochemical reactions which lead to colour change are 

discussed in more detail by Schaeffer (2001).  

 

The effects of pigment particle size, substrate medium and mordant (a chemical that fixes a 

dye) have been shown to be considerable factors in the rate of degradation of pigment 

samples (Michalski 1987). 

 

Generally degradation will be increased by the presence of moisture. It is therefore 

necessary to control relative humidity in any accelerated aging experiment. Water can 

participate in the processes of deterioration in a number of ways. In a few cases, moisture 

has little effect and often the role of water remains far from being understood at the 

molecular level (Feller 1994). 

 

1.4.2 Principles of photochemical degradation  

 

A key principle of photochemical degradation is the Grotthus-Draper law: only that 

radiation which is absorbed by a substance may cause a chemical reaction (Watkins 1978).  

It is therefore logical to state that wavelengths of radiation absorbed by the sample 

undergoing fading provide the largest contribution to the degradation observed. This is 

however not always correct as fading can also be caused by the absorption of radiation by 

some other substance, which then passes the absorbed energy on. This is known as 

photosensitized fading and under these circumstances, an absorption curve of the colorant, 

would not correspond to those wavelengths that initiated the process of colour change 

(Feller 1994).  

 

Photochemical damage is largely a surface phenomenon taking place only in the top 4 - 

40µm of the material (Johnston and Feller 1986). Beer-Lamberts Laws holds with respect 

to penetration of the surface: 
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x

ox II  exp
 

 

Io is the incident intensity  

Ix is the intensity at a depth x 

x is depth of light penetration   

α is the absorption coefficient sample.  

 

Experimentally to differing levels of approximation a large number of reaction rates vary 

with temperature according to the Arrhenius equation which can be summarised as 

 








 

 RT

aE

Tk exp)(  

Where  

k (T) is the reaction rate 

Ea is the activation energy (J/mol) 

T is the temperature (K) 

R is the gas constant (Laidler 1984). 

 

Simulating the aging of an object by increasing its temperature and therefore increasing the 

rate the chemical reaction causing degradation occurs is not without critics. Degradation 

pathways of objects are often complex and therefore the Arrhenius equation can only be 

applied to first-order reaction elementary kinetics in this instance.  It can also be argued 

that at higher temperatures different reactions are possible compared to those in natural 

aging for the same material (Bansa 2002) (Porck 2000). The degree to which a chemical 

reaction is accelerated by increasing the temperature also varies and the “rule of thumb” 

that a doubling of the reaction rate occurs per increase of 10oC does not apply when 

discussing typical museum objects. A doubling per 10oC applies to materials with activation 

energies of around 50kJ/mol where typical activation energies within museums can be 

considered as 100-125 kJ/mol for paper and wood with a doubling of the rate per 5oC for 

cellulosic materials (Thomson 1976). 

 

A central principle necessary to achieve meaningful results in accelerated aging experiments 

is the reciprocity principle or the Bunsen-Roscoe law (Cuttle 1988). 

 

This law states total damage equates to the incident irradiance which can be defined as; 
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dtEH
t

DD   

 

DH is the Damage exposure (lx h) 

 

DE is the Damage irradiance (lx) 

 

This implies that the total amount of photochemical damage is not dependent on the rate 

of irradiance but directly related to exposure. 

 

This is represented by the product of the intensity of the irradiance (the luminous flux, if 

irradiation is limited to the visible spectrum) multiplied by the duration of fade. In other 

words, 100 mW of intensity for 1 hour is considered to produce as much damage as 1 mW 

of the same radiation for 100 hours.  

 

Experimentally there are potential reasons that can cause reciprocity failure. These are that 

high intensities of illumination employed in accelerated aging tests raise the temperature of 

the samples and alter the rate of chemical reaction. High temperatures can also lower a 

samples moisture level (Wilhelm 1993). Discontinuity of exposure can also create 

differences from a continuity of illumination over the experimental period and potentially 

post-irradiation changes in the absence of illumination can also occur. Theoretically there 

are also certain photochemical reactions that do not follow the reciprocity principle, and 

are proportional to the square root of the intensity (Kollmann and Wood 1980). 

Reciprocity may also fail when one of the accelerated chain reactions that leads to 

degradation of a pigment reaches a bottle neck. Due to this upper limit the reaction cannot 

proceed sufficiently to maintain the rate of change (Saunders and Kirby 1996). 

 

Light aging experiments on a variety of colourants arranged to investigate the phenomena 

have produced no evidence of breakdown at reasonable light levels (Saunders and Kirby 

1996). Reciprocity breakdown has been reported in the case of Prussian blue by Ware 

(1999a). It has also been found that Alizarin Crimson and some other colourants are 

affected differently when exposed to a light/dark cycle rather than to continuous exposure 

(ASTM 2006). Caution should be employed due to potential breakdown but despite these 

issues (and perhaps for want of a better technique), accelerated aging has been fruitfully 

employed to guide the care of museum materials for a considerable time. 
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1.4.3 The influence of wavelength 

 
Studies of the relationship between wavelength and light damage has resulted in the 

following terminology; an action spectrum can be considered as the accumulated effects of 

wavelength on degradation, where as the wavelength specificity has been defined as the 

influence of wavelength on the mechanism and type of degradation (Feller 1994). An 

important clarification is that the activation spectrum (rather than the previously 

mentioned action spectrum) refers to data that has not involved any correction for the 

variation of spectral power distribution. Activation spectra are therefore dependent on the 

spectrum of the illuminating light source causing damage. 

 

According to the Grothus-Draper Law or principle of photochemical activation, only 

radiation which is absorbed by the reacting system is effective in producing photochemical 

degradation (Watkins 1978).  In addition, the Damage Function, based on data from the 

National Bureau of Standards (NBS) illustrates how shorter wavelengths are responsible 

for greater damage (Harrison 1953). Via the NBS damage function each wavelength is 

specified a value based on its influence on photochemical degradation.  Thirty years later 

Aydinli et al. (1983) produced a new damage function which gave a higher weighting to the 

damage caused by visible wavelengths. The Krochmann damage weighting function was 

incorporated into ISO/CIE publication 89/3 “On the deterioration of exhibited museum 

objects by optical radiation” (Aydinli et al. 1990). 

  

It remains that insufficient data on the wavelength specificity of fading is available for 

historical pigments (Michalski 1987) and highly sensitive materials (Cuttle 1988). Therefore 

more research is required in this area. 

 

1.4.4  The influence of oxygen concentration on degradation 

 

Anoxia retards the oxidative degradation pathway (Russell and Abney 1888) and this 

pathway is often associated with light exposure.  Organic dyes, lakes and pigments should 

benefit from anoxia as most undergo oxidative fading. The majority of inorganic pigments 

should not be negatively affected by storage in anoxia, though some can undergo reductive 

colour change (Hackney 2006). 
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At low oxygen levels Thomson (1965) argued that the degree of oxidative degradation of 

most organic pigments would show little or no decrease in the rate of degradation until an 

oxygen level of parts per million was achieved.  It was cited that degradation obeys a non 

linear relationship where the positive effect of anoxia is rapidly negated by small quantities 

of oxygen, which might be desorbed from other components of an artwork, for example 

the paper substrate. This conclusion is backed by artificial aging experiments conducted by 

Leene et al. (1975).  Alternatively Giles et al. (1956) argued that the rate for most organic 

colourants decreases linearly with oxygen concentration, a claim which was backed 

empirically by Lasareff (1912) via an investigation of 2 cyanine dyes.  

 

Arney et al. (1979) addressed this issue of contradicting arguments and conclusions by 

testing a number of pigments at various increments of oxygen concentration from 0% to 

1% in order to clarify the matter. The results of the investigation indicated the relationship 

was dependent upon the sample under test and therefore both relationships applied over 

the oxygen concentration tested. Therefore the degradation of some pigments will be 

greater in reduced oxygen concentrations that are greater than an oxygen level of parts per 

million. Others would require oxygen levels less than parts per million to see a reduction in 

the degree of oxidative degradation. 

 

1.5 Quantifying colour change 
 

 

Rather than being viewed as an intrinsic property of an object, colour can be viewed as the 

human sensation created by the combination of a particular spectral power distribution of 

light and the reflective nature of the object. For example a white object viewed under red 

illumination will appear red or a red object viewed in a blue light will appear black.  

 

The sensation of colour is made possible by the human eye. The retina clads the inside of 

the eyeball and is the light sensitive part of the eyes structure. The cell structure of the 

retina contains light-sensitive rod cells and cone cells. Rod cells (which are sensitive over 

the entire visible spectrum) are more prevalent and have a higher light sensitivity than cone 

cells. Three variants of the cone cell exist, which are sensitive in the red, green, and blue 

spectral ranges with peak sensitivity at the long (558nm), middle (531nm) and short 

(419nm) wavelengths of the visible range (Dowling 1987).   
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Resulting from this variety of sensors three different regimes of human vision are found, 

each with differing use of the available receptors. Photopic vision functions within daylight 

and uses the 3 variants of cone cells affording colour vision. Scotopic vision uses rods 

which do not enable colour perception and function at low light levels (at night.)  Mesopic 

vision relates to light levels between the 2 regimes and employs both rods and cones 

(Wyszecki and Stiles 2000).  Attached to the retina are nerve fibers that carry information 

to the brain via the optic nerve. 

 
As an aside Ganglion cells also exist within the retina and do possess some optical 

sensitivity peaking in the blue region with impact on human circadian rhythm (Berson et al. 

2002) (Hattar et al. 2002). 

 

1.5.1 Commission Internationale d'Eclairage colour matching functions 

The International Commission on Illumination (Commission Internationale d'Eclairage or CIE) 

colour matching functions are x y and z  (ISO CIE 10527 1991). These empirically 

determined functions are used to quantify the chromatic response of a standard observer 

over a 2o field of view. x y and z  peak in the red, green and blue or long, middle and 

short wavelength ranges respectively see figure 1.2. (Shaw and Fairchild 2002). 
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Figure 1.2. The colour matching functions for the CIE 1931 2° standard observer. x y z  are the red 

green and blue curves respectively. 
 

1.5.2 Calculating chromacity coordinates. 
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The tristimulus values XYZ for a colour with a reflectance R(λ) view under an illuminant 

with a spectral power distribution )(I  are given in terms of the standard observer by: 

 





0

)()( xIX     

 





0

)()( yIY

 

 





0

)()( zIZ  

 

As a colour is defined by the relative stimulus of the eye's three sensors, it makes sense 

therefore to instead define a colour by a xyz triplet of chromaticity coordinates which are 

normalised versions of XYZ (CIE 1986). 

 

ZYX

Y
y




 

 

ZYX
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z


  

 

By definition now,  
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zyx 1
 

1.5.3  CIE 1976 L* a* b* 

It is possible to define colours by their x and y chromaticity coordinates (defined 

previously) it is possible to plot the gamut of human colour perception via the Commission 

Internationale d'Eclairage 1931 XYZ colour space.  

The conversion to the CIE 1976 L* a* b* colour space can be achieved using the method 

as defined by CIE (1986). 

The CIE 1976 L* a* b* colour space has chromaticity coordinates of L*, a* and b*. The L* 

value represents luminance and values range from 0 for black to 100 for white. The a* and 

b* values represent coordinates on the axis moving from red to green (+a* to - a* 

respectively) and yellow to blue (+ b* to - b* respectively). 

The resulting unit of colour difference is represented by the symbol ΔE*
ab which can be 

simply calculated as the Euclidian distance between 2 locations in the CIE 1976 L* a* b* 

colour space.  

 

1.5.4 CIEDE2000 

 

An issue with CIE 1976 L* a* b* colour space is that the eye is most sensitive to hue 

differences, then chroma and finally lightness and also weaknesses exist with respect to the 

neutral and blue regions. ΔE*
ab does not take this into account.  

 

There are several other methods by which to calculate colour difference units including 

ΔECMC (BSI 1988) and ΔE1994 (CIE 1995) which included correction factors for the 

problems associated with chroma and hue and ΔE2000 (also written as CIEDE2000) (CIE 

2001). CIEDE2000 attempted to correct for neutral and blue region weaknesses (Luo et al. 

2001).  Each increases the uniformity of the CIE 1976 L* a* b* colour space. When colour 

difference is expressed using CIEDE2000 the corresponding colour difference unit is 

represented by the symbol ΔE00.  
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A rough rule of thumb is that if more than 1 ΔE*
ab separates two colours, the difference 

would be just distinguishable to the observer if they were side-by-side for comparison (BSI 

1978) and fading to a just noticeable degree is usually taken as 2 colour difference units 

(Michalski 1997). Experimentally a likelihood of distinguishing 2 colours under ideal 

viewing conditions was determined to be 50% for a colour difference of 1.5 ΔE00 (Pretzel 

2000). 

 

There have been attempts since the 1930s to accurately define and quantify colour 

measurement in terms that can be related directly to human vision. The process is 

empirical, and resulted in greater perceptually uniformity for each newly-defined colour 

difference unit. Two colour space models have become widely used in this field;  CIE 1976 

L* a* b*and CIEDE2000 and these have been used in this research.  

 

In this thesis the colour space chosen was the same as previous published research 

conducted in the particular area of investigation. This was done in order to cross compare 

data with previous publications with greater ease.  Exceptions to this were made when it 

was thought this would lead to misleading conclusions.  

 

The colour difference units used within this work therefore vary between CIE 1976 L* a* 

b*and CIEDE2000 depending upon the investigation.  

  

1.6  Photometric and radiometric units 

 

Photometric and radiometric units are both used to quantify illumination. In the case of 

radiometric units, all wavelengths are equally weighted, where as photometric units are 

weighted to the human eye's visual system. This weighting factor varies with wavelength 

and is known as the luminosity function (see figure 1.3). The function peaks at 555nm in 

the green and falls to zero outside the visible range (CIE 1931).  
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Figure 1.3. The luminosity function or photoptic response curve. The function peaks at 555nm in the green 

and falls to zero outside the visible range.   

 

The radiometric unit of flux is the watt (W). The corresponding photometric unit is the 

lumen (lm).  The unit of lux is one lumen/metre2 (lm/m2) the corresponding radiometric 

unit of irradiance is watt/metre2 (W/m2) (see table 1.1). 

Practically it is not possible to convert simply between lux and watt/metre2 as there is a 

wavelength dependency.  To make a conversion it is necessary to know the spectral power 

distribution of the light source and use the luminosity function.  

 

Physical 
Quantity 

Description Radiometric 
Units 

Photometric 
Units 

Flux Total power (energy/second) 
emitted by source 

watts (W) lumens (lm) 

Irradiance Rate that light energy is incident 
on  a surface 

irradiance 
(W/m2) 

lux  (lm/m2) 

 

 

Table 1.1. The SI units used to characterise the light source in this project physically and perceptually. 

Each radiometric unit is shown with it corresponding photometric unit. 
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1.7 Pigment samples tested and their provenance 

 

Research was largely conducted on historically accurate reproductions of 19th century 

traditional watercolour materials. In choosing to follow this route the effect of pigment size 

and lake pigment substrate were considered outside the scope of the research, though they 

have been shown to be considerable factors in the rate of degradation (Feller and 

Johnston-Feller 1997).  

 

It was imperative to conduct research on genuine 19th-century pigments of known 

provenance dated with reasonable security. Therefore the particle size was not amenable to 

control. In order to do this historic collections and private collectors in the Netherlands, 

the United Kingdom and Germany were approached for material by Drs Charlotte 

Caspers, whose practical research for a masters degree in materials history was carried out 

in parallel with the research reported here (Caspers 2008). 

  

Dating historic pigments and watercolour cakes is difficult. This is still the case when 

samples are gained from renowned institutions and collections. There is always a possibility 

that a jar of named pigment has been substituted or never had the expected contents.  A 

detailed description of the sample set and analytical results used to support the 

identification of each pigment can be found in appendix E. 

 

These collections contained historic watercolour pigments that could be mixed with water 

and gum Arabic and painted onto the chosen substrate, which unless otherwise stated (for 

example when samples were received already painted onto a substrate) the paper used was 

gelatine sized and glazed paper from Ruscombe Mill, 33460 Margaux, France, specified and 

created for related research (Thomas 2011). The paper contained approximately 60% lincell 

(cellulose from flax) and 40% long cotton linter (Townsend 2009). 

 

Modern 20th century pigments were used only when samples could not be obtained from a 

historical collection.  
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1.8 Thesis layout 

 
Chapter 2 describes a novel micro-fading spectrometer which was designed and 

constructed. The mode of operation was characterised and appraised to a greater degree 

than previously published.  

 

It was thought that areas of the previous instrument could be improved and developed (see 

Whitmore et al. 1999, Whitmore et al. 2001 and Whitmore 2002). The basis of what was 

necessary was set out by Neeval (2007) in his appraisal of the instrument and these were 

addressed.  

 

An automated high throughput system was also created using the instrument which gained 

data on a larger number of samples than had previously been attempted in accelerated 

aging experiments. 

 

In chapter 3 in order to address the shortage of data in the field of the wavelength 

specificity of fading, traditional watercolour pigments and dosimeters were investigated. By 

altering the micro-fading technique and the introduction and appraisal of a new method it 

is possible to gain further knowledge in this field more rapidly.  

 

Chapter 4 involves a study of Prussian blue. Many reports suggest that Prussian blue is 

unstable in anoxia (Kirby, and Saunders 2004). This would be a major obstacle to the 

application of anoxia for preservation of traditional watercolours. Prussian blue is also 

found widely in a variety of objects (Townsend et al. 2008). Using a modified micro-fading 

technique a Prussian blue pigment from the studio of J.M.W. Turner (1775-1851) was 

investigated. 

 

An analysis of the behaviour when faded in different oxygen concentrations indicated a 5% 

oxygen level was not harmful to Prussian blue. In a separate investigation this 5% hypoxic 

state was then applied to a larger number of historic and a smaller number of modern 

Prussian blues resulting in the same conclusion. 

 

Chapter 5 investigates the harmful effects of anoxia on traditional watercolour pigments.  

Giles and McKay (1963) and Arney et al. (1979) concluded insufficient knowledge of the 

more sensitive materials under anoxic conditions is available to justify using long term 

anoxic storage and further investigation into these pigments was required.  Typically a 
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single example of each pigment type was previously tested in any investigation regarding 

the effects of anoxia.  

 

The provenance and independent identification of the pigments were often not discussed 

in detail, and/or the degree of exposure to anoxia the samples received was often 

ambiguous. This issue is addressed in this chapter by testing a greater number of pigments, 

in particular all the pigments that were reported to suffer greater colour change in anoxia 

than in air. 

 

Using automated micro-fading an investigation into a large number of pigments in anoxia 

was conducted. The 5% oxygen hypoxic state found suitable for Prussian blue in chapter 4 

was also investigated by extending the investigation of the sample set used in this chapter 

to this hypoxic state.  
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2. Micro-fading spectroscopy 

 

2.1 The micro-fading technique  

 

A novel micro-fading spectrometer has been designed and constructed taking inspiration 

from the Whitmore design (Whitmore et al. 1999, Whitmore et al. 2001, Whitmore 2002) 

and its application (Bowen et al. 2002, Connors et al. 2005, Lavédrine et al. 2006). 

 

An instrument was constructed that was capable of identifying materials more light 

sensitive than Blue Wool Standard #2 (see British Standard 1006:1978) through direct 

fading in artworks on a sub-millimeter diameter spot such that the faded spot is not 

discernable by the viewer. Fading and colour measurement are carried out simultaneously. 

 

Areas where the previous instrument required improvement were set out by Neeval (2007) 

and were addressed by this research. Those limitations and problems as set out by the 

previous design were summarised as, 

 

 Precise positioning of the probe heads was problematic. 

 Difficulty in alignment of the illuminating and receiving probe.  

 Inhomogeneous illumination in the fading area sampled. 

 Uncontrolled intensity at the illuminated surface.  

 Heating of the sample to unacceptably high temperatures.  

 Colour measurement inaccuracy.  

 No portability and therefore the need for object transportation 

 Documentation of exact location of fading not possible. 

 Where to fade to get representative data of the artwork under test. 

 

With the exception of the last of these issues all were addressed by this new instrument 

which was novel in design and independently constructed.  

Tests are carried out on sub-millimetre diameter spot size while at the same time 

monitoring change in the reflectance of the sampled region. To do this the monitored 

spectrum is converted using CIE 1976 L* a* b* colour measurements calculated for the 2o 

standard observer under standard illuminant D65.  Via this method an automated 

calculation of colour difference of the fading spot is monitored in real time in ΔE*ab units. 
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Additionally by automated recording of the changing L* a* b* data during the fading 

process it is possible to calculate offline the colour change in terms of CIEDE2000 (ΔE00) 

units for the same fade. Altering the standard spectrometer software to make this 

calculation an online method was not permitted by the manufacturer. 

 

2.2 Instrument characterisation and analysis 
 

2.2.1 Instrument design 

 
The instrument developed is approximately half the cost of the previous published design 

(a parts list and cost in 2007 can be found in appendix A). No new computer programming 

was necessary to build and use the instrument.  It is a flexible, compact, lightweight and 

mobile instrument which removes the need for transportation of art work and unnecessary 

art handling (see figures 2.1, 2.2 and 2.3). It has been used in many modes of operation in 

the course of this research; however this chapter discusses its use as a transportable 

compact micro-fading spectrometer capable of identifying the sensitivity of artifacts to 

visible light exposure. Other applications to gain other information are discussed as 

necessary elsewhere. 

 

 

Figure 2.1.  A schematic representation of the micro-fadometer. 
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Figure 2.2. The instrument fading a sample in portable mode. 

 

 

Figure 2.3. The instrument probe head fading a matrix of samples housed in a 96 well plate, in automated 

mode. 
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Figure 2.4. The measured transmission of the extended hot mirror used to filter the incident radiation of the 

instrument. 

 

For use as a micro-fadometer, a high-powered continuous-wave xenon light source (Ocean 

Optics HPX2000) is connected directly to a solarisation resistant optical fiber with a 600 

micron fiber core. The end of this fiber is connected to a confocal probe designed for this 

task, containing two lenses (matched achromatic pairs optimized for the visible region). 

Light passes through an extended hot mirror utilized to remove the infrared in order to 

reduce temperature and the ultraviolet to better simulate the museum environment (see 

figure 2.4).  The filtered light is focused to a 0.25mm spot. 

 

2.2.2 Colour measurement 

 

In order to monitor colour change, scattered light from the small sample area is coupled 

back into the optical system via another optical probe of the same design at 45 degrees to 

the normal. This design follows ASTM (1993a) (1993b) as a standard test method for 

colour (CIE 1986). Sampled radiation then passes through a neutral density filter to avoid 

saturation of the fiber optic spectrometer. The spectrometer (Avantes Avaspec 2048) 

receives this signal via an optical fiber, and the software (AvaSoft 7.0) analyzes change in 

the spectrum and the rate of fading.   

 

The probe can be mounted on an XYZ stage capable of sub-micron scale movements. All 

axis of the stage are motorized. It is therefore possible to achieve fine alignment of the 
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probe with the surface remotely rather than leaning over the artwork. This in turn enables 

adjustment when the probe is beyond arms-reach, e.g. over an art work when the probe is 

mounted on a gantry to enable movement over the surface of an artwork that is laid flat. 

This is also an important aspect of the design, as it becomes possible to achieve best focus 

remotely. 

 

To achieve best focus the software calculates the integrated reflection spectrum over the 

visible range and so small improvements which would otherwise be undetectable when 

solely aligning by eye are possible. By making small incremental adjustments in position 

that would not be possible using a manual micrometer screw it is possible to define best 

focus to a greater accuracy. 

 

2.2.3 Probe alignment   

 

To ensure confocality, both probes were illuminated with low intensity radiation, and 

focused onto a CCD chip (see figure 2.5). For easier analysis in figure 2.5c the red area 

indicates the sampling area of the receiving probe and green the illuminating area (this 

creates a yellow overlap). The yellow region indicates where both fading and colour 

monitoring takes place. The sampling region was larger elliptical and not all in focus as it 

was incident at an angle to the surface. Although the sampling area was greater than the 

illuminated area, light interference from outside the sampling area was undetectable.  

When correctly aligned, it was shown that best focus of the probe provides the maximum 

signal to the spectrometer, and ensures reproducible spot size. Failure to align correctly led 

to the probe focusing incorrectly, which can lead to a large variation in the calculated 

fading rate.  

 

            

                                  a.                                 b.                      c. 

Figure 2.5. Images produced in focusing the instrument probes onto a CCD chip (a) illuminating probe, 

 (b) sampling probe, (c) illuminating and sampling probe (a and b) combined in alignment 
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To fade a sample, the instrument operates as a reflectance spectrometer with a high 

powered light source. To make reflection measurements, a dark spectrum and reference 

spectrum are acquired.  The reference spectrum is recorded on a polished barium sulphate 

sample which acts as a „standard white‟. 

 

A neutral density filter is used to reduce the beam to a level where best focus can be 

obtained without a significant level of radiation being incident on the sample. The probe is 

adjusted on the sample in order to come to best focus and acquire maximum reflected 

intensity on the object in the desired location. The shutter of the lamp is then used to stop 

illumination. The instrument is set up while the shutter is closed.   

 

Colour differences are monitored in real time using the spectrometer software in order to 

prevent fading beyond acceptable levels which have been independently determined in the 

development process. Should alternative methods of monitoring change have been 

employed (e.g. optical density changes in the material or spectroscopic changes), real time 

colour change would not have been easily interpretable for the user. This is especially the 

case when considering the very small colour differences concerned. Therefore a more rapid 

and easily interpretable method was thought to pose less risk when the method was applied 

to real objects.   

 

2.2.4 Light source behaviour  

 

The instrument produces 2.59mW or 0.82 lumens (1.7 x107 lux for a 0.25mm focused 

spot). The relative power spectrum of light incident on the sample measured using a 

calibrated spectrometer is shown in figure 2.6.  The bulb lifetime and therefore stability was 

guaranteed for 1000 hours with a typical bulb lifetime of 2000 hours. Refitting and 

calibration of the bulb output was conducted by the manufacturer. Monitoring was 

typically weekly and remained constant during all experiments within this work. 
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Figure 2.6. The relative power spectrum of incident radiation used in broad spectrum fading tests. 

