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Abstract 

High-intensity exercise results in hydrogen ion accumulation, which can have a deleterious 

effect on muscle function, and thus exercise tolerance. Buffering agents are commonly used 

to enhance exercise performance and capacity. Two such agents, β-alanine and sodium 

bicarbonate, increase intracellular and extracellular buffering capacity, which could 

contribute to an improved performance and capacity during exercise limited by increasing 

acidosis. Despite this, studies on the ergogenic effects of β-alanine are still in their infancy, 

and research on sodium bicarbonate remains equivocal. The aim of this thesis was to 

investigate the separate and combined effects of β-alanine and sodium bicarbonate on high-

intensity exercise performance and capacity using various exercise modalities. The CCT110%, 

a cycling capacity test, was shown to be reliable (Chapter 4A), and subsequently employed to 

investigate the effect of sodium bicarbonate (Chapter 4B), β-alanine and co-supplementation 

of the two (Chapter 4C). Sodium bicarbonate supplementation was shown to improve total 

work done during the CCT110% (+4.8%), only when those experiencing gastrointestinal 

discomfort were removed from analyses, as was β-alanine (+14.6%); co-supplementation of 

the two did not confer any further benefits above β-alanine alone. Neither sodium bicarbonate 

(Chapter 5A) nor β-alanine or co-supplementation of the two (Chapter 5B) improved 5 x 6 s 

repeated running sprints (all P > 0.05). Sprint performance during the Loughborough 

Intermittent Shuttle Test was unaffected by β-alanine supplementation in elite (P = 0.63) and 

non-elite (P = 0.58) games players (Chapter 6), although YoYo Intermittent Recovery Test 

Level 2 performance was improved (+34.3%) with β-alanine in amateur footballers during a 

competitive season (Chapter 7). High-intensity match activities during competitive match 

play were unaffected by β-alanine supplementation (Chapter 8). The results in this thesis 

showed that β-alanine was effective at improving exercise capacity but not exercise 
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performance. Results suggest sodium bicarbonate, and co-supplementation with β-alanine, 

may improve exercise tolerance although further research is warranted.   
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Chapter 1.0 Introduction
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Team sports such as football, hockey and rugby consist of periods of low and high-intensity 

exercise. High-intensity exercise increases energy demand on the working muscles; to meet 

the increased energy demand, adenosine-5'-triphosphate (ATP) is hydrolysed to adenosine-5'-

diphosphate (ADP), although the ATP store is limited and must be continually replenished. 

The aerobic rate of ATP resynthesis is quickly exceeded by the rate of ATP hydrolysis, 

meaning that the shortfall in ATP must be met by the hydrolysis of phosphorylcreatine (PCr) 

and anaerobic glycolysis (Hultman and Sjöholm, 1983). When the glycolytic rate in muscle is 

higher than the rate of pyruvate oxidation, lactic acid is produced to facilitate the continuation 

of muscle contraction but this causes acidification following dissociation to the lactate anion 

(Lac
-
) and hydrogen cation (H

+
). Muscle pH may drop to as low as 6.0, with a concomitant 

drop to ~7.0 seen in both arterial and venous blood during high-intensity exercise (Pan et al., 

1991; Bogdanis et al., 1996). In order to maintain homeostasis, the body must keep an 

equilibrium between H
+
 production and H

+
 removal, which is mediated by buffering systems, 

a process which can be enhanced by supplementation with buffering agents.  

 

Carnosine (β-alanyl-L-histidine) is a histidine containing dipeptide found in high 

concentrations in skeletal muscle of vertebrates and non-vertebrates (Harris et al., 2006; Hill 

et al., 2007). Carnosine has been attributed various roles, although its role as intramuscular 

pH (pHi) buffer is undisputed due to its molecular structure and pKa of 6.83 (Tanokura et al., 

1976), which makes it a suitable buffer over the physiological pH range (Bate-Smith, 1938). 

The synthesis of carnosine within the muscle is limited by the availability of β-alanine 

(Dunnet and Harris, 1999). Harris et al. (2006) demonstrated that 4 weeks of supplementation 

with β-alanine (4.0 g·d
-1

 in the first week rising to 6.4 g·d
-1

 in the fourth) increased muscle 

carnosine by ~60%. 
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An increase in muscle carnosine content would increase muscle buffering capacity, 

potentially mediating an improvement in exercise performance and capacity that is limited by 

the accumulation of H
+
 and a subsequent drop in pHi. Indeed, following 4 weeks of β-alanine 

supplementation, total work done was improved during a high intensity cycle capacity test 

designed to induce large amounts of H
+
 accumulation (Hill et al., 2007). In a  meta-analysis 

of the literature, Hobson et al. (2012) showed that β-alanine supplementation was effective in 

improving high-intensity exercise of durations between 60 – 240 s (P = 0.001) and in excess 

of 240 s (P = 0.05), but not less than 60 s (P = 0.3). A timeframe between 60 and 240 s is a 

period when anaerobic energy sources can contribute between 20 – 60% of the total energy 

requirement (Maughan et al., 1997), resulting in a large accumulation of H
+
. It has been 

suggested that an exercise duration of less than 60 s may not be sufficient to induce 

reductions in pHi that will limit exercise (Sale et al., 2010), although repeated short duration 

exercise may increase the sensitivity to reduced pHi (Katz et al., 1984). 

 

The rate of efflux of H
+
 out of the muscle is dependent on the buffer concentration in the 

surrounding interstitium (Mainwood and Worsley-Brown, 1975). Sodium bicarbonate has 

been widely researched as an ergogenic aid designed to increase extracellular buffering 

concentration. Pre-exercise alkalosis has been shown consistently following sodium 

bicarbonate supplementation (for review see McNaughton et al., 2008), although the reported 

effects on exercise performance and capacity are inconsistent. These conflicting results can 

be attributed to a variety of factors, including differing sodium bicarbonate doses and 

exercise protocols, GI disturbance and individual variation in blood responses to 

supplementation (Matson and Tran, 1993). In a meta-analysis of the literature, Carr et al. 

(2011) showed that sodium bicarbonate was effective at improving a 1 min all out sprint by 

1.7 ± 2.0% when ingested at a dose of 0.3 g·kg
-1

Body Mass (BM) prior to exercise. The 
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ergogenic effects of sodium bicarbonate were enhanced with increasing doses and sprint 

bouts, although McNaughton (1992) showed increased gastrointestinal disturbance with 

doses above 0.3 g·kg
-1

BM, which may negatively impact upon performance.  

 

The ability to recover from and repeat high-intensity efforts during team sports is a fitness 

component that has been termed repeated sprint ability (RSA; Bishop et al., 2001), and is of 

importance to performance (Rampinini et al., 2007). Fatigue during this type of exercise, 

defined as the inability to maintain speed or power output during subsequent high-intensity 

sprints (Girard et al., 2011), has been associated with the accumulation of H
+
 (Rampinini et 

al., 2009), suggesting that performance during this type of exercise can be improved by 

increasing buffering capacity. Hoffman et al. (2008) and Sweeney et al. (2010) showed no 

effect of β-alanine supplementation on repeated sprint performance, although these studies 

did not investigate performance during simulated match play. Similarly, Bishop et al. (2004a) 

used a single 5 x 6 s repeated sprint protocol to show that sodium bicarbonate could increase 

total work done and peak power output during cycle sprints. Although these studies address 

the issue of repeated sprint exercise, more research needs to be performed on RSA during 

actual or simulated games play to identify whether buffering agents can improve performance 

during high-intensity intermittent exercise. 

 

Research into the effects of β-alanine supplementation on exercise performance and capacity 

has developed rapidly since Harris et al. (2006) showed that muscle carnosine concentrations 

could be increased following 4 weeks of supplementation. A range of exercise and capacity 

tests have been employed, from single bout high-intensity performance and capacity tests 

(Hill et al., 2007; van Thienen et al., 2009; Baguet et al., 2010) to repeated sprint protocols 

(Hoffman et al., 2008; Sweeney et al., 2010). However, these repeated sprint studies did not 
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determine performance during simulated or actual games play and, thus, lack ecological 

validity for team sports as they do not consider the implications of the additional metabolic 

demand of the entire activity. Furthermore, no study to date has investigated the effects of co-

supplementing β-alanine and sodium bicarbonate, increasing both intracellular and 

extracellular buffering capacity, theoretically resulting in an increased protection against 

acidosis during high intensity exercise which may contribute to a further improvement in 

exercise performance and capacity above that shown following either sodium bicarbonate 

supplementation or β-alanine supplementation alone. 

 

The aim of this thesis was to investigate the separate and combined effects of two buffering 

agents, β-alanine and sodium bicarbonate, on high-intensity exercise performance and 

capacity using various carefully chosen exercise modalities. Exercise capacity tests require 

individuals to exercise to exhaustion and are an indication of the maximum amount of 

exertion an individual can sustain at a fixed intensity (Goldstein, 1990); tests of this nature 

are mechanistic and allow steady-state measurements to better understand physiological 

responses at the point of fatigue. Performance tests do not require the individual to exert 

themselves to the point of fatigue, and encourage them to perform as much work within a set 

time period or distance. A test of this nature is more applicable to a sporting setting, where 

individuals are rarely required to exercise until the point of fatigue. Outlines of the 

experimental chapters reported in this thesis are as follows:  

 

Chapter 4 reports on several studies using the same cycling capacity test (CCT110%) as Hill et 

al. (2007) which investigated, A) the reliability of the CCT110%, B) the effects of sodium 

bicarbonate on cycling capacity and C) the effects of four weeks of β-alanine 
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supplementation on high-intensity exercise capacity, and whether there was an additive effect 

of acute co-supplementation with sodium bicarbonate. 

 

Chapter 5 reports on two studies using a 2 x 45 minute intermittent exercise protocol that 

replicates running trends seen in football (Greig et al., 2006), with participants performing 5 

x 6 s repeated sprints before, at half-time and immediately following the treadmill protocol. 

Exercise was performed at a simulated altitude of 2500 m, designed to exacerbate the 

metabolic demand of the exercise, thereby increasing the production of H
+
 and the reliance 

on intracellular and extracellular buffering. This altitude was chosen because, in 2007, FIFA 

introduced a ban on international football matches being played at an altitude over 2500 m 

due to an unfair advantage to home teams and health reasons, although the ban is currently 

suspended. The effects of A) acute sodium bicarbonate supplementation and B) five weeks of 

β-alanine supplementation, with and without sodium bicarbonate supplementation, on 

repeated sprint performance throughout football specific intermittent exercise were 

investigated. 

 

Chapter 6 reports on the effect of four weeks β-alanine supplementation on repeated sprint 

performance during the Loughborough Intermittent Shuttle Test, a protocol designed to 

simulate the demands of football (Nicholas et al., 2000) and incorporates timed 15 m sprints 

which represents the average sprint distance during team sports (Spencer et al., 2005). 

 

Chapter 7 reports on the effect of β-alanine supplementation on YoYo Intermittent Recovery 

Test Level 2 (YoYo IR2) performance in amateur footballers during a competitive season. 

The YoYo IR2 evaluates a player’s ability to perform repeated bouts of high-intensity 
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exercise interspersed with periods of low intensity activity and is used as a measure of team 

sport fitness.  

 

The effect of long term β-alanine supplementation in an applied setting is reported in Chapter 

8. Games players were supplemented over the course of an entire season, monitoring in-game 

performance during competitive match play in amateur footballers playing for an English 

league football team. Players were placed into one of three supplementation groups; placebo 

only, placebo then β-alanine, and β-alanine only.  
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 Outline of the Review of the Literature 2.1

Research into team sports has thrived over the past decade with the emergence of laboratory 

based protocols (Nicholas et al., 2000; Drust et al., 2000; Greig et al., 2006) and technologies 

that have facilitated in-match data capture. There is a growing database of research into the 

effects of buffering agents, such as β-alanine and sodium bicarbonate, on exercise 

performance and capacity, though few employ high-intensity intermittent protocols, and 

fewer still have ecological validity to relate the findings to team sport performance. This 

review aims to first provide an overview of the demands of high-intensity intermittent 

exercise, with specific reference to football, techniques to analyse performance, and 

limitations to performance and capacity. It will then develop onto the issue of acid-base 

balance during exercise, the implications of H
+
 accumulation and the intracellular and 

extracellular buffering systems in the body. Finally, this review will discuss the relative 

merits of two buffering agents, β-alanine and sodium bicarbonate, their ability to increase 

baseline concentrations, and the benefits to exercise performance and capacity.  

 

 Games Play 2.2

2.2.1 Performance Characteristics 

Team sports, such as football, hockey and rugby, are characterised by periods of high-

intensity exercise (>15 km·h
-1

; Abt and Lovell, 2009) interspersed with periods of low 

intensity exercise and rest. The nature of team sports, specifically football, are such that 

changes of speed occur approximately once every 4 – 6 s, and players perform more than 

1300 changes in speed during a game (Mohr et al., 2003). Upwards of 200 of these changes 

in speed are performed at high-intensity (Mohr et al., 2003), including up to 60 sprints (Reilly 

and Thomas, 1976).  
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Reilly and Thomas (1976) showed that English league players covered an average of 8680 m 

during a competitive football match. More recently, Italian league players were shown to 

cover an average of 10860 ± 180 m per game (Mohr et al., 2003). These total distances 

covered vary depending on playing position, midfielders covering the greatest distance 

(~11000 m) and goalkeepers the least (~4000 m) (Reilly and Thomas, 1976; Mohr et al., 

2003; Barros et al., 2007; Bradley et al., 2009 & 2010). The total distance covered is 

performed in several motion categories, with most distance covered in the low intensity zones 

(Reilly and Thomas, 1976; Bangsbo et al., 1991).  

 

Mohr et al. (2003) showed that distance covered at high-intensity speeds was higher for top-

class versus moderate standard football players, while successful teams have been shown to 

perform more high-intensity running during games than their unsuccessful opponents (Mohr 

et al., 2003). Therefore, high-intensity performance appears to be the most appropriate 

marker of football performance during competitive match play. Abt and Lovell (2009) 

highlighted the need to individualise the high-intensity speed threshold due to the differing 

speeds at which players reach high-intensity. However, it is not always appropriate to test 

individual games players due to their limited availability during a competitive season. The 

most appropriate absolute threshold for high-intensity running has been shown to be 15 km·h
-

1
, as this was associated with the median second ventilatory threshold in professional football 

players (Abt and Lovell, 2009).  

 

The average sprint during games play is between 10 and 20 m, and lasts approximately 2 – 3 

s (Spencer et al., 2005). Competitive match play requires players to continually perform these 

maximal or near maximal sprints; the most common recovery time separating subsequent 

sprints is less than 20 s or in excess of 121 s (Spencer et al., 2005). Although a recovery 
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period in excess of 30 s has been shown to be sufficient to maintain 15 m sprint performance 

up to forty sprints (Balsom et al., 1992a), a timeframe of less than 30 s is likely to have a 

more deleterious effect on subsequent sprint performance (Balsom et al., 1992b). The term 

RSA is used to define the fitness component that requires players participating in team sports 

to perform repeated sprints (Dawson et al., 1993; Bishop et al., 2001). RSA is considered an 

important aspect of team sport performance as the ability to recover from and repeat high-

intensity exercise during competitive match play is crucial to performance (Rampinini et al., 

2007). Therefore, an intervention designed to delay fatigue during repeated sprints would be 

of benefit to games play performance. 

 

2.2.2 Physiological Characteristics 

Mean heart rates during a football match have been shown to be around 85% of maximum 

(Ali and Farrally, 1991; Bangsbo, 1994a), with a player’s individual heart rate rarely falling 

below 65% of maximum (Bangsbo et al., 2006). These heart rate values can be used to 

estimate oxygen uptake (Esposito et al., 2004), which suggest that, on average, during a 

competitive soccer match, players will work at an energy expenditure of approximately 70% 

of their individual VO2max (Bangsbo et al., 2006). Although mean work rate data from a 

football match can give some insight into the physical demands placed upon players, it is 

important not to over interpret these data due to the intermittent nature of the game. There 

will be periods in a game during which players will be performing at maximal capacity, 

though it would be impossible to maintain this for the entire duration of the exercise due to 

several contributing factors, including an increase in intracellular H
+
 (Rampinini et al., 2009). 

 

Muscle lactate during games play can reach concentrations in excess of 30 mmol·kg
-1 

dry 

mass (dm) in certain individuals following an intense period of play (Krustrup et al., 2006a), 
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with a wide range of concentrations seen between players (2.6 – 36.4 mmol·kg
-1

dm). A rise in 

muscle lactate increases the co-transport efflux of lactate and H
+
 into the blood (Juel 1988; 

Bangsbo et al., 1993), thereby increasing circulating concentrations of lactate. Blood lactate 

concentrations between 2 and 10 mmol·L
-1

 have been shown during team sport activity, with 

individual concentrations as high as 12 mmol·L
-1

 (Ekblom, 1986; Bangsbo, 1994a). Higher 

concentrations are seen during the first half than the second (Bangsbo et al., 1991; Bangsbo 

1994a; Krustrup et al., 2006a); likely reflecting a reduced distance covered during the second 

half of match play. However, blood lactate has been shown to be a poor indicator of muscle 

lactate (Krustrup et al., 2006a), likely due to the simultaneous uptake and release of lactate by 

muscles, and the uptake of lactate into adjacent (Ren et al., 1988) or inactive (Bangsbo et al., 

1995) fibres, meaning lactate concentrations in single muscle fibres do not necessarily reflect 

the amount produced in these fibres during exercise. This could also be due to the rate of 

lactate clearance from the blood being slower than from the muscle (Bangsbo et al., 1995). 

This means that the measured blood lactate concentrations are likely to be more 

representative of the outcome of several activities taking place over minutes, rather than a 

single activity occurring during match play. Nonetheless, large variations in muscle and 

blood lactate concentrations are indicative of the intermittent nature of competitive match 

play; increased lactate concentrations during play suggest that a high rate of glycolysis is 

required for periods during a match. 

 

2.2.3 Performance Analysis  

Performance can be analysed according to locomotion data, whereby all players’ movements 

over the pitch are captured. It is of vital importance to research that the data capture systems 

used to obtain these data be accurate, reliable, objective and valid.  
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Reilly and Thomas (1976) performed a motion analysis of English league football players 

using video recordings of individual players throughout a game. Using predetermined motion 

categories (walking, backing, jogging, cruising and sprinting), a notational analyst 

determined the time spent in each motion category with the aid of a stopwatch and video 

playback. Stride length in each motion category was established by having players perform 

each activity over a set distance. Total distance covered during the match was then 

determined using stride frequency and pitch markings. The methods employed by Reilly and 

Thomas (1976) are susceptible to human error, particularly due to the subjective nature of 

human movement interpretation. Although within analyst variation can be determined, 

analyst bias will negatively affect the reliability of this method. Furthermore, this method of 

analysis is extremely time consuming as it does not allow simultaneous analyses of more than 

one player. 

 

2.2.3.1. Global Positioning Satellite Systems 

Global positioning satellite (GPS) systems are a technology that has been employed to 

capture locomotion data during games play. This technology consists of a GPS receiver and 

27 operational satellites that orbit the earth (Larsson, 2003). The receiver continuously sends 

and receives signals to and from the satellites at the speed of light. Synchronising its time 

with the atomic clock of the satellite, the receiver can measure the travel time of each signal 

from the satellite, which is then converted into distance by multiplying this value by the 

speed of light. The distance to a minimum of four satellites is used to determine the position 

of the receiver using trigonometry (Larsson, 2003; Townshend et al., 2008). Originally 

developed for military use by the US Department of Defence, it was made commercially 

available in the 1980s, although a deliberate error (selective availability) was incorporated as 

a safety aspect against hostile forces using the GPS technology (Larsson, 2003). This 
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triggered an increase in differential GPS (dGPS) systems that increased accuracy using 

stationary receivers at known locations, which transmit correction factors. Selective 

availability was reduced in 2000, significantly increasing the accuracy of non-differential 

GPS technology (Adrados et al. 2002; Witte and Wilson, 2004). 

 

Witte and Wilson (2004) showed that using a non-differential GPS for determination of 

bicycle speed over ground was accurate and reliable, although errors were encountered 

during rapid changes of speed and direction. Townshend et al. (2008) also showed a 

commercially available 1-Hz non-differential GPS receiver to offer accurate estimations of 

actual speed (r = 0.99) and displacement during straight-line human locomotion, with a 

reduction in accuracy over a curved path. Macleod et al. (2009) assessed the validity of a 1-

Hz non-differential GPS system for determining movement patterns during field hockey 

match play. Participants performed a variety of field-hockey related movements (Macleod et 

al., 2009) including a T-shaped shuttle drill, a straight-line shuttle, a straight-line sprint 

shuttle, a zigzag shuttle and 14 circuits of an Astroturf pitch. The 6818 ± 0.0 m course 

distance was acceptably measured by the GPS unit (6820.5 ± 6.8 m) with a mean difference ± 

limits of agreement (LoA) of 2.5 ± 5.8 m. Speed during the four shuttle movements with the 

GPS was strongly correlated (r = 0.99) to speed recorded by timing gates, with a mean 

difference ± LoA of 0.0 ± 0.9 km·h
-1

. Furthermore, Macleod et al. (2009) observed speeds in 

excess of 20 km·h
-1

 during the shuttle movements and highly favourable mean differences 

(range: -0.1 ± 0.81 to +0.2 ± 3.9 m) which suggests a 1-Hz GPS system is suitable for 

obtaining running data during games play. 

