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45 Summary 

46 Transposon mutagenesis has been applied to a hyper-invasive clinical isolate of C. 

47 jejuni, 01/51. A random transposon mutant library was screened in an in vitro assay of 

48 invasion and 26 mutants with a significant reduction in invasion were identified. 

49 Given that the invasion potential of C. jejuni is relatively poor compared to other 

50 enteric pathogens the use of a hyper-invasive strain was advantageous as it greatly 

51 facilitated the identification of mutants with reduced invasion. The location of the 

52 transposon insertion in 23 of these mutants has been determined, all but three of 

53 which are in genes also present in the genome sequenced strain N C T C l 1168. Eight of 

54 the mutants contain transposon insertions in one region of the genome (ca. 14kb) 

55 which when compared with the genome of N C T C l 1168 overlaps with one of the 

56 previously reported plasticity regions and is likely to be involved in genomic variation 

57 between strains. Further characterisation of one of the mutants within this region has 

58 identified a gene that might be involved in adhesion to host cells. 

59 
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60 Introduction 

61 Campylobacter jejuni is the main cause of human acute bacterial enteritis in the 

62 developed world. In England and Wales in 2008 there were 49,880 reported cases of 

63 C jejuni gastroenteritis (Health Protection Agency Centre for Infections), which is 

64 thought to be a significant underestimate (Tompkins et al., 1999). The disease itself is 

65 usually self-limiting and the main symptoms in developed countries, such as the U K 

66 and US, are abdominal pain and diarrhoea, often with mucous and blood in the stool 

67 (Ketley, 1997; Tompkins et al, 1999; Wassenaar & Blaser, 1999). Nevertheless this 

68 organism is still the most common cause of food-borne intestinal infectious disease 

69 and is a significant public health burden. 

70 

71 C. jejuni is an invasive organism and there is much evidence, from both in vivo and in 

72 vitro studies, that invasion is a virulence mechanism used by Campylobacters (De 

73 Melo et al, 1989; Fauchere et al, 1986; Garrity et al, 2005; Klipstein et al, 1985; 

74 Konkel & Joens, 1989). In the absence of a suitable animal model that mimics human 

75 disease (Newell, 2001) invasion has been studied using in vitro cell culture. There 

76 have been many reports of in vitro cell culture models of invasion for Campylobacter 

77 and these have recently been reviewed (Friis et al, 2005). As in other 

78 enteropathogens, variation in virulence also exists between strains of C jejuni. This 

79 has been observed for invasion and adhesion as well as toxicity (Abuoun et al, 2005; 

80 Everest et al, 1992; Gilbert & Slavik, 2004; Konkel & Joens, 1989; Newell et al, 

81 1985; Wassenaar, 1997). A number of hyper-invasive clinical strains of C jejuni have 

82 recently been identified (Fearnley et al, 2008). These isolates were found to invade 

83 the human epithelial cell lines INT-407 and Caco-2 to significantly higher levels (>25 

84 fold) compared with a low-invasive control strain of C jejuni 81116 (NCTC11828). 
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85 These strains therefore provide a unique opportunity to investigate the molecular basis 

86 of invasion as any reduction in invasion would be much easier to identify compared to 

87 using low invasive strains like 81116. It should however be noted that these hyper-

88 invasive strains may use different invasion strategies to other non-hyper-invasive 

89 strains and so the role of any genes in invasion should be confirmed using strains with 

90 varying levels of invasion. 

91 

92 Molecular techniques to investigate virulence mechanisms are now available for use 

93 in C. jejuni. Over the last few years the development of transposon mutagenesis for C. 

94 jejuni has advanced significantly and several methods are now available for the 

95 random mutagenesis of this organism (Colegio et al, 2001; Golden et al, 2000; 

96 Golden & Acheson, 2002; Hendrixson et al, 2001; Hendrixson & DiRita, 2004). One 

97 method in particular utilises an in vitro method of transposition, using a mariner-

98 based transposon, followed by natural transformation to introduce the mutated 

99 genomic D N A back into the host strain (Grant et al, 2005). This is a particularly 

100 useful technique as many strains of C. jejuni will not take up heterologous DNA. 

101 Previously transposon mutagenesis has been limited to a handful of those strains for 

102 which genetic manipulation is relatively easy and many of these strains have a 

103 relatively low invasion potential. However using this in vitro system a transposon 

104 mutant library has been constructed in a hyper-invasive clinical isolate of C. jejuni, 

105 strain 01/51 (Fearnley et al, 2008), providing a unique opportunity to investigate the 

106 molecular basis of invasion in a strain with a significantly high level of invasion. 

107 

108 The aim of this study was to investigate the molecular basis of host cell invasion in C. 

109 jejuni by applying transposon mutagenesis to a hyper-invasive strain. We report the 

4 



110 screening of this mutant library in an in vitro assay of invasion and the identification 

111 of a number of previously uncharacterised genes that have a role in invasion. Mutants 

112 were selected for confirmatory assays and further study on the basis of their reduced 

113 level of invasion and maintenance of motility compared to the wild-type strain 01/51. 

114 We also identify a region of the C. jejuni genome known to be variable between 

115 strains (Pearson et al, 2003) in which several genes with a role in invasion are 

116 located. 