 

 

Illumination from the light source is by necessity relatively high. Schaeffer (2001) discusses 

the likelihood of 2 photon processes talking place as a result of flash photography. A 

calculation found the likelihood in the region of one in one billion. This is done via a 

calculation of the likelihood of a photon hitting an already activated molecule.  The 

likelihood of a second photon process taking place was found to be considerably higher in 

the case micro-fading when using the same calculation and assumptions. Taking the 

average wavelength of incident photons to be 550nm for a 2.50mW illumination an 

estimated 6.9x1015 photons were incident on the sample every second.  Then further in 

applying an example excitation time of 10-5 seconds as applied previously, the number of 

photons incident during this period of activated molecules was calculated as 6.9x1010 

photons.  For the illuminated 1.97x10-7 m2 area provided by the 0.25mm spot an estimated 

3.5x1017 photons were incident per unit area. Further applying the estimates used by 

Schaeffer of 1018 molecules being present per unit area the likelihood of a molecule being 

activated in this time period can be calculated as approximately 1 in 3. For a photon event 

to happen to the same molecule twice in this period and therefore for a molecule to 

undergo a biphotonic process a significant 1 in 10 possibility is present. A more typical 

excitation time of 107 seconds leads to a likelihood of a biphotonic event as approximately 

1 in 81000. These results indicate a significant number of biphotonic events over any 

period of fading. However far from every incident photon would be absorbed or result in 

an excitation. This is an important point which reduces the likelihood as calculated. 
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Assuming the reciprocity principle holds for light-sensitive materials and a display is set at 

50 lux for 8 hours per day 7 days per week, the fading rate of the instrument can be 

considered as approximately 2 years in a gallery setting per minute.  Some limitations of the 

technique which prevent more certain statements being made do need to be considered; 

differences in the spectral power distribution between gallery lighting and the xenon lamp 

of the instrument, sample colour reversion post-fading and the angle of illumination of the 

object by the instrument which differs from the gallery environment (Whitmore et al. 2001). 

 

Stability analysis of the illuminant took place over 400 minutes using a polished barium 

sulphate standard as a non-fugitive reference. Above 400nm to 780 nm variation was 

within 1.5% (peak to peak) with the average less than 1%. From 380nm to 400nm 

illumination was significantly reduced resulting in a different signal to noise ratio. 

Percentage variation increased to up to a maximum of 5% with an average value of 1% in 

the wavelength region.  

 

Total counts of the spectrometer integrated over all wavelengths (380 to 780m) increased 

1% over the period (see figure 2.7). The dark current over 7 hours was constantly 

monitored and subtracted by the spectrometer software via the inbuilt electronic dark 

correction facility. 

 

 

 

Figure 2.7. The total counts of the spectrometer from 380nm to 780nm over 400 minutes. 
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2.2.5 Probe position sensitivity 

 

In order to determine empirically the diameter of the area that would be faded, the focused 

spot of the probe was analyzed through focus using a CCD camera. Full width half 

maximum (FWHM) values were measured when varying the working distance of the probe 

to the CCD (see figure 2.8 and 2.9).  

 

 

Figure 2.8. The FWHM of the spot profile through focus in 5 micrometer increments. 

 

        
 5μm                         40μm                         50μm                       65μm 

 

       
  90 μm                        115 μm                    160 μm                     200 μm 

Figure 2.9. The intensity profile of the fading optical arrangement at different key locations 195μm through 

focus. Values given in micrometers correspond with data points given in figure 2.8. 
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This analytical method led to the realization that the FWHM of the recorded spot size on 

the CCD chip is 33 pixels or 0.25 mm and the area did not alter for 50μm through focus 

any more than 6% (which was the limitation of the measurement technique).  

 

The effect that small errors in focusing have on received signal and colour measurement 

was also investigated. To do this the sensitivity in positioning of the probe relative to a 

white tile was determined. This was done by calculating relative ΔE*ab values at various 

locations through focus, compared to values L*=100 a*=0 b*=0. This provided an 

illustration of how a small change in probe position, (for example relaxation of the probe 

holder, or altering of the sample/probe geometry in repositioning the probe from the white 

target to sample) can create error in measured colour (see figure 2.10).  

 

Figure 2.10. Alteration of colour measurements from micro-fadometer probe movements in 20µm 

increments through focus. Data is represented in ΔE*ab when measuring a polished barium sulphate white 

standard. 

 

Relative colour difference was also measured moving the probe in 50nm increments 

through focus when illuminating a polished barium sulphate white standard. Colour 

measurements are shown in figure 2.11, demonstrating that the colour measurements did 

not alter for 40µm through focus.  From this analysis, colour measurement is shown to be 

more sensitive than the variation in size of the illuminated spot with probe position. 
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Figure 2.11. Alteration of colour measurements from micro-fadometer probe movements in 50nm 

increments through focus represented in ΔE*ab values when measuring a pressed barium sulphate standard 

and comparing the colour measured with L*=100 a*=0 b*=0. 

 

The effect that small misalignments or alterations in geometry have on signal was also 

investigated. The sensitivity of positioning of the probe relative to the surface being 

sampled was determined. This was done by integrating the total counts of the received 

signal from a polished barium sulphate standard between 400nm and 700nm through focus 

(see figure 2.12). The signal is constant within approximately 10μm although variation in 

measured colour increases to larger values beyond this range  
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Figure 2.12. Total counts of the received signal from a pressed barium sulphate standard integrated between 

400nm and 700nm in 50nm movements of the probe through focus 



33 

 

The instrument used illuminating and receiving spots that were comparable, as the same 

fiber and lens systems were used for both probes. Alignment of the system was such as to 

ensure maximum signal was achieved when the spot size was 33 pixels FWHM. By 

ensuring this alignment, it was possible to remove the control of positioning of the probe 

head by eye thus removing human judgment of a sensitive sub-millimeter system. This 

alteration to the method does require accurate initial alignment of the probe head. 

 

When considering the overlap of fading and sampling spots as shown in figure 2.5 a smaller 

sampling area than illuminating area could lead to the sampling spot being aligned at many 

locations and with many degrees of overlap on or around a non-uniformly illuminated area. 

Alternatively a smaller fading area and larger sampling area could lead to a variation in 

power density at the fading spot. This variation would be independent of signal strength as 

the illuminating spot could be of any size within the collecting optics sampling area. In 

other words maximum sample signal can be received from a large variation of overlapping 

spot sizes (even through the focus) of each lens system making repeatability of spot size an 

issue 

 

2.2.6 Sample visibility and size 

 

A series of faded spots were produced ranging from 1 ΔE*ab  to 8 ΔE*ab on both 

Lightcheck ULTRA and Lightcheck Sensitive. The fading curve of Lightcheck Sensitive 

and the linear colour loss of Lightcheck ULTRA can be seen in figure 2.13. Lightcheck is 

made of a light sensitive coating on a paper or glass substrate. The colour changes of 

Lightcheck indicate the degree of exposure (Lavédrine 1998, Bacci et al. 2003, Romich and 

Martin, 2003, Dupont et al. 2008).  

 

Reversion behavior in the case of both Lightcheck samples was observed. Faded spots 

created in this process were significantly less apparent or no longer visible when reviewed 

after 24 hours. Therefore all measurements were taken immediately after the fading process 

was complete.  

 

Lightcheck was chosen as it provides an approximate worst case scenario with a very 

smooth highly fugitive surface. With both types of sample, it was possible to observe many 

spots in the series. It was found that 5 different observers of mixed ages and visual acuity 

when shown the location could see spots upto to a colour difference of 2 or 3 ΔE*ab units 
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(1 to 1.5 ΔE00) on a pristine Lightcheck surface under good lighting.  This was in agreement 

with previous research on the subject where 2 ΔE*ab  colour difference units are required 

before becoming visible (Michalski 1997) or a 50% probability for a colour difference of 

1.5 ΔE00 (Pretzel 2000). 

 

Importantly it was found that in situations where the Lightcheck surface was altered to 

reduce uniformity, for example by folding to vary the surface texture, it was impossible to 

see to such low levels of damage.  

 

    

Figure 2.13. Colour change produced using the micro-fadometer on Lightcheck ULTRA (left) and 

Lightcheck Sensitive (right). Data presented in ΔE*ab units.   

 

Practically speaking, when fading rougher, more textured, varied surfaces, for example 

when fading samples of watercolour paint on rough paper, or oil paint brushed onto on 

canvas, it is possible at times to fade to 15 ΔE*ab and more and not observe any alteration 

as has been previously considered the case (Whitmore et al. 1999). This indicates that the 

damage is hidden by the texture in which it exists.  Importantly, on many samples which 

were very uniform, such as various Prussian blues, a fade of 5 to 6 ΔE*ab (also 5 to 6 ΔE00) 

were visible on close inspection and often also at reading distance (25cm).  

 

No change to the surface shape was observable to the human eye on fading to 5 to 6 ΔE*ab. 

(5 to 6 ΔE00) for a Prussian blue sample. Further analysis of the faded spot using a Taicaan 

Xyris 3000 Interferometric surface profilometer (providing a 5nm resolution of the surface) 

provided no evidence of structural change. No alteration was observed to the profile of the 

surface of the faded area or the surrounding area. 
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An image of a faded spot of colour difference 5ΔE*ab (3.2 ΔE00) on Lightcheck Sensitive 

was captured using a calibrated microscope. Analysis showed good uniformity of 

illumination and fading across the focal region. A typical example of the measured 

normalized profile of the faded spot, and a measured normalized profile of the incident 

illumination at best focus was also compared and shown to match well (see figure 2.14). 

The microscope camera was calibrated to 800 pixels per mm and this showed a variation in 

the FWHM spot size dependent on the degree to which we faded. This ranged from 0.22 

for 2 ΔE*ab (1ΔE00) to 0.25 for 8 ΔE*ab  (3.2 ΔE00). A separate investigation of spot size up 

to 16 ΔE*ab (12.8 ΔE00) showed that continued fading led to continued increase of FWHM 

spot size.  

   

   

Figure 2.14. (Left) An image of a spot faded to a colour difference of 5ΔE*ab or 3.2 ΔE00 on 

Lightcheck ULTRA captured using a calibrated microscope. (Right). A typical example of the measured 

normalized profile of a 5ΔE*ab or 3.2 ΔE00  faded spot (indicated by the continuous line) and a 

measured normalized profile of the incident illumination at best focus (dashed line). 

 

The sample size of 0.25mm corresponds well with the typical width of a textile thread. This 

can be seen in the case of Blue Wool standards (these standards are discussed further in the 

next section) where the woven texture has threads of approximately the same diameter. 

This is important as Blue Wool standards are of known relative lightfastness and are often 

used as a method of cross comparison in accelerated aging experiments (see British 

Standard 1006:1978).  An example of thread width can be seen in figure 2.15.  
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Figure 2.15.  A magnified image of a Blue Wool standard sample. The scale seen on the bottom of the 

image is in millimeter increments. 

 
 

2.3 Results and discussion 
 

2.3.1 The rate of fading 

 

ISO Standards are an internationally accepted method of measuring fading within the 

conservation science community (see British Standard 1006:1978). Eight different degrees 

of lightfast dyes can be used (with 1 being the least lightfast to 8 the most).  The effect of 

fading Blue Wool samples 1, 2, and 3 by focusing 2.59mW to a 0.25mm diameter area can 

be seen in figure 2.16. This illustrates that the instrument is capable of fading Blue Wool 1 

to 6 ΔE*ab in just over 5 minutes and Blue Wool 2 to the same level in twice that time 

period. 

 

  
 

Figure 2.16. The fading rates of Blue Wool 1, 2 and 3 when fading using the broad spectrum. Results are 

shown using both colour difference units for clarity. Bluewool 1, 2 and 3 correspond with the red green and 

blue line respectively. 
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2.3.2 Temperature increase 
 

In order to evaluate the safety of the instrument and to know to what degree temperature 

may play a part in any observed results, it was necessary to quantify the temperature 

increase caused by the focused radiation.  Two techniques were employed. On separate 

occasions two different thermocouples were coated with various light and dark paint 

samples on paper and illuminated by the focused spot. A thermocouple was also lightly 

coated with a variety of paints as well as exposing the bare sensing junction.  The same 

temperature increase of 3° to 4°C above room temperature was observed in all cases.  

 

As a second method, a thermometer that contains heat-sensitive (thermochromic) liquid 

crystals that change colour to indicate different temperatures was used. A number in a 

series corresponding to the environmental temperature becomes translucent when it is 

reached. By focusing the probe onto the various temperature-sensitive numbers, 26°C 

clearly altered whereas all others from 12 to 34 (increments of 2 degrees) did not. The area 

heated by the radiation remained briefly unaltered after the light was removed by a shutter, 

before cooling.  A photograph of this can be seen in figure 2.17. 

 

 

 

Figure 2.17.  A liquid crystal thermometer immediately after being irradiated with the micro-fadometer. 

Note 22 is clearly visible at 22°C room temperature and the bottom right hand corner of the 26 showing a 

small circular area which has been increased in temperature to approximately 26°C  by the focused probe 
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2.3.3 Repeatability of results 
 

In an investigation into the colour stability of digital prints a correlation between this 

micro-fadometer apparatus and bulk fading in a light box with a xenon lamp was found. It 

was possible to grade printed coloured papers according to lightfastness resulting in a linear 

relationship between the two (Sandahl 2009). 

 

A variety of reflectance standards were used to investigate the colour measurment accuracy 

of the instrument and compared to results from other colour measurement techniques. 

This indicated that some standards are less accurate on the scale of measurement 

(0.25mm), with a significant variation in reflectance over the sub-millimeter scale. 

 

The repeatability of measurements on different surface textures was investigated via three 

methods on 4 different samples. These samples were the smooth and diffuse sides of a 

pressed barium sulphate standard (Russian Opal), the considerably rougher surface of 

Whatman filter paper and also a faded spot created by the micro-fadometer of 

approximately 6.5 ΔE*ab or 2.4 ΔE00. 

 

Colour measurements were made at different locations on the same sample (refocusing at 

each location when the probe moved to a new area of the sample). Then repeat 

measurements of the probe when stationary were made on a sample surface to gauge the 

error connected with the system. Finally the same measurement location was revisited 

many times using an XYZ stage. With all these results the measured colour difference that 

was produced was monitored and calculated relative to the first reading in the sequence. 

 

Results of the colour difference produced by the 3 processes are displayed in table 2.1 (the 

full data set can be found in appendix B). Maximum colour difference values over 10 

measurements are displayed as well as the equivalent standard deviation to enable error 

analysis.  Note that the standard deviation provided is an equivalent standard deviation as 

the data displayed an approximately rectangular distribution rather than a normal 

distribution when using cluster analysis. This equivalent standard deviation is calculated by 

dividing the maximum value of deviation by the cube root of 3. 
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Smooth Diffuse Whatman Filter Paper Colour Well 

 
ΔE*ab St dev ΔE00 St dev ΔE*ab  St dev ΔE00 St dev  ΔE*ab St dev ΔE00 St dev ΔE*ab  St dev ΔE00 St dev 

A 0.61 0.42 0.38 0.26 0.82 0.57 0.51 0.35 7.92 5.49 4.74 3.29         

B 0.1 0.07 0.1 0.07 0.07 0.05 0.2 0.14 0.06 0.04 0.07 0.05 0.08 0.06 0.04 0.03 

C 0.14 0.01 0.2 0.14 0.14 0.01 0.1 0.07 0.14 0.1 0.14 0.1 0.07 0.05 0.03 0.02 

 

Table 2.1. A summary of the results of accuracy tests of the instrument. Row A contains data from testing 

different locations on the same sample and refocusing at each location. Row B contains data from repeat 

measurements when stationary. Row C contains data from repeat measurements when returning to the same 

spot. 

 

Results from the combination of all data obtained on the same location (rows B and C) 

resulted in a maximum observed error of 0.14 ΔE*
ab with an equivalent standard deviation 

of 0.1 ΔE*
ab or 0.2 ΔE00 with an equivalent standard deviation of 0.14 ΔE00.  

 

Lack of repeatability was seen to depend largely on the roughness of the target material. To 

investigate this sixty five historically accurate reproductions of pigments (as discussed in 

the introduction) were faded twice in order to appraise the repeatability of results gained 

from using the fadometer on real samples. The colour difference after 1 hour of exposure 

under illumination from the instrument is shown in the plots below. 

     

Figure 2.18.  A illustration of the repeatability of the technique after application to a large number of 

historically accurate reproductions of traditional watercolour pigments ground in gum Arabic, on Ruscombe 

mill sized and glazed paper . Colour difference represented in ΔE*ab (left) and ΔE00 (right). 
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A correlation between the results, albeit with greater scatter than would be expected from 

measurement error alone can be observed. This provides some confidence that data 

obtained on real objects via this technique can provide reproducible information for this 

spot size, or for larger similar areas of the same work.  

 

When comparing colour difference units the colour changes calculated in the CIE 1976 L* 

a* b* colour space are significantly larger than the CIEDE2000 colour space as can be been 

below in figure 2.19.  

 

 

Figure 2.19. A comparison of the colour differences calculated for the same sample set as used in Fig. 2.18 

in CIE 1976 L* a* b* and CIEDE2000  colour difference units. 

 

An individual example of this can be seen in figure 2.20 where a comparison of the 2 

fading curves of verditer (CA21) and weld lake (NG3) are presented in different colour 

units.  In the ΔE00 case the two pigments would correctly be considered similar in their 

stability, however if the pigments were analysed using ΔE*ab the conclusion drawn from the 

result would be the opposite. An issue that has had some previous discussion (Pretzel 

2008).   
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Figure 2.20. A comparison of the degrees of fading of verditer (code CA21) and weld lake (code NG3) 

(represented by the orange and pink lines respectively). Using ΔE00 for analysis the two pigments are 

similar in their degree of stability, in ΔE*ab the conclusion would be to the contrary. 

 
2.3.4 Propagation of error  
 
 
To investigate the effect of drift and noise on readings made by the instrument, spectra of 

the illuminant incident on a non-fugitive white tile were saved periodically over 7 hours. 

The percentage variation (from the initial illumination) of the lamp at each wavelength was 

calculated. The maximum drift and noise observed at any one point in time over the 7 

hours was applied to typical pigment reflection spectra and the resultant colour difference 

calculated.  A second technique was conducted by simulating drift and noise and creating a 

simulated spectral uncertainty.  From data on the light source shown in section 2.2.4 a 

simulated 0.2% random Gaussian uncertainty at each measurement wavelength and a drift 

uncertainty of about 0.23% was applied. This resulted in a maximum peak to peak variation 

for the 100% signal of about 2% and an average variation of approximately 0.5% 

reflectance.   

 

The results in terms of colour difference for both techniques were calculated for typical 

samples and also an ideal white (L*=100, a*=0, b*=0). The spectra selected for analysis are 

included in figures 3.4 and 3.5. The results can be seen in table 2.2. 
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From Recorded Drift and Noise Simulation of Drift and Noise 

Spectra ΔE*
ab ΔE00 

          ΔE*
ab 

Mean          Max 
 ΔE00 

Mean        Max 

White 
0.36 

0.25 0.25 0.58 0.24 0.63 

Prussian green  (NGWC10) 
0.17 

0.14 0.19 0.43 0.17 0.4 

Dragon‟s blood (NGWC7) 
0.16 

0.16 0.23 0.4 0.18 0.4 

Weld (NG 2) 
0.15 

0.09 0.23 0.43 0.13 0.29 

Rhodamine B 
0.21 

0.1 0.21 0.4 0.1 0.04 

Blue Wool 1 
0.19 

0.07 0.15 0.42 0.17 0.07 

Prussian blue (TTB6) 
0.16 

0.12 0.2 0.35 0.17 0.37 

Litmus (NG L)  
0.19 

0.12 0.18 0.39 0.13 0.26 

 

Table 2.2. A summary of the results of drift and noise analysis for the instrument. Firstly by the 

application of the maximum value of recorded drift and noise of the lamp over a 7 hour period and secondly 

via a simulation. 

 

An error no greater than 0.36 ΔE*ab or  0.25 ΔE00 was calculated at any reading over the 7 

hour period, and less when applied to typical samples.  

 

The longer term stability of the entire system was investigated by monitoring the change in 

the signal received when illuminating a non fugitive white standard. This was conducted by 

taking an initial colour measurement and then when leaving the micro-fadometer running, 

periodically returning to make further measurements on the same location. It was found 

that colour measurement of a white tile did not exceed the maximum error previously 

observed for the 7 days tested. This meant a sufficient level of stability for this research. 

 

When considering the previously observed and calculated errors connected with drift and 

noise as no greater than 0.36 ΔE*ab or 0.25 ΔE00 and a simulated maximum of 

approximately 0.6 in either colour difference unit, the large variation in results seen in 

figure 2.18 was largely considered due to the small sampling area of the instrument. Any 

variation in the sample was not averaged over as would happen with larger sampling areas.   

 

Cluster analysis of error due to drift and noise did not display a Gaussian distribution via 

either method. Similar analysis of the distribution of tristimulus data and CIELAB data 
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indicated that the distribution of results became increasingly less normal in distribution at 

every step in the calculation of the error in colour difference values (see Pretzel 2008). 

 

65 historically accurate reproductions were each faded twice as shown in figure 2.18. 

Distribution analysis of the percentage variations in fading for each individual pigment 

from its mean displayed an approximate normal distribution for the sample set (using a chi-

squared test with a significance level of 5%). This was only for colour differences calculated 

in CIEDE2000 (with the risk to reject the hypothesis while it is true being 9.04%.). 

Variation of CIELAB values did not follow a normal distribution (with the risk to reject 

the hypothesis while it is true lower than 0.01%) see figure 2.21. 

 

  

Figure 2.21. The percentage variation in the degree of fading of a large number of historically accurate 

reproductions of traditional watercolour pigments. Percentage colour difference represented for ΔE*ab (left) 

and ΔE00 (right) with the normal distribution shown as a red line. The extreme bins are pooled to create 

higher values necessary for a chi-squared test.  

 
Variation in the sample has been shown to be a far more significant source of error than 

drift and noise. As the resultant variation in repeat measurements when calculated in 

CIEDE2000 show an approximate normal distribution and also in order to proceed a 

standard deviation was applied.  

 

As the colour measurements that make up a single fading curve do not possess a normal 

distribution an approximate standard deviation was applied in this case (by dividing the 

maximum value of error by the cube root of 3). More significant analysis (although 

worthwhile) was not considered a suitable use of time within the context of the project. 
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3.0 The wavelength dependence of fading  

 

3.1 Introduction 

 

Colourants are chosen due to their absorption in the visible range as it is absorption in this 

wavelength range that gives them their useful property. Considering this, it can be argued 

that fugitive colourants must be faded predominantly by the visible region (McLaren 1956) 

especially in galleries where the ultraviolet wavelengths are filtered to protect artworks. 

Therefore the effect of visible radiation on deterioration of fugitive pigments warrants 

further investigation via a wavelength tunable fading system.  

 

Early work investigating the influence of wavelength on colour change was produced by 

Russell and Abney (1888). Exploring the effects of blue, green and red light on selected 

watercolours; it was concluded that „the rays which produce by far the greatest change in a 

pigment are the blue and violet components of white light‟. 

 

Later Appel and Smith (1928) used various types of coloured filters to assess their effect on 

colour change. This technique was adopted in work in subsequent years by McLaren (1956) 

where the transmission of 5 filters which cut off radiation below 600nm, 460nm, 400nm, 

360nm and 295nm were employed. This enabled the division of the incident spectrum into 

5 wavelength sections to observe the relative degree of change in photochemical 

degradation when the changes in filter transmission occurred.  

 

Further investigations which continued to use bulk fading were produced by Kenjo (1986) 

(1987) and Saunders and Kirby (1994a).  In the work by Kenjo monochromatic light was 

employed to investigate the effect of radiation from 245nm to 699nm and via this the 

number of locations in the visible range increased to seven (located from 390 nm to 699 

nm).  Saunders and Kirby used broad band interference filters with bandwidths of 70nm 

(FWHM) at peak transmittances located at 50nm intervals in the visible range from 400nm 

to 700nm.  
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3.2 Technique introduction 
 

3.2.1 Experimental arrangement 

 

 

Figure 3.1. A representation of the schematic wavelength tunable micro-fadometer with linear variable filter. 

 

An alteration to the micro-fading spectrometer (with the addition of a linear variable filter) 

can be seen in figure 3.1.  The xenon lamp is filtered with an Ocean Optics LVF-UV-HL 

and LVF-HL filter. The filter bandwidth of this technique is 20 to 30nm FWHM and it is 

possible to vary the central wavelength of the filter in the visible range as in figure 3.2.  
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Figure 3.2. Tunable filter transmission at various wavelengths typically employed by the tunable instrument. 
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The power transmission was measured using a Melles Griot integrated 2 watt broadband 

power and energy meter system integrating over a wavelength range of 200nm to 20µm. 

The incident power measured when no variable filter was present is 1.46mW or 0.46 

lumens at focus (losses due to the inclusion of the linear variable filter reduces the power 

of the instrument at focus from 2.59mW).  Each sample is individually exposed to 13 

wavelength peaks. Figure 3.2 contains measured data of the filter transmission employed by 

the instrument. Collectively these equate to approximately 1.46mW of power over the 

entire visible spectrum. Therefore the researcher is able to gain data using the full visible 

spectrum and then examine the degradation caused by individual sections of the spectrum 

for the same sample over that same exposure time. 

 

 

Figure 3.3. The power variation at focus of the wavelength tunable micro-fadometer. An Ocean Optics 

LVF-UV-HL is used from 405nm to 475nm and an LVF-HL filter from 500nm to 700nm . 

 

The length of time for fading was altered at each wavelength. This was necessary in order 

to compensate for the variation in incident power with wavelength caused by the spectral 

power distribution of the lamp (see figure 2.6) and varying transmission of the filter at each 

wavelength (see figure 3.2). This resulted in a power distribution at focus as illustrated in 

figure 3.3. 

 

With the linear variable filter in place, the temperature measured by a thermocouple 

substituted for the sample was found to increase by approximately 1°C independent of 

wavelength range. No alteration was observed when focusing on a liquid crystal 

thermometer with temperature increments of 2 degrees.  
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It was found that the fading spot size remains at 0.25mm when sampled using a CCD at 

intervals from 400nm to 700nm. 

 

3.2.2 Experimental method 

 

The tunable instrument operates in a similar way to that described previously for the 

micro-fadometer. The spectra must be recorded before and after fading in order to obtain a 

value for the colour difference. 

 

After an initial reading has been taken, the variable filter is adjusted to the chosen 

wavelength prior to fading. The filter is then removed after fading to take a spectral 

measurement. A neutral density filter was used prior to any exposure of the sample in the 

case of very fugitive materials.  Due to the presence of the filter colour measurements are 

not possible during fading unless the shutter is opened, the filter removed and a 

measurement rapidly taken in order not to alter the degree of fading. 

 

The technique of initially monitoring the sample lightfastness using a broad spectral fade 

enables the user to determine a suitable length of exposure. A 40 minute period has 

typically been used to fade samples as fugitive as Blue Wool 1 to 2.  

 

3.3 Sample sets 

 

The sample selection could be separated into two sections – historically accurate 

reconstructions of traditional watercolour pigments that were selected because they were 

fugitive and  Lightcheck ULTRA, Lightcheck Sensitive and Blue Wool Standards.  