 

The horizontal dilution of position (HDOP) represents the error determined from the 

geometric arrangement of the satellites and reflects the accuracy of the latitude and longitude 
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of the position fix of the GPS (Witte and Wilson, 2004; Jennings et al., 2010). A value of 1 is 

desired, meaning a single satellite is overhead with the remaining satellites equally spaced 

around the horizon (Witte and Wilson, 2004). This value can rise to 50 if the orientations of 

all the satellites give an unreliable signal. A mean HDOP value of 1.25 ± 0.06 was shown 

during GPS data capture of simulated team sport running (Jennings et al., 2010). Although a 

larger error in accuracy could be expected with a larger HDOP, Witte and Wilson (2004) 

showed no effect on speed accuracy with increasing HDOP up to values of 40. This suggests 

that, despite changes in satellite orientation that will occur during data capture, the HDOP is 

unlikely to compromise the validity and reliability of the data. 

 

Randers et al. (2010) showed differences between four motion analysis systems, including a 

1-Hz and a 5-Hz GPS unit, in their ability to capture distances covered at various speeds. 

However, the performance decrements seen during a football game were similar for all four 

systems; caution should be taken comparing match analysis data between studies using 

different motion analysis systems. Several studies have shown 1-Hz GPS systems to be 

appropriate for collecting locomotion data (Witte and Wilson, 2004; Townshend et al., 2008), 

and importantly, the work of Macleod et al. (2009) has validated the system for in-match 

running data capture during team games.   

 

 Mechanisms of Fatigue during High-Intensity Intermittent Exercise 2.3

2.3.1 Introduction 

Fatigue is generally considered to be a decline in the maximal force or power capacity of the 

muscles (Enoka and Duchateau, 2008), which will contribute to a reduced performance and 

ultimately, the cessation of exercise. Players perform more high-intensity running and cover 

more distance during the first half of a football match than during the second half (Reilly & 
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Thomas, 1976; Bangsbo, 1994a; Mohr et al., 2003). Rampinini et al. (2007) observed that the 

decrement in high-intensity running during the second half was related to the amount of high-

intensity activity performed during the first half. This suggests that players fatigue (indicated 

by significantly less high-intensity running) towards the end of a football game, though Mohr 

et al. (2003) showed that fatigue also occurred during several periods of a game. High 

intensity running has been shown to be decreased following the most intense five minute 

period of a match (Mohr et al., 2003; Krustrup et al., 2006a; Bradley et al., 2009 & 2010), 

immediately following half time (Mohr et al., 2003) and towards the end of the game (Reilly 

and Thomas, 1976; Bangsbo et al., 1991; Mohr et al., 2003; Bradley et al., 2009 & 2010). 

The intermittent nature and prolonged duration of team sports requires players to perform 

exercise with a large contribution from both aerobic and anaerobic energy systems (Bangsbo 

et al., 2008); since the development of fatigue occurs during several periods of a game, the 

underlying mechanism behind this reduction in performance is undoubtedly multifactorial. 

Therefore, if the mechanisms contributing to fatigue during team sports can be identified, an 

intervention that can manipulate one of the contributors to the reduction in high-intensity 

activity during intermittent exercise would be of benefit to games performance. 

 

2.3.2 Phosphorylcreatine Depletion 

The requirement for ATP resynthesis during maximal exercise is high and is supplemented 

by the hydrolysis of PCr and anaerobic glycolysis (Hultman and Sjöholm, 1983). PCr was 

reduced to 55% of resting levels following a single maximal 6 s cycle sprint (Dawson et al., 

1997), and further reduced to 27% following a fifth maximal sprint. During repeated sprint 

activities such as team sports, the most common recovery time separating subsequent sprints 

is less than 20 s or in excess of 121 s (Spencer et al., 2005); although some of the recovery 

time can also require individuals to perform near maximal efforts. The halftime for PCr 
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resynthesis is approximately 60 s (Bogdanis et al., 1993), which suggests that a decline in 

energy production may be due to the incomplete resynthesis of PCr stores. 

 

2.3.3 Glycogen Depletion 

Depletion of glycogen stores has often been associated with the development of fatigue 

during prolonged intermittent exercise. Saltin (1973) showed that muscle glycogen in the m. 

vastus lateralis of five football players was 96, 32 and 9 mmol·kg
-1

wet weight prior to, at half 

time, and following a friendly football match. Krustrup et al. (2006a) showed that the muscle 

glycogen content of the m. vastus lateralis was 42 ± 6% lower at the end of a match. 

Differences in the level of glycogen depletion can be attributed to individual variation, 

standard of football and playing positions. Krustrup et al. (2006a) observed that 36 ± 6% and 

11 ± 3% of individual muscle fibres (a 16 µm-thick transverse section) were almost empty or 

completely empty of glycogen. Furthermore, this depletion following the completion of a 90 

minute match was associated with a post-match decrement in sprint performance, suggesting 

that low muscle glycogen in some individual fibres may contribute to a reduction in repeated 

sprint performance. Nonetheless, if not all muscle fibres are depleted then it could be 

suggested that glycogen depletion is not the only contributing factor to reduced high-intensity 

performance during prolonged intermittent exercise. 

 

2.3.4 Dehydration 

Sweat losses from 0.4 to 2% of body mass (equivalent to approximately 0.3 to 1.5 L) have 

been shown at the end of a football match (Krustrup et al., 2006a), with sweat losses in 

excess of 3 L shown in hot environments (Mustafa and Mahmoud, 1979). There is a general 

consensus in the literature that the level of dehydration at which performance is impaired is 2% 

(Coyle, 2004; Sawka et al, 2007), though Maxwell et al (1999) observed a decrease in 
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exercise performance (repeated 20 m runs at increasing intensities) with as little as 1.5% 

dehydration. McGregor et al. (1999) showed that when participants performed the 

Loughborough Intermittent Shuttle Test (LIST) without fluid ingestion, 15 m sprint times 

during the final set were longer than when participants were administered drinks (a 

concentrated lemon drink with no added sugar, diluted 1 : 4 with tap water) throughout the 

exercise. YoYo Intermittent Recovery Test Level 2 (YoYo IR2) performance was also 

impaired following a single half of football that elicited 2.4 ± 0.8% (no fluid) and 2.1 ± 0.6% 

(mouthwash only) dehydration compared to a fluid intake trial that resulted in 0.7 ± 0.4% 

dehydration. These results suggest that the levels of dehydration experienced by footballers 

could contribute to reduced performance, though players may not always reach a level of 

dehydration sufficient to impair performance.  

 

2.3.5 Metabolite Accumulation 

High-intensity exercise accounts for approximately 10% of all match activities (Bangsbo et 

al., 1991), increasing energy demand on the muscle. To meet the increased energy demand 

there is an increased contribution from anaerobic glycolysis, which results in the 

accumulation of metabolites such as ADP, inorganic phosphates (Pi), K
+
 and H

+
 in the 

skeletal muscle, contributing to fatigue due to a deleterious effect on skeletal muscle function 

and force generation. A decline in pHi can interfere with several metabolic processes, 

including a disturbance in the resynthesis of phosphorylcreatine (Harris et al., 1976) and 

glycolysis (Spriet et al., 1989), which may contribute to a reduction in force production and 

the onset of fatigue, although not all agree (Bangsbo et al., 1996). Therefore, the increased 

ability to buffer H
+
 might result in an improved capacity to attenuate a decline in repeated 

sprint performance during high-intensity intermittent exercise. Indeed, an increased RSA has 

been associated with a greater H
+
 buffering capacity in elite female hockey players (Bishop et 
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al., 2003), recreational team sport females (Bishop and Edge, 2006), untrained females 

(Bishop et al., 2004b) and professional and amateur male footballers (Rampinini et al., 2009). 

An intervention designed to increase buffering capacity may thus be of benefit to RSA and 

team sport performance. 

 

 Acid-Base Balance 2.4

Acid-base balance in man concerns the regulation of pH homeostasis, maintaining a balance 

between acids and bases. Acids are substances which liberate H
+
 and bases are substances 

which acquire H
+
. Brönsted (1923) discovered that acid-base reactions involve the transfer of 

H
+
 between substances; to maintain homeostasis, there must be a balance between the 

formation and removal of H
+
. This balance is maintained by intracellular and extracellular 

buffers which can accept or release H
+
 to prevent pH changes. In muscle, physicochemical 

buffers such as organic and inorganic phosphates, bicarbonate anions and histidine containing 

dipeptides (e.g., carnosine), are the primary mediators of pH homeostasis. H
+
 are also 

actively and passively transported out of the muscle into the blood mediated by transport 

systems (Juel et al., 2003). H
+
 in the blood can be buffered by the circulating anion 

bicarbonate (HCO3), which forms carbonic acid, a weak acid (H
+
 + HCO3 ↔ H2CO3). Weak 

acids are relatively stable compared to strong acids, which ionize easily increasing the H
+
 

content of its surroundings. H
+
 are also buffered by the respiratory system through the 

reversible reaction, H
+
 + HCO3 ↔ H2CO3 ↔ H2O + CO2, with the resulting carbon dioxide 

excreted by the lungs. The kidneys also play an important role in maintaining acid-base 

balance (McNaughton et al., 2008). It is the physicochemical and dynamic buffering systems 

that are of most importance to high-intensity exercise as they act within seconds of the onset 

of exercise to maintain pH homeostasis; respiratory buffering occurs within minutes with the 

kidneys taking days to restore pH balance.  
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At the onset of exercise, the working muscles increase their energy expenditure dramatically 

and can reach levels up to one hundred times that seen at rest (Hultman and Sjoholm, 1983). 

Stores of adenosine 5’ triphosphate (ATP) in the muscles are low (25.6 ± 0.7 mmol·kg
-1

dm; 

Bogdanis et al., 1998), and the aerobic rate of ATP resynthesis is quickly exceeded by the 

rate of ATP hydrolysis (14.9 ± 2.2 mmol·kg
-1

dm·s
-1

, Gaitanos et al., 1993) during high-

intensity exercise. In order to maintain the energy demands of the muscle, the body relies on 

resynthesis from PCr, anaerobic glycolysis and anaerobic glycogenolysis, with an increased 

contribution from aerobic metabolism during prolonged high-intensity exercise bouts 

(Bogdanis et al., 1996). Glycolysis begins within 5 s of muscle contraction (Hultman and 

Sjoholm, 1983) and is associated with a large accumulation of metabolites such as ADP, Pi 

and H
+
. In particular, the addition of H

+
 poses an increased strain on the body’s acid-base 

balance.  

 

2.4.1 Muscle pH, H
+
 and Exercise 

Typical resting human pH values of 7.0 are seen in muscle, with arterial and venous blood pH 

slightly higher at 7.4 and 7.3. An increase of intracellular and subsequently extracellular 

metabolites during exercise can significantly alter the acid-base balance within the body. 

Muscle pH may drop to as low as 6.0, with a concomitant drop to ~7.0 seen in both arterial 

and venous blood during high-intensity exercise (Pan et al., 1991; Bogdanis et al., 1996). 

Measurements of metabolites in the muscle have shown approximately 94% of H
+
 

accumulation during exhaustive exercise is a direct result of lactic acid accumulation 

(Hultman and Sahlin, 1980). Lindinger (1995) showed that 47% of the H
+
 accumulation 

during an all-out 30 s cycle was associated with the increase in lactate concentration, with 

other major contributing factors including decreased K
+
 (32%) and the total concentration of 
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weak acids and bases (19%). This would suggest that muscle pH can become a limitation to 

performance and capacity during exercise of a sufficiently high intensity that will result in a 

large accumulation of lactic acid (and subsequently Lac
-
 and H

+
).  

 

An increase in H
+
 and concomitant drop in pHi has been associated with a disturbance in the 

resynthesis of phosphorylcreatine (Harris et al., 1976), glycolysis (Spriet et al., 1989), 

oxidative phosphorylation (Jubrias et al., 2003) and can even affect the contractility of the 

muscle itself (Donaldson and Hermansen, 1978; Fabiato and Fabiato, 1978). Furthermore, 

individuals can experience an increased perception of effort during high-intensity intermittent 

exercise due to reduced pHi (Price and Moss, 2007), which may contribute to decreased 

performance. Conversely, Westerblad et al. (1997) showed that acidification did not directly 

inhibit force production of the muscle at physiological temperatures, thereby playing an 

insignificant role in muscle fatigue. Furthermore, Bangsbo et al. (1996) showed that reduced 

pHi did not inhibit muscle glycolysis, and recent research suggests that increased H
+
 

accumulation may counter the negative effects of K
+
 accumulation in the interstitium 

(Overgaard et al., 2010). Despite this, increased buffering capacity has been shown to be 

associated with improved exercise performance (Bishop et al., 2004a and 2004b; Edge et al., 

2006; Rampinini et al., 2009) and capacity (Hill et al., 2007), which highlights the potentially 

deleterious effect of muscle acidification on exercise performance and capacity. It is 

important to note that supplementation aiming to increase intracellular or extracellular 

buffering capacity will only be of benefit during exercise limited by reductions in pHi due to 

the production of H
+
. 
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2.4.2 Intracellular Buffering 

Intracellular buffers are the first line of defence of the muscle against increasing H
+
 

accumulation during intense exercise. These can be classified into physicochemical and 

metabolic buffering processes. Hultman and Sahlin (1980) determined the contribution of the 

physicochemical buffers to the buffering process, with Pi, carnosine, bicarbonate anions and 

protein being the most important. It is only in recent years that high muscle carnosine 

concentration has been associated with improved high-intensity exercise performance; 

following the work of Harris et al. (2006) who showed that muscle carnosine concentrations 

could be increased via supplementation with β-alanine, Hill et al. (2007) were the first to 

show the subsequent benefit on high-intensity exercise capacity.  

 

2.4.3 Extracellular Buffering 

Muscle pH homeostasis is also regulated by active and passive transport of H
+
 into the 

surrounding interstitium where it is buffered by circulating buffers, pulmonary ventilation 

and the kidneys. The transport of H
+
 out of the working cell is mediated by a number of 

active and passive transporters, the primary at rest being the Na
+
/H

+
 exchange (Juel et al., 

2003). This is further supplemented by the Na
+
-dependent and Na

+
-independent Cl

-
/HCO3 

systems (Juel et al., 2003). The flux of H
+
 out of the muscle during exercise is facilitated by 

MCT1 and MCT4, monocarboxylate transporter proteins that carry monocarboxylates (ie 

lactate) across cell membranes. Due to the increased production of H
+
 in the working muscle 

during exercise, the flux of H
+
 out of the muscle and in to the blood will also increase, which 

will place added strain on the extracellular acid-base balance. 

 

Bicarbonate is a blood buffer that plays an important role in maintaining both extracellular 

and intracellular pH, despite its inability to permeate the muscle cell membrane (Katz et al., 
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1984; Costill et al., 1984). The rate of efflux of H
+
 out of the muscle is dependent on the 

buffer concentration in the surrounding interstitium (Mainwood and Worsley-Brown, 1975). 

Therefore, if concentrations of bicarbonate in the blood can be increased via supplementation, 

a theoretical increase in the efflux of H
+
 out of the muscle should be observed. An increased 

removal of H
+
 may indirectly enhance exercise performance as muscle fatigue has been 

linked to the accumulation of intracellular H
+
 (Fabiato and Fabiato, 1978; Spriet et al., 1989), 

although not all agree (Westerblad et al., 1997). Recent research suggests that the mechanism 

behind an increased exercise tolerance due to metabolic alkalosis may be due to an indirect 

effect on K
+
; Street et al. (2005) showed an association between H

+
 and K

+
 accumulation 

with a reduction in both following metabolic alkalosis.  

 

 Carnosine 2.5

It is more than a century since Gulewitsch and Amiradzhibi (1900) first isolated carnosine; 

Krimberg (1906, 1908) later classifying it as a histidine containing dipeptide. Carnosine (β-

alanyl-L-histidine) is naturally occurring and is found in high concentrations in the skeletal 

muscle of vertebrates and non-vertebrates (Harris et al., 2006; Hill et al., 2007), and also in 

the central nervous system. A variety of physiological roles have been attributed to 

intramuscular carnosine including Ca
2+ 

sensitiser (Lamont and Miller, 1992), antioxidant 

(Boldyrev et al., 1993) and inhibitor against protein glycosylation (Hipkiss et al., 1993 & 

1995) and protein cross-linking (Hipkiss, 2000).  Its role as pHi buffer is undisputed however, 

due to its molecular structure and the pKa of its imidazole ring (6.83; Tanokura et al., 1976) 

(Figure 2.1), making it a suitable buffer over the physiological pH range (Bate-Smith, 1938).  

 

Mannion et al. (1992) reported that carnosine only contributed around 7% to total buffering 

capacity. These calculations were, however, based upon comparisons of its buffering effect, 
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derived from its pKa, against calculations of total muscle buffering capacity. Muscle 

buffering capacity is usually determined by the titration of skeletal muscle homogenates 

(Harris et al., 1990; Sewell et al., 1991; Mannion et al., 1994; Bishop et al., 2004b). The 

homogenisation of muscle causes changes to the chemical composition of the intracellular 

environment, even with the inhibition of glycolysis by iodoacetate (Bueding and Goldfarb, 

1941). Included within the homogenised tissue will be intracellular and extracellular pools of 

pH active compounds from the mitochondria and external membranes, which will contribute 

to the determination of muscle buffering capacity in the homogenate but would not contribute 

to physicochemical buffering in the normal cell. In addition, the homogenisation process will 

also expose lipid-bound phosphate groups, which would also not be involved in intracellular 

pH control. Furthermore, titration releases bound phosphates contained within 

phosphorylcreatine, which would contribute to an over estimation of muscle buffering 

capacity and equally an underestimation of the contribution made by carnosine. In truth, total 

muscle buffering capacity is constantly changing; being lowest at rest (at which point the 

relative contribution of carnosine might be calculated to be 3 to 4 times higher than 

commonly held) and increasing with exercise. The estimate of 7% made by Mannion et al. 

(1992) represents a minimum estimate and even then in a muscle with a metabolic 

composition close to that of rigour mortis. However, the findings of Davey (1960) suggest 

that carnosine can contribute as much as 40% to buffering capacity in the physiological pH 

range of 6.5 to 7.5. 

 

2.5.1 β-Alanine Supplementation: Effect on Muscle Carnosine  

In human blood, carnosine is broken down by carnosinase to its constituent amino acids, β-

alanine and histidine (Asatoor et al., 1970), allowing transportation to other organs and 

tissues, although individuals with a polymorphism in the CNDP1 gene, resulting in decreased 
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plasma carnosinase activity, have been shown to have detectable plasma carnosine levels 1 h 

following β-alanine supplementation (Everaert et al., 2012). Importantly, the enzyme 

carnosinase is not found in muscle; β-alanine and histidine are taken up by the muscle and 

synthesised to carnosine by carnosine synthase (Figure 2.1). Human carnosine concentrations 

range from 17.5  4.8 mmol·kg
-1

dm in females to 21.3  4.2 mmol·kg
-1

dm in males (Mannion 

et al., 1992).  Higher concentrations have been reported in sprinters, rowers (Parkhouse et al., 

1985) and body-builders (Tallon et al., 2005). Furthermore, higher concentrations are found 

in fast-twitch (type II) compared to slow-twitch (type I) muscle fibres (Dunnet and Harris, 

1997; Harris et al., 1998), with human m. vastus lateralis carnosine content shown to be 10.5 

± 7.6 mmol·kg
-1

dm in type I fibres and 23.2 ± 17.8 mmol·kg
-1

dm in type II fibres (Harris et 

al., 1998). The higher prevalence of carnosine in type II muscle fibres supports the role of 

carnosine as an intracellular pH buffer.   

 

 

Figure 2.1 The synthesis of carnosine. The imidazole ring, with a pKa of 6.83, is where the H+ is 
buffered.  
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The synthesis of carnosine within the muscle is limited by the availability of β-alanine 

(Dunnet and Harris, 1999). Harris et al. (2006) were the first to report on the effect of dietary 

supplementation of β-alanine on skeletal muscle carnosine content over three individual 

studies. The intention of the first of these studies was to compare the ingestion of β-alanine in 

free form (0, 10, 20 and 40 mg·kg
-1

BM) with an equivalent dose (40 mg·kg
-1

BM) contained 

within food (in this case a chicken broth). However, upon administration of the higher doses 

of free β-alanine (from 20 mg·kg
-1

BM), several participants began to complain of symptoms 

of flushing (also termed paraesthesia). Symptoms began within 20 minutes of administration 

and were described as an unpleasant prickly sensation on the skin around the body that lasted 

up to one hour. This paraesthesia was evident in increasing participant number and intensity 

with increasing doses (from 20 to 40 mg·kg
-1

BM of β-alanine; Harris et al., 2006).  