117 

118 Materials and Methods 

119 Bacterial strains and growth media. Six clinical Campylobacter jejuni isolates were 

120 used in this study: 01/38, 01/41, 01/51, 01/35, 01/10, 01/04, all of which were human 

121 faecal isolates apart from 01/10 and 01/04, which were isolated as a blood culture 

122 from patients with bacteraemia. These clinical strains were selected on the basis that 

123 they were all hyper-invasive (>25 fold as invasive as the control strain 81116) in an in 

124 vitro assay of invasiveness, apart from 01/38 which was found to be highly invasive 

125 (>10 fold as invasive as the control strain 81116) (Fearnley et al, 2008). Strain 01/38 

126 was included just in case it proved difficult to generate a random mutant library in one 

127 of the hyper-invasive strains. The non-motile, non-invasive mutant C. jejuni 81116 

128 flahJflaB' (Wassenaar et al, 1991) was used as a negative control in the invasion 

129 assays. NCTC11168 and RM1221 were both used as reference strains for 

130 investigation of the TTT trinucleotide sequence (see later). Al l C. jejuni strains were 

131 routinely grown on blood agar (BA) plates (Columbia agar supplemented with 5% 

132 (v/v) sheep blood) or mCCDA agar (Oxoid) at 37°C in a microaerobic atmosphere 

133 (10% (v/v) C02 , 5% (v/v) 02, 85% (v/v) N2) for 24-48 hours. When required the 

134 medium was also supplemented with 10 ug chloramphenicol per ml, or 50 ug 
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135 kanamycin per ml. The transposon mutants (n=864) were grown in each well of a 96-

136 well plate containing 100 ul B A supplemented with 10 ug chloramphenicol per ml. 

137 E. coli strains were grown in Luria-Bertani (LB) broth with shaking, or on LB agar 

138 plates, aerobically at 37°C. The following antibiotics were added when required: 100 

139 ug ampicillin per ml, 50 ug kanamycin per ml. 

140 

141 Generation of a random transposon mutant library. The random transposon mutant 

142 library was generated and the randomness assessed as previously described (Grant et 

143 al, 2005). 

144 

145 In vitro adhesion and invasion assay. The semi-quantitative invasion assay used was 

146 an adaptation of the gentamicin protection assay, using the human intestinal epithelial 

147 cell line, INT-407 (Elsinghorst, 1994; Fearnley et al, 2008). Note that it is now 

148 generally recognised that the INT-407 cell line was contaminated with HeLa cells in 

149 the 1970s and therefore has cellular markers consistent with this contamination 

150 (Lacroix, 2008), however it is still widely used for studying invasion and in our study 

151 it was used as a preliminary screen with confirmation of any mutants of interest using 

152 the alternative cell line Caco-2. For preliminary screening of the transposon mutants a 

153 96-well plate assay was adapted from that described by Golden and Acheson (Golden 

154 & Acheson, 2002). Briefly, the frozen transposon mutant library was thawed on ice 

155 and 10 ul of each mutant transferred to B A (100 ul) supplemented with 

156 chloramphenicol (10 ug/ml) in each well of a 96-well plate. The plates were incubated 

157 at 37°C microaerobically for 48 hours. Meanwhile 200 ul of INT-407 cells at a 

158 density of 1 x 105 cells per ml was seeded to each well of a fresh 96-well plate and 

159 incubated for 48 hours at 37°C in 5 % (v/v) CO2 to allow the cells to grow to 
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160 confluency. On the day of the assay, the cell culture media covering the INT-407 cell 

161 monolayers was replaced with 200 ul fresh pre-warmed complete cell culture media 

162 (CCCM). Fresh C C C M (100 ul) was also added to each well of the plate containing 

163 bacterial growth and left for 5-10 min for the colonies to soften. The bacterial cells 

164 were resuspended by pipetting and 20 ul of the suspension was added to the 200 ul of 

165 media in each well covering the INT-407 monolayers. Given the number of mutants 

166 tested in this way it was very difficult to normalise the starting bacterial cell 

167 concentration, however any mutants that did not grow well prior to the assay were 

168 noted and removed from further study. Infected plates were incubated for 3 hours at 

169 37°C in 5% (v/v) CO2. After incubation, monolayers were washed and then 200 ul 

170 C C C M supplemented with 250 ug gentamicin per ml was added. Following 2 hours 

171 of incubation, monolayers were washed and the cells lysed with 100 ul 1 % (v/v) 

172 Triton-XlOO. The total number of bacteria per well was determined by viable count 

173 and plating onto B A plates. C. jejuni 01/51 and C. jejuni 81116 JlaA'/flaB' . 

174 (Wassenaar et al, 1991) were also used as reference parent strain and negative 

175 control, respectively, in the assays. The preliminary invasion screening assay was 

176 repeated three times independently. Mutants that consistently showed a reduced 

177 recovery compared to the parent strain 01/51 following the assay were selected for 

178 further characterisation including motility and confirmation of the reduced invasion 

179 phenotype using a standardised assay as described below. 

180 For a more quantitative analysis and confirmation of the invasion of selected mutants 

181 standard gentamicin protection assays (confirmatory assay) using both INT-407 and 

182 Caco-2 cells in 24-well plates were carried out, in which each mutant was assayed in 

183 triplicate. The mutants were grown on B A plates for 48 hours and were added to the 

184 monolayers at a multiplicity of infection (MOI) of 100. To determine the number of 
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185 associated bacteria, the INT-407 cells were lysed after the initial 3 hour incubation 

186 period and the bacterial cells enumerated by plate count. This gives the total number 

187 of bacteria that are associated and internalised. The number of associated bacteria was 

188 then calculated by subtracting the number of internalised bacteria from the total 

189 number counted. Invasion efficiency was expressed as the percent of the inoculum 

190 that survived the gentamicin treatment. 