 

3.3.1 Artists’ pigments 

 

Application of the instrument was extended to Prussian blue (Tate Gallery Archive 

7315.6#6, Q04047 TTB6) and madder (Tate Gallery Archive 7315.6#13, Q04047 TTB13) 

taken from Turner‟s studio materials used before his death in 1851. Prussian green 

(NGWC10) and dragon‟s blood NGWC7 dated 1796-1826 were also tested. These were 
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taken from a dated Ackermann paint box and small samples of the watercolour cakes were 

mixed with water before painting out on the same paper.  

 

Prussian green can be made in numerous ways; either by stopping the manufacturing 

process of Prussian blue at the stage when the sediment is green, or combining Prussian 

blue with a yellow pigment such as gamboge (Eastaugh et al. 2004), as is the case for this 

sample. All these pigments were prepared by grinding with gum Arabic, diluting with 

distilled water and applying in a wash onto Ruscombe mill paper (as discussed in the 

introduction). 

 

Included in the pigment selection were weld NG 2 and litmus NG L; these pigments were 

produced and have been referred to by Saunders and Kirby (1994b). These samples were 

ground with gum Arabic, diluted with distilled water and applied in a thin wash on 

Whatman silversafe conservation grade paper. The results of wavelength specificity 

measurements were published (Saunders and Kirby 1994a).  

 

Litmus is violet blue in colour and is derived from lichen. It is now used as an indicator 

dye; but records suggest it was used as a pigment in the 16th century (Eastaugh et al. 2004).  

 

The reflectance spectra of the pigments can be found in figure 3.4. 

 

0

10

20

30

40

50

60

70

80

90

400 450 500 550 600 650 700
Wavelength /nm

R
e

fle
ct

a
n

ce
 /%

Prussian Blue

Prussian Green

Weld

Madder

Dragon's Blood

Litmus

 

Figure 3.4. The reflection spectra of the pigments used for wavelength dependence fading. 
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3.3.2 Light dosimeters and standards 

 

The investigation extended to dosimeters and standards currently used by heritage 

scientists. The light dosimeters and standards were selected to represent tools either having 

the potential to be used or often used by museums and galleries to assess the amount of 

light to which an object is exposed.   

 

International Organization for Standardization (ISO) Blue Wools 1 & 2 were tested. These 

are commonly used in galleries to monitor lighting and consist of a combination of 

Eriochrome 2. Azurole B (colour index (CI) 43830) & Indigosol Blue AGG (CI 73801) 

dyed onto wool. Also Lightcheck Sensitive and Lightcheck Ultra were tested. These are 

two highly sensitive light dosimeters (constructed from a calibrated light sensitive coating 

printed on glass and paper respectively) developed and refined by the LiDo project; a 

collaboration between a number of European research institutes (Dupont et al. 2008, 

Lavédrine 1998, Bacci et al. 2003, Romich and Martin, 2003).  
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Figure 3.5. The 6 reflection spectra of the pigments used in the wavelength dependence fading tests. 

 

Litharge and rhodamine B were 2 simple dosimeters for light level monitoring in galleries 

as suggested by Kenjo (1986) and these dosimeters were recreated from the published 
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recipe.  As instructed litharge was mixed with a 10% aqueous solution of glue in order to 

make a soft paste and then applied to paper board cut to size. As a second dosimeter a 

0.3% solution of rhodamine B was mixed with alcohol and a cotton blotting paper was 

immersed in the solution and dried in a dark room to produce a second sample. 

 

Another standard investigated was a plastic UV absorbing foil coated with Paraloid B-72 

and doped with Aberchrome 999P photochromic dye created as a potential dosimeter 

(Neeval 2008) and donated by its maker. This potential standard exhibits a major change in 

its absorption spectrum on irradiation at one wavelength, which later can be reversed either 

thermally or via exposure to a different (UV) wavelength (Heller 1986). The reflectance 

spectra of the dosimeters and standards can be found in figure 3.5. 

 

3.4 Light exposure 
 

The majority of the samples were illuminated with the equivalent of approximately 3.5J of 

energy over approximately a forty minute period (total exposure time was depending on 

the filter response at the chosen wavelength as discussed earlier). 

 

The exceptions to this were Blue Wool 2, Lightcheck Sensitive, Lightcheck Ultra, 

Aberchrome 999P photochromic dye and litmus. In the case of these samples, after initial 

fading experiments the exposure was either insufficient or far too great to acquire 

informative data. 

 

In the case of blue wool 2 the standard exposure time of approximately 40 minutes or 3.5J 

was doubled to achieve a total energy of approximately 7 J in an 80 minute period 

 

As Lightcheck Sensitive and Lightcheck Ultra were designed to have very low lightfastness, 

it was found they were too sensitive for a 3.5J exposure. In the case of Lightcheck Ultra it 

is reported that complete bleaching occurs within 120,000 lux hours. A 65 second fade 

provided this equivalent in lux hours (approximately 0.1 J of energy). Using the same 

model incident energy was reduced to approximately 0.3 J for Lightcheck Sensitive as it 

bleaches in 400,000 lux hours) (Lightcheck 2010). 
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The Plastic UV absorbing foil coated with Paraloid B-72 doped with Aberchrome 999P 

received a reduced dose of 0.1 J over 65 seconds. 

 

Litmus proved to be an especially fugitive pigment and therefore exposure was halved to 

approximately 1.7J over approximately 20 minutes. 

 

Prussian blue was exposed to 1.75J, 3.5J and 7J of over a 20, 40 and 60 minute exposure 

period (respectively), this was done in order to investigate effect of exposure on the 

damage function for the pigment.   

  

A summary of incident energy and fading time can be found in table 3.1. 

 

Sample 
Sample 
Code Total incident energy (J) Fading time (s) 

Madder TTB13 3.5 2400 

Prussian green NGWC10 3.5 2400  

Dragon‟s blood NGWC7 3.5 2400  

weld NG 2 3.5 2400 

rhodamine B n/a 3.5 2400 

litharge n/a 3.5 2400  

Blue Wool 1 n/a 3.5 2400  

Blue Wool 2 n/a 5.25 3600  

Prussian blue TTB6 1.75  &   3.5   &   5.25 1200  &  2400  &  3600  

Lightcheck Sensitive n/a 0.3 195  

Litmus NG L 1.75 1200 

Lightcheck ULTRA n/a 0.1 65  

Aberchrome 999P n/a 0.1 65 

 

Table 3.1. A summary of the illumination at each wavelength from the Micro-fadometer for each sample 
tested. 

 

3.5 Results 
 

 

Results relating to colour difference within this chapter are presented using the CIELAB 

colour space and the corresponding colour differences using ΔE*ab. 

 

3.5.1 Appraisal of the technique 

 

In order to assess the precision and repeatability of results from the technique complete 

measurements for Lightcheck Sensitive and the Aberchrome 999P photochromic 

dosimeter were repeated three times and five times respectively as shown in figure 3.6.  
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An approximate standard deviation was applied created by dividing the maximum value of 

deviation by the cube root of 3. 

   

 

Figure 3.6 Lightcheck Sensitive (left) and Aberchrome 999P photochromic dosimeter (right) (error bars 

+/- 1 equivalent standard deviation of the numerous readings).  

 

Using broadband filters the result for the wavelength dependency for Lightcheck Sensitive 

was confirmed. After a 40 minute exposure (with the same fadometer arrangement) using a 

blue transmitting filtered xenon source (with negligible light transmitted above 575nm) an 

average colour change of 2.6 ΔE*ab was observed after 5 measurements. After the same 

period of exposure under a red transmitting filtered lamp (with negligible light transmitted 

below 575nm) an average colour change of 7.1 ΔE*ab was measured after 5 measurements.  

 

The result clearly illustrates the wavelength sensitivity that Lightcheck displays. The 

Aberchrome 999P photochromic dosimeter illustrates a potential to be used as a lux meter 

with a response to wavelength similar to the photopic response of the human eye. 

 

To investigate any effect incident energy or fading time may have on the resulting damage 

function, the Prussian blue sample was exposed to 1.75J, 3.5J and 5.25J over a 20, 40 and 

60 minute period respectively.  The three results as shown in figure 3.7 show good 

agreement as similar information was achieved for the damage function at each exposure. 
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Figure 3.7. Results from application of the instrument to Prussian blue over different exposure times. The 

20, 40 and 60 minute period fades are shown in green red and blue respectively. Error bars +/- 1 

equivalent standard deviation for drift and noise. 

 

In order to appraise the reliability of information achievable with this technique, results 

were compared to previous work using bulk optical filters by Kenjo (1986). Where a similar 

investigation was conducted using a number of monochromatic lights (over a broader 

range of wavelengths than in this work). Comparisons are shown in the visible range 

between data collected using monochromatic lights and the micro-fadometer (see figures 

3.8 and 3.9). 

 

In the case of the monochromatic lights colour difference measurements after exposures of 

approximately 15 J cm-2 for rhodamine B and 46 J cm-2 in the case of litharge were made.  

               

Despite the fact that previously the results were measured after a greater colour change, 

these comparisons demonstrate the similarity of results from the two different techniques 

with respect to the effect of wavelength.   The level of colour change differed between the 

two samples. This was thought to be due to differing concentrations of colourant on the 

sample surfaces. This variable was not controlled in the instructions given for the creation 

of the sample. 
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Figure 3.8 Results from application of the instrument to rhodamine B (in blue) in comparison to similar 

research using monochromatic lights (red). Error bars are too small to be seen. 

 

 

 

Figure 3.9. Results from application of the instrument to litharge (in blue) compared to similar research 

using monochromatic lights (red). Error bars are too small to be seen. 
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3.5.2 Comparison of results with reflection spectra 

 

The technique was applied to the full sample set of dosimeters and artist‟s pigments, 

described previously.  

 

As data acquisition was time consuming measurements were repeated solely to confirm 

significant peaks or troughs.   

 

Results for the individual pigments along with their reflection spectra can be found in 

figures 3.10 to 3.21 

 

 

 

 

Figure 3.10 Results from application of the instrument to Lightcheck Sensitive (error bars +/- 1 

equivalent standard deviation for drift and noise) and the corresponding reflectance curve of the sample 

represented on the secondary inverted y axis. 
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Figure 3.11. Results from application of the instrument to Lightcheck Ultra Sensitive ((error bars +/- 1 

equivalent standard deviation for drift and noise) and the corresponding reflectance curve of the sample 

represented on the secondary inverted y axis. 

 

 

 

Figure 3.12. Results from application of the instrument to Blue Wool 1 (error bars +/- 1 equivalent 

standard deviation for drift and noise) and the corresponding reflectance curve of the sample represented on 

the secondary inverted y axis. 
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Figure 3.13. Results from application of the instrument Blue Wool 2 (error bars +/- 1 equivalent 

standard deviation for drift and noise) and the corresponding reflectance curve of the sample represented on 

the secondary inverted y axis.  

 

. 

Figure 3.14. Results from application of the instrument to a 0.3 % solution of Rhodamine-B mixed with 

alcohol on cotton blotting paper (error bars +/- 1 equivalent standard deviation for drift and noise) and the 

corresponding reflectance curve of the sample represented on the secondary inverted y axis. 
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Figure 3.15. Results from application of the instrument to litharge mixed with a 10% aqueous solution of 

glue to make a soft paste applied to paper board and the corresponding reflectance curve of the sample 

represented on the secondary inverted y axis (error bars +/- 1 equivalent standard deviation for drift and 

noise). 

 

 

 

Figure 3.16. Results from application of the instrument to Prussian blue for an exposure of 5.25J of over a 

60 minute period and the corresponding reflectance curve of the sample represented on the secondary inverted 

y axis (error bars +/- 1 equivalent standard deviation for drift and noise). 
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Figure 3.17. Results from application of the instrument to Prussian green and the corresponding reflectance 

curve of the sample represented on the secondary inverted y axis (error bars +/- 1 equivalent standard 

deviation for drift and noise). 

 

 

Figure 3.18. Results from application of the instrument to weld (error bars +/- 1 equivalent standard 

deviation for drift and noise) and the corresponding reflectance curve of the sample represented on the 

secondary inverted y axis. 
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Figure 3.19. Results from application of the instrument to dragon’s blood pigment (error bars +/- 1 

equivalent standard deviation for drift and noise) and the corresponding reflectance curve of the sample 

represented on the secondary inverted y axis. 

 

 

 

Figure 3.20. Results from application of the instrument to madder and the corresponding reflectance curve of 

the sample represented on the secondary inverted y axis (error bars +/- 1 equivalent standard deviation for 

drift and noise. 
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Figure 3.21. Results from application of the instrument to litmus (error bars +/- 1 equivalent standard 

deviation for drift and noise) and the corresponding reflectance curve of the sample represented on the 

secondary inverted y axis. 

 

3.6 Discussion 

 

The time required to gain repeated values for every data point was too great to justify. It is 

therefore necessary to consider error relating to variation in the sample in analysis of the 

results.    

 

In the entire sample set no general correlation is apparent between fading and incident 

wavelength and this result provides little justification for a damage function. 

 

In contrast to the other materials examined here, the widely used Blue Wool Standards and 

Lightcheck dosimeters were more vulnerable to the longer wavelength regions of the 

visible spectrum (as has previously been found). Alternative dosimeters have previously 

been suggested by Tennent and Townsend (1987), Allen et al. (1993) and Smith (1991) 

although they remain unexamined for wavelength sensitivity.   
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Previous research in this area has shown that the wavelength dependence of fading 

correlates well with the absorption spectra of each pigment and this was also strongly the 

case in this investigation.  Exceptions were found when testing Prussian blue and Prussian 

green. In these cases fading appears to decrease with the wavelength of incident radiation 

rather than having any correlation with the pigment‟s absorption spectra. Potentially fading 

can be caused by the absorption of radiation which can then be passed on to the colourant. 

Under these circumstances; an absorption curve of Prussian blue would not correspond to 

those wavelengths that initiated the process of colour change.   

 

With respect to Prussian blue and Prussian green, there is an apparent cut off wavelength at 

550nm. Below this wavelength photo-degradation occurs. If this behavior extends to other 

Prussian blues, reducing lighting levels below the cutoff wavelength could significantly 

reduce damage.  It is possible to state that as only photons with wavelengths below 550nm 

seem to induce the damage observed an activation energy of approximately 2.3eV per 

photon or 218kJ/mol is required to initiate photosensitized fading in this instance. 

 

The fading properties of Prussian blue are similar to Prussian green, which is to be 

expected since the latter includes the former pigment.  

 

The damage of the pigments other than Prussian blue and Prussian green decrease with 

wavelength, therefore based on this data a conclusion could be drawn that fading decreases 

with increasing wavelength.  

 

Unsurprisingly the Aberchrome 999P Photochromic dosimeter, litmus and rhodamine B 

damage functions illustrate the greatest suitability for use as lux meters due to the peak of 

the damage function present at the centre of the visible range. 

 

The Blue Wool results illustrate that they are most sensitive between approximately 500nm 

and 650nm.  Due to the higher spectral resolution of fading via this technique, two peaks in 

the spectrum are revealed at 525nm and 625nm in the assessment of Blue Wool 1: possibly 

the two dyes Eriochrome Azurole B (CI 43830) and Indigosol Blue AGG (CI 73801) used 

it its production. These peaks were confirmed with numerous repeat measurements. 

 

Previously Blue Wool 1 and 2 were assessed by McLaren (1956) and Saunders and Kirby 

(1994a) with comparable results. Both reported peaks at 600nm in the red region, however 
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McLaren reported no significant colour change in the blue end of the spectrum whereas 

Saunders and Kirby reported an equal or greater colour change than that seen at 600nm.  

The results of the research carried out using the micro-fadometer confirmed significant 

colour change in the red region in the case of Blue Wool 1 and conformed to McLaren‟s 

results by showing no considerable change in the blue region. A greater colour change was 

observed at 405nm in the case of Blue Wool 2 via this technique. 

 

Similarly no considerable colour change was observed via this method in the blue region 

for Litmus and weld as reported by Saunders and Kirby (1994a).  

 

When comparing these results with other research, different filtered bandwidths of 

illumination have been used to acquire similarly positioned data points in different 

published experiments, despite experimental difference between the investigations. For 

example negligible light below 400nm was present in the fading process for this research. 

This was not the case for results reported by Saunders and Kirby (1994a) where filtering 

permitted the transmission of light well below 400nm. It could be the presence or absence 

of critical frequencies that explain the differences observed.   

 

Variation may also in some cases be due to difference between samples. 

 

A possible improvement to the technique would be to increase the degree to which fading 

occurs in order to limit the effect of error.  

 

Wavelength dependent fading is a time consuming experimental method, however this 

novel technique means a larger number of samples can be tested faster making it possible 

to improve upon the existing damage functions that are limited by the lack of suitable data 

available. 
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4 Investigation of  Prussian blue 
 

4.1 Introduction 
 

Some colourants have been reported to perform poorly in anoxia (Townsend et al. 2008). A 

widely reported problematic pigment is Prussian blue (which can be considered as the first 

modern synthetic pigment and found widely in a variety of objects).   

 

The poor stability of Prussian blue as a textile dye in anoxia was reported by Chevreul 

(1837). It has been noted that exposure of Prussian blue (in particular watercolours) to light 

under anoxic conditions results in fading followed at least partially by reversion of colour 

loss  (Rowe 2004). 

 

4.1.1 The prevalence of the pigment 

 

The original method for the creation of Prussian blue was published in the early 1700s 

(Kirby 1993). The creation of the pigment was announced in 1710 and it has had 

widespread use since the early part of the 18th century (Kirby and Saunders 2004).  The 

watercolours of J. M. W. Turner widely contain the pigment (Townsend 1993).  The 

pigment can be found used in many cultures since the eighteenth century and variants are 

commonly employed in paint manufacture. It has been documented in Japanese prints 

(Leona and Winter 2003) and Chinese, Indian and other south east Asian works of art from 

the nineteenth century.   

 

A major source of Prussian blue in collections are objects created via the cyanotype 

process. As Prussian blue is the colourant formed during this process, cyanotypes are not 

considered suitable for storage in anoxia. The cyanotype process was employed to copy 

large drawings (for example engineering drawings leading to the term blueprint). The 

process was in regular use after 1842 until the 1950s (Ware 1999a) (Ware 1999b). 

  

Prussian blue was also used as a textile dye between the early nineteenth and the late 

twentieth century (Rowe 2004), and as a printing ink and in many other types of ink until 

the middle of the previous century (Townsend et al. 2008). 
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Prussian blue has a high tinting strength and when used at full strength is almost black in 

appearance. Therefore extenders and/or white pigments are often added to the pigment as 

supplied, which may increase the impermanence of the colour (Kirby and Saunders 2004). 

 

4.1.2 Fading and reversion characteristics 

 

Prussian blue is reported to be phototropic (it loses colour due to light exposure, and then 

regains it in the dark). Prussian blue is also reported to lose colour in enclosed containers 

by reduction due to lack of oxygen (it is also reported to reduce when in proximity to 

reducing materials (Berrie 1997)). Any colour loss is reported to be reversible when the 

material is re-exposed to air. The time for this reversion in relation to the time to lose 

colour is rarely discussed.  

 

Reports of fading in light in the presence of normal air and/or nitrogen have been 

summarised by Kirby (1993), Kirby and Saunders (2004) and Rowe (2004). Complete 

colour loss in 100% hydrogen environments was noted by Russell and Abney (1888). A 

report of slightly opening a sealed environment to permit a small amount of air to induce 

reversion for a faded Cyanotype is reported by Ware (2003). 

 

4.1.3  Prussian blue manufacture and chemical structure  

  

Prussian blue is a type II mixed valence transition metal complex; ferric ferrocyanide, iron 

(III) hexacyanoferrate (II) conventionally represented as Fe4[Fe(CN)6]3.xH2O  (where x is 

14-16). This is known as “insoluble” Prussian blue.  The formula quoted by Berrie (1997) 

could be considered more correct: MIFeIIIFeII(CN)6.n.H2O, where MI is a potassium (K+), 

ammonium (NH4+) or sodium (Na+) ion (depending on the method of manufacture), and 

n=14-16.  The potassium containing variant is known as “soluble”. 

 

The Prussian blue pigment may be precipitated from aqueous media via any of these 3 

reactions (Ware 1999b). 

 

1, Iron (III) salts, Fe3+ (aq) with hexcyanoferrate(II), [Fe(CN)6]
4- 

2, Iron (II) salts, Fe2+ (aq) with hexcyanoferrate(III), [Fe(CN)6]
3- 
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     3,  Iron (II) salts, Fe2+ (aq) with hexcyanoferrate(II), [Fe(CN)6]
4- 

 

This results in iron (II) hexcyanoferrate(II) known as Prussian white or Berlin white. It is 

then oxidized to Prussian blue by an oxidant.  

 

The colour of the pigment arises from the charge transfer transition between the two 

valence states of the iron from FeII to FeIII (the structural element of the pigment 

framework being FeIII-N-C-FeII) (Ware 1999b) (see figure 4.1). 

 

 

Figure 4.1. The structural element of the Prussian blue pigment framework. 

 

The chemistry associated with the pigment remains not fully understood. The preparation 

of Prussian blue results in colloidal precipitates which preclude the use of single crystals in 

analysis. The lattice structure of Prussian blue contain both vacancies and impurities which 

creates additional complexity (Ware 1999b). 

 

4.1.4 The fading and reversion mechanisms 

 

Fading of the pigment is considered as a cumulative result of more than one degradation 

pathway, a reversible reaction and hypothetical irreversible reaction(s). Of the two 

processes active in the fading of Prussian blue one is rapid and creates a reversible loss of 

colour and the second produces irreversible colour change to grey.  Irradiation of Prussian 

blue is considered to induce three reactions that are presently considered to be responsible 

for observed colour change and discussed comprehensively by Kirby and Saunders (2004).  
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Two experiments were conducted (the first reported in section 4.2 and the second in 

section 4.3)  

 

4.2 Experimental method 
 

4.2.1 The micro-fadometer arrangement 

 

 

 

Figure 4.2. A schematic representation of the micro-fadometer optical arrangement for the investigation of 

reversion behaviour for Prussian blue. 

 

The Prussian blue was analysed using a modified micro-fading technique. A schematic of 

the instrument is shown in figure 4.2. This instrument differs from that in figure 3.1 as no 

filter was placed in the receiving probe and a linear variable neutral density filter was placed 

before the illumination fiber.  

 

In order to conduct the experimental investigation the sample was faded using the micro-

fadometer and the colour difference created by the fading process was recorded. Following 
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this light was prevented from contact with the sample using a black cloth and over a 2 day 

period the cloth was removed at intervals and the reverted colour was measured.  

 

The high light intensity of the system was reduced for all measurements using a linear 

variable neutral density filter (removing 99% of the lamp output). This was done in order 

to reduce the intensity of illumination on the sample to a power level that enabled a rapid 

measurement of the colour, while not allowing the incident radiation necessary for 

measurement to re-fade the sample area and harm the reversion process. The filter was 

removed when fading and replaced afterwards.  

 

After initially defining the reversion characteristics of Prussian blue in air and analysing the 

pigments reversion behaviour, the investigation was extended to a variety of fade durations 

(15 minutes, 1 hour, 3 hours, and 15 hours).  At each fade duration the oxygen 

concentration was controlled at either 0%, 2%, 3.5%, 5%, 10% (the remainder of the gas 

being nitrogen) or was provided by air at approximately 21% oxygen. To create accurate 

oxygen levels modified environments were created by flushing a valved anoxic chamber 

with a premixed gas (supplied by BOC) of the desired oxygen levels. The housing was built 

from glass, stainless steel and butyl rubber (see figure 4.3). Fading took place through glass 

in all instances. A white reference for colour measurement was taken through the glass so 

the transmission of the glass did not harm colour measurement. In the case of 21% oxygen 

the pigment was tested in the same chamber with the valves open to the room atmosphere.  

 

 

 

Figure 4.3. The valved anoxic chamber built from glass, stainless steel and butyl rubber (here shown 

containing a variety of samples). 
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Any link between the degree of fading of Prussian blues for a given illumination and the 

level of relative humidity has been reported to be non-detectable previously (Saunders 

2009). Therefore in this instance purging gas used in the experiment was not humidified. 

 

The reversion behaviour of the Prussian blue pigment was investigated in the CIE 1976 L* 

a* b* colour space. This was done in order to compare the results with previous leading 

research (Kirby and Saunders 2004). 

 

4.2.2  Error connected with the method  

 

In order to quantify any error connected to the addition and removal of a filter in the 

optical axis (which as stated, was necessary to fade the sample). The instrument was 

focused onto a pressed barium sulphate white standard  and the colour difference 

connected with the combined removal and replacement of the neutral density filter was 

measured 10 times. The maximum error connected with the process was 0.33ΔE*ab with an 

equivalent standard deviation of 0.23ΔE*ab. Another source of error was due to drift and 

noise of the system. In section 2.3.4  an error no greater than 0.36 ΔE*ab was shown to take 

place due to this over a 7 day period the equivalent standard deviation being 0.25 ΔE*ab. 

Combining these errors results in a error for any reading of 0.42 ΔE*ab (the error bars 

shown within graphs for this research  are +/- 0.42 ΔE*ab). 

 

4.2.3 Results  
 

4.2.4 Reversion behaviour 

 

A typical example of Prussian blue pigment behaviour (TTB6) showing a combined fading 

and reversion curve can be seen in figure 4.4 (created by combining a data set for each 

process). As reversion takes place over a significantly greater period compared to the fading 

process, data is presented on a logarithmic scale.  
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 Figure 4.4. An example of the colour change measured for TTB6 Prussian blue pigment when undergoing 

fading and reversion processes. 

 

An example of the typical reversion behaviour of the Prussian blue pigment in the CIE 

1976 L* a* b* colour space can be seen in figure 4.5. A circle marks the initial measured 

colour of the pigment before any fading and the path of the reverting pigment colour is 

plotted as it returns closer to the location of the initial value.  
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Figure 4.5. An example of the measured reversion behaviour of  TTB6 in the 3 colour dimensions L*a*b* 

(left) and an illustration of the reversion in 2 dimensions in the a* b* plane (right). The path of colour 

reversion follows from top to bottom or left to right respectively as the measured value returns closer to the 

circle which denotes the initial measured colour before fading. 

 

 

 Fading 

 Reversion 
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4.2.5 Modeling reversion behaviour 

 

When studied in various environments the TTB6 Prussian blue sample was found to regain 

colour exponentially as seen in Figure 4.6. Reversion was not complete and a degree of 

colour change was measurable after reversion.  

 

 

Figure 4.6. An example of the colour reversion characteristic of the Prussian blue sample.  