 

Interestingly, no participants complained of these symptoms when ingesting 40 mg·kg
-1

BM 

β-alanine in the chicken broth. The peak plasma concentration of β-alanine with the ingestion 

of 10, 20 and 40 mg·kg
-1

BM of free β-alanine were 40 ± 26 µmol·L
-1

, 373 ± 133 µmol·L
-1

 

and 833 ± 86 µmol·L
-1

. The peak concentration of plasma β-alanine following ingestion of 

the chicken broth was approximately half that of the equivalent 40 mg·kg
-1

BM β-alanine (428 

± 162 µmol·L
-1

), but higher than the lower free doses. Time to peak plasma concentration 

with the ingestion of the chicken broth (90 minutes) was longer than with supplementation in 

free form (approximately 30 to 40 minutes). Several possible mechanisms exist for the 

paraesthesia, including β-alanine activated strychnine-sensitive glycine receptor sites, 

associated with glutamate sensitive N-methyl-D-aspartate receptors in the brain and central 

nervous system (Mori et al., 2002; Tokutomi et al., 1989; Wang et al., 2003) and the mas-

related gene family of G protein coupled receptors, which are triggered by interactions with 

specific ligands, such as β-alanine (Crozier et al., 2007).   
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Having confirmed that the peak elevation in plasma β-alanine concentrations, and the time to 

peak concentration, were unaffected following 2 weeks of supplementation, Harris et al. 

(2006) examined the effects of 4 weeks of supplementation with either β-alanine or carnosine 

on muscle carnosine concentrations. In this study, 21 male participants were split into four 

groups:  

Group 1: 5 participants ingested 800 mg of β-alanine four times per day, giving an 

average daily dose of 3.2 g (89.6 g of β-alanine were ingested over the 4 

weeks); 

Group 2: 5 participants ingested a total of 145.6 g β-alanine over the 4 weeks 

supplementation period. However, due to the issue with paraesthesia, 

participants did not ingest any single dose above 800 mg. This meant that 

participants were asked to ingest the supplement more frequently to provide 

the increased dose, with participants ingesting a total of 4.0 g·d
-1

 in week one, 

increasing to 6.4 g·d
-1

 in week 4;   

Group 3: 5 participants ingested L-carnosine using the same dosing strategy as Group 2, 

with each dose being approximately isomolar with respect to β-alanine. (A 

total of 364 g of L-carnosine was ingested, equating to 143.3 g of β-alanine); 

Group 4: 6 participants ingested placebo capsules (maltodextrin) in the same dosing 

strategy as employed by Group 2 and Group 3. 

 

All groups showed an increase in muscle carnosine concentrations (Group 1: +7.80 ± 0.36 

mmol·kg
-1

dm; Group 2: +11.04 ± 2.68 mmol·kg
-1

dm and; Group 3: +16.37 ± 3.03 mmol·kg
-

1
dm; Group 4: +1.87 ± 1.73 mmol·kg

-1
dm). Thus, the L-carnosine group showed a greater 

increase in muscle carnosine concentrations than the high and low dose β-alanine groups.  

However, one participant in the high-dose β-alanine group showed no increase in muscle 
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carnosine concentrations with supplementation. Interestingly, this participant had the highest 

pre-supplementation muscle carnosine concentration, which was as high as some of the other 

participants’ post-supplementation carnosine levels. With the exclusion of this participant, 

based upon the assumption that there was some error in sampling or supplementation 

adherence, the percentage increases in the high-dose β-alanine group and the L-carnosine 

group were of a similar magnitude (64.2% and 65.8%).      

 

Hill et al. (2007) confirmed the work of Harris et al. (2006), showing 4 weeks of 

supplementation with β-alanine (4.0 g·d
-1

 in the first week rising to 6.4 g·d
-1

 in the fourth) 

increased muscle carnosine in the m. vastus lateralis by ~60%. This increased to ~80% when 

supplementation was continued up to 10 weeks, although the change from 4 to 10 weeks just 

failed to reach significance (P = 0.07). Nonetheless, this suggests that a 4 week period of β-

alanine supplementation at 6.4 g·d
-1

 is not sufficient to reach a threshold level for carnosine 

storage in the skeletal muscle. Stellingwerff et al. (2012) showed a linear dose-response 

relationship to β-alanine supplementation that is not dependant on baseline muscle carnosine, 

muscle type, or the daily dose of β-alanine, but is dependent on the total amount of β-alanine 

consumed. Moreover, 1.6 g·d
-1

 was sufficient to incur significant increases in muscle 

carnosine after only 2 weeks. The results of Harris et al. (2006), and subsequent 

supplementation studies, clearly demonstrate that several weeks β-alanine supplementation is 

sufficient to induce significant increases in muscle carnosine, thereby increasing muscle 

buffering capacity which may improve exercise performance and capacity limited by the 

accumulation of H
+
. 
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2.5.2 Carnosine Washout 

Baguet et al. (2009) were the first to examine the washout period for carnosine concentrations 

in the skeletal muscle following β-alanine supplementation. Fifteen participants were 

supplemented with 4.8 g·d
-1

 β-alanine or a placebo over a 5 – 6 week period. Carnosine 

content was determined, in the soleus, tibialis anterior and gastrocnemius using proton 

magnetic resonance spectroscopy (1H-MRS). Measurements were taken before and after 

supplementation, as well as after a 3 and 9 week washout period. β-alanine supplementation 

resulted in an increase in the carnosine content of the soleus (39%), tibialis anterior (27%) 

and gastrocnemius (23%), which was in line with the previous findings of Derave et al. 

(2007).  

 

Following the cessation of supplementation, muscle carnosine concentrations declined at a 

rate of 2 – 4% per week on average (Baguet et al., 2009). Given this, mean muscle carnosine 

concentrations remained elevated from baseline after 3 weeks of washout, but not following 9 

weeks. However, the authors also separated participants into high responders and low 

responders to β-alanine supplementation. High responders were classified as those 

participants whose muscle carnosine concentrations increased by over 55% with low 

responders being those participants whose muscle carnosine concentrations increased by up 

to 15%. In high-responders, the washout period was increased to 15 weeks, whereas the 

washout period in the low-responders was 6 weeks. This study indicates that the use of a 

cross-over design in studies examining the exercise performance effects of β-alanine 

supplementation is not practical.   
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2.5.3 β-Alanine Supplementation and Exercise Performance and Capacity 

Suzuki et al. (2002) examined the relationship between skeletal muscle carnosine 

concentrations and exercise performance during 30 s of maximal cycling in 11 healthy males. 

Muscle biopsies were withdrawn from the m. vastus lateralis at rest and were analysed for 

carnosine concentration. Participants then performed 30 s of maximal sprint cycling, during 

which the authors calculated mean power output in each of six 5 s periods. The results 

showed a positive correlation between carnosine concentration and power output during the 

last two 5 s periods. These results suggest that muscle carnosine concentration could be an 

important factor in high-intensity exercise performance. However, Bogdanis et al. (1998) 

indicated that reduced pH did not affect a single bout of cycling as short as 30 s in duration, 

with reduced ATP following the initial 10 s a more contributing factor. 

 

Indeed, Hoffman et al. (2008) observed no effect of β-alanine supplementation on fatigue 

rates in 26 collegiate football players during repeated line drills (3 x ~40 s). However, a trend 

(P = 0.07) was observed for a lower rate of fatigue during a modified Wingate power test 

(lasting 60 s), which was coupled with lower feelings of fatigue (using a 7 point scale) 

communicated by players supplemented with β-alanine. Similarly, Derave et al. (2007) 

supplemented sprint trained athletes up to 5 weeks with β-alanine and showed no effect on 

400 m running performance (lasting ~52 s). These results suggest that β-alanine 

supplementation may not be of benefit to single bout high-intensity exercise less than 60 s in 

duration, a fact confirmed by Hobson et al. (2012) using a meta-analysis of the available 

literature. Conversely, Baguet et al. (2010) showed a non-significant (P = 0.07) effect of β-

alanine supplementation on 2000 m rowing performance (typically lasting ~400 s), although 

there was an absolute improvement in performance that was correlated (r = 0.498) with 

increases in muscle carnosine concentration. Therefore, the optimum exercise duration to be 
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affected by β-alanine supplementation may be somewhere between 60 and 400 s as this 

appears to be a period when anaerobic energy sources can contribute between 20 – 60% of 

the total energy requirement (Maughan et al., 1997) resulting in a large accumulation of H
+
. 

Indeed, Hobson et al. (2012) showed that β-alanine supplementation is most effective on 

exercise lasting between 60 and 240 s, with exercise over 240 s in duration also improved, 

though to a lesser extent.  

 

2.5.3.1. Single Bout High-Intensity Exercise 

Hill et al. (2007) investigated the effect of β-alanine supplementation on a cycling capacity 

test at 110% of previously determined Powermax (CCT110%), designed to last between 120 

and 240 s. The CCT110% is a high intensity exercise protocol designed to induce a large 

accumulation of H
+
 and a resultant drop in pHi. Therefore, this type of exercise test would 

directly focus on the ability of carnosine to improve exercise capacity as a result of an 

increased muscle buffering capacity.   

 

Twenty-four participants completed the study, with 13 participants being supplemented with 

β-alanine and 11 with a maltodextrin placebo. Participants were supplemented with an 

incremental dosage scheme from 4.0 g·d
-1

 in the first week to 6.4 g·d
-1

 in the fourth week, 

which then continued for a further 6 weeks, meaning that participants were supplemented for 

10 weeks in total. There were no differences in total work done (TWD) during the CCT110% 

between groups prior to supplementation. The authors showed that TWD during the CCT110% 

was increased by 13.0% alongside a 58.8% increase in muscle carnosine following four 

weeks of β-alanine supplementation. When supplementation was extended to ten weeks, 

carnosine was increased by 80.1% and total work done by 16.2%. There was no significant 

change in TWD or muscle carnosine in the placebo group following 4 and 10 weeks of 
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supplementation. These results provide some support for the notion that increased muscle 

carnosine content and, as a consequence, increased muscle buffering capacity, allows an 

increase in high-intensity cycling capacity through a reduction in the impact of H
+
 

accumulation on muscle function and fatigue. 

  

As the direct result of increased intracellular buffering, following an elevation in skeletal 

muscle carnosine content, there might also be a delay in CO2 by-production due to a reduced 

requirement for extracellular buffering. As such, it could be hypothesised that β-alanine 

supplementation would have an impact upon the ventilatory threshold in man. Indeed, Zoeller 

et al. (2007) investigated both the individual and combined effects of 4 weeks of β-alanine 

and creatine monohydrate supplementation on indices of endurance performance, including 

markers of the ventilatory threshold and lactate threshold. Participants were allocated to one 

of four supplementation groups; placebo, creatine monohydrate (21 g·d
-1

 for 6 d and then 

10.5 g·d
-1

 for 22 d), β-alanine (6.4 g·d
-1

 for 6 d and then 3.2 g·d
-1

 for 22 d) or a combination 

of β-alanine and creatine (creatine: 21 g·d
-1

 for 6 d and then 10.5 g·d
-1

 for 22 d plus β-alanine: 

6.4 g·d
-1

 for 6 d and then 3.2 g·d
-1

 for 22 d). No between-group differences were observed, 

indicating that there was no effect of β-alanine or β-alanine plus creatine monohydrate on 

ventilatory (Orr et al., 1982) and lactate (Weltman et al., 1990) thresholds. However, the 

authors did report some within group differences following combined β-alanine plus creatine 

monohydrate supplementation, indicating increases in VO2 (+5.7%) and power output (+9%) 

at the lactate threshold and VO2 (+7.9%), %VO2peak (+7.9%) and power output (+10.9%) at 

the ventilatory threshold. However, the true significance of these within-group differences is 

questionable given the lack of any significant between group effects and the fact that some 

significant within group changes were also observed in the control group, possibly suggesting 

that participants lacked familiarisation with the exercise protocols. 
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Stout and colleagues observed a positive effect of β-alanine supplementation on 

neuromuscular fatigue in men (Stout et al., 2006), in women (Stout et al., 2007) and in the 

elderly (Stout et al., 2008). Exercise consisted of incremental cycle stages until exhaustion, 

during which electromyography was used to determine the onset of neuromuscular fatigue 

using the physical working capacity at the fatigue threshold (PWCFT). This protocol was 

developed by deVries et al. (1987) and utilises the relationship between electromyography 

amplitude and fatigue in order to identify the power output that corresponds to the onset of 

neuromuscular fatigue. Stout et al. (2006) suggested that the accumulation of metabolic by-

products in muscle, including Lac
-
 and H

+
, was a potential mechanism for increased 

electromyography amplitude during exhaustive exercise. Stout et al. (2006) used the same 

participants and supplementation protocol as Zoeller et al. (2007). PWCFT improved by 14.5% 

following 28 days of β-alanine supplementation, while combined β-alanine plus creatine 

monohydrate supplementation resulted in an observed 11% increase. No effect of creatine 

monohydrate supplementation was shown, suggesting that the changes that were shown were 

due to an effect of β-alanine supplementation. Similar to the findings previously shown in 

men, Stout et al. (2007) showed a 12.6% increase in women in the PWCFT following β-

alanine supplementation. This improvement increased to 28.6% when the β-alanine 

supplemented population were elderly (55 – 92 y) (Stout et al., 2008). The likely cause of the 

lengthened time to neuromuscular fatigue is an improved intramuscular buffering of H
+
, 

owing to increased carnosine concentration by means of β-alanine supplementation (Harris et 

al., 2006). However, the precise physiological mechanisms by which improved H
+
 regulation 

would affect neuromuscular fatigue are as yet unclear (Stout et al., 2006).  

 

High-intensity interval training (HIIT) results in a large accumulation of metabolites, which 

may contribute to fatigue (Robergs et al., 2004). The metabolic response to this increase in 
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metabolites is suggested to be the mechanism for adaptation, including the ability to delay 

acidosis (Weston et al., 1997). Therefore, combining HIIT and β-alanine supplementation 

may result in additive gains. A number of studies have investigated the combined effects of 

six weeks HIIT, with or without β-alanine supplementation. Smith et al. (2009a) used 

electromyography to assess fatigue and efficiency of electrical activity, which quantifies the 

functional state of the muscle (deVries 1968), during a graded exercise cycle. HIIT improved 

absolute values of fatigue and efficiency of electrical activity following three and six weeks 

in both the β-alanine and placebo groups, although there was no difference between groups. 

Similarly, Walter et al. (2010) showed no added benefit of β-alanine supplementation to HIIT 

on VO2peak during a graded exercise cycle. The training protocol used in these studies may 

have been a superior stimulus to the untrained population, rendering any changes in muscle 

carnosine ineffective. Smith et al. (2009b) showed VO2peak and time to exhaustion were 

improved during graded exercise cycles at three weeks in both supplementation groups, 

although a further increase from three to six weeks was only observed in those participants 

also supplemented with β-alanine. In addition, there was an improvement in total work done 

during a 110% VO2peak test from pre- to mid-training and from mid- to post-training in both 

groups. However, there was no effect of β-alanine supplementation or training on ventilatory 

threshold. These results suggest some potential for β-alanine supplementation to further 

enhance the benefits of high-intensity interval training.  

 

Van Thienen et al. (2009) showed that an 8 week β-alanine supplementation program (2 – 4 

g·d
-1

) could enhance sprint power output at the end of a simulated endurance cycle race. 

Twenty-one participants performed a 110 minute intermittent endurance exercise protocol, 

varying between 50% and 90% (10 minute stages) of their previously estimated maximal 

lactate steady state. A time trial with the initial workload set at 100% maximal lactate steady 
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state (this could be increased or decreased every minute according to the individual’s 

perception of fatigue) proceeded immediately afterwards, followed by a 5 minute active 

recovery period at 50% of maximal lactate steady state. Exercise was concluded with an all-

out 30 s sprint with peak, mean and final power output measured. Following supplementation, 

participants on β-alanine improved their peak (+11.2%), mean (+4.9%) and final (+10.9%) 

power output during the 30s sprint. The high blood lactate concentrations observed (~7 

mmol·L
-1

) highlight the anaerobic nature of the sprint exercise performed, and suggests that 

improved performance may have been due to increased H
+
 buffering during high intensity 

anaerobic exercise. 

 

The above studies highlight the ergogenic ability of increased muscle buffering capacity, 

through supplementation with β-alanine, on single bout high-intensity exercise performance 

and capacity. However, the nature of team sports is such that players are continually required 

to repeat short duration high-intensity bouts with recovery periods of varying duration and 

intensity. Therefore, investigating the effects of β-alanine supplementation on repeated bouts 

of high-intensity exercise is of more ecological validity to games players. 

 

2.5.3.2. Repeated Bout High-Intensity Exercise 

Hoffman et al. (2008) were the first authors to investigate the effect of β-alanine 

supplementation on repeated sprint performance, supplementing collegiate football players 

for 30 days with either 4.5 g·d
-1

 β-alanine or matching placebo. Players performed three sets 

of repeated line drills (200 yards), separated by two minutes rest; sprint times were recorded 

and used to determine fatigue rate. No significant differences were shown between groups in 

sprint times or fatigue rate, suggesting no effect of β-alanine supplementation. However, the 

authors did not take any baseline measurements prior to supplementation; players only 
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performed the line drills on a single occasion, several weeks into supplementation. Therefore, 

had baseline measurements been taken, a potential improvement from pre to post 

supplementation in the β-alanine group cannot be dismissed. Although Hoffman et al. (2008) 

reported no effect of β-alanine supplementation on repeated line drills, an inappropriate 

testing strategy may have masked any effects of increased muscle carnosine. 

 

Sweeney et al. (2010) investigated the effect of 5 weeks of β-alanine supplementation (4 g·d
-1

 

for 1 week followed by 6 g·d
-1

 for 4 weeks) on 5 x 5 s repeated sprints with 45 s passive 

recovery. Participants performed two sets of running sprints with a 2 minute active recovery 

between sets. The authors showed no effect of β-alanine supplementation on horizontal 

power or performance decrement (%fatigue), although mean power was lower in both groups 

following supplementation. This was attributed to a change in pacing strategy in both groups, 

suggesting the participants were not fully familiarised with the protocol.  
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Table 2.1 Effect of β-alanine supplementation on muscle carnosine concentration and exercise performance and capacity. 

Author(s) Year Participants Dose and Timescale Carnosine 

Concentrations 

Exercise Exercise Performance 

& Capacity 

Control 

        

 

Kern & 

Robinson 

 

 

2011 

 

22 wrestlers 

and 15 

footballers 

 

4 g·d
-1

 for 60 days 

with HIIT, RST & 

resistance training 

 

 

- 

 

300 y shuttles, 

90° flexed arm 

hang 

300 y: FB: ↑1.1% (vs 

0.4%), WR:  ↑1.6% (vs 

1.3%); 90°: FB: ↑3.0% 

(vs 0.39%), WR:  

↑6.5% (vs 5%) 

 

 

Dextrose 

        

Baguet et 

al 

2010 18 elite rowers 5 g·d
-1

 for 7 weeks ↑45.3% soleus 

↑28.2% gastrocnemius 

2000 m rowing ↑Performance trend  

(P = 0.07) 

Maltodextrin 

        

Jordan et 

al 

2010 17 males 6 g·d
-1

 for 4 weeks - VO2max treadmill 

test 

Delayed onset of blood 

lactate accumulation 

Maltodextrin 

        

 

Walter et 

al 

 

2010 

 

44 females 

(14, 19, 11 

control) 

6 g·d
-1

 for 3 weeks, 

then 3 g·d
-1

 for 3 

weeks & 6 weeks 

HIIT 

 

- 

 

Graded exercise 

cycle 

No added benefit of β-

alanine to HIIT 

improvements 

 

Dextrose 

        

 

Smith et al 

 

2009a 

 

46 males (18, 

18, 10 control) 

6 g·d
-1

 for 3 weeks, 

then 3 g·d
-1

 for 3 

weeks & 6 weeks 

HIIT 

 

- 

 

2 minute cycling 

work bouts 

No added benefit of β-

alanine to HIIT 

improvements 

 

Dextrose 

        

 

Smith et al 

 

2009b 

 

46 males (18, 

18, 10 control) 

6 g·d
-1

 for 3 weeks, 

then 3 g·d
-1

 for 3 

weeks & 6 weeks 

HIIT 

 

- 

 

Constant load to 

exhaustion and 

graded cycle tests 

 

↑TWD (not sig. vs. Pla) 

↑VO2peak and VO2TTE 

vs. Pla (3 – 6 weeks) 

 

Dextrose 
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Sweeney 

et al 

 

2010 

 

19 males 

4 g·d
-1

 for 1 week, 

then 6 g·d
-1

 for 4 

weeks 

 

- 

 

2 sets of 5 x 5 s 

running sprints 

 

No effect of β-alanine 

supplementation 

 

Rice flour 

        

 

van 

Thienen et 

al 

 

 

2009 

 

17 male 

cyclists 

 

2 g·d
-1

 for 2 weeks, 3 

g·d
-1

 for 2 weeks, then 

4 g·d
-1

 for 4 weeks 

 

- 

110 min 

intermittent cycle, 

followed by 10 

min TT then 30 s 

sprint 

 

↑MPO (5.0%) & PPO 

in sprint (11.4%) 

 

 

Not stated 

 

        

Hoffman 

et al. 