191 

192 Motility assay. Bacterial motility was tested as described previously (Fearnley et al, 

193 2008). The parent strain 01/51 was assumed to have 100% motility (with an average 

194 diameter of the zone of growth of 5.5 cm) and only mutants with > 75% motility as 

195 compared to the parent strain were selected for further study. 

196 

197 Location of transposon insertions. To determine the location of the transposon 

198 insertion point a plasmid rescue technique was carried out (Grant et al, 2005). 

199 Briefly the genomic D N A from each of the mutants was isolated and digested to 

200 completion with Bglll or Sspl. The genomic D N A fragments were then self-ligated 

201 and transformed by electroporation into E. coli Sll-'Xpir (Simon et al., 1983). 

202 Plasmids were prepared using the QIAprep spin miniprep kit (Qiagen, Crawley, UK) 

203 from a 10 ml overnight culture. The protocol was carried out according to the 

204 manufacturer's recommendations for large plasmids, which meant that the D N A was 

205 eluted from the spin-column using water heated to 70°C to maximise recovery. 

206 Recovered plasmid was then concentrated by ethanol precipitation and resuspended in 

207 5 ul of dH20. The insertion site was identified by D N A sequencing using a 

208 transposon specific primer (5'-CCCGGGAATCATTTGAAG- 3'). 

209 
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210 SNP Detection assay. A Single Nucleotide Polymorphism (SNP) detection assay to 

211 detect the observed polymorphisms in one of the mutated genes (CJ0490) was 

212 developed based on one previously reported (AbuOun et al., 2005). Primers were 

213 designed to the region flanking the TTT trinucleotide sequence (Figure 3A) (FWD: 

214 5'-AAAGAGCGATTGAAGC-3'; REV: 5' -CATTAAAACTTCGGTTAAGA-3') and the probe 

215 was generated from the 01/51 sequence i.e. containing the TTT trinucleotide sequence 

216 (underlined), but on the complimentary strand (5'-Cy5-

217 GCATTTTTGCGTATTAAACTAGCT-biotin-3'). The amplification was performed as 

218 follows: an initial denaturation step for 10 minutes at 95°C; which was followed by 41 

219 cycles, with 10 s at 94°C, 15 s at 55°C and 10 s at 74°C. Melting curve analysis was 

220 performed immediately after amplification by heating the product to 94°C (20°C/s), 

221 cooling to 45°C for 15 s, and then heating to 85°C (0.1°C/s). D N A from 01/51 and 

222 NCTC11168, and a no template D N A control were included in each run as controls. 

223 NCTC11168 was found to have a melting temperature of 61°C indicating the presence 

224 of the TT dinucleotide sequence and 01/51 had a higher melting temperature of 64 °C 

225 which indicated that the probe and sequence were identical, i.e. that 01/51 possesses 

226 the TTT trinucleotide sequence. 

227 

228 Mutagenesis ofCj0497. For mutagenesis of CJ0497 the gene was amplified from C. 

229 jejuni 01/51 and cloned into pBluescript (Stratagene) via pCR2.1TOPO™ 

230 (Invitrogen), a T-tailed cloning vector. The following primers were used for the 

231 amplification of CJ0497: CJ0497F: 5'- TTGATTTAAGGGTTATGAAGGC-3' and 

232 CJ0497R: 5'- AGCCTTAATCACATCTTTTGG-3'). There was a unique Bglll site in 

233 CJ0497 into which the C. coli kanamycin cassette, from pJMK30 (van Vliet et al., 

234 1998) (kindly provided by Professor Julian Ketley, University of Leicester, UK), was 
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235 cloned. Constructs with the kanamycin cassette in the same orientation as the 

236 disrupted gene (as determined by PCR analysis) to minimise the risk of polar effects 

237 since the kanamycin cassette does not bear transcription termination sequences were 

238 introduced into C. jejuni 01/51 by electrotransformation. Mutants were confirmed by 

239 PCR and Southern blot analysis. The approach of inserting the kanamycin cassette, 

240 lacking transcription termination sequences, in the same orientation as the gene to be 

241 inactivated has been reported previously (Elvers et al, 2004; Ge et al, 2005; Linton 

242 et al, 2002) and has been shown to be non-polar on downstream genes (Hickey et al., 

243 2000). 

244 

245 Phenotypic assays to characterise CJ0497 mutant. In order to further characterise the 

246 mutant in CJ0497 a number of phenotypic assays were carried out including 

247 microaerobic growth, aeration survival and autoagglutination. For all of these 

248 additional assays the bacteria were grown at 37°C for 48 hours on blood agar or 

249 mCCDA with 50 ug of kanamycin added per ml for the mutant. Bacterial growth was 

250 harvested from these plates and resuspended in 2.5 ml sterile PBS prior to use in the 

251 assays. Al l assays were carried out in triplicate. 

252 

253 For the growth curve an appropriate volume of this suspension was added to Mueller-

254 Hinton (MH) broth in a 96-well plate to make a final volume of 100 ul in a well and 

255 an absorbance of ~ 0.1 (OD 570nm). The plate was then incubated microaerobically 

256 with gentle shaking at 37°C. Regular absorbance readings were taken up to 30 hours. 