 

The reversion behaviour could be modeled using the following equation. 

 

t

ff eEEEtE  )()( 0  

  

Where: 

ΔE0 is the colour change immediately after fading relative to original reference colour.   

ΔE(t) is the reverted colour of the pigment at time (t) relative to the initial colour prior to 

fading. 

t is the time in hours since the reversion process began. 

ΔEf is the baseline of ΔE(t) vs. t graph this can be viewed as the final colour difference of 

the pigment relative to original colour after reversion is complete. 

β is the rate of reversion (obtained via a first-order exponential fit of the ΔE(t) vs. t graph). 

 

As an aside the fading rather than the reversion behaviour of Prussian blue was also 

modeled. The result of the modeling can be found summarized, along with an example in 

appendix C. 
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4.2.6 Effect of oxygen concentration on behaviour 

 

The reversion curves for light-faded TTB6 Prussian blue samples (graphs plotting ΔE(t) vs 

t) were analyzed to obtain reversion rate (β) and colour change after reversion (ΔEf).  The 

influence of oxygen concentration and fade duration upon these parameters was 

investigated in.   

 

The results of this investigation are summarized in the table 4.1 (further graphs of the 

results can be found in appendix D). Column 1 corresponds to oxygen concentration of 

the environment in which the experiment was conducted. The fade duration is in column 

2. The colour difference after the fade duration ΔE0 is in column 3. ΔEf is in column 4. 

Column 5 contains β (the rate of reversion).  

 

The R-squared (R2) values provide a statistical measure of the standard of  fit connected to 

the regression line approximation. If R2 equates to 1, the regression line can be considered 

to match the data exactly.  
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O2  % Fade time ΔE0  ± 0.42 ΔEf  ± 0.42        β R2 

21 15 minutes 2.1 1.0 0.396 ±0.039 0.959 

21 1 hours 2.4 0.7  0.275 ±0.023 0.989 

21 3 hours 4.2 1.3 0.267 ±0.014 0.993 

21 15 hours 4.0 0.7 0.202 ±0.006 0.994 

Average  3.2 0.9 0.285  

       

O2  % Fade time ΔE0 ± 0.42 ΔEf ± 0.42 β R2 

10 15 minutes 2.2 1.5 0.191 ±0.034 0.938 

10 1 hours 2.0 0.5 0.245 ±0.021 0.988 

10 3 hours 5.5 0.1 0.073 ±0.003 0.999 

10 15 hours 1.4 1.0 0.374 ±0.175 0.925 

Average  2.8 0.8 0.221  

       

O2  % Fade time ΔE0 ± 0.42 ΔEf ± 0.42 β R2 

5 15 minutes 2.5 1.0 0.222 ±0.016 0.983 

5 1 hours 2.2 0.6 0.321 ±0.053 0.985 

5 3 hours 6.6 0.7 0.093 ±0.013 0.986 

5 15 hours 3.0 1.7 0.232 ±0.826 0.967 

Average  3.6 1.01 0.217  

       

O2  % Fade time ΔE0 ± 0.42 ΔEf ± 0.42 β R2 

3.5 15 minutes 2.2 0.8 0.029 ±0.014 0.975 

3.5 1 hours 1.6 1.5  0.318 ±0 0.429 

3.5 3 hours 2.4 0.8 0.145 ±0.016 0.989 

3.5 15 hours 7.3 1.5 0.020 ±0.001 0.998 

Average  3.4 1.3 0.128  

       

O2  % Fade time ΔE0 ± 0.42 ΔEf ± 0.42 β R2 

2 15 minutes 4.3 2.9 0.134 ±0.024 0.915 

2 1 hours 4.8 2.1 0.104 ±0.007 0.993 

2 3 hours 7.3 3.2 0.093 ±0.008 0.992 

2 15 hours 4.2 2.0 0.071 ±0.006 0.995 

Average  5.1 2.6 0.100  

       

O2  % Fade time ΔE0 ± 0.42 ΔEf ± 0.42 β R2 

0 15 minutes 4.8 2.4 0.397 ±0.039 0.978 

0 1 hours 3.2 2.6 0.396 ±0.058 0.964 

0 3 hours 6.6 3.0 0.160 ±0.001 0.990 

0 15 hours 13.1 10.1 0.048 ±0.003 0.994 

Average  7.0 4.5 0.250  

 

Table 4.1. Reversion values of light-faded TTB6, interpreted R-Squared values indicate how well the 

regression line approximates to the data points.  

 



74 

 

4.2.7  Influence of fade duration upon ΔEf, ΔE0, and β 

 

ΔE0 was found to increase with fade duration at all oxygen concentrations and colour 

change typically reached a plateau or reduced after 3 hours of fading, however in anoxic 

conditions the colour difference observed increased to larger values not seen at other 

oxygen levels (see figure 4.7). 

 

 

 

Figure 4.7. The relationship between ΔEo and fade duration under various oxygen levels 

 

The colour change for anoxia after 15 hours is significantly larger than the rest of those 

measured. This large value was rechecked 3 times and was found to be repeatable. This 

significant fading of Prussian blue to a visible white in anoxia has been widely reported.  

 

No clear relationship was found between ΔEf and the duration of fade or between β and 

fade duration as shown in figures 4.8 and 4.9 respectively.  Again ΔEf was seen to be large 

in anoxic conditions when compared to the degree of reversion in other oxygen levels. This 

value was rechecked and was repeatable. This behaviour reflects previous reports where 

Prussian blue does not revert until exposed to oxygen (generally from room atmosphere 

exposure). 

 

There was also no relationship observed between the reverted colour‟s hue (which could be 

considered as the orientation of ΔEf in the colour space) and fade duration. 
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Figure 4.8. The relationship between ΔEf and fade duration under various oxygen levels. 

 

 

 

Figure 4.9. The relationship between β and fade duration under various oxygen levels. 

 

4.2.8  Influence of O2 concentration upon ΔEf , β. 

 

As no correlation between fade duration and ΔEf or β was found we proceed by assuming 

random variables between samples only. It was therefore possible to investigate the 
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relationship with oxygen concentration using the average values of ΔEf and β that were 

obtained using all fade durations at each oxygen concentration.  

Importantly it was found that ΔEf increases with decreasing oxygen concentration at the 

lower percentages tested as shown in figure 4.10 with reverted values lowest at 5%.  

 

 

Figure 4.10. The relationship between ΔEf for the different lengths of exposure and the various oxygen 

levels for the TTB6 Prussian blue sample.  

 

There was also no discernable relationship between the reverted hue and oxygen 

concentration.  The rate of reversion, β, showed no correlation with oxygen concentration 

as shown in figure 4.11.  
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Figure 4.11. The relationship between average β for the different lengths of exposure and the various oxygen 

levels for the TTB6 Prussian blue sample. 
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4.3 Experimental extension to other Prussian blue samples. 

 

Previously an hypoxic 5% oxygen environment was shown to be a suitable oxygen 

concentration for a particular historic Prussian blue pigment (see figure 4.10). This section 

describes an automated micro-fadometer experiment applied to a greater number of 

Prussian blues (both traditional and modern). All the pigments were prepared by grinding 

with gum Arabic, diluting with distilled water and applying in a wash onto Ruscombe mill 

paper (or Whatman silversafe paper when stated). Further detailed information on the 

sample set of 56 Prussian blue pigments ground in gum Arabic and painted onto paper can 

be found in the introduction and appendix E.  

 

4.3.1 Experimental technique 

 

The automated micro-fadometer system was employed which utilized Thorlabs ATP 

positioning software to control movement of the probe head attached to the XYZ stage as 

shown in figure 4.12. Via the use of the automated system the probe was automatically 

moved and repositioned at best focus for each sample in a matrix. Using this 

instrumentation it was possible to revisit any location to monitor colour change after a 

period of time. 

 

 

Figure 4.12.  The automated micro-fadometer system which controls movement of the probe head via the 

attached XYZ stage. 
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It was possible to enter position control data into the spreadsheet function of the program. 

The probe would pause to fade each pigment for one hour while L*a*b* values were 

continuously recorded. The first L*a*b* values recorded at each new position were used as 

the reference colour, from which all colour differences could be calculated. It was 

considered too time consuming to produce an automated focusing system for the 

instrument. With a neutral density filter in place to reduce illumination and the integration 

time increased to compensate for the resulting low signal, the instrument was focused and 

the position of the probe in the Z plane recorded at each position. This position of best 

focus was entered into the APT software movement spreadsheet for each pigment.  

 

The samples were mounted in a braced gas valved chamber manufactured to control the 

oxygen level as shown in figure 4.13. To maintain the desired environmental conditions the 

fading experiments were run under a slight positive pressure of 100% nitrogen or 5% 

oxygen and 95% nitrogen to avoid oxygen ingress. The purging gas was split such that a 

fraction flowed through a water bubbler and some directly to the controlled chamber; the 

portion running through each segment was then valve-regulated and the humidity of the 

resultant gas stream was measured using a Tinytag humidity meter.  Humidity remained 

within desirable limits of 40% ± 5% throughout the experimental process.  In the case of 

fading in air the valves were left open to allow air flow. 

 

 

 

Figure 4.13. Some samples mounted in a braced gas valved chamber manufactured to control the oxygen 

level in the environment surrounding the samples. 
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3 similar and separate fading experiments were conducted at 3 different oxygen levels for 

the sample set. In air, anoxia or 5% hypoxic environments Prussian blue colour change was 

measured following a 1 hour fadometer exposure and then measured after remaining 

housed for 3 days in the same environment they were faded in.  In a further step the 

pigments that were faded and housed in anoxia or hypoxia during the experiment were 

exposed to air. In this further step they were monitored for further colour change after 

another 3 days.  

 

A period of 3 days was chosen as the length of time between the various steps in the 

experiments. This decision was based on the behaviour of the Prussian blue pigment 

discussed previously (Tate Gallery Archive 7315.7, Q04047 TTB6). In the case of this 

pigment any colour change in the reversion process was typically no longer observable after 

a day (with a maximum of one and a half days). It was thought doubling the typical time 

period previously required would be adequate for no further change via reversion to be 

taking place. 

 

The instrument remained running during the experiment in order to remain calibrated and 

repeat measurements of the same locations were possible using the high positional 

repeatability (40nm) of the micro-fadometer probe head using the XYZ stage.   

 

4.3.2 Results 

 

In order to understand to what degree the paper substrate may affect the result the 

Ruscombe mill paper was faded without any pigment applied. The paper was shown not to 

be fugitive after fading for 140 minutes using the micro-fadometer (see figure 4.14). 

 

   

Figure 4.14. The results of fading the Ruscombe mill paper without any pigment applied after fading for 

140 minutes using the Micro-fadometer.  
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4.3.2.1 Fading and reversion in air 

 

In table 4.2 overleaf the first two columns contain the name and code of the pigments 

tested. The third column shows the degree of fading of the Prussian blue pigments in air 

after 1 hour using the micro-fadometer. The fourth column contains data on the reverted 

colour of each pigment in air when given over 3 days in low light to revert.  Results are 

summarized via a histogram in figure 4.15. 

 

 

 

 

 

Table 4.15. A histogram representation of the degree of colour difference the Prussian blue sample set after 

fading in air (red) and after 3 days in low light to revert (green).  
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Code Prussian blue sample name 
ΔE*ab after fading  

in air ±0.25 
ΔE*ab after  reversion 

 in air ±0.25 

CA15 Prussian blue 6.8 1 

D&C 8/01 Blue de Prusse 1.7 0.7 

HKI 1 Prussian blue 1.8 0.4 

HKI 2 Prussian blue 2.1 0.2 

HKI 3 Antwerp blue 3.4 1.9 

HKI 4 Prussian blue 2 0.6 

HKI 5 Prussian blue  1.1 0.4 

MB 1 Prussian blue (Berlijns Blauw) 1.6 0.4 

MB 8 Prussian blue (Berlijns Blauw) 1.3 0.5 

MB 8 Prussian blue 3 0.7 

MB A1 Prussian blue 0.7 0.5 

MB A5 Antwerp blue 2.4 0.7 

MB BA1 Prussian blue 1.7 0.3 

NG 12a Prussian blue 5.8 0.4 

NG 12b Prussian blue 10.7 1.4 

NG AA (NG WC2) Ackermann ' Antwerp blue 1.2 0.3 

NG ALP Prussian blue 2.5 0.1 

NG AR Prussian blue 5.4 1.2 

NG BA Good Berlin blue from Weimar 8.2 1.3 

NG BB Berlin blue 4.2 1.5 

NG BCB Prussian blue 2.4 0.5 

NG GA Prussian blue 6.2 0.4 

NG JSM Prussian blue 8.3 0.1 

NG K7 Prussian blue 1.6 0.2 

NG MA Prussian blue 5.1 0.2 

NG MB Prussian blue 1.7 0.6 

NG NB Blue 3.1 0.3 

NG NP Prussian blue 2.4 1 

NG OZ Prussian blue 5.9 0.4 

NG RA Prussian blue,barytes, gypsum 2.8 0.2 

NG RC Prussian blue, gypsum 4.2 0.8 

NG RD Prussian blue, kaolin, quartz 12.6 2.6 

NG RE Prussian blue, barites 3.8 0.5 

NG RG Prussian blue, barites 6.1 1.5 

NG SA Prussian blue 0.8 1.2 

NG SB Prussian blue 2.4 0.8 

NG SC Prussian blue 4.5 0.4 

NG SD Prussian blue 7.7 0.2 

NG TB Turnbull's blue' 0.9 0.5 

NG VA Prussian blue 8.5 0.5 

NG VB Prussian blue 4 0.6 

NG WC1, (AP) Prussian blue 2.9 0.3 

NG WN Prussian blue, alkalie ferric ferrocyanide 3.3 0.4 

OH2 Prussian blue  (Chinese Blue) 1 0.7 

OH4 Prussian blue (Blue de Prusse) 1.1 0.3 

OH6 Prussian blue (Parijs blauw) 1.5 0.3 

OH8 Prussian blue  (Mineraalblauw) 2.2 0.3 

OH9 Prussian blue (ijzercyaan Berlijns blauw) 2.4 0.1 

RC ICN1 Prussian blue 5.2 0.7 

RC ICN2 Chinese blue 3.6 1.8 

RK14 Prussian blue 1.4 0.1 

T CA1 Antwerp Blue 1.3 0.7 

T CA7 Chinese Blue 23 1.7 0.5 

T RR1 Prussian blue 0.9 0.3 

T1 Prussian blue (Berlijns Blauw) 3.5 0.5 

 

 

Table 4.2. The degree of fading of the Prussian blue sample set in air and after 3 days in low light to revert. 
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4.3.2.2 Fading and storage in anoxia and reversion in air 

 

The results of the anoxic analysis for the Prussian blue sample set are shown Table 4.3 

overleaf. The first results columns show the degree of fading of the pigments in anoxia 

after 1 hour using the micro-fadometer. The second results column illustrates the colour 

difference of each pigment when kept in anoxic conditions in low light after 3 days.  The 

final column shows the degree of reversion of the 56 Prussian blues after fading and 

housing in anoxia on exposure to air. Results are summarized via a histogram in figure 4.16. 

 
 
 

 

      

Table 4.16. A histogram representation of the degree of colour difference shown by the Prussian blue sample 
set in anoxia (red), after 3 days in anoxia in low light to revert (green) and after reexposure to air after 3 
days in low light to revert (blue). 
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CODE Prussian blue sample name 

ΔE*ab after 
fading 

in anoxia ±0.25  

ΔE*ab after 
reversion 

in anoxia ±0.25 

ΔE*ab after 
reversion 

in air ±0.25  

CA15 Prussian blue 9.4 11.5 1.2 

D&C 8/01 Blue de Prusse 1.5 3.5 2.1 

HKI 1 Prussian blue 2.3 3.7 1.9 

HKI 2 Prussian blue 2.4 2 1.3 

HKI 3 Antwerp blue 2.5 4.6 1.2 

HKI 4 Prussian blue 1.3 1.3 1 

HKI 5 Prussian blue  1.4 1.4 1.4 

MB 1 Prussian blue (Berlijns Blauw) 2.9 7.8 2.9 

MB 8 Prussian blue (Berlijns Blauw) 1.6 2.8 2 

MB 9 Prussian blue 3.9 7.5 2.6 

MB A1 Prussian blue 2.1 3.4 1.3 

MB A5 Antwerp blue 2.3 2.1 1.3 

MB BA1 Prussian blue 8.8 8.9 2.9 

NG 12a Prussian blue 7.9 8.3 2.3 

NG 12b Prussian blue 11.3 12.4 1.5 

NG AA (NG WC2) Ackermann ' Antwerp blue 4.6 5.4 3.9 

NG ALP Prussian blue 3.9 2.6 2.4 

NG AR Prussian blue 5.3 4.9 2.1 

NG BA Good Berlin blue from Weimar 15.7 13.1 9.6 

NG BB Berlin blue 3.3 7.5 4.3 

NG BCB Prussian blue 2.3 3.4 1.8 

NG GA Prussian blue 12.8 11.8 1.9 

NG JSM Prussian blue 10 9.2 0.9 

NG K7 Prussian blue 3.1 3.3 1 

NG MA Prussian blue 7.1 6.6 0.4 

NG MB Prussian blue 1.7 1.9 1.7 

NG NB Blue 5.5 6.8 2 

NG NP Prussian blue 5.2 5.4 1 

NG OZ Prussian blue 10.9 8.2 2.5 

NG RA Prussian blue,barytes, gypsum 4.1 4.3 1.6 

NG RC Prussian blue, gypsum 6.3 7.4 0.9 

NG RD Prussian blue, kaolin, quartz 12.8 13.4 5.4 

NG RE Prussian blue, barites 8 9.1 1.8 

NG RG Prussian blue, barites 7.2 11.4 6.3 

NG SA Prussian blue 1.6 2.6 2.2 

NG SB Prussian blue 5.1 3.5 1.3 

NG SC Prussian blue 5.8 7.4 1.5 

NG SD Prussian blue 8.5 9.1 1.1 

NG TB Turnbull's blue 1.8 2.7 1.9 

NG VA Prussian blue 10.6 9 0.5 

NG VB Prussian blue 7.1 5.5 1.2 

NG WC1, (AP) Prussian blue 5.2 5.2 0.8 

NG WN Prussian blue, alkalie ferric ferrocyanide 6.7 6.5 2.5 

OH2 Prussian blue  (Chinese Blue) 1.2 2.5 1.7 

OH4 Prussian blue (Blue de Prusse) 2.3 1.8 1.2 

OH6 Prussian blue (Parijs blauw 1.4 1.3 0.3 

OH8 Prussian blue  (Mineraalblauw) 3.1 2.2 2.3 

OH9 Prussian blue (ijzercyaan Berlijns blauw) 5 4.2 3.2 

RC ICN1 Prussian blue 8 7 0.7 

RC ICN2 Chinese blue 3.8 4.9 1.4 

RK14 Prussian blue 2.3 2.8 1.1 

T CA1 Antwerp blue 2.7 3.3 3.1 

T CA7 Chinese Blue 23 1.7 2.2 0.6 

T RR1 Prussian blue 1 3.7 2.6 

T1 Prussian blue (Berlijns Blauw) 5.8 6.8 2.5 

 

 

Table 4.3. The degree of fading after 1 hour using the micro-fadometer, the colour difference after storage in 

anoxic conditions in low light after 3 days, and the degree of reversion on re-exposure to air. 
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4.3.2.3 Fading and storage in hypoxia and reversion air 

 

The results for fading and storage in hypoxia and reversion in air are shown in table 4.4 

overleaf. The first results column shows the colour difference of the pigment immediately 

after exposure. The second results column represents the colour difference after 3 days of 

storage in the hypoxic environment. The final column is the colour difference after 3 days 

of exposure to air after the seal of the test chamber was breached in order to readmit 

oxygen. Results are summarized via a histogram in figure 4.17. 

 

 

      

 

Figure 4.17 A histogram representation of the degree of colour difference the Prussian blue sample set after 

fading in hypoxia (red), after 3 days in hypoxia in low light to revert (green) and after reexposure to air 

after 3 days in low light to revert (blue). 
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CODE Prussian blue sample name 

ΔE*ab after 
fadingin 

hypoxia ±0.25 

ΔE*ab after 
reversion in 

hypoxia ±0.25  

ΔE*ab after 
reversion 

in air ±0.25  

CA15 Prussian blue 5.7 0.7 2.3 

D&C 8/01 Blue de Prusse 1.6 1.6 0.8 

HKI 1 Prussian blue 2.5 2.2 1.3 

HKI 2 Prussian blue 2.5 0.6 0.5 

HKI 3 Antwerp blue 3.2 2.1 1.4 

HKI 4 Prussian blue 2 0.4 0.5 

HKI 5 Prussian blue  1.7 0.7 1.8 

MB 1 Prussian blue (Berlijns Blauw) 2.2 1.7 0.7 

MB 8 Prussian blue (Berlijns Blauw) 1.6 0.5 1 

MB 9 Prussian blue 2.2 0.7 0.5 

MB A1 Prussian blue 0.9 0.3 0.3 

MB A5 Antwerp blue 2.1 0.6 0.6 

MB BA1 Prussian blue 5.3 0.4 1.2 

NG 12a Prussian blue 5.9 1.7 2.6 

NG 12b Prussian blue 7.8 0.5 0.5 

NG AA (NG 
WC2) Ackermann ' Antwerp blue 2.8 1.7 1 

NG ALP Prussian blue 3.1 1.5 1.7 

NG AR Prussian blue 4.2 1.7 1.5 

NG BA Good Berlin blue from Weimar 7.5 0.7 2.8 

NG BB Berlin blue 3.9 1.5 1.3 

NG BCB Prussian blue 3.9 1.7 1.3 

NG GA Prussian blue 9.2 0.2 0.5 

NG JSM Prussian blue 6.2 1 1 

NG K7 Prussian blue 2.5 1 1.3 

NG MA Prussian blue 3.7 1.4 1.8 

NG MB Prussian blue 2.3 1.7 1.8 

NG NB Blue 4.5 0.8 0.5 

NG NP Prussian blue 3 1.1 1.8 

NG OZ Prussian blue 4 0.7 1.2 

NG RA Prussian blue,barytes, gypsum 3.5 1.3 0.6 

NG RC Prussian blue, gypsum 4.5 0.5 0.6 

NG RD Prussian blue, kaolin, quartz 11.1 3.7 1.2 

NG RE Prussian blue, barites 5.3 0.4 1.6 

NG RG Prussian blue, barites 7.1 3.8 2 

NG SA Prussian blue 0.2 0.5 1.4 

NG SB Prussian blue 3.4 1.2 1.7 

NG SC Prussian blue 4.1 1 2.3 

NG SD Prussian blue 6.9 0.6 1 

NG TB Turnbull's blue 1.4 0.5 0.5 

NG VA Prussian blue 7.1 1.6 1.6 

NG VB Prussian blue 3.5 1.7 1.7 

NG WC1, (AP) Prussian blue 4.4 0.6 1.1 

NG WN Prussian blue, alkalie ferric ferrocyanide 3.9 0.6 0.6 

OH2 Prussian blue  (Chinese Blue) 1.2 1.2 1.2 

OH4 Prussian blue (Blue de Prusse) 2 0.7 0.9 

OH6 Prussian blue (Parijs blauw 1.7 0.5 0.5 

OH8 Prussian blue (Mineraalblauw) 3.2 0.5 0.4 

OH9 Prussian blue (ijzercyaan Berlijns blauw) 3.1 1 0.9 

RC ICN1 Prussian blue 6.5 1 0.6 

RC ICN2 Chinese blue 2.8 0.9 1.3 

RK14 Prussian blue 1.4 0.7 0.4 

T CA1 Antwerp blue 1.4 1.1 0.8 

T CA7 Chinese Blue 23 1.8 0.8 0.5 

T RR1 Prussian blue 2.6 1.6 1.3 

T1 Prussian blue (Berlijns Blauw) 3 1.1 1 

 

 

Table 4.4. The colour difference of the Prussian blue sample set immediately after exposure in hypoxia, 

after 3 days in the hypoxic environment and 3 days after the readmission of oxygen. 
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4.3.2.4 Comparison of the 3 environments for fading and storage. 

 

In order to analyze the data acquired a series of graphs comparing the colour difference at 

different stages of the experiments are shown. Each data point represents a single pigment 

in the Prussian blue sample set. 

 

4.3.2.5 Comparison of the degree of fading 

 

A comparison of the colour difference produced by the micro-fading technique 

immediately after fading for 1 hour in air and anoxic environments can be seen in figure 

4.18. An increase in colour difference is produced by anoxic conditions for the same light 

exposure. Comparing fading in air and hypoxia produced no clear trend. 

 

        

 

Figure 4.18. A comparison of the colour difference produced by the microfading technique immediately after 

fading for 1 hour in air and anoxia (left), and a comparison for the same set of Prussian blue pigments 

immediately after fading in 5% hypoxia and air (right). Error bars +/- 1 equivalent standard deviation 

for drift and noise. 

 

When comparing the colour difference created by light exposure in 5% oxygen and in 

anoxia, a similar relationship is illustrated as that seen when comparing anoxia to room 

atmospheric conditions. A larger degree of change is induced by the anoxic housing than 

that observed in 5% oxygen (see figure 4.19). 
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Figure 4.19. Comparison of colour difference produced by the microfading technique for the same set of 

Prussian blue samples immediately after fading in 5% oxygen (hypoxia) and 0% anoxic conditions 

(anoxia). Error bars +/- 1 equivalent standard deviation for drift and noise. 

 

4.3.2.6 Reversion within modified environments 

 

The colour difference of the pigments after 3 days storage in both anoxic and room 

atmosphere environments are shown in figure 4.20.  Those pigments housed for the 3 day 

period in air have reverted however the samples under anoxic purge maintained a 

significant colour difference.   

 

The colour difference of the pigments after 3 days storage in both hypoxic environments 

and room atmosphere is also shown. The pigments when stored in air have reverted and 

the samples under hypoxic purge have also reverted removing any significant colour 

difference.  
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Figure 4.20. Comparison of colour difference produced by the microfading technique for the same set of 

Prussian blue samples after fading in air and anoxia and after 3 days low light storage in both 

environments (left) and after fading in air and hypoxia and after 3 days low light storage in both 

environments (right). Error bars +/- 1 equivalent standard deviation for drift and noise. 

 

4.3.2.7 Reversion after exposure to air. 

 

When the anoxic housed pigments were re-exposed to air the colour difference between 

the pigments in the two experiments decreased (see figure 4.21). Those pigments that were 

in anoxic housing regain some of the colour lost via the reversion process over the 3 day 

period, (a phenomenon that has been widely reported previously).   