2008 8 resistance 

trained males 

4.8 g·d
-1

 for 4 weeks - 1RM squat test ↑Volume of training Not stated 

        

 

Stout et al 

 

2008 

9 males and 

17 females (55 

-92 years)  

 

2.4 g·d
-1

 for 90 days 

 

- 

Discontinuous 

incremental 

exercise protocol  

 

↑12.6% PWCFT 

 

Cellulose 

        

 

Kendrick 

et al. 

 

2008 

 

26 males 

6.4 g·d
-1

 for 4 weeks 

with 4 weeks 

resistance training of 

one leg 

 

↑12.8% vastus 

lateralis 

WBS, BS, BP, 

DL. Isokinetic 

knee extensions 

(IFP) 

↑WBS and IFP (not 

between supplement 

groups),  

 

Maltodextrin 

        

 

Hoffman 

et al 

 

2008 

 

26 strength & 

power athletes 

 

4.5 g·d
-1

 for 30 days 

 

- 

 

60 s wingate, line 

drills and training 

Trends for ↑ training 

volume (P = 0.09) and 

↓fatigue rates (P = 

0.07)  

 

Maltodextrin 
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Derave et 

al 

 

2007 

 

15 sprint 

trained male 

athletes 

2.4 g·d
-1

 for 4 days, 

3.6 g·d
-1

  for 4 days, 

then 4.8 g·d
-1

 up to 4-5 

weeks 

 

↑47% soleus 

↑37% gastrocnemius 

5 bouts of max 

knee extensions, 

isometric 

contractions & 

400m running 

 

↑Maximal voluntary 

extensions during bouts 

4 & 5 

 

 

Maltodextrin 

 

Stout et al 

 

2007 

 

22 females 

 

3.2 g·d
-1

 in week 1, 6.4 

g·d
-1

 weeks 2 - 4 

 

- 

 

Graded Exercise 

Test 

↑ 12.6% PWCFT 

↑13.9% VT 

↑ 2.5% TTE 

 

Not stated 

        

 

 

Hill et al 

 

 

2007 

 

13 males (4 

weeks) and 

8 males (10 

weeks) 

 

4.0 g·d
-1

 in week 1 

rising to 6.4 g·d
-1

 by 

week 4 till week 10 

 

↑ 58.8% (4 weeks) and 

↑ 80.1% (10 weeks)  

in vastus lateralis 

 

Cycle capacity 

test at 110% of 

maximum power 

 

 

↑ 13.0% (4 weeks)  

↑ 16.2% (10 weeks) 

 

 

Maltodextrin 

        

 

Zoeller et 

al 

 

2007 

 

51 males 

BA, BACrM, CrM, 

Pla for 4 weeks, BA = 

6.4 g·d
-1

 

 

- 

 

Graded Exercise 

Test 

↑Performance in 5 of 8 

parameters with 

BACrM 

 

Dextrose 

        

 

Stout et al 

 

2006 

 

51 males 

BA, BACrM, CrM, 

Pla for 4 weeks, BA = 

6.4 g·d
-1

 

 

- 

 

Graded Exercise 

Test 

 

↑ PWCFT in BA and 

BACrM 

 

 

Dextrose 
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Previous studies have not shown a significant effect of β-alanine supplementation on repeated 

sprint performance (Hoffman et al., 2008; Sweeney et al., 2011), although any effects of 

supplementation may have been masked by inappropriate testing strategies and insufficient 

familiarisation of the protocols. Furthermore, these studies did not determine repeated sprint 

performance during simulated or actual games play and, thus, did not consider the 

implications of the additional metabolic demand of the entire activity. Further research is 

warranted employing protocols that simulate games play to determine if β-alanine 

supplementation is beneficial to team sports performance. 

 

 Bicarbonate 2.6

2.6.1 Sodium Bicarbonate Supplementation: Effect on Blood Bicarbonate 

Sodium bicarbonate supplementation has consistently been shown to cause blood alkalosis 

(Inbar et al., 1983; Costill et al., 1984; Gaitanos et al., 1991), indicated by an increase in 

blood bicarbonate concentrations and pH (for reviews see Matson and Tran, 1993 and Carr et 

al., 2011). Under normal resting conditions, circulating concentrations of bicarbonate range 

approximately between 23.0 to 27.0 mmol·L
-1

 (Matson and Tran, 1993). Studies investigating 

sodium bicarbonate supplementation to increase blood bicarbonate levels have used doses 

relative to body mass (BM), ranging from as little as 0.1 g·kg
-1

BM increasing to as much as 

0.5 g·kg
-1

BM (McNaughton, 1992). A dose of 0.1 g·kg
-1

BM may not be sufficient to increase 

blood bicarbonate, while doses above 0.3 g·kg
-1

BM result in increased gastrointestinal 

disturbance in all participants (McNaughton, 1992), which may deter participants from 

ingesting higher doses. Furthermore, doses of 0.4 and 0.5 g·kg
-1

BM have not shown increases 

in circulating levels of bicarbonate above that of 0.3 g·kg
-1

BM (McNaughton, 1992), 

suggesting this to be the optimal dose. 
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Interestingly, Matson and Tran (1993) reported a relatively weak relationship (r = 0.42) 

between dose and degree of blood alkalosis following sodium bicarbonate supplementation 

from a meta-analysis of the literature. It was hypothesised that this was due to the large 

variability in individual pH and bicarbonate responses to supplementation. This would 

suggest that since acute supplementation with sodium bicarbonate may not result in a similar 

degree of alkalosis in those ingesting it, any true ergogenic effects might be masked by this 

individual variability. Therefore, when investigating the effects of sodium bicarbonate on 

exercise performance, it would seem appropriate to employ a larger sample population to 

account for the variability in physiological responses. Furthermore, splitting participants into 

those who benefited from sodium bicarbonate supplementation, and those who did not, would 

allow analysis into why, physiologically, participants did or did not benefit from 

supplementation.  

 

2.6.2 Sodium Bicarbonate Supplementation and Exercise Performance and Capacity 

The effects of sodium bicarbonate supplementation on exercise performance and capacity 

have been well researched (for review see McNaughton et al., 2008), although the reported 

effects are equivocal. Inconsistencies in the performance outcomes of sodium bicarbonate 

supplementation studies (Table 2.2) can be partly attributed to differing dosing regimens, 

gastrointestinal discomfort experienced by some participants, exercise models insufficient to 

be limited by H
+
 accumulation and individual variation in the response to supplementation. 

Despite this, there is a wide range of evidence to support the use of sodium bicarbonate 

supplementation as an ergogenic aid. 
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Table 2.2 Effect of sodium bicarbonate supplementation on single bout high-intensity exercise performance and capacity 

Author(s) Year Participants Dose Loading Time 

Before Exercise 

Exercise Mode  

and Protocol 

Reported Ergogenic 

Effect 

Control 

   (g·kg
-1

 BM)     
        

Exercise Duration ≤ 60 s 

        
 

McNaughton 

 

1992 

 

9 males 

0.1 

0.2 

0.3 – 0.5 

 

60 min 

 

1 min cycle sprint 

No difference in MPO 

↑ MPO 

↑ MPO and ↑ PPO 

Control 

and 

CaCO3 

        

McNaughton et 

al. 

1991 8 males 0.4 60 min 1 min maximal cycle ↑TWD  CaCO3 

        

Inbar et al. 1983 13 males 10 g dose 150 min 30 s cycling Wingate test ↑ MPO (~1.3%) 

No difference in PPO 

NaCl 

        

60 s < Exercise Duration ≤ 240 s 

        

Siegler et al. 2008 9 males 0.3 ~60-75 min Cycle to fatigue at 120% MPO 

(~120 s) 

No effect on TTE CaCO3 

 

        

 

Robergs et al. 

 

2005 

 

12 trained 

cyclists 

0.2 

NaHCO3 & 

0.2 Sodium 

citrate 

 

~75 min 

 

Cycle to exhaustion at 110% of 

workload at VO2max (~150 s) 

 

No difference in TTE 

 

CaCO3 
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van Montfoort 

et al. 

 

2004 

 

15 male 

endurance 

runners 

 

0.3 

 

90-180 min 

 

Running sprint to exhaustion 

(60 – 120 s) 

96, 92 and 66% chance of 

a substantial improvement 

with sodium bicarbonate 

versus citrate, lactate & 

chloride 

Sodium 

citrate, 

lactate & 

chloride 

        

Tiryaki & 

Atterbom 

1995 11 female 

athletes 

0.3 150 min 600 m running test (~120 s) No difference in running 

times 

Sugarless 

Kool-Aid 

        

Horswill et al. 1988 9 males 0.1 - 0.2 60 min 2 min maximal cycle sprint No difference in TWD NaCl 

        

Katz et al. 1984 8 males 0.2 60 min Cycle to exhaustion at 125% 

VO2max (~100 s) 

No difference in TTE NaCl 

        

Exercise Duration > 240 s 
        

McNaughton & 

Cedaro 

1991 5 trained 

males 

0.3 90 min 6 min maximal row on an 

ergometer 

↑ Rowing distance CaCO3 
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2.6.2.1. Single Bout High-Intensity Exercise 

McNaughton et al. (1992) showed that total work done during a single bout of high-intensity 

exercise (60 s cycle sprint) could be improved with sodium bicarbonate supplementation 

ranging in dose from 0.2 – 0.5 g·kg
-1

BM.
 
McNaughton et al. (1991) and Inbar et al. (1983) 

also showed improvements in total work done and power output during single cycle sprints 

no longer than one minute in duration (Table 2.2). In a meta-analysis of the literature, Carr et 

al. (2011) showed that sodium bicarbonate supplementation prior to a 60 s sprint improved 

performance by 1.7 ± 2.0%. Katz et al. (1984) employed a cycling capacity test to exhaustion 

lasting in excess of one minute (~100 s) but showed no benefit from sodium bicarbonate 

supplementation, and suggested that sodium bicarbonate supplementation may be of more 

benefit during repeated bout exercise.  

 

2.6.2.2. Repeated Bout High-Intensity Exercise 

Sodium bicarbonate supplementation (in doses between 0.2 to 0.3 g·kg
-1

BM) has been shown 

to increase work output (McKenzie et al., 1986; Bishop et al., 2004a), mean power output  

during repeated sprint activity (Lavender and Bird, 1989), and delay fatigue in high-intensity 

cycling to exhaustion following repeated sprints (Costill et al., 1984; McKenzie et al., 1986) 

(Table 2.3). Lavender and Bird (1989) showed a greater power output in eight out of ten 10 s 

sprints separated by 50 s recovery following sodium bicarbonate supplementation. Similarly, 

Bishop et al. (2004a) showed sodium bicarbonate increased total work done (16.5  3.1 vs. 

15.7  3.0  kJ) and peak power output during 5 x 6 s repeated cycle sprints with 24 s passive 

rest. Gaitanos et al. (1991) had participants perform ten 6 s running sprints with 30 s passive 

recovery. Although mean power output in the sodium bicarbonate trial was 2% higher than in 

the placebo trial, there was no significant effect. Repeated sprint activity is important to team 

sport activity, however, cycling protocols do not fully represent the physical demands placed 
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on a player during competitive match play as they only incorporate lower limb activity. 

Furthermore, these repeated sprint tests do not incorporate the full metabolic demand placed 

upon players during prolonged match play. 

 

2.6.2.3. Prolonged High-Intensity Intermittent Exercise 

Price et al. (2003) investigated the effect of sodium bicarbonate supplementation on an 

intermittent protocol based on football notional analysis (Reilly and Thomas, 1976), although 

this was performed on a cycle ergometer. The protocol incorporated ten repeated 3 minute 

blocks of intermittent exercise, each consisting of 90 s at 40% of an individual’s VO2max, 60 s 

at 60% VO2max, 14 s maximal sprinting and 16 s rest. Although total work done and peak 

power output during the sprints were not different between conditions, there was a main 

effect between trials in peak power output relative to the first sprint. A similar protocol based 

on intermittent team sport exercise was adopted by Bishop and Claudius (2005) who showed 

a trend (P = 0.08) towards increased total work done with sodium bicarbonate during the 

second of two halves of 36 minutes of intermittent cycling, although only seven of eighteen 

second half sprints were improved with sodium bicarbonate. Whether sodium bicarbonate 

supplementation could benefit team sport athletes who are required to perform repeated bouts 

of sprinting and high-intensity exercise during competitive match play remains unanswered; 

although these studies incorporate intermittent exercise activity, their external validity to 

team sports is questionable. Both studies performed exercise on cycle ergometers, which only 

incorporates lower limb rather than whole body activity. The duration of the entire protocol 

used by Price et al. (2003) is much shorter than a competitive team sport match and sprint 

duration is much longer than the average 2 – 3 s sprint (Spencer et al., 2005) observed in 

team sports. Therefore, more research needs to be performed on specific exercise protocols 
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that simulate team sport activity to identify whether sodium bicarbonate supplementation can 

improve performance during high-intensity intermittent exercise.  

 

To date, studies investigating the effect of sodium bicarbonate supplementation on exercise 

capacity and performance have reported contrasting results. These conflicting results can be 

attributed to a variety of factors, including differing doses, different exercise protocols, GI 

disturbance and individual variation in blood responses to supplementation. Nonetheless, 

there are numerous studies that have shown sodium bicarbonate to be of benefit during 

exercise modalities likely to be limited by the accumulation of intramuscular H
+
. Furthermore, 

some evidence suggests that sodium bicarbonate might be of benefit to high-intensity 

intermittent exercise performance, although the protocols previously used have lacked 

ecological validity.  
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Table 2.3 Effect of sodium bicarbonate supplementation on repeated-sprint and high-intensity exercise performance and capacity. 

Author(s) Year Participants Dose Loading Time 

Before Exercise 

Exercise Mode  

and Protocol 

Reported Ergogenic 

Effect 

Control 

   (g·kg
-1

BM)     
        
 

Zinner et al. 

 

2011 

 

11 males 

 

0.3 

 

90 min 

4 x 30 s maximal cycle sprint 

separate by 5 min passive 

recovery 

↑MPO during sprints 3 

and 4 

 

CaCO3 

        
 

Price & Simons 

 

2010 

 

8 males 

 

0.3 

 

60 min 

20 x 24 s runs at 100% VO2max 

followed by a run to 

exhaustion at 120% VO2max  

 

No difference in TTE 

 

NaCl 

        

 

Siegler et al. 

 

2010 

 

9 males 

 

0.3 

 

~60-75 min 

3 x 30 s maximal running 

sprints separated by 3 min of 

active or passive recovery 

↑Average speed in the 

final bout for placebo and 

active recovery 

 

NaCl 

        

 

Siegler and 

Gleadall-Siddal 

 

2010 

6 male & 8 

female 

swimmers 

 

0.3 

 

150 min 

 

8 x 25 m swims separated by  

5 s 

 

Improved swim time (2%) 

 

NaCl 

        

 

Bishop & 

Claudius 

 

2005 

 

9 female team 

sport players 

 

2 x 0.2 

 

90 min & 20 min 

2 x 36 min intermittent 

cycling; Repeated 2 min 

blocks of 4 s sprint, 100 s at 

35% VO2peak, and 20 s rest 

Trend towards ↑TWD 

during the 2
nd

 half (P = 

0.08) 

 

NaCl 

 

        

Bishop et al. 2004a 10 females 0.3 90 min 5 x 6 s cycling test ↑TWD and ↑PPO during 

sprints 3, 4 and 5 

NaCl 

        

Price et al. 2003 8 males 0.3 60 min 10 x 3 minute blocks of 

intermittent cycling 

↑ PPO relative to sprint 1 NaCl 
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Webster et al. 

 

1993 

 

6 males 

 

0.3 

 

105 min 

4 x 12 repetitions at 70% of 

1RM on a universal leg press 

machine, followed by a fifth 

set to exhaustion 

No difference in 

repetitions performed in 

the fifth set 

 

Flour 

        

Gaitanos et al. 1991 7 males 0.3 150 min 10 x 6 s running sprints No difference in MPO 

No difference in PPO 

NaCl 

        

Lavender & 

Bird 

1989 15 males 

8 females 

0.3 60 – 120 min 10 x 10 s cycle sprints ↑ MPO in 8 of 10 sprints NaCl 

        

 

McKenzie et al. 

 

1986 

 

6 males 

 

0.15 

0.3 

 

60 min 

5 x 60 s cycling at 125% 

VO2max with 60 s recovery, 

followed by a 6
th

 bout to 

exhaustion 

 

↑TTE & ↑TWD 

 

 

        

 

Costill et al. 

 

1984 

 

10 males 

1 female 

 

0.2 

 

60 min 

4 x 1 min cycling at 100% 

VO2max followed by a cycle to 

exhaustion at 100% VO2max 

 

↑ TTE (42%) 

 

NaCl 

        

Inbar et al. 1983 13 males 10 g dose 150 min 30 s cycling Wingate test ↑ MPO (~1.3%) 

No difference in PPO 

NaCl 

        

 

Sutton et al. 

 

1981 

 

5 males 

 

0.3 

 

15 – 180 min 

20 min cycles at 33% and 66% 

of VO2max followed by a cycle 

to exhaustion at 95% VO2max  

 

↑ TTE 

CaCO3 or 

NH4Cl 
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 Summary 2.7

High-intensity exercise results in the accumulation of H
+
, which increases the strain on acid-

base balance in the body; when buffering capacity is exceeded, a resultant drop in 

intracellular and extracellular pH can negatively affect several metabolic processes, 

contributing to the early onset of fatigue (Spriet et al., 1989). Consequently, a decline in 

exercise performance and capacity may be attenuated in individuals who can buffer the 

reduction in pH more effectively. Therefore, an intervention designed to increase buffering 

capacity might be of benefit to individuals involved in high-intensity exercise, whether of a 

continuous or intermittent nature. 

 

Buffering agents are widely used by athletes to augment buffering capacity and potentially 

improve exercise performance and capacity. Harris et al. (2006) showed that β-alanine 

supplementation could increase muscle carnosine concentration, with subsequent studies 

showing concomitant improvements in high-intensity exercise performance and capacity (for 

reviews see Sale et al., 2010 and Hobson et al. 2012). The most likely explanation for any 

ergogenic benefit is due to an increased intracellular buffering capacity, resulting in a delay 

in the decrease of pHi during exercise. Acute sodium bicarbonate supplementation, which 

results in alkalosis of the blood (Inbar et al. 1983; Costill et al. 1984; Katz et al. 1984; 

Gaitanos et al. 1991), has long been regarded as an ergogenic aid for high-intensity exercise 

performance and capacity (for review see McNaughton et al. 2008), most likely due to an 

increased efflux of H
+
 out of the working muscles. Available literature suggests that 

increased H
+
 buffering capacity can be beneficial to exercise performance and capacity, 

although there remain several unanswered questions requiring investigation. 
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This thesis reports on eight studies that extend the previous body of research into buffering 

agents and their ergogenic effect on high-intensity exercise performance and capacity. 

Despite the fact that studies have shown significant improvements in exercise performance 

and capacity following supplementation with β-alanine and sodium bicarbonate separately, 

no study to date has investigated the effects of co-supplementation, thereby increasing both 

intracellular and extracellular buffering capacity. Furthermore, despite several studies 

investigating increased buffering capacity on repeated sprint exercise, no study has employed 

a protocol designed to simulate actual match play, thereby incorporating the full metabolic 

demand of the entire activity.  
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Chapter 3.0 General Methods
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 Participants 3.1

Male games players of varying standards volunteered for the studies reported in this thesis. 

All participants were fully informed of any risks and discomforts associated with their study 

before completing a health screen and providing informed consent. The health screening 

procedure was repeated prior to each laboratory visit to ensure the health status of the 

participants had not changed. Participants had not taken any supplement in the 3 months prior 

to their study, and had not taken β-alanine for at least 6 months prior to their study due to the 

long washout period for muscle carnosine (Baguet et al., 2009). Participants were also 

requested to maintain similar levels of physical activity and dietary intake for the duration of 

their study and compliance with this request was verbally confirmed with participants prior to 

commencement of the study. Dietary intake was monitored in the 24 h prior to main trials 

using a food diary, and repeated prior to any subsequent main trial. None of the participants 

were vegetarian and therefore would have encountered small amounts of β-alanine in their 

diet from the hydrolysis of carnosine and methyl derivatives of this in meat; typically 50 to 

400 mg per day. All studies were approved by the Nottingham Trent University’s Ethical 

Advisory Committee. 

 

 Supplementation Protocols 3.2

3.2.1 β-Alanine 

Participants were supplemented with either β-alanine (CarnoSyn
TM

; NAI, USA) or placebo 

(maltodextrin; NAI, USA), provided in the form of 800 mg sustained-release tablets, in order 

to minimise the incidence of paraesthesia which is associated with the time to peak plasma 

concentration (Harris et al., 2006). All administration of supplementation was double-blind, 

and occurrence of paraesthesia would compromise the blinding of the study, resulting in 

exclusion of the affected participant. All supplements were tested by HFL Sports Science 
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prior to use to ensure no contamination with steroids or stimulants according to ISO 17025 

accredited tests. 