257 

258 For the aeration stress assay 2 ml of the resuspended culture was used to inoculate 200 

259 ml of pre-warmed Mueller Hinton broth (MHB). The culture was incubated 
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260 microaerobically with gentle shaking at 37°C for 24 hours. Following overnight 

O Q 1 

261 growth (approximately 10-10 CFUml" ), the culture was exposed to atmospheric 

262 oxygen at 37°C incubation continued for a further 6 hours. Samples were removed at 

263 hourly time points and viable counts performed. 

264 

265 The autoagglutination assay was performed following the protocol described 

266 elsewhere (Golden & Acheson, 2002). The absorbance of harvested cultures was 

267 adjusted to -1.0 at 600 nm in PBS and the actual absorbance was measured again. The 

268 bacterial suspension (2.0 ml) was transferred into sterile bijoux tubes and incubated 

269 undisturbed at 37°C microaerobically for 24 hours to allow the bacterial cells to 

270 autoagglutinate and settle to the bottom of the tube. One millilitre of the upper 

271 aqueous phase was then aspirated and the absorbance was measured at 600 nm. The 

272 level of autoagglutination was calculated by subtracting the absorbance of the aspirate 

273 collected after 24 hours from the initial absorbance measured at the start of 

274 incubation. 

275 

276 Statistical analysis. For this a paired Student's T test was performed using MS-Excel 

277 software. A probability value P < 0.01 indicated statistical significance. 

278 
279 
280 Results 

281 Generation of a random transposon mutant library in a hyper-invasive strain. Six 

282 clinical strains (01/38, 01/41, 01/51, 01/35, 01/10 and 01/04) were tested for their 

283 ability to undergo random transposition using the mariner-based in vitro transposon 

284 system, which had been optimised for transposition of C. jejuni NCTC11168, 81-176 

285 and M l . The generation of a random transposon mutant library was only found to be 
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286 successful in one of the clinical hyper-invasive strains, 01/51. This was a faecal 

287 isolate from a patient with C. jejuni gastroenteritis. No other information regarding 

288 the disease severity or symptoms is available. In order to hit every gene in the genome 

289 of 01/51 it would be necessary to screen around 4-5000 mutants however it was 

290 decided to screen an initial batch of up to 1000 mutants in the first instance. The 

291 initial batch of mutants was picked and stored for future use. 

292 

293 The randomness of the transposon insertions was determined by randomly selecting 

294 ten mutants and carrying out Southern blot hybridisations, using a fragment of the 

295 transposon as a probe (data not shown), as well as sequence analysis to determine the 

296 location of the transposon insertion point. From this initial screen there did not appear 

297 to be any bias towards a particular region of the genome or particular strand of the 

298 chromosome for the insertion point (data not shown). This level of randomness was in 

299 keeping with other strains such as the genome sequenced strain, NCTC11168 and 

300 strain M l . In addition the risk of siblings within the library was minimised by 

301 keeping the recovery time of the mutants, following transformation, to a minimum. It 

302 was anticipated, following analysis of 01/51 and the other strains to which this 

303 technique has been applied, that the maximum risk of siblings within the library is 2 

304 %. 

305 

306 Screening of the 01/51 transposon mutant library for defects in invasion and motility. 

307 The mutant library (n=864) was screened in an invasion assay using INT407 cells and 

308 174 mutants that showed minimal invasion in the preliminary screening assays were 

309 selected to assess motility. The mutants showed a wide range of motility phenotypes 

310 with nine mutants being non-motile and the remainder retaining motility ranging from 

12 



311 20% - 174% of the parent strain 01/51. As motility is important for invasion, an 

312 arbitrary cut-off for mutant selection was chosen and 40 mutants with > 75% motility 

313 as compared to wild-type strain, 01/51, were selected. The reduced invasion capacity 

314 of these selected mutants was confirmed using INT407 cells in a confirmatory 

315 standard invasion assay in which each mutant was tested in triplicate. A selection of 

316 mutants that showed a > 60% reduction in invasion in INT-407 cells were also 

317 checked for their ability to invade Caco-2 cells. Al l the tested mutants showed a 

318 similar reduction in invasion of Caco-2 cells compared to INT-407 cells (Table 1). 

319 The localisation of the transposon insertions was investigated in 26 mutants. 

320 

321 Location of the transposon insertions. The transposon insertion point was identified 

322 in 23 out of the 26 mutants by the plasmid rescue technique and sequencing using a 

323 transposon derived primer (Table 1). The transposon insertion site could not be 

324 determined in the remaining three mutants even after several attempts with alternative 

325 restriction enzymes. Southern blot analysis was also performed on a random selection 

326 of mutants to ensure that a single transposon had inserted into each mutant. Analysis 

327 showed one band in every mutant lane confirming that the transposon had inserted at 

328 one site in the genome of each mutant (data not shown). 