 

A number of those pigments faded and stored in anoxia maintain a greater degree of colour 

difference after this process than those exposed to air and permitted to revert. This 

indicates that removing Prussian blues from anoxia and allowing lost colour to revert is not 

a solution to the widely reported damaging effects of anoxic housings. 
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Figure 4.21.Colour difference after fading and reversion in air (y axis) and 3 days after the anoxic chamber 

has been exposed to air after the faded pigments had 3 days storage in anoxia (x axis) (left), and after 

fading and reversion in air (y axis), and 3 days after the hypoxic chamber has been exposed to air after the 

faded pigments had 3 days storage in 5% oxygen (x axis) (right). Error bars +/- 1 equivalent standard 

deviation for drift and noise. 

 

 

When the hypoxic housed pigments were re-exposed to air the colour difference between 

the pigments in the two experiments is further reduced and the damage from light 

exposure when using a 5% hypoxic storage environment for Prussian blue rather than no 

housing seem comparable. The pigments largely remain no more faded by the initial hour 

of micro-fadometer exposure after the hypoxic process than those exposed only to air 

during the experiment. This indicates the use of 5% hypoxia is not a damaging method for 

the storage of Prussian blues, as the increased colour difference observed after storage in 

anoxia is not present at this oxygen level. The variation observed is no greater than that 

typically observed when fading pigments using this technique.  

 

When comparing Prussian blue pigments that have been housed, faded and stored in 

anoxic and hypoxic conditions and then re-exposed to air the difference between 5% 

hypoxia and anoxia is evident. Some pigments display a greater degree of damage due to 

anoxic storage (see figure 4.22). 
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Figure 4.22. Comparison of colour difference produced by the microfading technique for the same set of 

Prussian blue samples by fading in the respective oxygen level after 3 days storage and 3 days after exposure 

to air. Error bars +/- 1 equivalent standard deviation for drift and noise. 

 

4.4 Discussion 
 

The sample of Turners Prussian blue TTB6 showed similar behaviour in the two different  

experiments.  The pigment exhibits limited reversion in anoxic conditions. No greater 

colour difference was observed due to anoxic storage after the fading process ends and the 

illumination removed.  

 

When Turners Prussian blue TTB6 was faded at 0%, 2%, 3.5%, 5%, 10% or 21% oxygen 

concentration a plateau of fading was observed in all cases other than at 0% oxygen. When 

oxygen is present in the controlled hypoxic fading environments the rate of colour change 

with time becomes increasingly small, however in anoxic conditions this observed decrease 

in colour change with time is not present. This difference created by the different oxygen 

level is considerably more pronounced after longer periods of time and only under anoxic 

conditions is fading to an observable white colour observed. 

 

Under both lower hypoxic conditions and anoxia, fading of Prussian blue appears to be 

accelerated.  This effect is more pronounced after longer periods of time.  Within shorter 
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fading periods there is no observable difference. When oxygen is present in the controlled 

fading environments the rate of colour change with length of time of exposure becomes 

increasingly small, however in anoxic conditions this decrease in colour change with time is 

not present.    

 

At 21% 10% 5% and 3.5% oxygen, ΔEf has the same calculated value of colour change and 

can be regarded as similar to that under ambient atmosphere.  At 0% and 2% oxygen 

concentrations, however, it is higher than at ambient atmosphere.  With this data set, it 

appears as though overall colour change increases in a non-linear manner with decreasing 

oxygen concentration.  This indicates that the deleterious effects of hypoxia may only 

become relevant at low oxygen concentrations (beginning at an hypoxic level above 2% 

and below 3.5%), and that relatively low concentrations of oxygen (around 5%) may be 

tolerated by Prussian-blue containing works of art.   

 

When the study in this pattern of behaviour was extended to a larger number of Prussian 

blues and the behaviour of the pigment at 0% and 5% oxygen was compared to behaviour 

in room atmosphere, it is indicated that a 5% oxygen concentration is widely applicable. 

The deleterious effect of anoxia was not observed for 5% oxygen when the investigation 

was widely extended.   

 

Importantly, further insight has been gained in to the necessity of a novel storage 

atmosphere for Prussian blue.  
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5 Reduced oxygen for watercolour pigments 

5.1 Introduction 

 
 
Anoxia is a method of housing objects that is commonly expected to retard the oxidative 

degradation pathway (Russell and Abney 1888, Thomas et al. 2009). This pathway is often 

associated with light exposure.  Anoxia is potentially a highly suitable conservation method 

for display and storage of collections (Maekawa 1998, Townsend et al. 2008). This is 

especially the case for those collection materials highly susceptible to oxidation as photo-

oxidation of most colourants (whether or not they are in binding media) will be reduced by 

anoxia. Organic dyes, lakes and pigments should benefit from anoxia as most undergo 

oxidative fading (Hackney 2006). The majority of inorganic pigments should not be 

negatively affected by storage in anoxia, though some can undergo reductive colour 

change.   

 

Research is required in order to further assess the effects of anoxia for paper-based works 

of art and to provide data to gain insight and understanding regarding pigments that have 

may be harmed by anoxic display. As a result of a literature review (see Townsend et al.  

2008) many problematic pigments were identified. In the Russell and Abney (1888) report 

the affect of anoxia on traditional artists pigments was investigated. Those single colours 

that altered when faded within a vacuum were vermilion, purple madder, purple carmine, 

violet carmine, Prussian blue, raw sienna and sepia. Brommelle (1964) has referenced work 

contemporary to the Russell and Abney report by chemist A. Richardson, illustrating 

cadmium yellow, cadmium orange, king‟s yellow, crimson lake, indigo, Prussian blue, 

vermilion and the chrome yellows all undergo reducing reactions independent of air. Arney 

(1979) found vermillion azo and Prussian blue to perform poorly in anoxia. Yellow lead 

oxide (lead(II) oxide), and to a lesser extent red lead (lead(II) lead (IV) oxide), show colour 

changes in  anoxic environments (Saunders et al. 2002). Korenberg (2008) illustrated the 

damaging effects of anoxia for modern Prussian blue and Antwerp blue pigments. Work by 

Beltran et al. (2008) illustrated negative effects of anoxia on red lead, verdigris and rose 

madder as well as Prussian blue. Pascoe et al. (1994) studied the effects of reduction 

bleaching on traditional pigments in gum Arabic and reported changes in vermilion, 

chromates, iron oxides and ultramarine violet. 

 



93 

 

Norville-Day et al. (1994) found harmful effects of reducing bleaches with respect to 

vermilion, brown madder, red lead, madder, sap green and gamboge. Chrome yellow, 

vermilion, lead white, Naples yellow, zinc white and malachite has been reported to reduce 

to oxides by Chappé et al. (2003) and Pouli et al. (2003). Kenjo (1980) discussed the storage 

of pigments that are stable in normal atmospheric surroundings but are reduced in inert 

gases in atmospheres having low oxygen concentrations up to 4.5 to 5.5%. 

 

A comprehensive literature review of the behaviour of colourants in anoxia was presented 

by Thomas et al. (2009). 

 

The benefits and risks of anoxia for paper falls outside the scope of this research, although 

work continues in this area (Thomas 2011).  No comprehensive published study on the 

effect of anoxia on binding media is available.  

5.2 The pigments selected for study 
 

Often only one example of a pigment type is tested in any investigation, and the 

provenance and independent analysis of pigments in question is not always presented. It 

was hoped that this research would address these two issues to some degree. 

 

The pigment sample set was based on those pigments that had previously been reported to 

behave poorly in anoxia. The most important pigment considered for study was Prussian 

blue (dealt with in greater detail in chapter 4). Other important pigments chosen for the 

research were indigo, logwood, vermilion, cadmium yellows, lead chromates (chrome 

yellows), lead oxides (red lead and massicot/litharge) and madders on various substrates. 

 
All the pigments were prepared by Caspers (2008) by grinding with gum Arabic, diluting 

with distilled water and applying in a wash onto Ruscombe mill paper (or Whatman 

silversafe paper when stated).  Appendix E and Caspers (2008) detail the provenance of the 

samples collected, and the results of elemental and sometimes FTIR analysis used to 

confirm that they were as labeled. This group is styled as „characterised pigments‟. In a few 

cases, these screening methods did not serve to give a positive identification, e.g. for sepia. 

In these cases, examples that matched in terms expected EDX and published FTIR results 

were used, and less consistent samples of the same name were rejected from the set. If 
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strenuous efforts had not led to a group of three such pigments of the same type, the one 

or two examples are styled as „uncharacterised‟ here.   

 

No strict controls were placed on many variables originating from the historically informed 

reconstructions that could alter the rate of fading, such as the thickness of the paint layer 

tested, particle size or uniformity of colour of the paper substrate.  Variations in accelerated 

aging results are often due to differences in specimen preparation, surface irregularities, 

colour measurement and conditions of exposure (ASTM 2006). This variation led to a 

reduction in the repeatability of results and meant repeat measurements were required in 

order to distinguish variation in pigment behaviour between the various environments.  

 

Groups of pigments that were well characterised were brazilwood, cochineal, gamboge, 

indigo, madder, orpiment, Prussian green, sap green, vermilion, weld, Indian yellow, 

quercitron, cadmium, massicott, sepia, and zinc oxide.  Also thought as suitable grouping in 

terms of composition were lakes pigments, chromate pigments and iron oxides. 

 

Pigments that were poorly characterised were bister, black, buckthorns, brown pink, burnt 

umber, carmine, Van Dyke brown verditer, smalt, yellow ochre, lead white, red lead and  

Kopp‟s purpurine. 

 

Many of the pigments contained within this study independently warranted further analysis 

due to their reported photosensitivity. Schaeffer (2001) produced a list of light-sensitive 

traditional pigments in a review. The list contained vermilion, lead(II) oxide, lead chromate, 

copper greens, and Prussian blue (a selection of pigments with a strong overlap with those 

chosen for this anoxic research).  

 

Confusingly for the newcomer to pigments (in particular lake pigments) the use of the term 

substrate can lead to some confusion. Lake pigments are produced by precipitating 

colourants upon alumina, chalks or starch, or occasionally metal oxides of copper, iron or 

tin (all of which are known as substrates) (Eastaugh et al. 2004). This description of a lake 

pigment substrate is not to be confused with the alternative use to the term as used when 

referring to the material upon which any pigment is applied. 
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5.3 The experimental method 

 

Previous work in the field often lacks detailed information with respect to the degree of 

exposure that was incident to produce the colour changes reported.  Larger exposures 

make it possible to distinguish differences of behaviour because they become more 

apparent the greater that degree of colour change. In this research it was hoped to use light 

exposures that are equivalent and more representative of the 10 year period an art work 

may experience when contained within an anoxic frame (Townsend et al. 2008). 

 

To simulate the effect of modified environmental framing the fading characteristics of a 

large sample set was analysed using automated micro-fadometry using the technique as 

discussed in the previous chapter.  

 

Results of colour change for 1 hour of fading (corresponding to an exposure of 

approximately 93 kilojoules or 1.7x107 lux-hours) in air or anoxia were analysed for all 

pigments. This was done in order to appraise the degree of damage that had been induced 

by illumination. If a colour difference less than 1 ΔE00 was measured in both air and anoxia 

for this fade duration, the testing of the pigment was discontinued. A colour change on this 

scale was deemed not suitably significant and therefore any further information was not of 

concern. 

 

Those pigments that faded to a colour difference greater than 1 ΔE00 were further faded in 

oxygen concentrations of 0%, 5% and room atmospheric conditions (air). Fades were 

repeated 3 times, 3 times and 5 times respectively.  Repeats of the fade were necessary to 

obtain information and overcome the dominant uncertainty caused by sample non-

uniformity.  

 

The monitored spectrum is converted using the Commission International de l‟Eclairage 

(CIE) 1976 L*a*b* equation for the 2o standard observer under the standard illuminant 

D65.  The L*a*b* values were then used to calculate colour difference for the samples in 

CIEDE2000. All numerical data presented in this chapter is in these units. 
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5.4 Results 

 

For each pigment category results are grouped and tabled to summarise the investigation. 

They are arranged by common chemical type as analysed and not by label. If no standard 

deviations or colour difference values in 5% oxygen are displayed this is because the colour 

difference created in air and anoxia was than 1 ΔE00 for the individual pigment. In this case 

the values below 1 ΔE00 will be displayed for the behaviour in air and anoxia in the average 

cell of the table. 

 

To enable a comparison of final colour difference in air and anoxia and air and hypoxia 

comparative graphs of the pigments data set is also provided. Final colour differences after 

the hour exposure in a particular oxygen concentration are plotted on different axis to 

enable comparison for an entire pigment grouping. 

 

In all graphs the blue line represents the behaviour of the pigment in air. The pink line 

represents the behaviour in anoxia and the yellow line represents the behaviour in a 5% 

oxygen concentration. Every error bar shown represents ±1 standard deviation of the 

result.  

5.4.1 Fugitive characterised pigment groups 

 

Brazilwood 

 

Brazilwood is a red dyestuff derived from a particular genus of hard brown red wood trees. 

Results from the fading of this sample set can be seen in table 5.1. 

 

The main colouring matter present is brazilein (Eastaugh et al. 2004). An evident lack of 

colour permanence has been reported (Kirby and White 1996) (Ford 1992) (Padfield and 

Landi 1966). 

 

All pigments were considered likely to be brazilwood, given their provenance, but were not 

however independently verified. 

 

Brazilwood was shown to benefit from anoxia. Some benefit was still present when using a 

5% oxygen concentration.  
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Analysis indicated that the logwood lake (code NG10) was actually brazilwood on an Alum 

based substrate.  

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Brazilwood RK8 0.5 0.1 1.1 0.3 0.7 0.1 

Brazilwood, BR12 NG9 4.7 1.2 1.9 0.4 3.1 0.2 

Brazilwood and madder RC-ICN-BM 5.3 1 2.0 0.5 3.8 0.2 

Logwood lake NG10 2.4 0.2 1.6 0.3 1.6 0.1 

 

Table 5.1.The behaviour of brazilwood at the 3 oxygen concentrations. 

 

 

     

 

Figure 5.1. Brazilwood: colour difference in air and anoxia after the fade period (left) and a comparison of 

final colour difference in air and hypoxia for the same fade duration (right) 

 

 

The graphs below show the fading behaviour of the brazilwood pigments. Data is 

presented averaged with the standard deviation of the fades presented and also shown 

individually in separate plots. 

 

 

 



98 

 

 

 

 

 

 

Figure 5.2. The colour difference created over the duration of the fade for a brazilwood, BR12 (code NG9) 

pigment in the 3 different oxygen concentrations. The blue, pink and yellow lines represent fading in air, 

anoxia and 5% hypoxia respectively.  

 

 

 

 

Figure 5.3. Individual plots of the colour difference created over the duration of the fade for a brazilwood, 

BR12 (code NG9) pigment in the 3 different oxygen concentrations. 
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Figure 5.4. Colour difference measured with time for a brazilwood on potas (code RC-ICN-B2) pigment in 

3 oxygen concentrations. 

 

 

 

 

 

Figure 5.5. Individual plots of the colour difference measured with time for a brazilwood on a potassium-

based substrate (code RC-ICN-B2) pigment in 3 oxygen concentrations.  
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Figure 5.6. Colour difference measured over time for logwood lake (code NG 10) pigment in the 3 different 

oxygen concentrations. The error bars represent ±1 standard deviation of the 5 results from fading the 

pigment in air and anoxia. 

 

    

 

 

Figure 5.7. Individual plots of the colour difference measured over time for logwood lake (code NG 10) 

pigment in the 3 different oxygen concentrations.  
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Chromate pigments 

 

Chromates are a group of pigments of yellow/orange/red colours in which a variety of 

elements combine with chromate (CrO4) or dichromate (Cr2O7) ions (Eastaugh et al. 2004). 

Results from the fading of this sample set can be seen in table 5.2. 

 

Previous work indicates that chrome red (lead chromate (VI) oxide,  PbCrO4.Pb(OH)2) can 

be considered as lightfast (as has been found in here). This is in contrast to chrome yellow 

(lead chromate(VI) PbCrO4.Pb(OH)2 or lead chromate(VI) sulfate PbCrO4.xPbSO4) which 

are reported to darken to a brown on exposure to light (Kühn and Curran 1986) although 

only one of the chrome yellows displayed instability to light. 

 

Four chrome pigments analysed displayed little colour change. Mid chrome yellow 

displayed fading independent of oxygen concentration used during the process.  Fading 

independent of oxygen concentration for chrome yellow has previously been reported as 

discussed. 

 

Analysis found that Indian yellow (code NG4) was in fact a chrome yellow. 

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Chrome red OH11 0.4  0.2    

Chrome clair D&C 8/05 0.5  0.4    

Chrome yellow OH12 0.6  0.5    

Mid chrome yellow T TB12 2.0 0.5 1.9 0.2 2.0 0.1 

Indian yellow NG4 0.3  0.4    

 

Table 5.2. The behaviour of the chrome pigments at the 3 oxygen concentrations. 
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Figure 5.8. Chrome pigments: final colour difference in air and anoxia (left) and a comparison of final 

colour difference in air and hypoxia (right) No error bars are displayed for values below 1 colour difference 

unit as no repeat measurements were made for these values. 

 

The following graphs illustrate the fading behaviour of the pigments that showed colour 

change above 1 colour difference unit.  Results are both averaged with the standard 

deviation of the fades presented and also shown individually in separate plots. 

 

 

 

Figure 5.9. Fading behaviour of mid chrome yellow (code T TB12) pigment in different oxygen 

concentrations. The error bars represent ±1 standard deviation of the 5 results from fading the pigment in 

air.  
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Figure 5.10. Individual plots of the fading behaviour of mid chrome yellow (code T TB12) pigment in 

different oxygen concentrations.  

 

Cochineal 

 

Cochineal is a red dye stuff derived from species of scale insects (Eastaugh et al. 2004).  All 

samples were considered likely to be cochineal due to their provenance but were not 

independently verified. Results from the fading of this sample set can be seen in table 5.3. 

 

Cochineal has been reported to display a good degree of lightfastness (Harrison 1957) and 

is reported to become bluer on fading by Duff (1977) and Padfield and Landi (1966).  

 

Cochineal was shown to benefit from anoxia as has previously been reported. A benefit 

was still present when using a 5% oxygen concentration.  

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Cochineal lake CD 1b 0.9  0.2  0.3  

Cochineal on Al C1 1.3 0.1 0.2 0.1 0.6 0.1 

Cochineal lake C8 1.7 0.5 0.4 0.1 0.6 0.3 

 

Table 5.3. A summary of the behaviour of cochineal at the 3 oxygen concentrations. 
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Figure 5.11. Cochineal: final colour difference in air and anoxia (left) and a comparison of final colour 

difference in air and hypoxia (right) 

 

The graphs below show the fading behaviour of the cochineal pigments that showed 

colour change greater than 1 colour difference unit, both averaged with the standard 

deviation of the fades presented and also shown individually in separate plots. 

 

 

 

 

 

Figure 5.12. Fading curve of cochineal on alum (code C1) pigment in different oxygen concentrations. 
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Figure 5.13. Individual fading curves of cochineal on alum (code C1) pigment in different oxygen 

concentrations. 

 

 

 

 

 

 

Figure 5.14. Colour change for cochineal lake (code C8) pigment in different oxygen concentrations.  
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Figure 5.15. Individual colour changes for cochineal lake (code C8) pigment in different oxygen 

concentrations. 

 

Gamboge 

 

Gamboge is a brown resin derived from certain evergreen trees (Eastaugh et al. 2004). It is 

widely regarded as fugitive (Winter 2007) although the durability of the pigment varies 

between samples (Harley 2001). Results from the fading of this sample set can be seen in 

table 5.4. 

 

The sample set was light stable contrary to previous reports. Some benefit from anoxia 

over the fade duration was observed for gamboge (code MB A3) which was also contrary 

to previous reports; this clear benefit was still present when using a 5% oxygen 

concentration.  

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Gamboge RC ICN9 0.2  0.1    

Gamboge T TB3 0.3  0.2    

Gamboge NG WC3 0.4  0.2    

Gamboge NG1 0.5  0.2    

Gamboge TRS7 0.9 0.1 1.1 0.2 0.9 0.1 

Gamboge MB A3 1.1 0.1 0.5 0.1 0.6 0.1 

 

Table 5.4. The behaviour of the gamboge at the 3 oxygen concentrations. 
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Figure 5.16. Gamboge: final colour difference in air and anoxia (left) and a comparison of final colour 

difference in air and hypoxia (right) 

 

The graphs below illustrate the fading behaviour of the gamboge pigments that showed 

colour change greater than 1 ΔE00 in either air or anoxia. The graphs show the data both 

averaged with the standard deviation of the fades presented and also shown individually in 

separate plots. 

 

 

 

Figure 5.17. Fading behaviour of gamboge (code TRS7) pigment in different oxygen concentrations. The 

error bars represent ±1 standard deviation of the results from fading the pigment in air and anoxia.  



108 

 

 

 

 

 

 

Figure 5.18. Individual fading curves of gamboge (code TRS7) pigment in different oxygen concentrations.  

 

 

 

 

 

 

Figure 5.19. The colour difference measured over time for a gamboge (code MB A3) pigment in different 

oxygen concentrations.  
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Figure 5.20. The individual colour differences created from fading measured over time for a gamboge (code 

MB A3) pigment in different oxygen concentrations. 

 

 

Lake pigments 

 

Harrison (1957) describes a lake pigment as any coloured substance produced by the 

precipitation of an organic dyestuff onto a substrate, giving a pigment which is more or less 

translucent insoluble in the particular vehicle in which it is to be used and non-bleeding in 

water.  The fugitive nature of red and yellow lake pigments has been investigated and 

reported on by Saunders and Kirby (1994b). 

 

The lake pigments tested displayed a reduced degree of colour change in anoxia and this 

was also the case in hypoxia where a clear difference was observed. Results from the fading 

of this sample set can be seen in table 5.5. 

   

  Air 0% 5%  

NAME CODE Average St Dev Average St Dev Average St Dev Substrate 

Fine lake (red) CA18 0.8  0.5    Al 

Crimson lake T RR2 0.9  0.9    Al/Sn 

Green lake T R5 0.9  0.8    Al 

Brown/red lake T R10 1.9 0.3 0.8 0.3 0.8 0.2 Al 

Fustic lake (yellow) NG7 2.6 0.3 1.0 0.3 1.6 0.1 Al 

 

Table 5.5. A summary of the behaviour of lake pigments at the 3 oxygen concentrations. 
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Figure 5.21. Lake pigments: a comparison of final colour difference in air and anoxia (left) and a 

comparison of final colour difference in air and hypoxia (right) 

 

The following graphs illustrate the fading behaviour of the lake pigments that showed 

visible colour change, both averaged with the standard deviation of the fades presented and 

also shown individually in separate plots. 

 

 

 

Figure 5.22. The fading curve for a brown/red lake (code T R10) pigment in the 3 different oxygen 

concentrations.  
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Figure 5.23. The individual fading curves for a brown/red lake (code T R10) pigment in the 3 different 

oxygen concentrations. 

 

 

 

 

 

 

Figure 5.24. The fading curve for a yellow fustic lake (code NG7) pigment in the 3 different oxygen 

concentrations.  
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Figure 5.25. The individual fading curves for a yellow fustic lake (code NG7) pigment in the 3 different 

oxygen concentrations. 

 

Madder lakes 

 

Madder is a dyestuff derived from the root of the Rubiaceae species (Chenciner 2000). They 

are regarded as having good lightfastness (Schweppe and Winter 1997) and experiment has 

found them to be amongst the more stable of the red lakes see Saunders and Kirby (1994a) 

(1994b).  Results from the fading of this sample set can be seen in table 5.6. 

 

In the case of the madders tested, they were largely light stable confirming previous 

reports. Madder TTB14 was found to be a rose madder and showed clear benefit in both 

anoxia and hypoxia contrary to what has been previously been reported by Beltran et al. 

(2008), Russell and Abney (1888) and Brommelle (1964).  

 

Analysis indicated that Scarlet madder (code T TB1) was madder carmine. The substrate is 

shown in the final column. 
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  Air 0% 5%  

NAME CODE Average St Dev Average St Dev Average St Dev Substrate 

Rose madder RK9 0.3  0.1    Al 

Brown madder T TB 16 0.4  0.7    Sn 

Brown madder T TB5 0.5  1.0    Fe/Ca/Si 

Madder T TB4 0.5  0.3    Al/Cu 

Madder RK6 0.5  0.3    Al 

Garance cerise D&C 8/02 0.7  0.6    Al 

Scarlet madder T TB1 0.8  0.5    Al/Fe/Cu 

Madder carmine T PC6 0.8  0.5    Al 

Madder T TB14 2.4 0.2 0.5 0.2 1.2 0.2 Al 

      Madder    T TB2    0.5      0.1          Al 

 

Table 5.6. A summary of the behaviour of the madder lakes at the 3 oxygen concentrations. 

 

       

 

Figure 5.26. Madder lakes: a comparison of final colour difference in air and anoxia (left) and a 

comparison of final colour difference in air and hypoxia (right) 

 

The graphs below show the fading behaviour of the madder lakes with colour change 

greater than a colour difference unit, both averaged with the standard deviation of the 

fades presented and also shown individually in separate plots. 
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Figure 5.27. The colour difference measured over time for madder (code T TB14) pigment in the 3 different 

oxygen concentrations.  

 

 

 

 

Figure 5.28. The individual colour differences measured over time for Madder (code T TB14) pigment in 

the 3 different oxygen concentrations. 

 

Orpiment 

 

Orpiment is a yellow arsenic sulfide (As2S3) (Eastaugh et al. 2004).  Reports of the 

lightfastness of orpiment describe it as fading easily (Weber 1923), or to some degree after 

light exposure showing a yellow orange alteration. (Fitzhugh1997). Results from the fading 

of this sample set can be seen in table 5.7. 
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Although fugitive, no clear relationship was observed between the degree of fading and 

oxygen concentration, leading to the conclusion that the degradation pathway is likely to be 

independent of oxygen concentration. 

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Orpiment red CA20 2.1 1 1.6 0.7 1.3 0.5 

Kings yellow NG WC13 2.2 0.8 2.6 0.4 2.7 0.5 

Orpiment (yellow) CA13 4.8 1.2 5.5 0.3 4.9 0.4 

                  

Table 5.7. A summary of the behaviour of orpiment at the 3 oxygen concentrations. 

 

     

 

Figure 5.29. Orpiment: a comparison of final colour difference in air and anoxia (left) and a comparison of 

final colour difference in air and hypoxia (right) 

 

The graphs following show the fading behaviour of orpiment that showed colour change 

above 1 colour difference unit, both averaged with the standard deviation of the fades 

presented and also shown individually in separate plots. 