 

3.2.2 Sodium Bicarbonate 

Participants were acutely supplemented with either sodium bicarbonate (SIS, UK) or 

maltodextrin (SIS, UK) prior to exercise in several chapters reported in this thesis, and 

ingested a total of 0.3 g·kg
-1

BM of sodium bicarbonate in gelatine capsules made up 

individually for each participant. This total dose was based upon that used in other studies 

(McNaughton et al., 2008). The total dose of the maltodextrin placebo was ingested in the 

same number of opaque gelatine capsules.
 
Following an overnight fast, participants arrived at 

the laboratory 4 h before the exercise protocol. Participants ingested 0.2 g·kg
-1

BM of sodium 

bicarbonate or matching placebo alongside a standardised breakfast and a final 0.1 g·kg
-1

BM 

was ingested 2 h after the standardised breakfast, 2 h prior to commencement of exercise. 

Each dose of sodium bicarbonate or maltodextrin was ingested with 500 ml of plain water. A 

split dose strategy for sodium bicarbonate ingestion was employed in order to minimise the 

gastrointestinal discomfort often associated with supplementation at this level.   

 

 Experimental Protocols 3.3

3.3.1 Powermax (Wmax) Test  

Participants performed a graded cycle capacity test to exhaustion on a cycle ergometer (Lode 

Excalibur, Lode B.V., Germany) to determine individual Wmax. Exercise commenced at a 

self-selected power between 100 and 150 W, and was increased by 6 W every 15 s (ramp rate 

of 24 W·min
-1

) until participants reached volitional exhaustion. Participants pedalled at a 

constant, self-selected pedal cadence and were given verbal encouragement throughout. 

Volitional exhaustion was deemed to have occurred when participants dropped 20 rev·min
-1
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below their self-selected pedal cadence, at which point they were instructed to stop pedalling. 

The maximum power output averaged over the final two stages was defined as an 

individual’s Wmax.  

 

3.3.2 Cycling Capacity Test (CCT110%) 

All trials of the cycling capacity test at 110% of Wmax were performed on a cycle ergometer 

(Lode Excalibur, Lode B.V., Germany). Individual set up of the cycle ergometer (saddle and 

handlebar height and length) was determined prior to the initial Wmax trial and was 

maintained for all subsequent CCT110% trials. A 5 min cycling warm up was performed at 100 

W followed by a 2 min period of stretching. Each participant’s CCT110% was incremented 

over the first 30 s which corresponded to 80% Wmax during the first 15 s, 95% Wmax over the 

second 15 s followed by 110% Wmax until volitional exhaustion. Participants pedalled at a 

constant, self-selected pedal cadence and were given verbal encouragement throughout. 

Volitional exhaustion was deemed to have occurred when participants dropped 20 rev·min
-1

 

below their self-selected pedal cadence, at which point they were instructed to stop pedalling. 

Time to exhaustion (TTE, s) and total work done (TWD, kJ) were recorded as the outcome 

measures for all tests. 

 

3.3.3 Speed Lactate and Maximal Oxygen Uptake (VO2max) Test 

Participants began an incremental running speed lactate test at a self-selected starting speed 

(range: 6 – 10 km·h
-1

) on a motorised treadmill (Pulsar, h/p/cosmos, Germany); initial speed 

was of a low intensity so as not to illicit an increase in lactate in excess of 1 mmol·L
-1

 above 

resting concentration. Exercise intensity was increased by 1 km·h
-1

 every 3 min until an 

increase of lactate above 4 mmol·L
-1

 was reached (lactate threshold). Fingerprick blood 

samples were obtained at the end of every stage and analysed for lactate using an automated 
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glucose and lactate analyser (YSI 2300 Stat, YSI Incorporated, USA). Participants rested for 

10 min before performing a VO2max test to volitional exhaustion (Jones and Doust, 1996). 

Treadmill speed was equivalent to that of the individual’s lactate threshold, and began at a 1% 

incline. Inclination was increased by 1% every minute until the participant indicated they had 

only one minute remaining. A Douglas bag sample was obtained during the final minute and 

analysed for gas concentration and volume using a calibrated Servomex gas analyser 

(Servomex 1440, Servomex, UK) and dry gas meter (Harvard, UK). 

 

3.3.4 Football Specific Intermittent Treadmill Protocol (FSINT) 

All trials took place in an environmental chamber (Design Environmental Ltd, UK) at a 

simulated altitude of 2500 m, with desired environmental conditions of 15.5% oxygen, 

temperature of 18.0
°
C and a relative humidity of 50.0%. Participants completed a laboratory 

based intermittent treadmill protocol (Greig et al, 2006) designed to replicate the demands of 

soccer. The protocol consisted of two 45 min halves (FSINT1 and FSINT2) separated by a 15 

min half time period; within each half, the protocol comprised of three 15 min activity bouts 

consisting of eight different exercise intensities (Table 3.1). All activity was performed on a 

motorised treadmill (Pulsar, h/p/cosmos, Germany) set at a 1% gradient. Total distance 

covered during the FSINT was 9.70 km. 
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Table 3.1 Movement activities performed every 15 min cycle of the FSINT. 

Activity Speed  

(km·h
-1

) 

Number of 

activities 

Mean duration 

(s) 

Standing 0 20 7.8 

Walking 4 55 6.7 

Jogging 8 42 3.5 

Low Speed 12 46 3.5 

Moderate Speed 16 20 2.5 

High Speed 21 9 2.1 

Sprint 25 3 2.0 

 

3.3.5 Repeated Sprints (5 x 6 s) 

The repeated sprints comprised of five maximal sprints, each 6 s in duration, with 24 s active 

recovery, performed on a non-motorised treadmill (Desmo-Force, Woodway, USA), which 

was adapted in the laboratory. Participants were required to wear a belt around their waist 

which was attached to a force transducer placed directly behind the treadmill. All data were 

recorded using a modified version of Spike2 (V5.09, CED, Cambridge). Mean power output 

(MPO) and peak power output (PPO) of every sprint were recorded. 

 

3.3.6 Multistage Fitness Test 

All tests were conducted in a sports hall with an ambient temperature of 19.1 ± 0.8
º
C and 

relative humidity of 43.7 ± 6.2%.  A 5 min standardised warm-up was performed, consisting 

of light jogging and running, followed by 5 min of self-selected stretching. Participants were 

then required to run between markers set 20 m apart at increasing speeds dictated by an audio 

signal. The test was ended if the participant failed to reach the designated line within the 

given time frame on two consecutive occasions or at volitional exhaustion. The final level 

attained by the participant was used to estimate maximal oxygen uptake (Ramsbottom et al., 

1988). 
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3.3.7 Loughborough Intermittent Shuttle Test (LIST) 

All tests were conducted in a sports hall with an ambient temperature of 18.8 ± 0.9
º
C and 

relative humidity of 42.8 ± 4.7%. A 5 min standardised warm-up was performed, consisting 

of light jogging and running, followed by 5 min of self-selected stretching. The LIST requires 

participants to run between markers set 20 m apart at varying speeds dictated by an audio 

signal (Nicholas et al., 2000). The test consisted of six exercise sets approximately 15 min 

long separated by periods of 3 min rest (Figure 3.1). Within each set was an exercise pattern 

(Figure 3.1) repeated 11 times, incorporating walking, recovery, sprinting (over 15 m), 

cruising and jogging; cruising and jogging were defined as 95% and 55% of an individual’s 

estimated VO2max. These corresponding running speeds were calculated using tables for 

predicted VO2max values (Ramsbottom et al, 1988). Individual sprint times over 15 m were 

recorded (Brower Timing Systems IRD-T173, USA), totalling 66 sprints.   

 

 

Figure 3.1 The Loughborough Intermittent Shuttle Test. 
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3.3.8 YoYo Intermittent Recovery Test Level 2 (YoYo IR2) 

The YoYo IR2 consisted of repeated 40 m (2 x 20 m) runs at progressively increasing speeds 

dictated by an audio signal (Bangsbo, 1994b). Participants perform 10 s of active recovery 

between each running bout, consisting of a 10 m (2 x 5 m) walk. The test was ended if the 

player failed to reach the finish line within the given time frame on two consecutive 

occasions or if the player felt unable to continue (volitional exhaustion). The total number of 

levels was recorded and used to determine total distance covered (m) during the test.  

 

3.3.9 Match Analysis 

In match running data were collected during competitive football match play using Global 

Positioning Satellite technology (GPSports, Australia). Players wore an individual GPS unit 

contained within a custom made harness (Figure 3.2), which positioned the unit along the 

spinal column between the scapulae.  

 

 

Figure 3.2 The GPS unit contained within the custom made harness worn by players during competitive match play. 
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Players were tracked for the duration of competitive match play using a 1-Hz GPS athlete 

tracking device (SPI EliteTM, GPSports, Australia) as validated by Macleod et al. (2009). All 

match data were downloaded and analysed using Team AMS (V2.1.0.5, GPSports, Australia) 

software. Throughout all matches, 8 ± 1 (range: 6 – 13) satellites were available for 

transmission which has been shown to be optimal for the capture of human locomotion 

(Jennings et al., 2010). 

 

 Measurements 3.4

3.4.1 Height and Body Mass  

Height and body mass were recorded upon arrival to the first session of every study. Height 

was measured using a stadiometer (Seca, UK) while body mass was recorded using calibrated 

digital scales (Seca, UK), accurate to the nearest 0.1 kg.  

 

3.4.2 Blood Sampling 

Blood samples were obtained using the finger-prick capillary technique, which involved 

puncturing the skin using a spring propelled lancet (Unistik3, Owen Mumford, UK).  

 

3.4.2.1. Blood Lactate 

Blood samples reported in Chapters 4A, 4B, 4C and 6 were analysed for lactate using a hand-

held analyser (Lactate Pro, Arkray, Japan). Those reported in Chapter 5A and 5B, 50 µL of 

blood was collected using microvette blood tubes (Microvette, Germany) and analysed for 

lactate using an automated glucose and lactate analyser (YSI 2300 Stat, YSI Incorporated, 

USA). The coefficient of variation for blood lactate, taken from a single bolus of blood, was 

6.5% for the Lactate Pro, and 5.6% for the YSI (Table 3.2). 
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3.4.2.2. Blood Gases 

80 µL of blood was obtained using heparin coated glass clinitubes (Radiometer Ltd, UK) and 

analysed for pH, haemoglobin (Hb) and blood gases using a blood gas analyser (Radiometer 

ABL 400, UK). Blood bicarbonate was calculated from PCO2 and pH values according to the 

Henderson-Hasselbalch equation (pH = pKa + log([A
-
]/[HA])). Base excess, a measure of 

how alkalotic or acidotic a substance is, was calculated according to ((1 – 0.014[Hb]) x 

([HCO3
-
] – 24 + (1.43[Hb] + 7.7) (pH – 7.4))) (Andersen et al., 1960; Andersen and Engel, 

1960). This equation takes into account the relative contributions of pH, Hb and bicarbonate 

to the acid-base balance of the blood. The coefficient of variation for blood gases, taken from 

a single bolus of blood, was 0.2%, 2.6% and 1.7% for pH, PCO2 and Hb. (Table 3.2).  

 

Table 3.2 Coefficient of Variation for blood lactate, pH, PCO2 and Hb 

Metabolite  N Mean CV (%) 

Lactate (mmol·L
-1

)  Lactate Pro 10 1.0 ± 0.1 6.5 

 YSI 10 1.06 ± 0.06 5.6 

pH  10 7.414 ± 0.017 0.2 

PCO2 (mmHg)  10 36.66 ± 0.97 2.6 

Hb (g·dL
-1

)  10 15.6 ± 0.3 1.7 

 

3.4.3 Heart Rate  

Heart rate was recorded every 5 s throughout the exercise tests reported in Chapters 5A, 5B, 

and 6 using heart rate monitors (Polar Team, Polar Electro Oy, Finland) and downloaded 

using appropriate software (Polar Precision Performance V4.03.040, Polar Electro Oy, 

Finland). 
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3.4.4 Ratings of Perceived Exertion (RPE) 

Participants were asked to rate their perceived exertion of the LIST reported in Chapter 6 by 

pointing to a number on a 15 point scale from 6 to 20 (Borg, 1973) during the final walking 

stage of every set.   

 

3.4.5 Intensity of Stomach ache, Sickness and Headache Scales 

In the studies reported in Chapters 5A and 5B, participants were asked to report their 

intensity of stomach ache, sickness and headache by pointing to an 11 point scale from 0 to 

10. This was done on four occasions during each trial; 240, 120 and 0 min prior to exercise, 

and immediately post-exercise. The scales (Appendix 1) contained descriptors at 0, 3, 6, 9 

and 10. The descriptors for stomach ache were none at all, dull ache on and off, moderate 

continuous, severe continuous, and severe doubled up; those for sickness were not at all, 

slightly, quite, very, and throwing up; and those for headache were none at all, dull ache on 

and off, moderate continuous, severe continuous, and searing pain. 

 

3.4.6 Saturated Oxygen (SaO2) 

Exercise reported in Chapter 5A and 5B took place in an environmental chamber at a 

simulated altitude of 2500 m, equivalent to 15.5% O2. Participants were monitored for their 

SaO2 levels using a portable pulse oximeter (WristOx 3100, Nonin Medical Inc, USA) worn 

on their index finger, attached to a monitor strapped to their wrist. SaO2 was monitored 

continuously throughout exercise at 5 s intervals and downloaded using appropriate software 

(nVision V5.1, Nonin Medical Inc, USA).  
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3.4.7 Dehydration 

Dehydration levels as a percentage of pre exercise body mass was determined in the studies 

reported in Chapter 5A, 5B and 6. Body mass was recorded with no shoes and minimal 

clothing immediately prior to, and following, exercise.   
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Chapter 4.0 A) Reliability of a high-

intensity cycling capacity test
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4A.1 Introduction 

Buffering agents are commonly used to enhance exercise performance and capacity (for 

reviews see McNaughton et al., 2008 and Sale et al., 2010). Few studies have reported on the 

reliability of the exercise test employed while investigating the effects of nutritional 

supplementation on increased buffering capacity, which may have contributed to equivocal 

results. An appropriate exercise test to investigate the effects of increased buffering capacity 

should be of sufficient intensity to result in a large accumulation of H
+
, and therefore be 

limited by increasing muscle acidosis. Furthermore, it is of vital importance that a test is 

reliable in order to interpret the meaningfulness of the data (Atkinson and Nevill, 1998).  

 

Investigations into the effect of buffering agents on exercise performance and capacity 

require multiple repetitions of a protocol, with and without supplementation, in order to 

determine any improvements following supplementation. Therefore, the exercise test 

employed should be reliable to determine whether differences are due to the nutritional 

intervention or are simply due to the natural variation of the test. The reliability of a protocol 

is a reflection of the consistency of the data when the measurements are taken on multiple 

occasions under identical conditions (Vincent, 1994). However, there will always be a degree 

of measurement error due to a variety of factors including circadian variation, 

instrumentation failure, and participant and experimenter error (Weir, 2005). Atkinson and 

Nevill (1998) have suggested, therefore, that reliability is the amount of measurement error 

deemed acceptable for the effective practical use of an analysis system. 

 

The CCT110% is a high-intensity cycling capacity test performed at 110% of previously 

determined Powermax (Wmax), designed (Hill et al., 2007) to last between 120 and 240 s, an 

exercise duration when anaerobic energy sources can contribute up to 60% of the total energy 
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requirement (Maughan et al., 1997). Therefore, the high-intensity nature of the test would be 

expected to incur a large accumulation of intracellular and subsequently extracellular H
+
, and 

may lead to an early cessation of exercise due to increasing acidosis. Indeed, Hill et al.
 
(2007) 

showed that TWD during the CCT110% was increased by 13.0% alongside a 58.8% increase in 

muscle carnosine following four weeks of β-alanine supplementation; when supplementation 

was extended to ten weeks, carnosine was increased by 80.1% and TWD by 16.2%. The 

results of Hill et al. (2007) suggest the CCT110% to be an appropriate tool for the investigation 

of dietary interventions designed to manipulate changes in pH during exercise.  

 

The aim of this study was to examine the reliability of the CCT110% as a high-intensity 

cycling capacity test. Furthermore, due to the high association between lactate and H
+
 

production (Hultman and Sahlin, 1980), the reliability of blood lactate concentration was 

measured alongside several other blood markers. It was hypothesised that the CCT110% would 

be a highly repeatable and appropriate model that can be utilised to examine the effects of 

dietary interventions designed to manipulate changes in pH during exercise. 

 

4A.2 Methods 

4A.2.1 Participants 

Twenty seven recreationally active males (age 23 ± 4 y, height 1.79 ± 0.06 m, body mass 

78.0 ± 8.8 kg, Wmax 306 ± 49 W) volunteered and gave their written informed consent to 

participate in this study (Chapter 3.1). 

 

4A.2.2 Experimental Design 

Participants attended the laboratory on four separate occasions at the same time of day to 

ensure results were not affected by circadian variation. The first trial consisted of an 
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incremental cycling test to exhaustion to determine individual Powermax (Wmax; Chapter 

3.3.1). The remaining three sessions (one habituation and two main trials) were for the 

completion of the main CCT110% trials (Chapter 3.3.2). All trials were separated by 48 h. 

Prior to the main trials, participants abstained from alcohol and caffeine and completed a 

food record for the 24 h period prior to the initial trial. They adopted the same diet and 

abstained from strenuous exercise for 24 h prior to each subsequent trial. Arterialised finger-

prick blood samples were taken immediately pre-, immediately post- and 5-min post-exercise. 

Blood samples were analysed for lactate (Chapter 3.4.2.1), pH, Hb and blood gases (Chapter 

3.4.2.2).  

 

4A.2.3 Statistical Analyses 

All data are presented as mean ± 1SD, unless stated otherwise. Exercise capacity data were 

analysed using intra-class correlations (ICC, 2 way fixed, repeated measures, absolute model; 

Weir, 2005), systematic bias ratio, ratio limits of agreement (LoA; Bland and Altman, 1986), 

coefficient of variation (CV) and t-tests. Blood variables were analysed using repeated 

measures ANOVA and Tukey tests were used for post-hoc analyses. Effect sizes were 

calculated using Cohen’s d (Cohen, 1988). Statistical significance was accepted at P ≤ 0.05.  

 

4A.3 Results 

4A.3.1 CCT110% 

TTE (P = 0.75; 134 ± 20 s and 135 ± 20 s, d = 0.05) and TWD (P = 0.97; 42.2 ± 10.3 kJ and 

42.2 ± 9.8 kJ, d = 0.00) were not different between trials (Table 4A.1). Following 

confirmation of heteroscedasticity, ratio systematic bias and LoA were determined and are 

presented in Table 4A.1. The intra-class correlation between trials was r = 0.88 for TTE and r 

= 0.94 for TWD, with the CV being 4.43% for TTE and 4.94% for TWD. 
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Table 4A.1 Absolute and relative reliability measures of the CCT110%. 

 TTE TWD 

   

Trial 1 134 ± 20 s 42.2 ± 10.3 kJ 

Trial 2 135 ± 20 s 42.2 ± 9.8 kJ 

Trial 1 (ln) 4.89 ± 0.15 3.71 ± 0.27 

Trial 2 (ln) 4.90 ± 0.15 3.71 ± 0.26 

Systematic Bias  1.005 1.003 

×/÷ Ratio LoA  1.156 1.176 

CV (%) 4.43 4.94 

ICC (CI) 0.884 (0.761 - 0.945) 0.939 (0.931 – 0.986) 

t-test P = 0.745 P = 0.970 

Variation LoA 135: 117, 157 42.2: 36.0, 49.8 

Variation CV 135: 129.0, 141.0 42.2: 40.1, 44.3 

 

4A.3.2 Blood Analyses 

Baseline blood pH, bicarbonate and base excess were similar between both trials (Table 

4A.2). In both trials, pH, bicarbonate and base excess were significantly reduced from 

baseline immediately post exercise and following 5 minutes of recovery (P ≤ 0.001). Only 

immediately post-exercise pH was significantly different between trials (P ≤ 0.001; Table 

4A.2). 

 

Blood lactate was not significantly different between trials at baseline, and was significantly 

increased from baseline immediately post exercise and following 5 minutes of recovery in all 

trials (P ≤ 0.001), with no between trial differences. 
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Table 4A.2 pH, bicarbonate, base excess and lactate in trial 1 and trial 2. Data are mean  ± 1SD. *P 
≤ 0.001 from Trial 1 at the equivalent time point. ^P ≤ 0.001 from baseline. 

 Baseline Post-Exercise Post-Exercise + 5 min 

pH 

Trial 1 

Trial 2 

 

7.416 ± 0.019 

7.412 ± 0.023 

 

7.246 ± 0.041
^
 

7.269 ± 0.064
*^

 

 

7.238 ± 0.044
^
 

7.247 ± 0.055
^
 

Bicarbonate (mmol
.
L

-1
) 

Trial 1 

Trial 2 

 

24.02 ± 1.76 

24.01 ± 1.82 

 

15.06 ± 1.83
^
 

15.71 ± 2.66
^
 

 

12.78 ± 1.90
^
 

13.29 ± 2.20
^
 

Base Excess (mmol
.
L

-1
) 

Trial 1 

Trial 2 

 

0.2 ± 1.8 

0.2 ± 1.9 

 

-10.1 ± 2.1
^
 

-9.2 ± 3.2
^
 

 

-12.4 ± 2.2
^
 

-11.7 ± 2.7
^
 

Lactate (mmol
.
L

-1
) 

Trial 1 

Trial 2 

 

1.1 ± 0.4 

1.2 ± 0.5 

 

12.1 ± 2.0
^
 

12.1 ± 2.1
^
 

 

12.0 ± 1.8
^
 

11.6 ± 1.9
^
 

 

4A.4 Discussion 

The aim of this study was to determine the reliability of a high-intensity cycling capacity test. 