329 

330 Al l but three of the transposon insertions identified were found to be in genes which 

331 were also present in NCTC11168 (Table 1). Of the remaining three insertions one was 

332 in the gene, dtpT (di-/tripeptide transporter), which is present in other C. jejuni strains 

333 for which the genome sequences are now available, including C. jejuni strain RM1221 

334 (CJE0757) and C. jejuni strain 81116 (C8J-0613). The second was annotated as a 

335 capsule polysaccharide biosynthesis protein in C. jejuni subspecies doylei strain 
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336 269.97. In the third mutant (10D12) the sequence obtained showed homology to a 

337 putative rloE gene (CJJ26094_0063) in C. jejuni strain 260.94 whose sequence was 

338 incomplete at the time of searching (July 2009). The function of this gene is unknown 

339 and in other C. jejuni strains, namely 84-25 and Tghl33, it is annotated as a putative 

340 hypothetical protein. 

341 

342 In 8 out of the 23 mutants for which the transposon insertion point was determined, 

343 the transposon was located within a ca. 14 kb region of the genome between CJ0483 

344 and CJ0499, according to the genome sequence of NCTC11168 (Figure 1). The gene 

345 order in 01/51 was found to be similar to that in NCTC11168 as determined by PCR 

346 analysis across this region (Figure 1). Two of the genes located within this 14 kb 

347 region of the genome, CJ0490 and CJ0497 were identified as the site of transposon 

348 insertion in 3 and 2 separate mutants respectively. The position of the transposon in 

349 these two genes seems to have little effect on invasion, but a greater effect on motility 

350 (Table 1). For example the three mutants in CJ0490 were between 16-18% as invasive 

351 and between 78-174% as motile as the parent strain. 

352 

353 Genomic comparison of the 14kb region amongst other strains of C. jejuni revealed 

354 some conservation in gene order. Comparison of the 14 kb region (CJ0483 - CJ0499) 

355 of NCTC11168 with strain RM1221, another available C. jejuni genome sequence 

356 (TIGR), indicated that this region is similar in the two strains. However in RM1221 

357 between CJ0493 and CJ0494 there is an insertion of a c.40kb region of D N A (Figure 

358 1), which appears to have very few similarities to known sequences. This 40kb region 

359 has a GC content of 27.42% compared with an average of 30.31% for the RM1221 

360 genome (Fouts et al, 2005). Interestingly on further analysis of the NCTC11168 
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361 genome there is an additional small ORF located between CJ0494 and_/ksA (CJ0493) 

362 annotated as tRNA-Arg, however it is not known whether this tRNA gene also exists 

363 in 01/51 at this position. 

364 

365 Q0490 is annotated as two ORFs in NCTC11168, but is a single ORF in 01/51. 

366 CJ0490 was one of the genes for which there were 3 individual transposon mutants. 

367 In NCTC11168 CJ0490 encodes the aldehyde dehydrogenase C terminus whereas 

368 CJ0489 encodes the N - terminus of this same protein. Comparison of this sequence 

369 with that in other bacteria, such as E. coli, Shigella flexneri and Neisseria 

370 meningitidis, indicated that it is unusual to find the two parts of this protein encoded 

371 by separate genes. The sequence of this aldehyde dehydrogenase was therefore 

372 determined in the hyper-invasive strain, 01/51, and interestingly this gene was also 

373 found to be a single ORF with both the N-terminus and C-terminus together, as in 

374 other bacteria. At the D N A level in NCTC11168 a single T deletion appears to have 

375 resulted in the generation of a stop codon (Figure 2A), which is followed by an 

376 intergenic region of 36 nucleotides before the start of the next ORF. At the amino acid 

377 level (Figure 2B) the stop codon causes a frameshift and the appearance of the 

378 separate N and C termini. 

379 

380 The presence of the TTT trinucleotide sequence was investigated in seven C. jejuni 

381 strains by sequencing across the region between CJ0489 and CJ0490 and in a further 

382 20 strains with known invasion potential using a SNP detection assay. There was no 

383 correlation between the presence of the TTT trinucleotide and the invasion potential 

384 therefore further analysis of this gene was not carried out. 

385 
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386 Targeted mutagenesis ofCj0497 in 01/51 reveals a potential adhesin. As the mutants 

387 with transposon insertions in CJ0497 (1B5 and 1D1) both showed reduced invasion, 

388 yet retained motility, compared to the wild-type 01/51, this gene was selected for 

389 further study. This gene was independently inactivated in C. jejuni strain 01/51 by 

390 insertion of a kanamycin resistance cassette to confirm the observations with the 

391 transposon mutant. The resulting targeted mutant was tested in assays of association 

392 and invasion and was significantly reduced in overall association with INT-407 (4% 

393 of inoculum associated for mutant vs. 9.5% for 01/51; p< 0.01) and Caco-2 cells 

394 (0.7% of inoculum associated for mutant vs. 3% for 01/51, p< 0.01) and invasion into 

395 INT-407 (0.11% of inoculum internalised vs. 1% for 01/51; p< 0.01) and Caco-2 cells 

396 (0.004% of inoculum internalised for mutant vs. 0.39% for 01/51; p< 0.01) compared 

397 to the wild-type strain 01/51 which suggests that the reduction in invasion in the 

398 CJ0497 mutant may be due to a reduction in adhesion. The mutant was also found to 

399 grow as well under microaerobic conditions as the wild-type strain and to survive as 

400 well under atmospheric oxygen conditions. In addition the targeted mutant was found 

401 to be 1.3 times more motile (p<0.001) and 1.3 times better able to autoagglutinate 

402 (p<0.001) than the wild-type strain. 