 

 

 

 



116 

 

 

 

 

 

 

Figure 5.30. The colour difference measured over time for orpiment red (code CA20) pigment in the 3 

different oxygen concentrations. 

 

  

 

 

 

Figure 5.31.The individual colour differences measured over time for orpiment red (code CA20) pigment in 

the 3 different oxygen concentrations. 
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Figure 5.32. The colour difference measured over time for kings yellow (code NG WC13) pigment in the 3 

different oxygen concentrations.  

 

 

 

 

 

 

Figure 5.33 The individual colour difference measured over time for kings yellow (code NG WC13) 

pigment in the 3 different oxygen concentrations. 
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Figure 5.34. The colour differences measured over time for orpiment yellow (code CA13) pigment in the 3 

different oxygen concentrations. 

 

 

 

 

 

Figure 5.35. The individual colour differences measured over time for orpiment yellow (code CA13) 

pigment in the 3 different oxygen concentrations.  

 

Prussian green 

 

Prussian green can be created via 2 methods; either by stopping the manufacturing process 

of Prussian blue at the stage when the sediment is green before adding hydrochloric acid to 

turn the pigment blue, or by combining Prussian blue with a yellow pigment such as yellow 
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ochre or gamboge (Eastaugh et al. 2004).  The latter process of combination was extremely 

dominant and the former can be regarded as insignificant (Harley 2001).  All the examples 

studied here included Prussian blue and nearly all also had a yellow pigment present. 

Results from the fading of this sample set can be seen in table 5.8. 

 

The behaviour of the pigment mirrored that reported for Prussian blue. Prussian green was 

a largely fugitive pigment and faded to a colour change that was greater in anoxia than air. 

The significance of the difference was reduced in 5% oxygen. 

 

Analysis of green lake showed it to be Prussian green containing Prussian blue. 

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Green lake T CA 7 2.8 1.2 4.9 0.8 3.8 0.2 

Prussian green MB BA2 0.4  0.4    

Prussian green MB A2 1.6 0.2 2.8 0.6 2.2 0.2 

Prussian green CA1 2.2 0.4 3.7 0.8 2.4 0.2 

                  

Table 5.8. A summary of the behaviour of Prussian greens at the 3 oxygen concentrations. 

 

 

      

 

Figure 5.36. Prussian greens: a comparison of final colour difference in air and anoxia (left) and a 

comparison of final colour difference in air and hypoxia (right) 
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The graphs following display results for Prussian green that showed visible colour change, 

both averaged with the standard deviation of the fades presented and also shown 

individually in separate plots. 

 

 

 

 

Figure 5.37. The colour difference measured over time for green lake (code CA7) pigment in the 3 different 

oxygen concentrations.  

 

 

 

 

Figure 5.38. The individual colour differences measured over time for green lake (code CA7) pigment in the 

3 different oxygen concentrations. 
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Figure 5.39. The colour difference measured over time for Prussian green (code MB A2) pigment in the 3 

different oxygen concentrations.  

 

 

 

 

 

 

Figure 5.40. The individual colour differences measured over time for Prussian green (code MB A2) 

pigment in the 3 different oxygen concentrations.  
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Figure 5.41. The colour difference measured over time for Prussian green (code CA1) pigment in the 3 

different oxygen concentrations. 

 

 

 

 

 

Figure 5.42. The individual colour differences measured over time for Prussian green (code CA1) pigment 

in the 3 different oxygen concentrations. 

 

Sap green 

 

Sap green is a green flavonoid dye derived from the ripe berries of the Rhamnus and 

Frangula species. The colour derived from chlorophyll (Mills and White 1994). Historically 
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sap green has been reported to be a problematic fugitive pigment (Harley 2001). Results 

from the fading of this sample set can be seen in table 5.9. 

 

The sap green pigments were largely fugitive. Any differences between the environments 

over this degree of fading are not clear within the variation in results observed. 

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Sap green OH1 2.8 0.5 3.0 0.4 2.8 0.1 

Sap green RK4 1.4 0.3 1.7 0.4 1.4 0.2 

Sap green RK5 2.9 0.4 3.6 0.5 3.0 0.1 

Sap green lake NG11 0.7  0.8    

 

Table 5.9. A summary of the behaviour of sap green at the 3 oxygen concentrations. 

 

      

 

Figure 5.43. Sap green: colour difference after an hour fade in air and anoxia (left) and a comparison of 

final colour difference in air and hypoxia (right) 

 

The graphs following show the fading behaviour of sap greens that showed visible colour 

change, both averaged with the standard deviation of the fades presented and also shown 

individually in separate plots. 
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Figure 5.44. The colour difference measured over time for a sap green (code OH1) pigment in different 

oxygen concentrations. The error bars represent ±1 standard deviation of the 5 results from fading the 

pigment in air.  

 

 

 

 

 

 

Figure 5.45. The individual colour differences measured over time for a sap green (code OH1) pigment in 

different oxygen concentrations. 
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Figure 5.46. The colour difference measured over time for a sap green (code RK4) pigment in different 

oxygen concentrations. The error bars represent ±1 standard deviation of the results from fading the 

pigment in air and anoxia. 

 

 

 

 

 

Figure 5.47.The individual colour differences measured over time for sap green (code RK4) pigment in 

different oxygen concentrations.  
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Figure 5.48. The colour difference measured over time for a sap green (code RK5) pigment in different 

oxygen concentrations. The error bars represent ±1 standard deviation of the results from fading the 

pigment in air and anoxia. 

 

 

 

 

Figure 5.49. The individual colour differences measured over time for a sap green (code RK5) pigment in 

different oxygen concentrations.  
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Vermilion 

 

The mineral cinnabar (mercury (II) sulphide) or vermilion pigment when processed has 

been widely reported to change colour to black (Eastaugh et al. 2004) and is not presently 

considered to be a permanent pigment (Schaeffer 2001) despite examples of stability 

(Gettens et al. 1993). Results from the fading of this sample set can be seen in table 5.10. 

 

The large numbers of vermillion pigments were overall rated highly fugitive. Studies cited 

in the introductory section also reported significant colour change: these findings imply 

that the fading of vermilion may be greater than expected at high irradiance, a point worthy 

of further study. Fading of pigment was independent of oxygen level as no greater degrees 

of fading were observed (as was the case in previous reports).  

 

Vermillion (code T RR4) faded to a greater degree in anoxia (although no result was clear 

within the variation observed), however this difference was removed in 5% oxygen and 

overall no difference between 5% oxygen and air was observed.   

 

Analysis indicated red (code T R11) was a vermilion and zinc white mixture. 

 

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

C. vermillion NG WC11 1.5 0.4 2.2 0.2 1.9 0.2 

Red T R11 2.0 0.1 2.2 0.2 1.9 0.1 

Vermilion T2 2.2 0.1 2.4 0.1 2.1 0.4 

Vermillion CA22 2.3 0.1 2.6 0.2 2.2 0.2 

Vermillion MB A7 3.2 0.2 3.7 0.1 3.5 0.3 

Vermillion 4 RC ICN8 5.0 0.6 4.9 0.5 4.8 0.1 

Vermilion T RR4 5.1 0.4 6.2 0.7 4.9 0.2 

 

Table 5.10. A summary of the behaviour of vermilion at the 3 oxygen concentrations. 
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Figure 5.50. Vermilion: the final colour difference in air and anoxia (left) and a comparison of final colour 

difference in air and hypoxia (right) 

 

The graphs below show the fading behaviour of vermilions that showed visible colour 

change, both averaged with the standard deviation of the fades presented and also shown 

individually in separate plots. 

 

 

 

Figure 5.51. The colour difference measured over time for C. vermillion (code NG WC11) pigment in the 

3 different oxygen concentrations.  
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Figure 5.52. The individual colour differences measured over time for C. vermillion (code NG WC11) 

pigment in the 3 different oxygen concentrations. 

 

 

 

 

 

Figure 5.53. The colour difference measured over time for a red (code TR11) pigment in the 3 different 

oxygen concentrations. The error bars represent ±1 standard deviation of the results from fading the 

pigment in air and anoxia.  
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Figure 5.54. The individual colour difference measured over time for a red (code TR11) pigment in the 3 

different oxygen concentrations 

 

 

 

 

 

 

 

 Figure 5.55. The colour difference measured over time for a vermillion (code 2T) pigment in the 3 different 

oxygen concentrations.  
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Figure 5.56. The individual colour differences measured over time for a vermillion (code 2T) pigment in the 

3 different oxygen concentrations. 

 

 

 

 

 

 

Figure 5.57. Colour difference measured with time for a vermillion (code CA22) pigment in the 3 different 

oxygen concentrations. The error bars represent ±1 standard deviation of the results from fading the 

pigment in air and anoxia.  
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Figure 5.58. The individual colour difference measured with time for a vermillion (code CA22) pigment in 

the 3 different oxygen concentrations. 

 

 

 

 

 

  

Figure 5.59. The colour difference measured over time for a vermillion (code MB A7) pigment in the 3 

different oxygen concentrations. The error bars represent ±1 standard deviation of the results from fading 

the pigment in air and anoxia.  
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Figure 5.60. The individual colour difference measured over time for a vermillion (code MB A7) pigment in 

the 3 different oxygen concentrations. 

 

 

 

 

 

 

Figure 5.61. The colour difference measured over time for a vermillion 4 (code RC ICN8) pigment in the 3 

different oxygen concentrations. The error bars represent ±1 standard deviation of the 5 results from fading 

the pigment in air.  
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Figure 5.62. The individual colour difference measured over time for a vermillion 4 (code RC ICN8) 

pigment in the 3 different oxygen concentrations. 

 

 

 

 

 

 

Figure 5.63. The colour difference measured over time for a vermillion (code  T RR4) pigment in the 3 

different oxygen concentrations. The error bars represent ±1 standard deviation of the 5 results from fading 

the pigment in air and anoxia.  
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Figure 5.64. The individual colour difference measured over time for a vermillion (code  T RR4) pigment in 

the 3 different oxygen concentrations. 

 

 

Weld 

 

A yellow flavonoid dye derived from Reseda luteola or the dyers herb (Eastaugh et al. 2004). 

Weld is the most lightfast bright yellow natural dye (Crews 1987) and has been found to 

have a lightfastness similar to that of ISO Blue Wool 3 and fades without a change in hue 

(Padfield and Landi 1966). Weld (code NG2) has been shown to be fugitive by Saunders 

and Kirby (1994b). Results from the fading of this sample set can be seen in table 5.11. 

 

A similar level of stability to that previously reported was observed for a number of the 

weld pigments tested. A clear benefit was observed for weld in anoxia and this was also the 

case in hypoxia although the benefit was slightly reduced. 

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

weld RK2 0.4  0.3    

weld RK1 0.9  0.4    

weld lake NG3 2.6 0.3 0.8 0.1 1.3 0.3 

weld NG2 3.2 0.6 1.1 0.6 2.2 0.4 

 

Table 5.11. A summary of the behaviour of weld at the 3 oxygen concentrations. 
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Figure 5.65. Weld: a comparison of final colour difference in air and anoxia (left) and a comparison of 

final colour difference in air and hypoxia (right) 

 

The graphs below show the fading behaviour of weld pigments with significant colour 

change, both averaged with the standard deviation of the fades presented and also shown 

individually in separate plots. 

 

 

 

Figure 5.66. The colour difference measured over time for a weld lake (code NG3) pigment in the 3 

different oxygen concentrations.  
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Figure 5.67. The individual colour differences measured over time for a weld lake (code NG3) pigment in 

the 3 different oxygen concentrations. 

 

 

 

 

 

 

Figure 5.68. The colour difference measured over time for a weld (code NG2) pigment in the 3 different 

oxygen concentrations. 
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Figure 5.69. The individual colour differences measured over time for a weld (code NG2) pigment in the 3 

different oxygen concentrations. 

 

5.4.2 Light stable characterised pigment groups  

 

 Cadmium group 

 

The cadmium group contains cadmium sulfide, early forms of which were reported to 

darken due to light exposure, this was thought due to impurities and additives. Later 

pigments in dark red and brown shades were greatly improved and were considered 

permanent as has been found here (Fiedler and Bayard 1986). Results from the fading of 

this sample set can be seen in table 5.12. 

 

NAME CODE Air Anoxia 

Cadmium yellow RK12 0.2 0.1 

Cadmium orange RK10 0.2 0.2 

 

Table 5.12. The behaviour of cadmium yellows at the 2 oxygen concentrations. 

 

Emerald green 

 

Emerald green most commonly refers to copper aceto arsenite 3Cu(AsO2)2 Cu(CH3COO)2. 

Sources consider emerald green to be light stable (as has been found here). Historically it 

was considered unstable due to susceptibility to pollution. Russell and Abney (1888) found 
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the pigment to fade slightly towards brown on exposure (Fiedler and Bayard 1997).  Results 

from the fading of this sample set can be seen in table 5.13. 

 

 

NAME CODE Air Anoxia 

Green T RS2 0.2 0.3 

Green T R9 0.5 0.8 

 

Table 5.13. The behaviour of emerald green at the 2 oxygen concentrations. 

 

Indian Yellow  

 

Indian yellow is a complex compound derived from the urine of cows fed on mango 

leaves, the colouration coming from calcium and magnesium salts of euxanthic acid 

(Eastaugh et al. 2004).  Reports of good stability in watercolours are reported. Experimental 

evidence indicates the pigment has stability on a par with ISO Blue Wool 5-6 (Baer et al. 

1986). Results from the fading of this sample set can be seen in table 5.14. 

 

 

.  

NAME CODE Air Anoxia  

Indian yellow NG WC6 0.5 0.4  

Yellow lake TR7 0.2 0.2 

 

Table 5.14. The behaviour of genuine Indian yellow at the 2 oxygen concentrations. 

 

Indigo 

 

Indigo is a blue dye derived from the leaves of the Indigofera species (Eastaugh et al. 2004) 

and is one of the most stable natural dyes (Crews 1987). 

 

The sample set was light stable as has been previously reported. The degree of fading 

seemed to be largely unaffected by anoxia over the fade duration as had also previously 

been reported.  

 

MvEH1 was found to be natural indigo and MB A6 was found to be a synthetic indigo. 
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Results from the fading of this sample set can be seen in table 5.15. 

 

 

NAME CODE Air Anoxia 

Indigo OH14 0.3 0.3 

Indigo 2 MvEH1 0.4 0.2 

Indigo T PC5 0.4 0.4 

Indigo T3 0.4 0.4 

Indigo MB A6 0.5 0.4 

Natural indigo RC ICN3 0.7 0.2 

 

Table 5.15. The behaviour of indigo at the 2 oxygen concentrations. 

  

Iron oxides 

 

Indian red TRR3 was a natural iron oxide; the colour was originally derived from a purple 

ochre in the Persian gulf. Iron oxides have long been considered among the very most 

permanent of pigments available (Helwig 2007) as was the case in this research. 

 

Analysis indicated that light red (TRS10) was a synthetic iron oxide. Results from the 

fading of this sample set can be seen in table 5.16. 

 

 

NAME CODE Air Anoxia 

Light red T RS10 0.1 0.4 

Indian red T RR3 0.2 0.2 

 

Table 5.16. The behaviour of iron oxides at the 2 oxygen concentrations. 

 

Massicot 

Massicot refers to an orthorhombic lead (II) oxide mineral (PbO) and is derived from a 

yellow material found associated with iron ore deposits (Eastaugh et al. 2004). It is 

considered as a chemically stable compound (Petushkova and Lyalikova 1986). Results 

from the fading of this sample set can be seen in table 5.17. 
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NAME CODE Air Anoxia 

Mineral yellow CA23 0.3 0.2 

Jaune de Naples D&C 8/07 0.8 0.7 

Naples yellow RK11 0.1 0.2 

 

Table 5.17. The behaviour of massicot at the 2 oxygen concentrations. 

 

Quercitron 

 

A yellow naturally occurring dye derived from the bark of the black oak. The major 

colouring matter being the flavonoid dyestuff quercetin (Eastaugh et al. 2004). Quercitron is 

reported to redden before fading (Duff 1977) or darken before fading (Padfield and Landi 

1966). Feller (1963) found the pigment to be fugitive to an ISO Blue Wool level of 2-4., a 

result not observed here. Results from the fading of this sample set can be seen in table 

5.18. 

 

NAME CODE Air Anoxia Substrate 

Quercitron lake 1 NG8 0.5 0.7 Al 

Quercitron lake 2 NG Q2 0.6 0.9  

Ackermann's yellow NG WC4 0.8 0.6  

 

Table 5.18. The behaviour of quercitron at the 2 oxygen concentrations. 

 

Sepia 

 

Sepia is derived from the ink sac of the cuttle fish and other cephalopods, the pigment 

produced contains melanin (Eastaugh et al. 2004). Feller (1963) found sepia paint to be 

fugitive to an ISO Blue Wool level of 4-5 (not contradicted here). Results from the fading 

of this sample set can be seen in table 5.19. 

  

NAME CODE Air Anoxia 

Sepia 12400 T PC10 0.6 0.6 

Sepia RK15 0.7 0.4 

Sepia CA12 0.8 0.6 

 

Table 5.19. The behaviour of sepia at the 2 oxygen concentrations. 
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Zinc oxide 

Chinese white is a more opaque variety of zinc oxide. Similar to what has been observed 

here, during aging zinc whites in watercolour tend to maintain colour and not yellow 

(Kühn 1986). Results from the fading of this sample set can be seen in table 5.20. 

 

NAME CODE Air Anoxia 

Zinc white MoL 1 0.3 0.3 

Zinc white HKI 16 0.5 0.5 

Chinese white MoL 3 0.6 0.2 

Zinc white SO/11 0.7 0.7 

Chinese white  MoL 2 0.7 0.6 

 

Table 5.20. The behaviour of the zinc white at the 2 oxygen concentrations. 

 

5.4.3 Poorly identified pigments 

 
A number of pigments could not be well characterised by the screening methods used here, 

or else two samples of equally good provenance gave conflicting analytical results. Being 

the best samples obtainable from a thorough search they were tested nonetheless and the 

results are presented here. 

 

Bister  

The black pigment of bister was historically prepared from wood soot (beechwood was 

preferred) (Eastaugh et al. 2004). Carbon based pigments are widely reported to be 

unaffected by light, although bister in particular may lighten with time due to oxidation 

(Winter and Fitzhugh 2007). Results from the fading of this sample set can be seen in table 

5.21. 

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Bister NG WC9 1.0 0.1 1.4 0.1 1.2 0.2 

 

Table 5.21. The behaviour of bister at the 3 oxygen concentrations. 

 

The graphs below show the fading behaviour of the pigment both averaged with the 

standard deviation of the fades presented and also shown individually in separate plots. 
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Figure 5.70. The colour difference measured over time for Bistre (code NG WC9) pigment in the 3 

different oxygen concentrations.  

 

 

 

 

Figure 5.71. The individual colour difference measured over time for Bister (code NG WC9) pigment in 

the 3 different oxygen concentrations. 

 

Bone Black  

 

Created by the burning of bone, this black is usually calcium phosphate 

Ca5(PO4)3x(CO3)xOHx+1 (Reich et al., 2002). Results from the fading of this sample set can 

be seen in table 5.22. 
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  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Carbon black T RS3 1.0 0.1 1.3 0.1 1.1 0.1 

 

Table 5.22. A summary of the behaviour of bone black at the 3 oxygen concentrations. 

 

The graphs below show the fading behaviour of bone black, both averaged with the 

standard deviation of the fades presented and also shown individually in separate plots. 

 

 

Figure 5.72. The colour difference measured over time for a black (code TRS3) pigment in the 3 different 

oxygen concentrations. The error bars represent ±1 standard deviation of the results from fading the 

pigment in air and anoxia.  

 

 

Figure 5.73. The individual colour difference measured over time for a black (code TRS3) pigment in the 3 

different oxygen concentrations.  
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Buckthorns  

 

A yellow or green flavonoid dye derived from the berries of the buckthorn tree and other 

Rhamnus and Frangula species (Eastaugh et al. 2004).  Examples of the fading of yellow 

buckthorn lake pigments have been summarised by Saunders and Kirby (1994b) where the 

important role of substrate on the degree of fading was made evident.  Padfield and Landi 

(1966) tested dyes from the Rhaimnus saxatilis and Rhamnus utilis and found them to possess 

poor lightfastness similar to Blue Wool 1 or 2.  Results from the fading of this sample set 

can be seen in table 5.23. 

 
The buckthorn pigments showed little colour change (contrary to previous findings for 

buckthorn based pigments). The small colour difference observed for buckthorn lake (code 

NG5) was higher after fading in anoxia rather than air. This result seemed to show 

improvement when using a 5% oxygen concentration. Analysis indicated RK5 and NG5 

were non standard buckthorn. NGB differed from NG5.  

 

  Air 0% 5% 

NAME ODE Average St Dev Average St Dev Average St Dev 

Buckthorn yellow RK3 0.4  0.8    

Buckthorn on alumina NG B 0.8  0.8    

Buckthorn lake NG5 0.8 0.1 1.4 0.1 0.9 0.1 

 

Table 5.23. A summary of the behaviour of buckthorns at the 3 oxygen concentrations. 
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Figure 5.74. Buckthorn; final colour difference in air and anoxia (left) and a comparison of final colour 

difference in air and hypoxia (right). 

 

The graphs below show the fading behaviour of buckthorn lake code NG5 both averaged 

with the standard deviation of the fades presented and also shown individually in separate 

plots. 

 

 

 

Figure 5.75. The fading curves of buckthorn lake (code NG5) pigment in 3 different oxygen 

concentrations.  
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Figure 5.76. The individual fading curves of buckthorn lake (code NG5) pigment in 3 different oxygen 

concentrations. 

 

Van Dyke Brown  

 

A particular brown earth containing iron oxide, a hydrate and humus or bituminous matter 

is most commonly referred to as the compound from which Van Dyke brown is derived 

(Eastaugh et al. 2004). When considering modern research into the lightfastness of the 

pigment results indicates a tendency to fade with an intermediate lightfastness. (Feller and 

Johnston-Feller 1997). Results from the fading of this sample can be seen in table 5.24. 

 

The Van Dyke brown analysed clearly displayed colour difference over the fade duration 

independent of oxygen level. 

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Van Dyke brown T RS9 1.4 0.2 1.6 0.2 1.5 0.2 

 

Table 5.24. The fading behaviour of Van Dyke brown code (T RS9) in 3 different oxygen concentrations. 

 

The graphs below show the fading behaviour of the pigment both averaged with the 

standard deviation of the fades presented and also shown individually in separate plots. 
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Figure 5.77. The colour difference measured over time for Van Dyke brown (code T RS9). The error bars 

represent ±1 standard deviation of the results from fading the pigment in air.  

 

 

 

 

Figure 5.78. The individual colour difference measured over time for Van Dyke brown (code T RS9).  

 

Verditer 

 

Verditer is a synthetic copper carbonate hydroxide pigment and has the same chemistry as 

the natural malachite and azurite pigments (which it was synthesized to replace) (Eastaugh 

et al. 2004). The pigment is regarded as moderately permanent as evidence suggests. Results 

from the fading of this sample can be seen in table 5.25. 
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No relationship between oxygen concentration and the degree of fade duration was 

observed in the case of verditer.  

 

  Air 0% 5% 

NAME CODE Average St Dev Average St Dev Average St Dev 

Verditer CA21 2.2 0.3 1.7 0.8 2.2 1.1 

 

Table 5.25. A summary of the behaviour of verditer at the 3 oxygen concentrations. 

 

The graphs below show the fading behaviour of the pigment both averaged with the 

standard deviation of the fades presented and also shown individually in separate plots. 

 

 

 

 

 

 

 

Figure 5.79. The colour difference measured over time for verditer (code CA21) pigment in the 3 different 

oxygen concentrations. The error bars represent ±1 standard deviation of the results from fading the 

pigment in air.  
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Figure 5.80.The individual colour difference measured over time for verditer (code CA21) pigment in the 3 

different oxygen concentrations. 

5.4.4 Uncharacterised stable pigments 

 

 Burnt Umber 

 

The brown pigment of burnt umber is created by roasting raw umber (a naturally occurring 

mineral) (Weber 1923).  It is permanent and therefore suitable for use as a watercolour 

pigment (Harley 2001). 

 

Results from the fading of this sample can be seen in table 5.26. Analysis indicated the 

sample was produced from a natural umber. 

 

NAME CODE Air Anoxia 

Burnt Umber T RR7 0.2 0.2 

 

Table 5.26. The behaviour of burnt umber at the 2 oxygen concentrations. 

 

Brown Pink  

 

Brown pink is a yellow pigment derived from the berries of the Avignon (Rhamnus 

infectorius) (Salter 1869) and one would expect the pigment to be fugitive (Levison 1976). 

Results from the fading of this sample can be seen in table 5.27. 
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NAME CODE Air Anoxia 

Brown pink MB A4 0.8 0.4 

 

Table 5.27. The behaviour of brown pink at the 2 oxygen concentrations. 

 

Carmines  

 

Carmine can be regarded as a cochineal lake (since the end of the 17th century). Cochineal is 

a red dye stuff derived from species of scale insects and exhibits a high degree of 

lightfastness (Schweppe and Rooosen-Runge 1986). Watercolours based on carmine have 

been found to exhibit a lightfastness of 1 or 2 on the ISO Blue Wool scale (Feller 1963). 

Results from the fading of this sample set can be seen in table 5.28. 

 

 

NAME CODE Air Anoxia Substrate 

Carmine extra D&C 8/08 0.5 0.4 Al and/or Ca 

Carmine OH13 0.6 0.5 Al 

 

Table 5.28. The behaviour of carmine at the 2 oxygen concentrations. 

 

Kopp’s Purpurin 

 

Purpurine is 1,2,4-trihydroxyanthraquinone and is found in dye stuffs derived from the 

Rubiacaea species (madder). Kopp‟s Purpurin is produced when the madder is soaked and 

heated in sulfuric acid (Eastaugh et al. 2004). Despite remaining relatively stable in work by 

Russell and Abney (1888) the pigment would be expected to fade Levison (1976). 

 

The conclusion of analysis indicated the pigment was synthetic. Results from the fading of 

this sample can be seen in table 5.29. 

 

 

NAME CODE Air Anoxia Substrate 

Kopp's purpurine RC-ICN-M2 0.7 0.2 Al 

 

Table 5.29. The behaviour of Kopp's purpurine at the 2 oxygen concentrations. 
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Lead White 

 

Lead white is a manufactured and synthesized pigment and normally refers to lead 

carbonate hydroxide (2PbCO3.Pb(OH)2) (Eastaugh et al. 2004). The pigment has a record 

of permanence and is not affected by light (Gettens et al. 1993). Results from the fading of 

this sample can be seen in table 5.30. 

. 

 

NAME CODE Air Anoxia 

Lead white CA24 0.8 0.5 

 

Table 5.30. The behaviour of lead white at the 2 oxygen concentrations. 