The CCT110% was designed to provide a high-intensity cycling test with an expected TTE 

between 120 and 240 s. Main trial times of 134 ± 20 s and 135 ± 20 s lie within the expected 

timeframe of the test, with no significant differences between trials. The reliability of the 

CCT110% was demonstrated by the ratio bias for TTE and TWD being close to 1, narrow 

agreement ratios and moderate to high intra-class correlations. Furthermore, blood markers 

were generally consistent across the two trials. Consequently, the CCT110% can be considered 

a reliable exercise protocol that can be employed to assess ergogenic benefits of increased 

buffering capacity. 
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Relative and absolute reliability for TTE and TWD during the CCT110% was demonstrated by 

ratio bias values close to 1, narrow agreement ratios and ICCs just below and above 0.9. CVs 

of 4.43 and 4.94% for TTE and TWD compare favourably with other cycling capacity tests 

performed to exhaustion that have shown CVs in excess of 5 and 10% (Coggan and Costill, 

1984; Graham and McLellan, 1989; McLellan et al., 1995). The CVs shown in the current 

study are encouraging considering the results of previous investigations employing the 

CCT110%. Hill et al.
 
(2007) showed TWD was increased by 13.0 and 16.2% following 4 and 

10 weeks supplementation with β-alanine, which are above the expected variation of the test 

shown in the present study. This provides further support for the conclusion that the exercise 

capacity improvements shown were due to the intervention employed. Considering β-alanine 

increases intracellular buffering capacity (Harris et al., 2006) and sodium bicarbonate 

increases extracellular buffering capacity (McNaughton et al., 2008), it can be suggested that 

the CCT110% is limited by increasing muscle acidosis, although muscle pH was not directly 

measured in this study. 

 

In addition to providing reliable performance data, it is important that blood responses are 

also similar between trials. Furthermore, if the CCT110% is to be used as a tool for 

investigating nutritional based interventions designed to manipulate pH, it must be limited, in 

part, by increasing acidosis. Although muscle pH was not directly measured in this study, 

blood pH was significantly reduced from baseline immediately post-exercise, as were 

bicarbonate and base excess, while lactate concentrations were significantly elevated. Lactate 

has been associated with up to 94% of the concomitant accumulation of H
+
 during high-

intensity exercise (Hultman and Sahlin, 1980). Furthermore, lactate concentrations are similar 

to those shown following high-intensity exercise resulting in low muscle pH (Bogdanis et al., 

1996), which can interfere with several metabolic processes and may contribute to the early 
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onset of fatigue (Spriet et al., 1989), which suggests that decreased muscle pH may have 

contributed to the cessation of exercise during the CCT110%.  

 

Blood bicarbonate, base excess and lactate were similar at all corresponding time points 

between trials. pH was similar between trials at pre-exercise and 5 minutes post-exercise; 

immediately post-exercise blood pH was significantly different between trials, which 

suggests that blood pH immediately post-exercise may not be sufficiently reliable. Despite 

this, the absolute difference is much smaller than those expected to be seen using nutritional 

interventions intended to alter extracellular pH changes during exercise. In a meta-analysis of 

the literature, Carr et al. (2011) showed that sodium bicarbonate increased blood pH by 0.069 

± 0.018 compared to placebo, which is more than double the between trial difference shown 

in the present investigation (0.023). Therefore, despite immediately post-exercise blood pH 

being significantly different between trials, blood responses to the CCT110% can be considered 

sufficiently reliable and sensitive to detect changes when investigating nutritional 

supplements designed to manipulate blood pH, bicarbonate, base excess and lactate. 

 

4A.5 Conclusions 

There are numerous studies investigating the effects of intracellular and extracellular pH 

manipulation on exercise performance and capacity. Equivocal results may be a reflection of 

the variety of exercise protocols employed, many of which have not been shown to be either 

valid or reliable. This study showed that the CCT110% is a reliable test for the determination of 

high-intensity cycling capacity.  
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Chapter 4.0 B) Effect of sodium 

bicarbonate supplementation on high-

intensity cycling capacity
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4B.1 Introduction 

In the previous section, the CCT110% was shown to be a reliable test to determine high-

intensity cycling capacity and, due to the high levels of lactate, and concomitant H
+
 

accumulation, is an appropriate model for examining the effects of dietary interventions 

designed to manipulate intramuscular changes in pH during exercise. A range of exercise 

tests have been used in previous studies investigating the ergogenic effects of sodium 

bicarbonate supplementation, which could explain some of the inconsistencies in findings 

(for review see McNaughton et al. 2008). Few studies have used exercise durations that could 

theoretically be limited by H
+ 

accumulation, and those that have used low sodium bicarbonate 

doses (Katz et al., 1984; Horswill et al., 1988).  

 

Matson and Tran (1993) reported a relatively weak relationship (r = 0.42) between dose and 

degree of blood alkalosis following sodium bicarbonate supplementation using a meta-

analysis of the literature. It was hypothesised that this was due to the large variability in 

individual pH and bicarbonate responses to supplementation. This would suggest that the 

purported mechanism underlying a potential ergogenic effect of sodium bicarbonate 

supplementation might not have been present in all individuals. Nonetheless, in a more recent 

meta-analysis, Carr et al. (2011) showed that sodium bicarbonate was effective at improving 

a 1 min all out sprint by 1.7 ± 2.0% when ingested at a dose of 0.3 g·kg
-1

BM prior to exercise. 

 

One potential moderator of the effect of sodium bicarbonate supplementation on exercise 

capacity and performance is the gastrointestinal (GI) discomfort experienced by some 

participants. Price and Simons (2010) suggested that the need to individualise 

supplementation with sodium bicarbonate was related to the individuals’ susceptibility to GI 

discomfort, although GI discomfort was not correlated with performance decrements in their 



73 

 

study. van Montfoort et al.  (2004) measured the intensity of sickness and stomach ache prior 

to, and following high-intensity exercise, but reported little or no GI symptoms following 

supplementation with 0.3 g·kg
-1

BM sodium bicarbonate. McNaughton (1992) reported 

increased GI disturbance in all participants consuming doses above 0.3 g·kg
-1

BM which may 

also explain the lack of a further increase in cycling capacity in these participants. 

 

To date, studies investigating the effect of sodium bicarbonate supplementation on high-

intensity cycling capacity and performance have reported contrasting results. These 

conflicting results can be attributed to a variety of factors, including differing sodium 

bicarbonate doses and exercise protocols, GI disturbance and individual variation in blood 

responses to supplementation. Data were analysed for the trial effect of sodium bicarbonate 

supplementation in all participants and only in those not experiencing GI discomfort. The 

individual response to supplementation was also explored by separating participants into 

those who improved their cycling capacity (responders) and those who did not (non-

responders). It was hypothesised that exercise capacity would be improved following 

supplementation with sodium bicarbonate, though not in all participants due to individual 

variation.  

 

4B.2 Methods 

4B.2.1 Participants 

Twenty-one recreationally active males (age 25 ± 5 y, height 1.79 ± 0.06 m, body mass 80.7 

± 10.6 kg, Wmax 316 ± 45 W) volunteered and gave their written informed consent to 

participate in this study (Chapter 3.1).  
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4B.2.2 Experimental Design 

Participants were required to attend the laboratory on four separate occasions over a fourteen 

day period. All trials were performed at the same time of day to ensure results were not 

affected by circadian variation. There were two preliminary trials, which comprised of an 

incremental cycle to exhaustion to determine Wmax (Chapter 3.3.1), followed by an 

habituation of the CCT110% (Chapter 3.3.2). Participants then completed two repeated 

measures, counterbalanced and double-blind trials following the ingestion of 0.3 g·kg
-1

BM of 

either sodium bicarbonate (SB) or maltodextrin (P). In the twenty-four hours prior to the 

main trials, participants refrained from alcohol, caffeine and any strenuous exercise, and 

reported food intake using a food diary which was used to replicate the diet prior to the 

second main trial. Following an overnight fast, participants arrived at the laboratory 4 h 

before the CCT110%. Baseline finger-prick blood samples were taken before consuming a 

standardised breakfast of 3 slices of toast and jam at 09:00; further blood samples were taken 

immediately pre-, immediately post- and 5-min post-exercise. Blood samples were analysed 

and used to determine blood lactate (Chapter 3.4.2.1), pH, bicarbonate and base excess 

(Chapter 3.4.2.2).  

 

Participants ingested 0.2 g·kg
-1

BM of sodium bicarbonate (Chapter 3.2.2) or maltodextrin 

alongside the breakfast. A final 0.1 g·kg
-1

BM was ingested 2 h after the standardised 

breakfast (11:00), 2 h prior to commencement of the CCT110% (13:00). All supplements were 

administered in opaque gelatine capsules and participants were supervised during the 

ingestion of sodium bicarbonate and maltodextrin supplements to ensure 100% compliance. 

Participants were instructed to report any gastrointestinal or other symptoms experienced 

during the four hours prior to exercise. They were requested to note down the time, type (e.g., 
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stomach cramps, bloating, headaches) and the severity (mild, moderate or severe) of 

symptoms.  

 

4B.2.3 Statistical Analyses 

All data were analysed using Statistica 9 (Statsoft, USA) and are presented as mean ± 1SD. 

Paired samples t-tests were used to determine any differences in performance measures 

between supplementation trials. A two-way ANOVA (Trial x Time) with repeated measures 

was used to determine any difference in blood pH, lactate, bicarbonate and base excess levels. 

Mauchly’s test of Sphericity was used to check the data for sphericity, and where it was 

violated, a Greenhouse-Geisser correction was applied. A post-hoc Bonferroni correction 

factor was used to test any differences indicated by the ANOVA. Effect sizes were calculated 

using Cohen’s d (1988). Pearson’s correlations were used to determine any association 

between exercise and blood variables. Statistical significance was accepted at the P ≤ 0.05 

level.  

 

4B.3 Results 

Data were analysed for the trial effect of sodium bicarbonate supplementation in all 

participants (N = 21). The data were then analysed following the exclusion of participants 

experiencing GI discomfort (N = 17). In addition, the complete data set was split into two 

groups, categorising participants as responders (N = 9), in whom exercise capacity was 

improved, and non-responders (N = 12), in whom exercise capacity was not improved.  

 

4B.3.1 All Participants (N = 21) 

TWD was 45.6 ± 8.4 kJ and 46.8 ± 9.1 kJ for P and SB, with no significant difference 

between conditions (P = 0.16, d = 0.14) (Table 4B.1). 
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Table 4B.1 TWD for all participants (N = 21), excluding those who experienced gastrointestinal 
discomfort (N = 17) and for participants who improved exercise capacity (Responders) and 
participants who did not improve exercise capacity (Non-Responders). *P ≤ 0.01 from placebo trial. 

                       

  TWD (kJ) 

 

 

N = 21   

Placebo 45.6 ± 8.4  

NaHCO3
-
 46.8 ± 9.1  

    

N = 17   

Placebo 46.2 ± 9.2  

NaHCO3
-
 48.4 ±9.3

*
  

   

Responders (N = 9)  

Placebo 43.1 ± 7.3  

NaHCO3
-
 47.5 ± 8.1

*
  

   

Non-Responders (N = 12)  

Placebo 47.5 ± 9.0  

NaHCO3
-
 46.2 ± 10.1

*
  

  

 

There was no significant difference in baseline pH, bicarbonate, base excess or lactate 

between trials (Table 4B.2). Supplementation with SB, but not P, significantly increased pre-

exercise pH, bicarbonate and base excess levels from baseline (P ≤ 0.001). Blood pH, 

bicarbonate and base excess measured immediately post-exercise and 5 minutes post-exercise 

(Table 4B.2) were significantly decreased from baseline in both P and SB (P ≤ 0.001); with 

values being significantly higher in SB (P ≤ 0.001). Blood lactate (Table 4B.2) was 

significantly increased from baseline following exercise in both trials (P ≤ 0.001), with 

significantly higher post-exercise concentrations shown following SB (P ≤ 0.001). 

 

TWD was not correlated with pre-exercise pH (r = -0.05), bicarbonate (r = 0.03) or base 

excess (r = 0.01), nor with the changes from baseline to pre-exercise. However, TWD was 

significantly correlated with the changes in pH (r = -0.43, P = 0.004), bicarbonate (r = -0.41, 

P = 0.008) and base excess (r = -0.45, P = 0.003) from pre- to post-exercise, although there 
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was no significant correlation with the change in lactate. The difference in TWD between 

trials was not significantly correlated to the differences between trials in any of the blood 

markers at pre-exercise. 

 

4B.3.2 Participants Not Experiencing GI Discomfort (N = 17) 

Four participants complained of GI discomfort following the ingestion of SB, with the most 

frequently reported symptoms being mild to severe stomach cramps and diarrhoea. All 

participants who complained of GI symptoms demonstrated a decline in exercise capacity. 

When data were analysed without those participants experiencing GI discomfort, TWD  was 

significantly increased (P = 0.01, d = 0.25) in SB compared with P (Table 4B.2). 

  

Blood responses to supplementation and exercise were similar to the whole group blood 

responses (Table 4B.2). In addition, the removal of participants who experienced GI 

discomfort from the analyses did not influence the significance of any of the correlations that 

were performed on the full data-set. 
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Table 4B.2 pH, bicarbonate, base excess and lactate for all participants (N = 21) and excluding 
those who experienced gastrointestinal discomfort (N = 17). Data are mean ± SD. *P ≤ 0.01 from 
baseline; ^P ≤ 0.01 from placebo trial at the equivalent time point. 

 

4B.3.3 Responders (N = 9) and Non-Responders (N = 12) 

There was a degree of individual variability in exercise capacity between P and SB for all 

participants, with the difference in TWD between trials ranging from -12 to +19% (Figure 

4B.1). In SB, nine of the twelve participants who improved did so above the 4.94% test retest 

  

 Baseline Pre-exercise Post-exercise Post-ex +5 min 

N = 21 (All Participants)   

pH     

Placebo 7.407 ± 0.021 7.402 ± 0.024 7.236 ± 0.044
*
 7.229 ± 0.056

*
 

NaHCO3
-
 7.401 ± 0.015 7.461 ± 0.020

*^
 7.292 ± 0.054

*^
 7.283 ± 0.054

*^
 

     

Bicarbonate (mmol·L
-1

)    

Placebo 24.79 ± 1.14 24.96 ± 0.99 14.43 ± 1.89
*
 12.82 ± 2.10

*
 

NaHCO3
-
 24.66 ± 1.44 30.40 ± 1.01

*^
 18.39 ± 2.52

*^
 15.26 ± 2.78

*^
 

     

Base excess (mmol·L
-1

)    

Placebo 0.78 ± 0.98 0.82 ± 0.78 -10.48 ± 2.06
*
 -12.69 ± 2.80

*
 

NaHCO3
-
 0.54 ± 1.28 6.49 ± 1.03

*^
 -6.89 ± 3.11

*^
 -9.60 ± 3.38

*^
 

     

Lactate (mmol·L
-1

)    

Placebo 1.2 ± 0.4 1.2 ± 0.5 12.6 ± 2.4
*
 12.4 ± 2.0

*
 

NaHCO3
-
 1.1 ± 0.4 1.2 ± 0.3 14.4 ± 3.4

*^
 14.5 ± 2.9

*^
 

     

     

N = 17 (Participants Not Experiencing GI Discomfort )  

pH     

Placebo 7.407±0.023 7.398±0.024 7.226±0.039
*
 7.215±0.048

*
 

NaHCO3
-
 7.400±0.017 7.459±0.020

*^
 7.276±0.036

*^
 7.268±0.041

*^
 

     

Bicarbonate (mmol·L
-1

)    

Placebo 24.79 ± 1.24 24.87 ± 1.07 15.16±1.78
*
 12.32±1.84

*
 

NaHCO3
-
 24.51 ± 1.41 30.33 ± 1.08

*^
 17.52±1.68

*^
 14.41±2.07

*^
 

     

Base excess (mmol·L
-1

)    

Placebo 0.70 ± 1.08 0.66 ± 0.75 -10.90 ± 1.77
*
 -13.40 ± 2.40

*
 

NaHCO3
-
 0.39 ± 1.27 6.39 ± 1.05

*^
 -7.94 ± 1.98

*^
 -10.61 ± 2.53

*^
 

     

Lactate (mmol·L
-1

)    

Placebo 1.2 ± 0.3 1.3 ± 0.5 13.0 ± 2.4
*
 12.9 ± 1.4

*
 

NaHCO3
-
 1.2 ± 0.4 1.2 ± 0.3 15.5 ± 2.6

*^
 15.5 ± 1.8

*^
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variability for TWD in the CCT110% (Chapter 4A), and these were classified as responders. 

The remaining individuals who did not improve above the CV of the CCT110% were allocated 

to the non-responders group.  

 

Blood pH, bicarbonate and base excess levels were significantly increased in both responders 

and non-responders, from baseline to pre-exercise in SB only (Table 4B.3). In responders, the 

reduction in pH, bicarbonate and base excess from pre- to post-exercise was greater in SB 

than in P (P ≤ 0.01). In non-responders, there was no difference in the reduction in pH, 

bicarbonate or base excess from pre- to post-exercise between trials (all P > 0.05). 

Immediately-post exercise blood lactate concentrations were significantly higher in SB for 

the responders (P = 0.003) but not for the non-responders (P = 0.35). 

 

TWD was not correlated with any pre-exercise blood marker for responders or non-

responders, or with their changes from baseline to pre-exercise. TWD was not significantly 

correlated with any blood changes from pre- to post-exercise in the responders, but was 

correlated to the change in pH, bicarbonate and base excess in the non-responders (all P ≤ 

0.05). 
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Table 4B.3 Changes in pH, bicarbonate, base excess and lactate from baseline to pre-exercise and 
pre-exercise to post-exercise for participants who improved exercise capacity (Responders) and 
participants who did not improve exercise capacity (Non-Responders) in SB. (*P ≤ 0.001 from 
placebo trial; ^P ≤ 0.01 from placebo trial). 

  

         Δ Baseline to Pre-Ex 

 

Δ Pre-Ex to Post-Ex 

 

 

pH 

Responders 

Placebo 

NaHCO3
-
 

 

Non-Responders 

Placebo 

NaHCO3
- 

 

Bicarbonate (mmol
.
L

-1
) 

Responders 

Placebo 

NaHCO3
- 

 

Non-Responders 

Placebo 

NaHCO3
- 

 

Base Excess (mmol
.
L

-1
) 

Responders 

Placebo 

NaHCO3
- 

 

Non-Responders 

Placebo 

NaHCO3
- 

 

Lactate (mmol
.
L

-1
) 

Responders 

Placebo 

NaHCO3
- 

 

Non-Responders 

Placebo 

NaHCO3
-
 

  

 

 

- 0.014 ± 0.036 

+ 0.060 ± 0.020
*
 

 

 

+ 0.002 ± 0.020 

+ 0.060 ± 0.015
*
 

 

 

 

+ 0.41 ± 0.83 

+ 5.94 ± 0.90
*
 

 

 

+ 0.00 ± 0.35 

+ 5.58 ± 1.53
*
 

 

 

 

+ 0.01 ± 0.70 

+ 6.10 ± 0.72
*
 

 

 

+ 0.08 ± 0.51 

+ 5.84 ± 1.35
*
 

 

 

 

  + 0.1 ± 0.5 

  + 0.1 ± 0.4 

 

 

               + 0.0 ± 0.5   

              + 0.1 ± 0.4 

  

 

 

- 0.158 ± 0.029 

- 0.184 ± 0.031
^
 

 

 

- 0.173 ± 0.047 

- 0.158 ± 0.056 

 

 

 

- 9.19 ± 1.42 

- 12.79 ± 1.84
*
 

 

 

- 9.78 ± 2.10 

- 11.43 ± 2.46 

 

 

 

-10.89 ± 1.45 

- 14.36 ± 1.97
*
 

 

 

-11.60 ± 2.38 

- 12.65 ± 3.03 

 

 

 

+ 11.0 ± 2.4 

+ 14.0 ± 3.5
*
 

 

 

+ 11.8 ± 2.7 

+ 12.6 ± 3.5 
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Figure 4B.1 Individual TWD (kJ) in the CCT110% in both P (black) and SB (white). Participants 18 – 21 are the participants who experienced 

gastrointestinal symptoms.
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4B.4 Discussion 

The main finding of this study is that TWD during the CCT110% was unaffected by sodium 

bicarbonate supplementation in all participants, despite resulting in alkalaemia prior to 

exercise. This is in contrast to Hill et al. (2007) who showed significant increases in TWD 

following β-alanine supplementation using the same exercise test. β-alanine supplementation 

increases muscle carnosine concentration (Harris et al., 2006), thereby directly increasing 

intracellular buffering capacity. Therefore, the results of Hill et al. (2007) suggest the CCT110% 

to be limited by increasing muscle acidosis. Sodium bicarbonate supplementation increases 

circulating levels of bicarbonate, increasing extracellular buffering capacity and the active 

transport of H
+
 out of the muscle (Mainwood and Worsley-Brown, 1975). Consequently, an 

increased exercise capacity would be expected during the CCT110% following 

supplementation with sodium bicarbonate. Cycling capacity was increased but only when 

participants reporting GI disturbances were removed from the analyses. However, any 

contrast in findings between β-alanine and sodium bicarbonate supplementation may be due 

to a more direct influence of carnosine upon pHi.  