403 

404 Discussion. 

405 C. jejuni is the most common cause of bacterial food-borne diarrhoea worldwide, but 

406 its pathogenic mechanisms are not clear. However, previous studies indicate that 

407 invasion and motility are important for Campylobacter pathogenesis and not all 

408 strains have the same virulence potential. C. jejuni strain dependent variability in 

409 invasion into eukaryotic cells has been reported by many researchers (Everest et al., 

410 1992; Konkel & Joens, 1989; Malik-Kale et al., 2007; Newell et al, 1985). The 
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411 invasiveness of C jejuni strains is generally low making investigation of this property 

412 difficult, however, we recently reported the identification of hyper-invasive strains of 

413 C jejuni (Fearnley et al, 2008). A transposon mutant library was constructed in one 

414 of these hyper-invasive strains (01/51) in order to investigate the molecular basis of 

415 invasion and 26 mutants with reduced invasion were selected for further study and 

416 identification of the genes inactivated. 

417 

418 Only one of the genes identified was found to be previously associated with invasion. 

419 Mutant 3A10 has a transposon insertion in cipA (CJ0685) a putative Campylobacter 

420 invasion protein). A previous study reported that a mutation in the cipA gene of 

421 C. jejuni TGH9011 resulted in the reduced invasion of HEp-2 cells but there was no 

422 change in invasion of INT-407 and Caco-2 cells (Lynett, 1999). This gene was 

423 identified in our study as being involved in invasion in both INT-407 and Caco-2 

424 cells. In previous annotations of the Campylobacter genome this gene was annotated 

425 as a sugar transferase with similarity to two genes involved in capsule biosynthesis 

426 (Cj 1421c and Cj 1422c). It is possible therefore that a mutation in this gene has altered 

427 some surface property of the organism resulting in reduced invasion and this gene is 

428 currently being investigated further. 

429 

430 The fact that 8 of the 23 mutants in this study had transposon insertions within one 

431 region of the genome is interesting. There was no apparent bias in the insertion point 

432 when an initial ten mutants were screened to check whether the transposition was 

433 random and none of those ten mutants possessed a transposon insertion in this 14 kb 

434 region. It is possible that this 14 kb region has a role in the interaction of C jejuni 

435 with its host; however this region does appear to be associated with genomic 
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436 variability. The sequence between CJ0483 and CJ0499, overlaps with one of the seven 

437 hypervariable plasticity regions, PR, previously described in the genome of C. jejuni 

438 which are likely to reflect the high level of phenotypic variation seen amongst the C. 

439 jejuni population and account for the ability of this organism to exist in a wide range 

440 of ecological niches (Pearson et al, 2003). Moreover further analysis of this region 

441 revealed that in C. jejuni RM1221 there appears to be a large D N A insertion at this 

442 point (CJIE2) which has integrated into the 3'- end of an arginyl tRNA gene (Fouts et 

443 al., 2005) and may represent an intact prophage or a genomic island which highlights 

444 the genetic diversity within this region. 

445 

446 Many of the genes into which the transposons have inserted are genes associated with 

447 metabolism and survival e.g. putA (Cj 1503c), a putative proline dehydrogenase/delta-

448 l-pyrroline-5-carboxylate dehydrogenase, which catalyses the oxidation of proline 

449 into glutamate; aid (CJ0490), aldehyde dehydrogenase, involved in energy acquisition 

450 and amino acid transport; uxaA (CJ0483), altronate hydrolase, involved in 

451 carbohydrate metabolism; CJ0519, involved in molybdopterin biosynthesis; surE, a 

452 putative stationary-phase survival protein; dtpT encoding a di-tripeptide transporter 

453 protein. 

454 

455 Interestingly the aldehyde dehydrogenase gene (CJ0490) is polymorphic in those 

456 strains in which it is present and it is only present in five of the eight C. jejuni genome 

457 sequences currently available suggesting that this gene is non-essential for 

458 metabolism and may even be a pseudogene (http://xbase.bham.ac.uk/campydb/). 

459 
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460 The lack of well-defined virulence mechanisms in C. jejuni and the involvement of 

461 metabolism associated genes with virulence phenotypes may reflect the possibility 

462 that C. jejuni is an opportunistic pathogen and does not possess specific virulence 

463 factors as in other bacteria, with disease resulting as a consequence of the need of the 

464 organism to grow and survive within the human host. The fact that many of these 

465 genes are part of different metabolic pathways highlights that invasion is a multi-

466 faceted phenotype, involving many different pathways. 

467 

468 The transposon in two mutants (1B5 and 1D1) was located within CJ0497, which is 

469 annotated as a putative lipoprotein. Further analysis of this gene sequence indicates 

470 that it contains a signal peptide, suggesting that it might be located in the periplasm 

471 and is likely to be membrane-bound. It also contains a tetratricopeptide repeat (TPR) 

472 region found in multi-protein complexes and transmembrane segments. TPR motifs 

473 are thought to mediate inter- and intra-molecular protein interactions and occur widely 

474 in nature (Ohara et al, 1999). In bacteria TPR repeat containing proteins are thought 

475 to have a role in gene regulation, flagellar motor function and virulence (Newton et 

476 al, 2007). Moreover in Legionella pneumophila, two TPR containing genes IpnE and 

477 enhC have been shown to be associated with entry into human tissue culture cell lines 

478 (Cirillo et al, 2000; Newton et al, 2006). 