 

Red Lead  

 

Red lead is lead tetroxide (Pb3O3) and is derived from a material found surrounding lead 

ore deposits (Eastaugh et al. 2004). It is considered unsuitable as a watercolour pigment due 

to its lightfastness and is reported to change colour to a brown or black (Fitzhugh 1986). 

Results from the fading of this sample can be seen in table 5.31. 

 

 

NAME CODE Air Anoxia 

Rouge de Saturne D&C 8/04 0.2 0.2 

 

Table 5.31. The behaviour of red lead at the 2 oxygen concentrations. 

 

Smalt 

 

Smalt is cobalt doped glass. It is considered to be light stable unless improperly prepared 

though in oil medium it can lose colour. There are examples of the pigment showing 

fugitive behavior (Mühlethaler and Thissen 1993). Results from the fading of this sample 

can be seen in table 5.32. 

 

NAME CODE Air Anoxia 

Smalt MB3 0.5 0.5 

 

Table 5.32. The behaviour of smalt at the 2 oxygen concentrations. 
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Yellow Ochre 

 

Yellow ochre contains the colouring matter iron oxide hydroxide goethite (Eastaugh et al. 

2004). As an ochre the pigment can be considered as reliably lightfast (Levison 1976). 

 

Results from the fading of this sample set can be seen in table 5.33. Analysis indicated this 

pigment was derived from a naturally occurring earth pigment.  

 

NAME CODE Air Anoxia 

Yellow ochre T RS4 0.4 0.7 

  

Table 5.33. The behaviour of yellow ochre at the 2 oxygen concentrations. 

5.5 Discussion 

 

Of the well characterised pigments, brazilwood, gamboge, madder, weld cochineal and the 

lake pigments all benefited (showed reduced fading) in anoxia and the benefits observed 

were still present in hypoxia.  

 

The characterised pigment of Prussian green performed poorly in anoxia, however this 

damage was reduced significantly in an hypoxic environment. The uncharacterised 

pigments that exhibited this behaviour were bister and buckthorn. 

 

In the case of the chromate pigments, sap green, orpiment and vermillion no difference 

was observed due to the presence of oxygen with regards to the degree of damage caused 

by the fading. Therefore the fading of the pigments were independent of oxygen 

concentration. The uncharacterised pigments that exhibited the same behaviour were Van 

Dyke brown and verditer. 

 

A large number of pigments displayed a low sensitivity to light in either air or anoxia, this 

higher stability would lessen the effect that the exclusion of oxygen would have on the 

sample.  Those characterised pigment groups that did not display any visible colour 

difference due to the fading process were the cadmium group of pigments, emerald green, 

Indian yellow, indigo, iron oxides, massicot, quercitron, sepia and zinc oxide. All these 
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displayed no visible change. The uncharacterised pigments that also displayed this 

behaviour were black, burnt umber, brown pink, carmines, Kopps‟ purpurine, lead white, 

red lead, smalt and yellow ochre. 

 

Vermillion illustrated a low level of light stability agreeing well with previous findings for 

the pigment. Brazilwood also displayed a low degree of stability as did sap green. 

 

The colour differences due to the use of altered oxygen content over this degree of 

exposure are subtle and at no point has the colour change observed been catastrophic for 

the pigment under test. This result is important as it can be considered as justification for 

the use of monitored anoxic framing of watercolours.  

 

The pigments fading behaviour was often altered by the 5% oxygen concentration, usually 

performing in a similar way to the behaviour in air (although this was not always the case). 

Interestingly this result is a significant departure from that as discussed in the introduction; 

that the degree of oxidative degradation of most organic pigments would show little or no 

decrease in the rate of degradation until an oxygen level of parts per million was achieved. 

The finding of this research is similar to the later work of Arney et al. (1979) whose results 

indicated the relationship was dependent upon the sample under test. 

 

With the large quantity of data acquired and numerous examples of the same type of 

pigment tested, clear patterns were observed. The variation sometimes seen in the degree of 

fading for an individual group of pigments indicate that caution should be employed when 

making overarching statements about a particular pigment type stability.  

 

Often a large variation in the degree of fading was created by variation in the sample. This 

error was often significant and resulted in a degree of variation that often made differences 

created by altering the atmosphere unobservable. This spread in data could aid a strong 

case for increasing the size of the sampling spot size. 
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6 Conclusions 

In this thesis, a micro-fading instrument that addresses and corrects the problems as 

summarised by Neeval (2008) has been presented and employed that enables the 

investigation of photosensitive samples and works of art.  Several new experimental 

methods have been illustrated. 

 

The instrument demonstrates increased structural stability increasing the portability over an 

earlier design, broadening the scope of locations at which data can be acquired, enabling 

insitu investigation of light sensitivity.  This enables more informed decisions on light 

sensitivity to be made. Increased precision of probe positioning relative to the sample, 

homogeneity of illumination across the faded area, controlled intensity at the illuminated 

surface from the lamp, and an ease of confocal probe alignment are present in the new 

design. Two different measurement methods indicate a temperature increase of 3 to 4 

degrees during fading experiments, an improvement on the degree of increase previously 

reported. 

 

An investigation of the error in colour measurement and colour difference calculations 

produced by small differences in position, indicated that alignment by eye may be a 

significant cause of error in measurements.  

 

Incorporating a linear variable filter enables the investigation of the wavelength 

dependence of fading of many samples to a greater resolution than previously attempted, 

and the novel wavelength dependent technique has been shown to produce repeatable data 

that compares very well with previous research conducted in the same area using other 

techniques.  

 

The wavelength dependence of fading for the samples tested correlates well with the 

absorption spectra although exceptions were found when testing Prussian blue, where 

fading decreases with the wavelength of incident radiation (possibly due to photosensitized 

fading). There is an apparent cut off wavelength at 550nm. Below this wavelength Prussian 

blue  photo-degradation occurs.  If this behaviour extends to other Prussian blues, 

reducing lighting levels below the cutoff wavelength could significantly reduce damage 

typically associated with anoxic storage environments for this pigment. As it is possible to 

state that as only photons with wavelengths below 550nm seem to induce the damage 



156 

 

observed an activation energy of 218kJ/mol or approximately 2.3eV per photon is required 

to initiate the possible photosensitized fading of the Prussian blue. 

 

Filtering the blue end of the visible spectrum has been previously suggested in numerous 

publications including Hilbert (1987), Harrison (1953), and Cuttle (1988) and the 

application of a “yellow filter” removing light from the ultraviolet region up to 460nm was 

employed by the United States Library of Congress (National Bureau of Standards 1951) 

(Nicholson and Ritzenthaler 2005). This method would be of benefit in the case of 

Prussian blue in anoxia.  

 

By mathematically simulating an alteration of illumination it is possible to indicate how 

harmful any filtering of the illuminant would be on colour perception. Comparisons 

between pigment spectra with and without filtering of the D65 illuminant were made and 

the colour difference created by such filtering was calculated in ΔE00 units for blue and 

white pigments. For a blue pigment removing illumination below 420nm would result in an 

observed colour difference of less than 1 ΔE00 and if removing illumination below 430nm a 

resulting colour difference of less than 3.5 ΔE00 would be observed. When analysing a 

white pigment cutting radiation below 420 nm would produce a colour difference of 

approximately 3 ΔE00 units and over 8 ΔE00 units was the calculated result for a cut-off at 

430nm.  This indicated the degree of fading could be greatly reduced by filtering below 

420nm with a limited alteration to the perceived colour. The difference would be too great 

if filtering was extended to 430nm. As all these calculations are concerned with blue and 

white pigments, the degree of observed colour difference created by such filtering would be 

at its greatest for these colours and much reduced for many others. Colour rendering (see 

CIE 1995b) when cutting illumination below 420nm remains within acceptable limits 

producing a General Color Rendering Index (Ra) of 99. 

 

The fading and reversion behaviour of a traditional Prussian blue pigment ground in gum 

Arabic was investigated at 0%, 2%, 3.5%, 5%, 10% or 21% oxygen concentrations.  Results 

indicated that the deleterious effects of hypoxia may only become relevant at low oxygen 

concentrations (beginning at an hypoxic oxygen level above 2% and below 3.5%), and that 

relatively low concentrations of oxygen (around 5%) may be tolerated by Prussian-blue 

containing works of art.   

 

When the study in this pattern of behaviour was extended to a larger number of traditional 

Prussian blues and the behaviour of the pigment at 0% and 5% oxygen was compared to 
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behaviour in room atmosphere, it is indicated that a 5% oxygen concentration is widely 

applicable to a variety of Prussian blue pigments. Results also indicated that anoxic storage 

is more damaging for Prussian blue than air or 5% hypoxic storage.  

 

An investigation of the effect of housing in anoxia and 5% hypoxia was extended to most 

traditional watercolour pigments. This revealed encouraging results to overcoming some of 

the problems of reduced oxygen storage for a wider variety of watercolour pigments.  A 

large sample set was employed when possible to constitute many variants of the same 

pigment type. 

 

Results led to the classification of pigment behaviour into 4 groups; those pigment which 

showed reduced fading in anoxia, where the benefits observed were still present in hypoxia. 

Those that faded to a greater degree in anoxia, where this damage was reduced significantly 

in an hypoxic environment. Those for which fading was independent of oxygen 

concentration and also pigments which displayed a low sensitivity to light in either air or 

anoxia. 

At no point was the colour change “catastrophic” indicating that monitored trials of anoxic 

or hypoxic framing for watercolours works are justifiable via the data.  
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Appendix 

 

A  Parts list 
 

Item name / product 
Code (if 

applicable) Qty 
Cost Total in  

1999 Supplier address 

Metric Single Axis Translation Stage PT1/M 2 £336.15 www.thorlabs.com 

PT-Series Angle Bracket PT102/M 1 £44.55 www.newport.com 

Translation stage mount PT101 1 £10.13 www.thorlabs.com 

Motorised single axis translation stage PT1/M-Z6 1 £381.38 www.thorlabs.com 

ASTD T-Cube DC Servo Controller TDC001 1 £337.50 www.thorlabs.com 

T-cube 15V Power supply TPS001 1 £13.50 www.thorlabs.com 

Matched Achromatic Pairs MAP105075-A1 2 £270 www.thorlabs.com 

SM1 to SMA Fiber adapter SM1SMA 2  £39 www.newport.com 

SM1 lens tube 3" long (one SMIRR 
included 1 inch diameter) SMIL30 2 £39 www.thorlabs.com 

Set  of 4 swivel couplers C2A 1 £208 
 

www.thorlabs.com 

30mm cage plate 1" threaded CP02 2 £24.68 www.thorlabs.com 

Cage assembly rod 3"  6mm ER3 4  £26.12 www.thorlabs.com 

Cage assembly rod 8"  6mm ER8 4 £29.84 www.thorlabs.com 

HPX2000 Lightsource HPX2000 1 £3,112.00 www.thorlabs.com 

Mounting cube with clearance holes C6W 2 £88.50 www.thorlabs.com 

Avantes Model AvaSpec-2048 Fiber 
Optic Spectrometer AvaSpec-2048 1 £1,511 www.avantes.com 

UV Detector Coating DUV 1 £169 www.avantes.com 

Order Sorting Coating OSC 1 £104 www.avantes.com 

Slit-50 Slit 1 £104 www.avantes.com 

Detector Collection Lens DCL-UV/VIS 1 £90.00 www.avantes.com 

Solarization resistant optical fiber P600-2-SR 2 £240.00 
 
www.thorlabs.com 

Extended Hot Mirror EHR-1.00 1 £59 www.cvilaser.com 

Optical Breadboards  Performance 
Series I Breadboard - 600x300x60mm PBH51502 1 £296.00 www.thorlabs.com 

150 mm Travel, Light-Duty, 
Motorized Linear Stage (Metric) NRT150/M 2 £2548.94 www.thorlabs.com 

3 Unmounted Ø1" Absorptive ND 
Filters 

NE10B, NE20B 
NE30B 3 £83.25 www.thorlabs.com 

APT Benchtop 2-Ch Stepper Motor 
Controller MST601 1 £1,249.20 www.thorlabs.com 
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B.  Accuracy measurements 

 

This data set is summarised in table 1 in section 2.4.  Note that the standard deviation 

provided is an equivalent standard deviation due to the data not displaying a normal 

distribution. This is calculated by dividing the maximum value of deviation by the cube 

root of 3. 

  

 

 

Testing different locations on the same sample and refocusing at each location. 
 

  
Smooth 

 

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 99.95 0.03 -0.02 0 0 0 0 0 
 99.98 0.18 -0.09 0.03 0.15 0.07 0.17 0.23 
 99.9 0.18 -0.32 -0.05 0.15 0.3 0.34 0.37 
 100.22 0.19 -0.11 0.27 0.16 0.09 0.33 0.3 
 100.22 0.07 -0.09 0.27 0.04 0.07 0.28 0.18 
 100.36 0.06 -0.04 0.41 0.03 0.02 0.41 0.24 
 100.4 0.13 -0.08 0.45 0.1 0.06 0.46 0.3 
 100.47 0.15 -0.11 0.52 0.12 0.09 0.54 0.36 
 100.53 0.11 -0.1 0.58 0.08 0.08 0.59 0.36 
 100.55 0.14 -0.08 0.6 0.11 0.06 0.61 0.38 
 Maximum 100.55 0.19 -0.02 0.6 0.16 0.3 0.61 0.38 
 Std dev       0.42 0.11 0.21 0.42 0.26 
 

 

  
Diffuse 

 

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 99.87 0.07 -0.31 0 0 0 0 0 
 99.75 0.13 -0.27 -0.12 0.06 -0.04 0.14 0.12 
 99.64 0.07 -0.65 -0.23 0 0.34 0.41 0.36 
 99.3 -0.03 -0.22 -0.57 -0.1 -0.09 0.59 0.37 
 100.01 0.01 -0.17 0.14 -0.06 -0.14 0.21 0.18 
 100.19 0.09 -0.56 0.32 0.02 0.25 0.41 0.31 
 99.09 0.01 -0.54 -0.78 -0.06 0.23 0.82 0.51 
 100 -0.1 -0.25 0.13 -0.17 -0.06 0.22 0.27 
 100.63 0.1 -0.46 0.76 0.03 0.15 0.78 0.46 
 99.29 -0.11 -0.11 -0.58 -0.18 -0.2 0.64 0.47 
 Maximum 100.63 0.13 -0.11 0.78 -0.18 0.34 0.82 0.51 
 Std dev       0.54 0.12 0.24 0.57 0.35 
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 Whatman Filter Paper  
 

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 99.99 -0.02 0 0 0 0 0 0 
 97.86 0.17 0.41 -2.13 0.19 -0.41 2.18 1.33 
 98.13 0.15 0.09 -1.86 0.17 -0.09 1.87 1.1 
 103.31 0.14 -0.89 3.32 0.16 0.89 3.44 2.08 
 100.17 -0.04 0.62 0.18 -0.02 -0.62 0.65 0.62 
 97.02 0.22 0.21 -2.97 0.24 -0.21 2.99 1.77 
 95.7 0.5 -0.1 -4.29 0.52 0.1 4.32 2.62 
 98.81 0.09 0.12 -1.18 0.11 -0.12 1.19 0.7 
 92.1 0.34 -0.6 -7.89 0.36 0.6 7.92 4.74 
 103.95 0.25 -0.38 3.96 0.27 0.38 3.99 2.29 
 Maximum 103.95 0.5 0.62 -7.89 0.52 0.89 7.92 4.74 
 Std dev       5.47 0.36 0.62 5.49 3.28 
 

 
  

  

 

 Stationary probe repeat measurements   

 Smooth 
 

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 100.1 0 -0.08 0 0 0 0 0 
 100.12 -0.01 -0.04 0.02 -0.01 -0.04 0.05 0.04 
 100.14 -0.02 0.01 0.04 -0.02 -0.09 0.1 0.1 
 100.14 -0.01 -0.03 0.04 -0.01 -0.05 0.06 0.06 
 100.15 -0.02 -0.02 0.05 -0.02 -0.06 0.08 0.07 
 100.16 0 -0.02 0.06 0 -0.06 0.08 0.07 
 100.15 0 -0.04 0.05 0 -0.04 0.06 0.05 
 100.17 0 -0.02 0.07 0 -0.06 0.09 0.07 
 100.14 0.01 0 0.04 0.01 -0.08 0.09 0.08 
 100.14 0.02 -0.06 0.04 0.02 -0.02 0.05 0.04 
 Maximum 100.17 0.02 0.01 0.07 0.02 -0.08 0.1 0.1 
 Std dev       0.04 0.01 0.05 0.06 0.07 
 

 

  
 
 

Diffuse 
                                                       

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 98.19 0.02 0.54 0 0 0 0 0 
 98.19 -0.02 0.6 0 -0.04 -0.06 0.07 0.08 
 98.18 -0.02 0.6 -0.01 -0.04 -0.06 0.07 0.08 
 98.17 0 0.6 -0.02 -0.02 -0.06 0.07 0.07 
 98.17 0.02 0.58 -0.02 0 -0.04 0.04 0.04 
 98.18 -0.03 0.58 -0.01 -0.05 -0.04 0.06 0.08 
 98.18 0.03 0.55 -0.01 0.01 -0.01 0.02 0.2 
 98.19 0.01 0.61 0 -0.01 -0.07 0.07 0.07 
 98.17 0 0.6 -0.02 -0.02 -0.06 0.07 0.07 
 98.18 0.06 0.56 -0.01 0.04 -0.02 0.05 0.06 
 Maximum 98.19 0.06 0.61 -0.02 -0.05 -0.07 0.07 0.2 
 Std dev       0.01 0.03 0.05 0.05 0.14 
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Whatman filter paper 
 

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 100 0 0.01 -0.01 0.02 0 0.02 0 
 100 0 0.04 -0.01 0.02 0.03 0.03 0.03 
 100.01 -0.03 0.06 0 -0.01 0.05 0.05 0.07 
 99.98 -0.04 0.02 -0.03 -0.02 0.01 0.03 0.06 
 100 0 -0.05 -0.01 0.02 -0.06 0.06 0.06 
 100 0 -0.05 -0.01 0.02 -0.06 0.06 0.06 
 100 -0.01 0.03 -0.01 0.01 0.02 0.03 0.02 
 99.98 0 -0.01 -0.03 0.02 -0.02 0.04 0.02 
 99.98 0 -0.01 -0.03 0.02 -0.02 0.04 0.02 
 100 -0.03 0 -0.01 -0.01 -0.01 0.02 0.05 
 Maximum 100.01 0 0.06 -0.03 0.02 0.05 0.06 0.07 
 Std dev       0.02 0.01 0.03 0.04 0.05 
 

 

 
 

 

 

Remaining in a 6.67dE colour well and taking repeat readings 

 L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 90.85 -5.18 36.43 0 0 0 0 0 
 90.84 -5.16 36.39 0.01 -0.02 0.04 0.05 0.02 
 90.85 -5.14 36.41 0 -0.04 0.02 0.04 0.03 
 90.84 -5.14 36.38 0.01 -0.04 0.05 0.06 0.03 
 90.83 -5.17 36.42 0.02 -0.01 0.01 0.02 0.01 
 90.83 -5.17 36.45 0.02 -0.01 -0.02 0.03 0.02 
 90.82 -5.13 36.38 0.03 -0.05 0.05 0.08 0.04 
 90.84 -5.16 36.43 0.01 -0.02 0 0.02 0.02 
 90.84 -5.17 36.41 0.01 -0.01 0.02 0.02 0.01 
 90.83 -5.15 36.39 0.02 -0.03 0.04 0.05 0.03 
 Maximum 90.85 -5.13 36.45 0.03 -0.04 0.05 0.08 0.04 
 Std dev       0.02 0.03 0.03 0.06 0.03 
 

 

       

       

       

       Returning to the same spot many times using XYZ stage 

 smooth 

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 100.02 -0.04 0.04 0 0 0 0 0 
 100.04 -0.01 0.06 0.02 0.03 -0.02 0.04 0.05 
 100.03 0.04 0.02 0.01 0.08 0.02 0.08 0.12 
 100.04 0.02 0.02 0.02 0.06 0.02 0.07 0.09 
 100.04 0 0.02 0.02 0.04 0.02 0.05 0.06 
 100.05 0.03 0.06 0.03 0.07 -0.02 0.08 0.11 
 100.05 0.04 0.06 0.03 0.08 -0.02 0.09 0.12 
 100.03 0.04 0.04 0.01 0.08 0 0.08 0.12 
 100.03 0.07 0.06 0.01 0.11 -0.02 0.11 0.17 
 100.07 0.09 0.08 0.05 0.13 -0.04 0.14 0.2 
 Maximum 100.07 0.09 0.08 0.05 0.13 -0.04 0.14 0.2 
 Std dev       0.03 0.09 0.03 0.1 0.13 
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Diffuse 
 

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 100 0 -0.03 0 0.03 -0.03 0.04 0 
 100.02 0.02 -0.03 0.02 0.05 -0.03 0.06 0.03 
 100 0.02 -0.01 0 0.05 -0.01 0.05 0.04 
 100.08 -0.01 -0.06 0.08 0.02 -0.06 0.11 0.06 
 100.08 0.05 -0.09 0.08 0.08 -0.09 0.14 0.1 
 100.07 -0.02 -0.06 0.07 0.01 -0.06 0.09 0.06 
 100.04 0.04 -0.09 0.04 0.07 -0.09 0.13 0.09 
 100.04 0.02 -0.07 0.04 0.05 -0.07 0.09 0.05 
 100.04 0.02 -0.07 0.04 0.05 -0.07 0.09 0.05 
 100.05 0 -0.06 0.05 0.03 -0.06 0.08 0.04 
 Maximum 100.08 0.05 -0.01 0.08 0.08 -0.09 0.14 0.1 
 Std dev       0.06 0.06 0.06 0.1 0.07 
  

 
   

 

whatman filter paper 
 

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 99.85 0.01 -0.21 0 0 0 0 0 
 99.82 0.05 -0.24 -0.03 0.04 0.03 0.06 0.07 
 99.86 0.02 -0.23 0.01 0.01 0.02 0.02 0.03 
 99.87 0 -0.2 0.02 -0.01 -0.01 0.02 0.02 
 99.88 0.02 -0.24 0.03 0.01 0.03 0.04 0.04 
 99.91 0.03 -0.24 0.06 0.02 0.03 0.07 0.05 
 99.93 0.03 -0.25 0.08 0.02 0.04 0.09 0.07 
 99.94 0.09 -0.27 0.09 0.08 0.06 0.13 0.14 
 99.94 0.09 -0.27 0.09 0.08 0.06 0.13 0.14 
 99.95 0.07 -0.28 0.1 0.06 0.07 0.14 0.13 
 Maximum 99.95 0.09 -0.2 0.1 0.08 0.07 0.14 0.14 
 Std dev       0.07 0.06 0.05 0.1 0.1 
 

 

  

 
 
 Returning to the same spot in a colour well of  6.65dE 

  

L* a* b* ΔL Δa Δb ΔE*ab ΔE00 
 Before  90.32 -5.98 43.03 0 0 0 0 0 
 After 90.86 -5.16 36.45 -0.54 -0.82 6.58 6.65 2.388 
 

 

  

L* a* b* ΔL Δa Δb ΔE*ab  ΔE00 
 90.86 -5.16 36.45 0 0 0 0 0 
 90.83 -5.16 36.45 0.03 0 0 0.03 0.02 
 90.84 -5.19 36.51 0.02 0.03 -0.06 0.07 0.03 
 90.86 -5.14 36.42 0 -0.02 0.03 0.04 0.02 
 90.88 -5.18 36.49 -0.02 0.02 -0.04 0.05 0.02 
 90.89 -5.18 36.46 -0.03 0.02 -0.01 0.04 0.02 
 90.82 -5.15 36.43 0.04 -0.01 0.02 0.05 0.03 
 90.84 -5.18 36.43 0.02 0.02 0.02 0.03 0.02 
 90.88 -5.16 36.45 -0.02 0 0 0.02 0.01 
 90.87 -5.17 36.42 -0.01 0.01 0.03 0.03 0.02 
 Maximum 90.89 -5.14 36.51 0.04 0.03 -0.06 0.07 0.03 
 Std dev       0.03 0.02 0.04 0.05 0.02 
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C. Modeling of the fading of Prussian blue 
 
The fading of Prussian blue pigment (TTB6) can be modeled as an exponential rise to 

maximum following the equation; 

 

ΔE*ab= α(1-e-βt) 

 

Where; 

t is the time in hours since the reversion process began. 

ΔE*ab is the colour difference of the pigment relative to original colour.  

β and α are connected with the rate of fading obtained via a best fit of ΔE*ab vs. t. 

 

An example of a fit of the equation to a fading curve can be found in figure A below where 

the coloured lines are the fit to the data lines plotted in black: 

 

 
 

Figure A. The result of the application of the equation to 5 individual fading curves for Prussian blue (TTB6).  
 

 
Data resulting from the application of the equation to the curve is shown below. 
 
 

Plot R2 α β 
Red line 0.98 ±0.95 4.250 ±0.006 0.0048 ±5.519E-005 

Green line 0.98±0.95 3.324 ±0.006 0.0035 ±4.113E-005 
Yellow line  0.98±0.97 2.557 ±0.004 0.0036 ±3.614E-005 

Blue line 0.98±0.96 2.475 ±0.004 0.0036 ±3.850E-005 
Purple line 0.97±0.94 1.858 ±0.004 0.0035 ±4.225E-005 

 

Table A. R-Squared value indicated how well the line approximates to the data points. The standard errors 

associated with the corresponding values are also shown 
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D. Reversion plots of Prussian blue sample 
 
Plots of the results as discussed in section 4.2.6. A large spread of results were obtained 

thought due to variation in the sample under test and the small sampling area of the 

instrument. 

 
 

Figure B. The colour loss reversion characteristic of the Prussian blue (TTB6) sample in 21% oxygen. 

 
 

 

Figure C. The colour loss reversion characteristic of the Prussian blue (TTB6) sample in 10% oxygen. 
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 Figure D. The colour loss reversion characteristic of the Prussian blue (TTB6) sample in 5% oxygen. 

 

 
 

 

Figure E. The colour loss reversion characteristic of the Prussian blue (TTB6) sample in 3.5% oxygen. 
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Figure F. The colour loss reversion characteristic of the Prussian blue (TTB6) sample in 2% oxygen. 