 

Price and Simons (2010) reported no effect of sodium bicarbonate supplementation on high 

intensity running performance lasting around 75 s. The authors suggested that GI discomfort 

or individual differences in the blood responses to sodium bicarbonate supplementation might 

explain the negative findings. None of the four participants reporting GI discomfort showed 

an increased exercise capacity, meaning that a significant improvement in high intensity 

exercise capacity was shown when group data were analysed following the exclusion of these 

participants. GI discomfort only partially explained the lack of an improvement in exercise 

capacity, however, since twelve participants did not show any improvements in exercise 



83 

 

capacity with sodium bicarbonate supplementation, suggesting that some other physiological 

differences between participants might also help to explain the individual capacity response.   

 

Increases in blood bicarbonate concentration and subsequently blood alkalosis were shown in 

all participants prior to exercise following supplementation with sodium bicarbonate. Pre-

exercise blood bicarbonate concentrations compare favourably to those reported previously 

using different supplementation strategies but an identical dose (Price et al., 2003; van 

Montfoort et al., 2004). However, only twelve participants showed an improved exercise 

capacity with sodium bicarbonate ingestion, nine of which were increased above the CV of 

the test. Blood data were also analysed according to the nine participants who showed an 

improved exercise capacity following sodium bicarbonate supplementation, and the twelve 

who did not. The change in blood bicarbonate, pH and base excess between baseline and pre-

exercise following sodium bicarbonate ingestion were similar between these responders and 

non-responders. This suggests that the underlying mechanism for an ergogenic effect of 

sodium bicarbonate supplementation was attained in all participants and thus was not an 

explanation for the non-response. Further confirmation is provided by the fact exercise 

capacity was not correlated to either the absolute concentration of, or the change in (from 

baseline to pre-exercise), any blood marker for all participants, suggesting that the degree of 

individual blood alkalosis prior to exercise did not influence the individual response in 

exercise capacity. 

   

Whilst there were no differences between responders and non-responders in the ability of 

sodium bicarbonate ingestion to promote blood alkalosis, the reduction in blood pH, 

bicarbonate and base excess from pre- to post-exercise was significantly greater in the 

sodium bicarbonate trial for the responders but not for the non-responders. This might 
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suggest that promoting blood alkalosis concentration through sodium bicarbonate 

supplementation does not necessarily increase blood bicarbonate buffering in all individuals 

during high-intensity exercise. In the present study, the magnitude of the reductions in blood 

pH, bicarbonate and base excess from pre- to post-exercise were correlated with exercise 

capacity. As such, a potential difference exists in the ability of responders and non-

responders to make full use of the induced blood alkalosis, which might explain the 

individual exercise capacity responses to sodium bicarbonate. However, it must be noted that 

these differences might simply be explained by differences in exercise duration between 

placebo and sodium bicarbonate in responders and in non-responders. 

 

Ibanez et al. (1995) reviewed the association between changes in peak blood lactate and 

exercise performance changes across 19 studies examining the potential ergogenic effects of 

alkalinising treatments. They suggested that a difference in blood lactate concentration of 2 

mmol·L
-1

 between treatments was required to show a performance effect. In the present study, 

there was a difference of +3.0 mmol·L
-1 

in peak blood lactate concentration immediately post-

exercise in responders, whereas there was a difference of only +0.8 mmol·L
-1

 in non-

responders. As such, we provide some evidence to support the assertions of Ibanez et al. 

(1995); immediately post-exercise blood lactate concentrations were significantly elevated 

with sodium bicarbonate ingestion for responders but not for non-responders compared to 

placebo.  

 

4B.5 Conclusions 

Sodium bicarbonate supplementation improved exercise capacity during a cycling test shown 

to be limited by increasing muscle acidosis, but only when the data from participants 

reporting GI discomfort were removed from the analyses. However, GI discomfort could only 
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explain a reduced exercise capacity in four out of the eight participants who performed worse 

following sodium bicarbonate ingestion, with a further participant showing identical 

performances in both trials. The degree of blood alkalosis induced by sodium bicarbonate 

ingestion prior to exercise could not explain the individual differences in exercise capacity, 

although the effect of exercise on pH, bicarbonate and base excess was different in those who 

showed an increased exercise capacity following sodium bicarbonate compared with those 

who did not. Variability in exercise capacity and some blood responses between trials 

suggests that sodium bicarbonate supplementation is beneficial to some, but not all 

individuals. 
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Chapter 4.0 C) Effect of β-alanine 

supplementation, with and without 

sodium bicarbonate, on high-intensity 

cycling capacity
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4C.1 Introduction 

In the study reported in Chapter 4B, high-intensity cycling capacity could be improved with 

sodium bicarbonate supplementation if it did not result in GI discomfort. Furthermore, there 

was a degree of individual variation in response to supplementation which suggests that 

supplementation with sodium bicarbonate may not be beneficial to all individuals. This is in 

contrast to the findings of Harris et al. (2007) who showed an increased TWD during the 

CCT110% following 4 and 10 weeks β-alanine supplementation. The differences in findings 

could be due to the mechanisms by which β-alanine and sodium bicarbonate supplementation 

work. β-alanine supplementation increases muscle carnosine concentration, thereby directly 

increasing intracellular buffer capacity, whereas sodium bicarbonate supplementation 

increases circulating levels of bicarbonate, increasing extracellular buffer capacity. Therefore, 

any contrast in findings between β-alanine and sodium bicarbonate supplementation may be 

due to carnosine’s more direct influence upon pHi, although increased extracellular buffering 

has been shown to improve high-intensity exercise performance (for review see McNaughton 

et al. 2008). 

 

Despite the fact that studies have shown significant improvements in exercise capacity and 

performance following supplementation with β-alanine and sodium bicarbonate separately, 

no study has yet examined the effects of co-supplementation on high-intensity exercise 

capacity. Therefore, the aim of this investigation was to examine the effect of β-alanine 

supplementation, with and without sodium bicarbonate supplementation, on high-intensity 

cycling capacity. It was hypothesised that an increase in intracellular pH buffering action of 

carnosine through β-alanine supplementation, and the increased extracellular buffering action 

of bicarbonate through sodium bicarbonate supplementation would be additive, thereby 

resulting in an increased protection against the acidosis produced during high intensity 
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cycling and contributing to a further improvement in high-intensity cycling capacity above 

that shown following either sodium bicarbonate supplementation or β-alanine 

supplementation alone. 

 

4C.2 Methods 

4C.2.1 Participants 

Twenty physically active males (age 24 ± 5 y, height 1.79 ± 0.06 m, body mass 80.0 ± 10.3 

kg), who regularly participate in high-intensity exercise, volunteered for the study and were 

split into a β-alanine group (Wmax 304 ± 48 W) and a placebo group (Wmax 323 ± 42 W), 

matched for Wmax. Participants were fully informed of any risks and discomforts associated 

with the study before completing a health screen and providing informed consent (Chapter 

3.1). 

 

4C.2.2 Experimental Design 

Participants attended the laboratory on five separate occasions. The first two visits were for 

the determination of each participant’s Wmax (Chapter 3.3.1) and habituation to the CCT110%. 

The remaining visits were for the completion of the main CCT110% trials (Chapter 3.3.2). One 

main trial was completed before and two main trials after a 4 week double-blind 

supplementation period of either β-alanine or placebo (Figure 4C.1). Participants were 

supplemented with either 6.4 g·d
-1

 of β-alanine or placebo in tablet form over a 4 week period, 

ingesting two 800 mg tablets four times per day at 3 – 4 h intervals (Chapter 3.2.1). 

Participants completed a supplementation log to verify compliance, with the degree of 

compliance being reported at 95 ± 4%  in the β-alanine group (total of 170.9 ± 7.7 g β-

alanine), and 98 ± 2% in the placebo group (total of 175.0 ± 3.7 g maltodextrin). For the pre-

supplementation trial, participants ingested maltodextrin and after the 4 week 
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supplementation period, participants ingested either sodium bicarbonate or maltodextrin in a 

crossover design (Figure 4C.1). Participants ingested 0.2 g·kg
-1

BM of sodium bicarbonate 

(Chapter 3.2.2) or matching placebo alongside a standardised breakfast of 3 slices of toast 

and jam. A final 0.1 g·kg
-1

BM was ingested 2 h prior to commencement of exercise. All 

supplements were administered in opaque gelatine capsules and participants were supervised 

during the ingestion of sodium bicarbonate and maltodextrin supplements to ensure 100% 

compliance. Participants were instructed to report any gastrointestinal or other symptoms 

experienced during the four hours prior to exercise. They were requested to note down the 

time, type (e.g., stomach cramps, bloating, headaches) and the severity (mild, moderate or 

severe) of symptoms. Of the participants, 15 participants reported no gastrointestinal 

discomfort following sodium bicarbonate ingestion. However, 2 participants reported mild 

gastrointestinal or other symptoms (one a light headache and the other bloating) and 3 

participants reported severe symptoms (including stomach cramps, headaches and diarrhoea) 

with the ingestion of sodium bicarbonate only. The study comprised four experimental 

conditions: placebo + maltodextrin (PMD), placebo + sodium bicarbonate (PSB), β-alanine + 

maltodextrin (BAMD) and β-alanine + sodium bicarbonate (BASB).  

 

Arterialised finger-prick blood samples were taken at baseline (prior to breakfast), 

immediately before, immediately after and 5-min after the CCT110%. Finger-prick blood 

samples were collected into lithium-heparin coated collection tubes (Radiometer, UK). Blood 

samples were analysed and used to determine blood lactate (Chapter 3.4.2.1), pH, bicarbonate 

and base excess (Chapter 3.4.2.2). 
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Figure 4C.1 Study Design.  

 

4C.2.3 Statistical Analyses 

All data are presented as mean ± 1SD for 10 participants in each group, with the exception of 

the blood data, which are presented for 9 participants in each group due to blood analyser 

malfunction. Performance data were analysed using a two way ANOVA (Group x Trial) and 

blood data were analysed using a three way ANOVA (Group x Trial x Time). Tukey tests 

were used for post-hoc analyses and effect sizes were calculated using Cohen’s d (Cohen 

1988). In addition, magnitude based inferences (Batterham and Hopkins, 2006) were used to 

determine the practical significance of BASB on the CCT110% using a spread sheet to 

establish the likelihood of a meaningful effect on exercise capacity. The smallest worthwhile 

improvement in TTE and TWD was 3.56 s and 1.27 kJ which was equivalent to half the 

unbiased typical error associated with each measurement. Statistical significance was 

accepted at the P ≤ 0.05 level.    
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4C.3 Results 

4C.3.1 CCT110% 

There was no significant difference in TTE (P = 0.54; placebo: 137.8 ± 23.2 and β-alanine: 

143.1 ± 13.4 s, d = 0.29) and TWD (P = 0.69; placebo: 45.5 ± 9.8 and β-alanine: 44.0 ± 7.1 

kJ, d = 0.18) between the placebo and β-alanine groups prior to the supplementation period.  

There was no significant improvement from baseline in TTE (Figure 4C.2) and TWD 

following PMD or PSB.  Following BAMD, TTE (+17.2 ± 14.0 s; Group x Trial P = 0.03, 

post hoc P ≤ 0.01, d = 1.1) (Figure 4C.2) and TWD (+5.8 ± 5.0 kJ; Group x Trial P = 0.03, 

post hoc P ≤ 0.01, d = 0.9) significantly increased from baseline. BASB supplementation 

resulted in a significantly increased TTE (+23.3 ± 18.2 s; post hoc P ≤ 0.001, d = 1.2) (Figure 

4C.2) and TWD (+8.1 ± 6.2 kJ; post hoc P ≤ 0.01, d = 1.0) from baseline.  With co-ingestion 

of β-alanine and sodium bicarbonate (BASB), 6 out of 10 showed a further increase in TTE 

and TWD (with a 7
th

 unchanged) compared with BAMD. However, in neither case did the 

results reach significance (TTE: +6.1 ± 15.3 s, d = 0.4; TWD: +2.3 ± 5.4 kJ, d = 0.4). 
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Figure 4C.2 Panel A shows the change in TTE from pre-supplementation following MD and SB 
ingestion in the placebo (white bars) and β-alanine (black bars) groups. Panel B shows TTE in the 
CCT110% in MD and SB in the placebo (white bars) and β-alanine (black bars) groups. 
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4C.3.2 Blood Analyses 

Baseline blood pH, bicarbonate and base excess were similar between all trials (Table 4C.1).  

There were significant increases in blood pH, bicarbonate and base excess between baseline 

and pre-exercise in both trials where sodium bicarbonate was consumed (PSB and BASB) 

(Trial x Time P ≤ 0.001, post hoc P ≤ 0.001).  Increases were shown in all participants with 

sodium bicarbonate ingestion. In the two conditions where sodium bicarbonate was not 

consumed (PMD and BAMD), there were no significant alterations to blood pH, bicarbonate 

or base excess from baseline to pre-exercise (Table 4C.1). 

 

In all trials, pH, bicarbonate and base excess were significantly reduced from baseline 

immediately post exercise and following 5 minutes of recovery (P ≤ 0.001).  In trials where 

sodium bicarbonate was ingested (PSB and BASB), blood pH, bicarbonate and base excess 

were significantly higher than in the trials where maltodextrin was ingested (PMD and 

BAMD) (Trial, P ≤ 0.001).  

 

Blood lactate was not significantly different between trials at baseline or pre-exercise (Table 

4C.1). Blood lactate was significantly increased from baseline immediately post exercise and 

following 5 minutes of recovery in all trials (P ≤ 0.001) and was significantly higher 

following sodium bicarbonate ingestion (Trial x Time P ≤ 0.001; Table 4C.1). There was no 

difference in lactate response between the β-alanine and placebo groups (P = 0.4).  
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Table 4C.1 pH, lactate, bicarbonate and base excess at baseline (Base), pre-exercise (Pre-ex), immediately post-exercise (Post-ex) and 5 minutes post-
exercise (+5 min) in the placebo and β-alanine groups pre supplementation (Pre), post-supplementation following maltodextrin (Post-MD) and post-
supplementation following sodium bicarbonate (Post-SB).  There was a significant time main effect for all blood responses (P<0.0001), with ‡ denoting a 
significant difference from Post-MD and Pre at P<0.001 and * denoting a significant post-hoc difference from Base at P<0.001. 

 Placebo β-alanine 

 Base Pre-ex Post-ex +5 min Base Pre-ex Post-ex +5 min 

pH         

Pre 7.402 ± 0.016 7.410 ± 0.014 7.246 ± 0.046 7.245 ± 0.054 7.407 ± 0.026 7.394 ± 0.032 7.223 ± 0.043 7.206 ± 0.057 

Post-MD 7.416 ± 0.018 7.400 ± 0.015 7.252 ± 0.051 7.243 ± 0.053 7.397 ± 0.012 7.399 ± 0.028 7.226 ± 0.041 7.202 ± 0.055 

Post-SB‡ 7.412 ± 0.019 7.467 ± 0.015
*
 7.303 ± 0.041 7.295 ± 0.051 7.409 ± 0.013 7.456 ± 0.021

*
 7.259 ± 0.037 7.243 ± 0.046 

         

Lactate (mmol·L
-1

)        

Pre 1.3 ± 0.5 1.3 ± 0.5 13.0±2.3 12.5±2.0 1.1±0.3 1.2±0.5 12.8±2.6 12.6±2.2 

Post-MD 1.1 ± 0.3 1.3 ± 0.8 12.9±2.7 12.0±2.1 1.0±0.4 1.4±0.7 14.2±3.2 14.0±2.2 

Post-SB‡ 1.1 ± 0.2 1.2 ± 0.3 14.9±3.1 13.9±3.0 1.3±0.5 1.3±0.4 15.5±1.7 15.2±1.9 

         

Bicarbonate (mmol·L
-1

)        

Pre 24.97 ± 1.05 24.97 ± 0.54 15.39 ± 1.92 13.44 ± 2.01 24.57 ± 1.13 24.96 ± 1.23 15.33 ± 1.73 11.99 ± 2.13 

Post-MD 25.11 ± 1.31 25.35 ± 1.30 15.51 ± 2.12 13.49 ± 2.46 24.41 ± 1.10 24.80 ± 1.25 14.78 ± 2.60 11.72 ± 2.30 

Post-SB‡ 25.04 ± 1.28 31.54 ± 0.95
*
 19.44 ± 2.19 16.47 ± 2.91 24.31 ± 1.06 29.76 ± 1.32

*
 16.95 ± 1.99 13.24 ± 1.93 

         

Base excess (mmol·L
-1

)        

Pre 0.82 ± 0.89 0.98 ± 0.66 -10.35 ± 2.24 -11.89 ± 2.78 0.62 ± 0.89 0.62 ± 0.81 -10.90 ± 1.91 -13.92 ± 2.93 

Post-MD 1.25 ± 1.34 1.04 ± 1.11 -10.11 ± 2.70 -11.88 ± 3.11 0.25 ± 0.90 0.61 ± 0.90 -11.27 ± 2.84 -14.23 ± 3.00 

Post-SB‡ 1.11 ± 1.08 7.52 ± 0.77
*
 -5.84 ± 2.58 -8.37 ± 3.40 0.46 ± 0.80 5.85 ± 1.28

*
 -8.81 ± 2.26 -12.09 ± 2.49 
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4C.4 Discussion 

The main findings from this study were that there was a significant increase in cycling 

capacity following β-alanine supplementation but co-supplementation with β-alanine and 

sodium bicarbonate did not confer any further statistically significant benefit. 

 

The CCT110% has previously been used by Hill et al. (2007) who showed that TWD was 

increased by 13.0% alongside a 58.8% increase in muscle carnosine following four weeks of 

β-alanine supplementation. When supplementation was extended to ten weeks, carnosine was 

increased by 80.1% and TWD by 16.2%. In the present study we showed a 14.6% increase in 

TWD during the CCT110%, although carnosine concentrations were not directly measured. 

However, several studies have shown significant increases in muscle carnosine 

concentrations following four weeks of supplementation despite employing lower doses than 

in the current study (Harris et al., 2006; Hill et al., 2007). Therefore, it can be hypothesised 

that an elevated dose of 6.4 g·d
-1

 for four weeks will have resulted in substantial increases in 

muscle carnosine.  

 

Previous studies have indicated that intracellular H
+
 accumulation with high-intensity 

exercise can affect metabolism, contributing to fatigue (Spriet et al., 1989).  In particular, the 

accumulation of H
+
 in the skeletal muscle might disrupt the resynthesis of phosphorylcreatine 

(Harris et al., 1976), inhibit glycolysis (Trivedi and Danforth, 1966) or interfere with the 

contractile machinery directly (Donaldson and Hermansen, 1978; Fabiato and Fabiato, 1978).  

In support of an effect of H
+
 accumulation on the development of fatigue, numerous studies 

have shown an association between an increase in muscle buffering capacity and an 

improvement in high-intensity exercise performance and capacity (Weston et al., 1997; 

Bishop et al., 2004b; Edge et al., 2006), although not all agree (Westerblad et al., 1997).  This 
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appears to be the most likely explanation of the exercise capacity improvements seen in the 

present investigation, with the increased skeletal muscle carnosine content resulting in an 

attenuation of the reduction in intracellular pH during high-intensity exercise. However, Hill 

et al. (2007) reported that they could not exclude the possibility that the increase in high-

intensity cycling capacity observed with β-alanine supplementation was caused by some of 

the other purported physiological effects of elevated muscle carnosine concentrations. 

 

Contrary to the effect of β-alanine on high-intensity cycling capacity, sodium bicarbonate 

ingestion alone did not significantly increase TWD during the CCT110%. Blood analyses 

confirmed that sodium bicarbonate ingestion was successful in significantly increasing pH, 

bicarbonate and base excess in line with previous studies of sodium bicarbonate ingestion 

(Price et al. 2003; van Montfoort et al. 2004; Robergs et al., 2005; Siegler et al., 2008). This 

study was based upon the premise that co-ingestion of β-alanine with sodium bicarbonate 

would result in an increased skeletal muscle carnosine concentration and increased 

circulating bicarbonate concentration. As such, the intracellular pH buffering action of 

carnosine and the extracellular buffering action of bicarbonate were hypothesised to be 

additive, resulting in an increased protection against the acidosis produced during high 

intensity cycling, as suggested by the results of Hill et al. (2007). It was hypothesised that this 

would result in a further improvement in high-intensity cycling capacity above that shown 

following either sodium bicarbonate supplementation or β-alanine supplementation alone. 