479 

480 Targeted insertional inactivation of CJ0497 resulted in a reduction in bacterial 

481 association and invasion which suggests that this gene may have a role in host cell 

482 adhesion, which may lead to invasion. Further phenotypic studies indicated that the 

483 mutant was unaffected in its ability to grow under microaerobic conditions or to 

484 survive in air compared to the wild-type and so the reduction in invasion could not be 
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485 attributed to either of these factors. The mutant was however more motile and better 

486 able to autoagglutinate than the wild-type, suggesting that a loss of this gene does not 

487 result in reduced motility or autoagglutination. A similar finding was reported 

488 previously whereby a mutation in a known adhesin gene, peblA, failed to reduce the 

489 level of autoagglutination compared to the wild-type strain (Misawa & Blaser, 2000). 

490 This could mean that the mechanisms used by the organism to adhere to cells are 

491 different to those used to adhere to each other and in the case of CJ0497, if it were to 

492 encode an adhesin, by removing it, autoagglutination was increased. The reason for 

493 this is unclear but may indicate enhanced exposure of other surface molecules that are 

494 involved in the autoagglutination process. 

495 

496 A number of adhesins have been identified in C. jejuni including P E B l (Kervella et 

497 al, 1993; Pei & Blaser, 1993), CadF (Konkel et al, 1997) and JlpA (Jin et al, 2001). 

498 The role of CJ0497 as a lipoprotein and adhesin in C. jejuni warrants further 

499 investigation as it does appear to be present in all C. jejuni strains tested to date and is 

500 not species-specific like jlpA, as it is present in the genome sequence of C. coli, C. 

501 upsaliensis and C. lari as well as other members of the epsilon subdivision of the 

502 proteobacteria (http://xbase.bham.ac.uk/campydb/). 

503 

504 We have identified a number of previously uncharacterised genes with a potential role 

505 in host cell invasion. The advantage of this study was that a hyper-invasive strain of 

506 C. jejuni was used for transposon mutagenesis which facilitated the detection of 

507 mutants with reduced invasion. Many of the genes are annotated as metabolism-

508 associated rather than "virulence" per se and many appear to be conserved within the 

509 species. In addition this study has also highlighted a region of the genome that may be 
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510 involved in genomic variability between strains. Further investigation of some of the 

511 genes described through targeted mutation as well as complementation studies is 

512 currently underway which will help to provide greater insight into the molecular basis 

513 of the observed variation in virulence in C. jejuni. 

514 
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731 Figure Legends 
732 
733 Figure 1: Location of the transposon insertions in the 14 kb region between 
734 CJ0483 and CJ0499. ORFs with transposon insertions are shown as black arrows. 
735 The shaded inverted triangle represents the position in C. jejuni strain RM1221 where 
736 there is an insertion of c. 40 kb. The direction of the arrow denotes the predicted 
737 direction of transcription. The dotted arrow at the bottom represents the region 
738 confirmed by P C R analysis in C. jejuni 01/51 as having the same gene order as 
739 NCTC11168. This region, flanked by altronate hydrolase C-terminus (CJ0483) and a 
740 putative histidine triad (HIT) family protein (CJ499), contains genes encoding a 
741 putative M F S (Major Facilitator Superfamily) transport protein (CJ0484), a putative 
742 oxidoreductase (CJ0485), a putative sugar transporter (CJ0486), a putative 
743 amidohydrolase (CJ0487), two conserved hypothetical proteins (CJ0488 and CJ0496), 
744 a putative aldehyde dehydrogenase N and C terminus (CJ0489 and CJ0490), 30S 
745 ribosomal proteins S12 and S7 (CJ0491 and CJ0492), fusA elongation factor G 
746 (CJ0493), a putative exporting protein (CJ0494), a putative methyltransferase domain 
747 protein (CJ0495), a putative lipoprotein (CJ0497) and trpC, an indole-3-glycerol 
748 phosphate synthase (CJ0498). 
749 
750 Figure 2: (A) DNA sequence of the CJ0489 - CJ0490 region in NCTC11168 
751 compared with that in 01/51. The dark grey boxes highlight single nucleotide 
752 polymorphisms in the sequence between the two strains and the T T T trinucleotide 
753 present in 01/51 compared with the T T dinucleotide in NCTC11168. The arrow 
754 highlights the deletion of a single T nucleotide in NCTC11168 which results in a stop 
755 codon ( T A A ) . The light grey and clear boxes highlight the primers and probe used in 
756 the melting curve assay respectively. (B) The predicted amino acid sequence of the 
757 CJ0489-CJ0490 region in NCTC11168 compared with 01/51. The whole reading 
758 frame is open for 01/51 from the beginning to end. The underlined sequence is the 
759 NCTC11168 sequence for CJ0489, terminating in a stop codon (.), which then brings 
760 about a frame shift before the start (arrow) of the CJ0490 sequence. The shaded box 
761 highlights an intervening sequence in NCTC11168 which is not translated into the 
762 final protein sequence. 
763 
764 

765 
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766 Table 1: Location of the transposon insertion point in 26 selected mutants with 
767 reduced invasion compared with the parent strain 01/51. Invasion potential and 
768 motility are also given. Mutants are arranged according to functional classification 
769 (http://xbase.bham.ac.uk/campydb/). 