 

 
 
 

Figure G. The colour loss reversion characteristic of the Prussian blue (TTB6) sample  in anoxic conditions. 
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E. Pigment samples: sources and suppliers 
 
 

Samples tested in this thesis were collected by Drs Charlotte Caspers, who researched 

surviving English watercolour recipes used by the colourmen Winsor & Newton and 

Roberson. Drs Caspers used the recipes to create historically accurate reconstructions of 

19th-century watercolour paints. The pigments were provided from a variety of helpful 

sources,: Martin Bijl (a private conservator in the Netherlands); Margriet van Eikema 

Hommes ( a researcher  at The University of Amsterdam (UvA), The Instituut Collectie 

Nederland (ICN), Amsterdam, Jeff Parkes (a private collector in the UK), The Museum of 

London, The National Gallery, London, Oud Holland Ltd, Zeist, the Netherlands, Tate, 

The Teylers Museum, Haarlem, the Netherlands,  Renate Woudhuysen-Keller (specialist in 

producing lakes and conservator at the Hamilton Kerr Institute, University of Cambridge, 

UK (HKI)). 

 

The pigments used in this research and the results of energy-dispersive X-ray analysis by 

Dr Joyce Townsend, senior conservation scientist, Tate, and in some case FTIR 

microscopy by Sarah Styler, Tate conservation science intern 2008-09, are summarised in 

the following tables. More pigments were supplied by many of the providers. For more 

information see Caspers (2008) and a Tate analysis report (Townsend 2009). 

 

Provided by Martin Bijl, the Netherlands 
 

An Ackermann box dated around 1850. 

 

Code Pigment Results of analysis 

MB A1 Prussian blue Prussian blue confirmed 

MB A2 Prussian green probably includes Prussian blue;  yellow pigment has no ID 

MB A3 Gamboge gamboge was confirmed 

MB A4 Brown pink not a laked pigment 

MB A5 Antwerp blue neither Antwerp blue nor Prussian blue; not identified 

MB A6 Indigo synthetic indigo: later than 19th century onwards, not 1850 

MB A7 Vermilion vermilion confirmed 

 

A Bourgeois Aîné box dated between 1876-79.  

 

Code Pigment Results of analysis 

MBBA1 Prussian blue Prussian blue and gypsum 

MBBA2 Prussian green Prussian blue and zinc white and barium chromate 

MBBA3 Vermilion zinc white, calcium sulphate 

 



183 

 

 
Some small boxes, from Huis weldijk in Alkmaar. They cannot be dated with great certainty 

at around 1850.  

 

Code Pigment Results of analysis 

MB1 Prussian blue Prussian blue and alumina 

MB2 Blue ultramarine 

MB3 Smalt not analysed 

 

A dry pigment from the studio of M. Bijl dated before 1945.   

 

Code Pigment Results of analysis 

MB9 Prussian blue Prussian blue confirmed 

 

Provided by Margriet van Eikema Hommes, Amsterdam 

 
Two modern indigo pigments used in research by van Eikema Hommes (2004) were 

sampled for the anoxic project (an indigo from Kremer and indigo from Verfmolen de Kat). 

 

 
 

 
Provided by the Hamilton Kerr Institute (HKI), Cambridge 
 

Dry pigments from the Roberson Archive, probably from the first half of the 20th-century 

were provided. 

 

Code Pigment Results of analysis 

HKI 1 Prussian blue unusually K-rich Prussian blue 

HKI 2 Prussian blue Prussian blue with alumina extender 

HKI 3 Antwerp blue Prussian blue with large amounts of alumina extender 

HKI 4 Prussian blue Prussian blue 

HKI 5 Prussian blue  Prussian blue 

HKI 16 Zinc white zinc white 

 
 

Provided by the Instituut Collectie Nederland (ICN), Amsterdam  
 

The ICN-reference collection of red lakes provided a number of dry pigments. The 

samples were prepared in an investigation of the materials and methods of Vincent van 

Gogh, see Burnstock et al. (2005). 

Code Pigment 
Results of analysis 

MvEH1 Indigo 2 indigo plus kaolin or silica 

MvEH2 Indigo 1 indigo 
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Code Pigment Results of analysis 

RC-ICN-M2 Kopp's purpurine madder or alizarin on an Alum-based substrate 

RC-ICN-B2 Brazil on potas non-madder lake on Alum-based substrate 

RC-ICN-BM Brazilwood and madder non-madder lake on Alum-based substrate 

RC-ICN-C1 Cochineal on Alum non-madder lake on Alum-based substrate 

 

Pigments were also taken from the Schoonman collection, (dated between 1920 and 1970).  

 

Code Pigment Results of analysis 

RC-ICN-1 Prussian blue Prussian blue confirmed 

RC-ICN-2 Chinese blue K-rich Prussian blue 

RC-ICN-3 indigo indigo confirmed 

RC-ICN-7 English vermilion not genuine, red iron oxide and calcium sulphate 

RC-ICN-8 vermilion 4 vermilion confirmed 

RC-ICN-9 gamboge genuine gamboge 

 
Provided by the Museum of London, London 
 

Zinc white watercolour cakes were taken from a number of boxes of different dates. 

Analysis confirmed the pigments were zinc white. 

 

Code Pigment 
Date Source 

MoL 1 Zinc white 
Early 20th 
Century Museum of London, Roberson vial 

MoL 2 Chinese white After 1845 Museum of London, Winsor and Newton cake 

MoL 3 Chinese white 1841 to 1850 Museum of London, Newman cake 
 

 

Provided by the National Gallery, London 
 

The National Gallery donated a very large number of samples through Jo Kirby who 

prepared most of the lake pigments using traditional recipes. An Ackermann paint box, 

from the National Gallery‟s collection which was the former property of Queen Victoria, 

dated between 1796 and 1827 was supplied.  

 

Code Pigment Results of analysis 

NG WC1 Prussian blue Prussian blue and alumina 

NG WC2 Antwerp blue Prussian blue with alumina extender 

NG WC3 gamboge genuine gamboge 

NG WC4 Ackermann's yellow quercitron on alumina  

NG WC5 gallstone may be genuine 
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NG WC6 Indian yellow genuine Indian yellow 

NG WC7 dragon's blood genuine dragon's blood 

NG WC8 Pale Neutral Tint bone black, iron oxide and/or Prussian blue or indigo. 

NG WC9 Bister not analysed 

NG WC10 Prussian green Prussian blue and gamboge with extenders 

NG WC11 vermilion vermilion 

NG WC12 red orpiment orpiment 

NG WC13 King's yellow orpiment 

 

Dry pigments were provided and generally these were prepared by National Gallery 

scientists, in the last quarter of the 20th century. 

. 

Code Pigment Date Results of analysis 

NG1 gamboges 1851 gamboge 

NG2 weld on alum July/93 weld on alum 

NG3 weld lake 08/09/1989 weld on Ca with some alum present 

NG4 Indian yellow 1965 not genuine, lead chromate 

NG5 buckthorn lake alum/Ca 1993 buckthorn on Ca and less alum 

NG6 buckthorn lake on alum 1993 buckthorn on alum sulfate 

NG7 yellow lake/fustic lake 03/08/1972 fustic on alum based substrate 

NG8 quercitron lake 24/07/1972 quercitron on alum  

NG9 brazilwood 01/09/2005 probably brazilwood, with alumina 

NG10 logwood 14/07/1972 brazilwood and alumina 

NG11 sap green lake 24/10/1989 sap green on alum (KAlSO4) 

 
 

Also supplied was a collection of Prussian blue and lake paint-outs for experimental 

purposes see Saunders and Kirby (1994a) (1994b) and Kirby and Saunders (2004).   In this 

case the paper substrate of the National Gallery paint-outs were different from the 

substrate used for the historically accurate reconstructions made at Tate.  

 

These samples were prepared on Whatman Silversafe paper, an unbuffered paper 

consisting of 100% cotton fibre sized with a neutral ketene dimer which results in the 

formation of a hydrophobic ester. 
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Code Pigment Date Results of analysis 

NG 12a Prussian blue 1990s hydrated alumina extender 

NG 12b Prussian blue 1990s Prussian blue 

NG AA Ackermann ' Antwerp blue' 1796 to 1827 genuine with Al-based extender 

NG ALP Prussian blue 21th century Prussian blue 

NG WC1 Ackermann ' Prussian blue' 1796 to 1827 Prussian blue 

NG AR Prussian blue 19th century,  Prussian blue 

NG B buckthorn on alumina 1970 to  1990 no ID 

NG BA Good Berlin blue from Weimar' 11/04/1855 Prussian blue 

NG BB berlin blue 30/04/1842 Prussian blue 

NG BCB Prussian blue 19th century,  Prussian blue 

NG C8 cochineal lake 18/10/1973 no ID 

NG CC3b cochineal carmine 06/08/1973 no ID 

NG CD 1b cochineal lake 02/07/1991 no ID 

NG GA Prussian blue early 1800s Prussian blue 

NG JSM Prussian blue 1830 to 1840 Prussian blue 

NG K7 Prussian blue 1990s Prussian blue 

NG L litmus 24/04/1991 no ID 

NG MA Prussian blue 1805 to 1817 Prussian blue 

NG MB Prussian blue 18th century Indigo 

NG MC Prussian blue 1797 Indigo 

NG NB blue mid 1800s BaSO4 

NG NC celestial blue mid 1800s CaSO4 extender 

NG NP Prussian blue mid 1800s Hydrated alumina extender 

NG OZ Prussian blue 1742 to 1810 Prussian blue 

NG Q2 quercitron lake 2 27/07/1972 no ID 

NG RA Prussian blue, barytes, gypsum 1800 to 1830 PB & barium sulphate 

NG RC Prussian blue, gypsum 1800 to 1830 Prussian blue 

NG RD Prussian blue, kaolin, quartz 1800 to 1830 With kaolin 

NG RE Prussian blue, barytes 1800 to 1830 with barium sulphate 

NG RF Prussian blue, gypsum 1800 to 1830 Prussian blue 

NG RG Prussian blue, barytes 1800 to 1830 Prussian blue 

NG SA Prussian blue 21st century Prussian blue 

NG SB Prussian blue 21st century Prussian blue 

NG SC Prussian blue 21st century Prussian blue 

NG SD Prussian blue 21st century Prussian blue 

NG SG sap green 1991 or 1992 no ID 

NG TB Turnbull's blue' unknown Prussian blue 

NG VA Prussian blue 1770 to 1831 lead white 'extender' 

NG VB Prussian blue 1770 to 1831 Al-based extender 

NG W&N I indigo 20th century no ID 
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Provided by Oud Holland, Zeist 
 

Pigments (mainly all 20th-century pigments) came from Scheveningen, Winsor and Newton 

and Vettewinkel en Zonen. 

 
 

Provided by Jeff Parkes 
 

A Deforge and Carpentier paintbox, (the former property of Queen Viktoria of Sweden) 

was provided. It was dated before 1862. 

Code Pigment 
Date Source Results of 

analysis 

OH1 sap green 20th century Oud Holland,  
Winsor and Newton 

possibly 
genuine 

OH2 Prussian blue  (Chinese 
blue) 

20th century Oud Holland,  
Winsor and Newton 

Prussian blue 

OH3 indigo 20th century Oud Holland,  
Winsor and Newton 

probably 
genuine 

OH4 Prussian blue (Blue de 
Prusse) 

20th century 
Oud Holland 

Prussian blue 

OH5 Prussian blue ( Mineraal 
blauw ijzercyanuur 

aluminium) 

20th century, 
before OH8 and 

OH9 
Oud Holland, 
Scheveningen 

Prussian blue 

OH6 Prussian blue (Parijs 
blauw 

20th century, 
before OH8 and 

OH9 
Oud Holland, 
Scheveningen 

Prussian blue 

OH7 Prussian blue (Berlijns 
blauw) 

1809 to 1821 or 
1809 to 1921 

Oud Holland,  
H. Vettewinkel en zonen 

Prussian blue 

OH8 Prussian blue  
(Mineraalblauw) 

20th century Oud Holland, 
Scheveningen 

Prussian blue 

OH9 Prussian blue (ijzercyaan 
Berlijns blauw) 

20th century Oud Holland, 
Scheveningen 

Prussian blue 

OH10 vermilion (Chem zuiver 
vermiljoen) 

1809 to 1821 or 
1809 to 1921  

Oud Holland,  
H. Vettewinkel en zonen 

vermilion 

OH11 chrome red 1809 to 1821 or 
1809 to 1921  

Oud Holland, H. 
Vettewinkel en zonen 

chrome red 

OH12 chrome yellow (Chem. 
Zuiver chromaatgeel 

donker) 

1809 to 1821 or 
1809 to 1921  Oud Holland,  

H. Vettewinkel en zonen 

chrome yellow 

OH13 carmine Unknown Oud Holland, 
Koninklijke Fabriek van 

Geneesmiddelen 

probably 
genuine 

OH14 indigo 20th century Oud Holland, 
Scheveningen 

probably 
genuine 

OH15 indigo (Plantaardig indigo 
op barium) 

20th century Oud Holland, 
Scheveningen 

may not be 
geniune 

OH16 vermiljoen (Engels 
vermiljoen) 

1809 to 1821 or 
1809 to 1921  Oud Holland,  

H. Vettewinkel en zonen 

not vermilion 
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Code Pigment Date Results of analysis 

D&C 08/01 Prussian blue 1862, or earlier 
high-K Prussian blue (confirmed) and 

alumina 

D&C 08/02 
garance cerise 

[cherry madder] 1862, or earlier 
madder (confirmed) on AlSO4 

substrate 

D&C 08/03 vere jaune 1862, or earlier 
natural yellow iron oxide with kaolin-

type and other extenders 

D&C 08/04 
rouge de saturne 

[red lead] 1862, or earlier red lead confirmed 

D&C 08/05 chrome clair G 1862, or earlier 
lead chromate (confirmed) with some 

extenders 

D&C 08/06 vermilion 1862, or earlier vermilion confirmed 

D&C 08/07 jaune de Naples 1862, or earlier 

not traditional Naples yellow, but 
massicot [same as other late 19th 
century British pigments labelled 

'Naples yellow' 

D&C 08/08 carmine extra 1862, or earlier 
non-fl red lake on Al and/or Ca-based 

substrate, probably with extenders 

D&C 08/09 jaune Indien 1862, or earlier not genuine Indian yellow 

D&C 08/10 
vert de vessie i.e 

sap green 1862, or earlier 
not genuine sap green, but Prussian 

blue and alumina extender 

 

 

Also provided was a zinc white cake originating from  H. M. Stationary Office, the dating 

of the pigment was mid-19th century. 

 

 

Code Pigment Date Results of analysis 

SO11 Chinese white Mid 19th century zinc white, possibly from 2 sources 

 

 

Provided by Tate, London 

 

A Rowney watercolour box, dated around 1860, conservation archive Q04175, was 

purchased for the purpose of research. 

 
 

Code Pigment 
Results of analysis 

TR1 brown synthetic iron oxide and chalk 

TR2 scarlet over crimson 2 red lakes, not madder-based, and chalk 
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TR3 blue synthetic ultramarine 

TR4 dark blue black bone black and non-madder red lake 

TR5 green lake Al-based lake of unknown type 

TR6 blue cobalt blue 

TR7 yellow unclear 

TR8 blue K-based Prussian blue for watercolour use 

TR9 green emerald green 

TR10 brown/red red lake on Sn-based substrate 

TR11 lower layer red vermilion, zinc white 

 

A Reeves Reward watercolour box, conservation archive  Q04174, dated around 1890 was 

also purchased. 

 

Code Pigment Results of analysis 

TRR1 blue Prussian blue 

TRR2 crimson lake Al and Sn substrate for lake 

TRR3 Indian red natural iron oxide 

TRR4 vermilion vermilion 

TRR5 burnt sienna synthetic iron oxide 

TRR6 yellow ochre natural iron oxide and kaolin 

TRR7 burnt umber natural umber, not ochre 

 

 

A Reeves School watercolour box, conservation archive Q04176, dated 1910 was 

purchased. 

 

Code Pigment Results of analysis 

TRS1 burnt sienna natural burnt sienna with extenders 

TRS2 green 

kaolin, with  lead white and viridian, or but less likely, lead 

chromate and a non indentified blue 

TRS3 black carbon black and extenders 

TRS4 yellow ochre natural yellow ochre with extenders 

TRS5 cobalt blue ultramarine and kaolin likely 

TRS6 dark red red lake on Al-based substrate, with extenders 

TRS7 gamboge gamboge, with extenders 

TRS8 vermilion red lake and extenders, not vermilion 

TRS9 Van Dyke brown Van Dyke brown likely, with extenders 

TRS10 light red (synthetic) iron oxide and extenders 
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A large source of pigments was the Tate conservation archive. Some of the pigments came 

from a printing firm active c. 1910-1950, which purchased materials from the colourman 

Cornelissen.  

 

Code Pigment 

Date  Results of 
analysis 

T CA1 Naples yellow 'Cornelissen, 1890s or later stock Naples yellow 

T CA3 cadmium dark 29 Cornelissen, 1890s or later stock 
cadmium 
sulphide 

T CA4 cadmium middle 30 Cornelissen, 1890s or later stock 

cadmium 
sulphide 

T CA5 cadmium red deep 
Courtauld Technology Dept, 

1988 

cadmum 
sulphoselenide 

T CA6 cadmium red no 36  

cadmium 
sulphoselenide 

T CA7 chinese blue 23 Cornelissen, 1890s or later stock 
Fe, K in 

Prussian blue 

T CA8 chrome yellow 2 Cornelissen 1890s or later stock lead chromate 

T CA9 lemon yellow  
barium 

chromate 

T CA10 lemon yellow 2 old stock 

barium 
chromate 

T CA11 massicot BLH  massicot 

T CA12 Naples yellow Winsor and Newton 1981 Naples yellow 

T CA13 orange madder  

madder or 
alizarin on Al-
based substrate 

T CA14 orpiment Kremer 2000 orpiment 

T CA15 
permanent yellow 50 

Schonfeld Cornelissen, 1890s or later stock 

barium 
chromate 

T CA16 pinke, Dr Nathaniel Bacon's 8/1999, by Mary Bustin 

unusual 
substrate 

T CA17 Prussian blue Cornelissen, 1890s or later stock Prussian blue 

T CA18 red lead mid to late 20th century red lead 

T CA19 rosso di saturno mid to late 20th century 

red lead 

T CA20 rutenia FFF barytes mid to late 20th century barytes 

T CA21 sepia 4 Cornelissen, 1890s or later stock 
probably sepia 

T CA22 Strontium yellow 
Courtauld Technology Dept, 

1988 

strontium 
chromate 

TCA23 zinc oxide, zincoli white seal Morris Ashby Ltd 1977 

zinc oxide 

T CA24 zinc white 17 Cornelissen, 1890s or later stock 

zinc oxide 
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T CA25 zinnober Kremer, 2000 

cinnabar or 
vermilion 

 

Another source was the Tate paper conservation studio, whose pigment collection must 

date from after the formation of Tate‟s conservation department in 1955.   

 

Code Pigment Source Results of analysis 

T PC5 indigo R. Ackermann's genuine indigo not clear from EDX 

T PC6 
madder 
carmine Winsor&Newton 

likely to be a lake on alumina and/or 
aluminium sulphate; is it genuine madder. 

T PC10 sepia 12400 Kremer c2000 liklely to be genuine sepia 

 

An important selection was Turners studio pigments which were part of the Turner 

Bequest and are now in the Tate Gallery Archive (TGA 7315.7) with samples  removed to 

the Tate Conservation Archive as Q04047. Analysis has been carried out earlier, Townsend 

(1993), wherein her sample s1 corresponds to TTB1 here, etc. 

 

Code Pigment Results of 1993 analysis 

TB1 scarlet madder R. tinct., on Al/Fe/Cu-containing substrate. 
Samples put in plastic bags before putting them 

in glass containers. 

TB2 madder R. tinct., on Al-containing substrate. Samples put 
in plastic bags before putting them in glass 

containers. 

TB3 gamboge The jar was stuck in the case but it was possible 
to take some lumps out. Samples put in plastic 
bags before putting them in glass containers. 

TB4 madder R. tinct. on Al/Cu-containig substrate 

TB5 brown madder R. tinct., on Fe/Ca/Si-containing substrate. 
Sample dropped on plastic covering table and 

picked up wearing gloves. Samples put in plastic 
bags before putting them in glass containers. 

TB6 Prussian blue Prussian blue with alumina 

TB8 madder R. tinct., on Al/Cu-containing substrate, bluer 
than TTB2. TTB 4 and 8 are the same, 8 is finer 
grained that 4. The jar of T TB4 was stuck in the 
case, so this pigment has not been sampled, only 

T TB8. Samples put in plastic bags before 
putting them in glass containers. 

TB11 madder Similar to T TB2, but different shade of rose: 
Very electro static, when pigment enters plastic 

bag, little needles were formed and it 'jumped' of 
the spatula. Samples put in plastic bags before 

putting them in glass containers. 

TB12 mid chrome yellow Mid chrome yellow. Samples put in plastic bags 
before putting them in glass containers. 
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TB13 madder Madder, not R. tinct., on Cu/Si-containing 
substrate, dull yellow, reddens in alkali. Samples 
put in plastic bags before putting them in glass 

containers. 

TB14 madder Similar to T TB2, but different shade of rose, R. 
tinct. on Al-containing substrate: Electro static 
but not as much as T TB11. Samples put in 

plastic bags before putting them in glass 
containers. 

TB15 brown madder Similar to T TB5. brown madder, R. tinct., on Al-
containing substrate. Smelled like 'dried hay', or 

was it the smell of the cork in the lid.. 

TB16 brown madder Similar to T TB5. brown madder, R. tinct., on Si-
containing substrate, or was it the smell of the 

cork in the lid.. 

 

 

Provided by the Teylers Museum, Haarlem 
 

The Teylers Museum in Haarlem provided samples of Prussian blue, indigo and 

vermilion.from The Hafkenscheid Kabinet. A collection of painting materials, turpentine and 

gums dated between 1800 and 1832, analysed by Pey (1998). 

 

Code Pigment 
Date Source Results of 

analysis 

T1 
Prussian   

blue 1800-1832 

Teylers Museum Haarlem, Hafkenscheid 
cabinet. Teylers nr: 239. 

 Inventory:Berlijns blauw 236-240. 
Prussian blue 

confirmed 

T2 vermilion 1800-1832 

Teylers Museum Haarlem, Hafkenscheid 
cabinet. 

Teylers nr. 227. Inventory:224-227 
Vermiljoen. 

vermilion 
confirmed 

T3 indigo 1800-1832 

Teylers Museum Haarlem, Hafkenscheid 
cabinet 

Teylers nr: 123. Inventory: Indigo 110-
125. genuine indigo 
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Provided by Renate Woudhuysen-Keller, Hamilton Kerr Institute 
 

Renate Woudhuysen-Keller (a paintings conservator, specializing  in old paint recipes and 

producing dyes and lakes) donated some lake pigments. 

 

Code Pigment 
Date Results of analysis 

RK1 weld prepared 
31/08/2000 

weld on Al, some chalk 
incorporated 

RK2 weld with alum 
and chalk 

Unknown weld on aluminium sulphate with 
some chalk incorporated 

RK3 buckthorn yellow prepared 2001 not standard buckthorn, not ID 

RK4 sap green and 
alum 

prepared 
15/11/2006 

sap green on potassium aluminium 
sulphate 

RK5 sap green berry 
juice 

prepared 
25/09/2003 

also sap green on potassium 
aluminium sulphate 

RK6 madder on alum 
+ K2CO3 

prepared 
01/07/2002 

madder on Al-based substrate, 
little takeup of elements other than 

Al 

RK7 cochineal on 
alum + K2CO3 

prepared 
01/12/2004 

non-fl red lake on Al-based 
substrate, little takeup of elements 

other than Al 

RK8 brazilwood prepared 
01/06/2006 

brazilwood laked on Al-based 
substrate 

RK9 rose madder 
(W&N) 

purchased before 
1982 

madder on Al-based substrate or 
aluminium sulphate base 

RK10 cadmium orange 
(W&N) 

purchased before 
1982 

CdS not CdSSe, with added 
titanium white 

RK11 naples yellow 
(Schminke) 

Unknown not genuine, lead oxide and 
barium sulphate 

RK12 cadmium yellow purchased before 
1982 

CdS with added barium sulphate 

RK13 Indian yellow 
(W&N) 

purchased before 
1982 

not genuine Indian yellow, not ID 

RK14 Prussian blue 
(W&N) 

purchased before 
1982 

unusually K-rich Prussian blue 

RK15 sepia (Verfmolen 
de Kat) 

purchased before 
2003 

FTIR matches TCA21 sepia: 
probably genuine sepia 
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F.  List of publications arising from this research 

 

Due to a patent application that has resulted from this research (WO 2010029314 “A 

Method for Preserving Objects Containing Pigment”), limitations were put on the 

dissemination of the projects findings until the application was completed. 

 

Publications and posters of which I am first author are, 

 

Andrew Lerwill, Joyce H Townsend, Haida Liang, Jacob Thomas and Stephen Hackney, A 

versatile micro-fadometer for lightfastness testing and pigment identification, in O3A: 

Optics for Arts, Architecture, and Archaeology, Proc. SPIE (2007), Vol. 6618, 66181G 

 

Andrew Lerwill, Joyce H Townsend, Haida Liang, Jacob Thomas and Stephen Hackney. 

2008. A portable micro-fadometer for versatile lightfastness testing, ePreservation Science 5:17-

28. 

 

Andrew Lerwill, Anna Brookes, Joyce H. Townsend, Haida Liang, Jacob Thomas, and 

Stephen Hackney. 2008 A versatile micro-fadometer for lightfastness testing and pigment 

identification. Poster presented CREATE 2008, Bristol. 

 

Andrew Lerwill, Anna Brookes, Joyce H. Townsend, Haida Liang, Jacob Thomas, and 

Stephen Hackney. 2008. Micro-fading spectrometry: investigating the wavelength 

specificity of fading, poster presented at OSAV 2008, St Petersburg. 

 

 

Others on which I am an author include, 

 

Jacob Thomas, Andrew Lerwill, Matija Strlič, Joyce H.Townsend and Stephen Hackney. 

2008. Evaluation of anoxic display and storage conditions on works of art on paper, poster 

presented at Art 2008, Jerusalem, 25-30 May 2008.  

 

Joyce H. Townsend, Jacob Thomas, Charlotte Caspers, Monserrat Pis Marcos, Bronwyn 

Ormsby, Stephen Hackney and Andrew Lerwill,. 2009. „(De/Re) Constructing Turner for 
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research projects at Tate‟, Sources and Serendipity ed. E. Hermens and J.H. Townsend , 

London: Archetype,159-162..  

 

Joyce H Townsend, Stephen Hackney, Jacob Thomas and Andrew Lerwill. 2008. „The 

benefits and risks of anoxic display for colourants‟, Conservation and Access, ed. David 

Saunders, Joyce H. Townsend and Sally Woodcock, IIC, London, 76-81. 

 

 