Mutant INT-407 Caco-2 Motility 
Invasion51 Invasion51 

Location and annotation 

Adaptations and atypical conditions 
10D2 40 n/d 

Central intermediary metabolism 
1C1 

1C5 

1F4 

1F3 

19 

16 

26 

1 

n/d 

n/d 

n/d 

Conserved hypothetical proteins 
10D10 3 2 

Degradation- amino acids 
10H3 6 4 

105 

104 

174 

78 

165 

76 

88 

CJ0293 surE, stationary phase 
survival 

CJ0490 aid, aldehyde 
dehydrogenase C-
terminus(571/1182)c 

CJ0490 aid, aldehyde 
dehydrogenase C-
terminus (139/1182) 

CJ0490 aid, aldehyde 
dehydrogenase C-
terminus (929/1182) 

Cj 04 8 3 uxaX altronate 
hydrolase C-terminus 

Cj 1555c hypothetical protein 

Cj 1503 c putative proline 
dehydrogenase 

DNA replication, restriction modification, recombination and repair 
6A9 37 40 82 Cj 0690c putative restriction/ 

modification enzyme 
Energy metabolism- Electron transport 

3H7 

Membrane 
1B5 

1D1 

10H1 

2 

s, lipoproteins 
14 

15 

2 

Signal transduction 
3E9 4 

<1 

and porins 
n/dc 

n/d 

3 

n/d 

82 

83 

100 

88 

100 

Cj 1020c 

Q0497 

Q0497 

Cj 1245c 

flgs 

putative cytochrome 
C 

putative lipoprotein 
(308/1278) 
putative lipoprotein 
(563/1278) 
putative membrane 
protein 

signal transduction 
histidine kinase 

Surface polysaccharides, lipopolysaccharides and antigens 
3A10 1 2 88 Cj0685c invasion protein cipA 
9D2 2 26 92 JJD26997 capsule 

1801 polysaccharide 
biosynthesis protein 
of C. jejuni subsp. 
doylei 269.97 

10E9 3 6 88 CJ1136 putative 
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Transport- Anions 
6A7 11 

glycosyltransferase 

86 Cj 1539c putative anion-uptake 
ABC-transport 
system permease 

Transport- Carbohydrates, organic acids and alcohols 
1D7 10 100 Q0486 

Transport- Peptides 
1H10 0 

Unknown function/miscellaneous 

putative sugar 
transporter 

92 

1H6 

3H8 

10D12 

10H12 

0 n/d 

1 
Location not yet determined 

10A4 8 
10E11 2 
10H2 <1 

4 
3 

<1 

75 

82 

76 

96 

98 
94 
112 

dtp! di-tripeptide 
transporter protein 
not present in 
NCTC11168 

Cj 0519 putative rhodanese-
like domain protein; 
molybdopterin 
biosynthesis protein 

Cj 0499 putative HIT family 
protein 

rloE putative hypothetical 
protein, C. jejuni 
260.94 

Cj 1305c hypothetical protein 

not determined 
not determined 
not determined 

770 a: Invasiveness is presented as a percentage of the invasiveness of the parent strain 
771 01/51. The figure given is the mean of three replicates from within a single assay. 
772 Each assay was repeated at least once more. 
773 b: Motility is presented as a percentage of the motility of the wild-type. The figure 
774 given is the mean of three replicates 
775 c: Nucleotide position of the transposons in CJ0490 and Cj0497/the length of both 
776 genes(bp) 
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a t g a c a a c t t a t t t a a a t t a t a t 

a t g a c a a c t t a t t t a a a t t a t a t 

tgatggaaagtttatcccacataatggagaatttatcgaagttttaaatccagctaccaaagaagtgatt 

tgatggaaagtttatcccacataatggagaatttatcgaagttttaaatccagctaccaaagaagtgatt 

Forward 
tcaagagtagctagcgcttctttagaagatactaaaagagcgattgaagcagc|cjaaaaaagcacaaaaag 
tcaagagtagctagcgct tc t t tagaagatactaaaagagcgat tgaagca gqtjaaaaaagcacaaaaag 

i 
t t tgggaggc taaaccagcgattgaaagagcaaatcatt taaaagaaat agctac t t 
t t tgggaggujtaaaccagcgattgaaagagcaaatcatttaaaagaaatagct a qtttj aatacgcaaaaa 

aatacgcaaaaa 

tgc: taat t tc t taaccgaagt t t taa tgcaagagcaaggaaaaaccagagt t t tggctagcatagagat t 
_tf l£rtaat t tct taaccgaagtt t taatgcaagagcaaggaaaaaccagagtt t tggctagcatagagatt 

Reverse 

01/51 MTTYLNYIDGKFIPHNGEFIEVLNPATKEVISRVASASLEDTKRAIEAAKKAQ 

11168 MTTYLNYIDGKFIPHNGEFIEVLNPATKEVISRVASASLEDTKRAIEAAKKAQ 

01/51 KVWEVKPAIERAN H LKEIASLIRKN AN FLTE VLMQEQG KTRVLASIEIN FTAD 

11168 KVWEVKPAI ERAN H LKE I AS-

11168 LIRKNANFLTEVL 

11168 MQEQGKTRVLASIEINFTAD 

01/51 YMDYTAEWARRYEGEIIQSDRANEHIYLYKSAIGVIGGILPWNFPFFLIARKM 

11168 YMDYTAEWARRYEGEIIQSDRANEHIYLYKSAIGVIGGILPWNFPFFLIARKM 