The results of this investigation provide support for an increased exercise capacity following 

co-ingestion of β-alanine and sodium bicarbonate above that of bicarbonate alone but not 

compared to β-alanine alone, despite a mean increase of 6 s in TTE and a 2 kJ increase in 

TWD. Whilst these differences were not significant, it is possible that, in performance terms, 

a further increase of 6 s in TTE might be important. Calculation of the magnitude-based 
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inferences (Batterham and Hopkins, 2006) showed that there was a 69% and 71% probability 

that the magnitude of the differences in TTE and TWD between β-alanine and β-alanine plus 

sodium bicarbonate were meaningful. This suggests a potentially meaningful increase in 

high-intensity cycling capacity when combining β-alanine and sodium bicarbonate 

supplementation over the ingestion of β-alanine alone. 

 

There was a degree of individual variability in the exercise capacities of participants 

following β-alanine and β-alanine plus sodium bicarbonate ingestion, which might explain 

the lack of a significant finding. Indeed, 3 participants improved more on β-alanine alone 

than on the combination of β-alanine plus sodium bicarbonate. Each of these participants 

responded to sodium bicarbonate ingestion with an increase in both blood pH and bicarbonate 

concentrations. Furthermore, despite the fact that some participants experienced mild (N = 2) 

and severe (N = 3) gastrointestinal symptoms, these did not occur in those participants who 

showed the greatest improvement with just β-alanine.  

 

4C.5 Conclusions 

This study has confirmed the work of Hill et al. (2007) that four weeks of β-alanine 

supplementation can improve high-intensity cycling capacity at 110% of Wmax. 

Improvements can be attributed to an increase in muscle buffering capacity due to increased 

muscle carnosine concentration. Although co-ingestion of β-alanine and sodium bicarbonate 

did not confer any further significant benefit to exercise capacity despite a further 6 s (~4%) 

increase in TTE, magnitude based inferences suggested a ~70% probability of a meaningful 

positive difference. This suggests an additive effect through co-supplementation of β-alanine 

and sodium bicarbonate should not be dismissed.  
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Chapter 5.0 A) Effect of sodium 

bicarbonate supplementation on repeated 

sprint performance during intermittent 

exercise performed at 2500 m simulated 

altitude
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5A.1 Introduction 

The results reported in the previous chapters showed that high-intensity cycling capacity 

could be improved with sodium bicarbonate supplementation if it did not result in GI 

discomfort and that individuals respond differently to supplementation. The CCT110% is a 

single bout exercise test to exhaustion designed to last between 120 and 240 s, likely to be 

limited by increasing muscle acidosis. Team sports consist of high-intensity intermittent 

exercise, which is more prolonged and requires players to perform periods of high-intensity 

running, interspersed with periods of low intensity running. Match play requires players to 

continually reproduce maximal and near maximal sprints, 2 – 3 s in duration, with short 

periods of recovery over an extended period of time; this fitness component is termed RSA 

(Dawson et al., 1993; Bishop et al., 2001). 

 

RSA has been used as an indicator of the ability of top level professional football players to 

perform high-intensity running during competitive match play (Rampinini et al., 2007). The 

RSA test used by Rampinini et al. (2007 & 2009) consists of six repeated 40 m (2 x 20 m) 

sprints, separated by 20 s of passive recovery, each sprint lasting approximately 7 s. Bishop et 

al. (2001) showed that the performance decrement during a modified RSA (5 x 6 s cycle 

sprints with 24 s of self-selected active or passive recovery) test was significantly correlated 

to the 15 m sprint performance decrement during an intermittent exercise protocol replicating 

the movement patterns of team sports. This suggests that a 5 x 6 s repeated sprint protocol 

may be a suitable performance measure when investigating interventions on team sport 

performance. 

 

Increased RSA has been associated with a greater H
+
 buffering capacity in elite female 

hockey players (Bishop et al., 2003), recreational team sport females (Bishop and Edge, 
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2006), untrained females (Bishop et al., 2004b) and professional and amateur male 

footballers (Rampinini et al., 2009). An intervention designed to increase intracellular 

buffering capacity may thus be of benefit to RSA and team sport performance. Indeed, 

Bishop et al. (2004a) showed that sodium bicarbonate supplementation could improve total 

work done and work and power output during the final three sprints of a 5 x 6 s sprint 

protocol, although, these were performed on a cycle ergometer. Furthermore, they did not 

determine repeated sprint performance during simulated games play or at altitude and, thus, 

did not consider the implications of these additional metabolic demands. When exercise is 

performed at altitude, there is an earlier reliance on anaerobic glycolysis due to the higher 

relative intensity for an absolute level of work (Levine et al., 2008), which leads to an 

increase in both muscle and blood lactate accumulation (Bueding and Goldfarb, 1941; Wolfel 

et al., 1991), resulting in a concomitant rise in H
+
, which would place an increased reliance 

on the buffering systems of the body to maintain performance.  

 

The aim of this investigation was to examine the effects of sodium bicarbonate 

supplementation on repeated sprint performance during a football specific treadmill protocol 

at simulated altitude. It was hypothesised that repeated sprint performance would be 

improved following supplementation with sodium bicarbonate. 

 

5A.2 Methods 

5A.2.1 Participants 

Twenty recreationally active games players (age 22 ± 4 y, height 1.78 ± 0.07 m, body mass 

75.4 ± 9.3 kg, VO2max 54.3 ± 8.5 ml·kg
-1

·min
-1

) participated in the study. Participants were 

fully informed of any risks and discomforts associated with the study before completing a 

health screen and providing informed consent (Chapter 3.1).  
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5A.2.2 Experimental Design 

Participants attended the laboratory on four separate occasions. The first session comprised of 

a running speed lactate and VO2max test (Chapter 3.3.3). The remaining three sessions were 

for the completion of an habituation of the main protocol, and two main trials, which 

comprised of a football specific intermittent treadmill protocol (FSINT; Greig et al., 2006; 

Chapter 3.3.4), performed one week apart. The final three sessions were performed in an 

environmental chamber set at conditions designed to simulate 2500 m altitude (%O2 15.5 ± 

0.1%; temperature 18.0 ± 0.1
o
C; relative humidity 52.7 ± 4.0%). Prior to the main trials, 

participants ingested either maltodextrin or sodium bicarbonate in a double-blind crossover 

design. Sodium bicarbonate and placebo were ingested in opaque gelatine capsules 

individually prepared for each participant, totalling 0.3 g·kg
-1

BM. Participants ingested 0.2 

g·kg
-1

BM of sodium bicarbonate or matching placebo alongside a standardised breakfast of 3 

slices of toast and jam. A final 0.1 g·kg
-1

BM was ingested alongside a snack consisting of a 

banana and a cereal bar, 2 h prior to commencement of exercise. Participants were supervised 

during the ingestion of sodium bicarbonate and maltodextrin supplements to ensure 100% 

compliance. Participants rated their intensity of stomach ache, headache and sickness on an 

eleven point scale (Chapter 3.4.5) at breakfast, prior to the final dose, prior to exercise and 

immediately post-exercise. 

 

The 5 x 6 s repeated sprint protocol (Chapter 3.3.5) was performed on three occasions; 

following a 5 min warm up (Set 1), immediately following FSINT1 (Set 2) and immediately 

following the FSINT2 (Set 3). Mean power output (MPO) and peak power output (PPO) of 

every sprint were recorded; MPO was determined as the highest average power output over 6 

s for each sprint. Percentage fatigue for MPO and PPO during each set of the sprint protocol 

was calculated using recommendations made by Glaister et al. (2008) who showed the 
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performance decrement score devised by Fitzsimons et al. (1993) to be the most suitable 

formula for determining fatigue during repeated sprint exercise:  

% fatigue = 100 - ([total power output/ideal power output] x 100),  

where total power output represents  the sum of the power output values for all sprints during 

the set, and ideal power output represents the number of sprints performed multiplied by the 

highest power output of all sprints in the set. Participants were instructed to perform each 

sprint maximally, and were given strong verbal encouragement for the duration of every 

sprint.  

 

In order to determine the reliability of the repeated sprint test, a further test-retest study was 

conducted on 16 participants (age 25 ± 3 y, height 1.79 ± 0.05 m, body mass 74.9 ± 8.9 kg) 

who completed two sets of 5 x 6 s sprints on two occasions separated by 2 days; the two sets 

were performed 45 minutes apart during which time the participants rested. Both tests were 

completed in a fasted state (12 h), with no caffeine or alcohol having been consumed for the 

previous 24 h. All sessions were performed in an environmental chamber set at conditions 

designed to simulate 2500 m altitude (%O2 15.5 ± 0.1%; temperature 18.0 ± 0.1
o
C; relative 

humidity 51.4 ± 5.4%). There was no significant difference in MPO or PPO between sets 1 

and 2 (P ≥ 0.05). The intra-class correlation for between sets 1 and 2 was r = 0.93 for MPO 

and r = 0.87 for PPO, with a coefficient of variation being 2.11% for MPO and 2.34% for 

PPO. There was no significant difference in overall MPO or PPO between trials 1 and 2 (P ≥ 

0.05). The intra-class correlation for between trial 1 and 2 was r = 0.77 for MPO and r = 0.75 

for PPO, with a coefficient of variation being 3.99% for MPO and 4.35% for PPO.    

 

Fingerprick blood samples were taken immediately prior to and immediately following every 

sprint bout, resulting in six individual samples (Pre Set 1, Post Set 1, Post FSINT1, Post Set 2, 



103 

 

Post FSINT2, Post Set 3). Blood samples were analysed and used to determine blood lactate 

(Chapter 3.4.2.1), pH, bicarbonate and base excess (Chapter 3.4.2.2). Heart rate (Chapter 

3.4.3) and SaO2 (Chapter 3.4.6) were recorded throughout exercise. Participants were allowed 

to drink water ad libitum throughout.  

 

5A.2.3 Statistical Analyses 

All data were analysed using Statistica 9 (Statsoft, USA) and are presented as mean ± 1SD. P 

plots and Cochran’s Q were used to confirm normality and homogeneity of variance of the 

data. A three-way factorial ANOVA (Supplement x Set x Sprint) was used to determine any 

difference in power output and blood measurements. A two-way factorial ANOVA 

(Supplement x Set) was used to determine any effect on percentage fatigue for MPO and PPO. 

Fisher LSD tests were used for post-hoc analyses where appropriate and statistical 

significance was accepted at the P ≤ 0.05 level. 

 

5A.3 Results 

5A.3.1 5 x 6 s Sprint Performance 

5A.3.1.1 MPO 

There was a main effect of sprints (Sprint, P ≤ 0.001) and sets (Set, P ≤ 0.001; Figure 5A.1), 

with a decline in MPO shown with increasing numbers of sprints and sets performed. There 

was no interaction effect of supplementation on sprint performance throughout the exercise 

(Supplementation x Set x Sprint, P = 0.99), or when taking into consideration all sets 

(Supplementation x Set, P = 0.94) or sprints (Supplementation x Sprint, P = 0.99; Table 

5A.1). This indicates that supplementation did not have an effect on sprint performance 

across sets or sprints. MPO was different between trials (Supplement, P = 0.02), with overall 

lower values shown following sodium bicarbonate supplementation versus placebo (539.4 ± 
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84.5 vs. 554.0 ± 84.6 W), although there were no between trial differences at any 

corresponding time points (Table 5A.1). There was no effect of supplementation on %fatigue 

across sets (Supplementation x Set, P = 0.99), though any effect of supplementation may 

have been masked by the fact that performance decrements were not significantly different 

across sets (Set, P = 0.45).  

 

5A.3.1.2 PPO 

There was a main effect of sets (Set, P ≤ 0.001) and sprints (Sprint, P ≤ 0.001) on PPO, 

indicating that PPO achieved decreased as the number of sets and sprints performed increased. 

There was no interaction effect of supplementation on PPO throughout the exercise 

(Supplementation x Set x Sprint, P = 0.99), or when taking into consideration all sets 

(Supplementation x Set, P = 0.87) or sprints (Supplementation x Sprint, P = 0.98; Table 

5A.1). There was no between trial differences in PPO (Supplement, P = 0.09). There was no 

effect of supplementation on %fatigue of PPO across sets (Supplementation x Set, P = 0.79), 

although there was a main effect of sets upon performance decrements (Set, P = 0.02), 

indicating a greater decline in PPO with increasing sets performed.  

 

5A.3.2 Measurements 

Pre-exercise pH, bicarbonate and base excess were different between trials (P ≤ 0.001), with 

increased values shown following sodium bicarbonate supplementation. There was no 

interaction effect of supplementation throughout the exercise on pH (Supplement x Time, P = 

0.92), bicarbonate (Supplement x Time, P = 0.12) or base excess (Supplement x Time, P = 

0.30), although corresponding values were higher at every time point following 

supplementation with sodium bicarbonate (Supplement, P ≤ 0.001; Table 5A.2). pH, 

bicarbonate and base excess values immediately following FSINT 1 and FSINT 2 were not 
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significantly different from pre-exercise values with the exception of pH following FSINT 2 

(P = 0.01; Table 5A.2). pH, bicarbonate and base excess were all reduced immediately 

following every sprint bout from their corresponding pre-sprint value (Table 5A.2). 

 

Lactate concentrations were similar at pre-exercise in both trials (P = 0.56; placebo: 1.9 ± 0.7 

mmol·L
-1

 and sodium bicarbonate: 2.2 ± 0.7 mmol·L
-1

). Supplementation did not affect 

lactate throughout the trials (Supplement x Time, P = 0.55), although overall lactate 

concentrations were higher in the sodium bicarbonate trial (Supplement, P ≤ 0.001). Lactate 

was not increased above pre-exercise concentrations following FSINT 1 or FSINT 2 in either 

trial (P ≥ 0.05). There was a main effect of time on lactate concentration (Time, P ≤ 0.001), 

with significantly higher concentrations shown in the sodium bicarbonate trial following the 

first and second set of sprints (P ≤ 0.01; Table 5A.2). 

 

Mean heart rate was similar (Half, P = 0.62) between the first half (Placebo: 144 ± 17 b·min
-1

; 

Sodium bicarbonate: 145 ± 15 b·min
-1

) and second half (Placebo: 146 ± 16 b·min
-1

; Sodium 

bicarbonate: 147 ± 15 b·min
-1

), with no differences between trials (Supplement, P = 0.79) and 

no interaction effect (Supplement x Half, P = 0.94). The level of dehydration was well 

controlled in the placebo (-0.7 ± 0.6%) and sodium bicarbonate (-0.6 ± 0.9%) trials, with no 

significant differences between trials (P = 0.35).  

 



106 

 

Table 5A.1 MPO and PPO for the placebo and sodium bicarbonate (NaHCO3
-) trials. 

        

 Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5  Mean 

MPO (W)        

        

Set 1        

Placebo 630.1 ± 83.8 610.8 ± 82.5 557.1 ± 68.9 534.8 ± 52.5 523.4 ± 64.3  571.2 ± 81.7 

NaHCO3
-
 623.5 ± 87.7 590.3 ± 79.1 546.5 ± 69.4 522.2 ± 63.6 511.1 ± 57.6  558.7 ± 82.6 

        

Set 2        

Placebo 622.7 = 83.1 579.8 ± 80.3 533.1 ± 57.4 530.3 ± 92.5 522.8 ± 67.0  557.7 ± 84.7 

NaHCO3
-
 608.0 ± 83.8 568.5 ± 71.8 528.0 ± 73.4 507.2 ± 65.8 508.0 ± 78.4  543.9 ± 83.2 

        

Set 3        

Placebo 605.3 ± 90.9 554.0 ± 77.7 507.2 ± 66.9 488.8 ± 61.3 509.4 ± 69.5  533.0 ± 83.9 

NaHCO3
-
 584.0 ± 93.0 527.2 ± 83.3 492.0 ± 76.6 474.7 ± 52.4 499.6 ± 62.5  515.5 ± 82.9 

        

PPO (W)        

        

Set 1        

Placebo 752.5 ± 130.4 739.0 ± 127.4 686.9 ± 112.7 666.1 ± 103.5 663.0 ± 117.2  701.5 ± 122.1 

NaHCO3
-
 745.1 ± 122.5 721.2 ± 113.4 682.6 ± 112.2 663.2 ± 105.4 652.3 ± 107.0  692.9 ± 115.5 

        

Set 2        

Placebo 758.4 ± 113.8 715.4 ± 117.0 671.9 ± 101.7 631.8 ± 97.8 661.2 ± 110.3  687.7 ± 115.1 

NaHCO3
-
 744.0 ± 120.2 696.8 ± 106.3 642.4± 106.5 630.6 ± 106.3 628.3 ± 113.7  668.4 ± 117.6 

        

Set 3        

Placebo 747.9 ± 130.4 681.2 ± 110.2 642.1 ± 113.6 613.1 ± 90.5 648.1 ± 121.5  666.5 ± 120.9 

NaHCO3
-
 722.0 ± 142.8 651.1 ± 125.6 620.2 ± 105.2 606.6 ± 96.3 637.7 ± 94.1  647.5 ± 119.1 
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Figure 5A.1 MPO across all sets in the placebo (Panel A) and sodium bicarbonate (Panel B) trials
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Table 5A.2 Blood pH, bicarbonate, base excess and lactate during the placebo and sodium bicarbonate trials. ^P ≤ 0.01 from placebo trial at the equivalent 
time point.  

  Pre-Exercise Post Sprint 1 Post FSINT 1 Post Sprint 2 Post FSINT 2 Post Sprint 3 

        

pH        

Placebo  7.412 ± 0.022 7.243 ± 0.047 7.425 ± 0.018 7.309 ± 0.038 7.441 ± 0.018 7.349 ± 0.040 

NaHCO3
-
  7.464 ± 0.022

^
 7.303 ± 0.048

^
 7.472 ± 0.016

^
 7.357 ± 0.043

^
 7.483 ± 0.020

^
 7.396 ± 0.047

^
 

        

Bicarbonate (mmol·L
-1

)        

Placebo  23.9 ± 1.1 15.2 ± 1.9 23.7 ± 1.2 17.0 ± 1.6 23.5 ± 1.7 17.9 ± 2.2 

NaHCO3
-
  28.6 ± 1.6

^
 18.5 ± 2.8

^
 28.4 ± 1.7

^
 19.6 ± 3.2

^
 27.9 ± 1.6

^
 21.4 ± 2.0

^
 

        

Base Excess (mmol·L
-1

)        

Placebo  0.2 ± 1.1 -10.4 ± 2.4 0.3 ± 1.2 -7.6 ± 1.9 0.5 ± 1.6 -6.0 ± 2.5 

NaHCO3
-
  5.1 ± 1.3

^
 -6.5 ± 3.2

^
 5.1 ± 1.5

^
 -4.7 ± 3.4

^
 4.9 ± 1.4

^
 -2.4 ± 2.4

^
 

        

Lactate (mmol·L
-1

)        

Placebo  1.9 ± 0.7 8.5 ± 1.6 2.6 ± 0.8 7.0 ± 1.6 2.4 ± 1.0 6.2 ± 1.6 

NaHCO3
-
  2.2 ± 0.7 9.6 ± 2.3

^
 3.1 ± 1.1 8.1 ± 1.8

^
 2.9 ± 1.3 6.7 ± 1.3 
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SaO2 was not different between trials but was affected by time (P ≤ 0.001), with significantly 

lower values during exercise than pre exercise and during half-time (Table 5A.3). There was 

no effect of time on intensity of stomach ache (P = 0.09), sickness (P = 0.12) or headache (P 

= 0.27) during any trial. Intensity of stomach ache and sickness were not different between 

trials (P > 0.05), but intensity of headache was higher in the sodium bicarbonate trial (P = 

0.05). 

 

Table 5A.3 SaO2 during the placebo and sodium bicarbonate trials. *P ≤ 0.001 from Pre-Exercise. ^P 
≤ 0.001 from Half-Time. 

SaO2 (%) Pre Exercise FSINT1 Half-Time FSINT2 

Placebo 98 ± 1 88 ± 4
*^

 93 ± 3 86 ± 3
*^

 

NaHCO3
-
 99 ± 1 86 ± 5

*^
 93 ± 2 84 ± 4

*^
 

 

5A.4 Discussion 

This study showed that, despite a decrease in sprint performance across sets and sprints, 

sprint performance was unaffected by sodium bicarbonate supplementation. This is in 

contrast to Bishop et al. (2004a) who showed an increase in TWD during 5 x 6 s cycle sprints 

following sodium bicarbonate supplementation. In the current study there were no differences 

in MPO or PPO at any corresponding time points between trials. Furthermore, exercise was 

performed at simulated altitude, likely to induce an earlier reliance on anaerobic glycolysis 

and consequent increase in H
+
 accumulation, theoretically increasing the reliance on 

buffering capacity. Despite this, sodium bicarbonate did not affect repeated sprint 

performance throughout prolonged games play activity performed at simulated altitude.  

 

Sodium bicarbonate supplementation resulted in pre-exercise alkalaemia in all participants, 

with increased blood bicarbonate compared to the placebo condition (+4.7 ± 1.2 mmol∙L
-1

), 
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which is higher than the average increases (+3.9 ± 0.9 mmol∙L
-1

) shown in a meta-analysis by 

Carr et al. (2011). However, the results discussed in Chapter 4B showed that alkalosis was 

not correlated to exercise capacity, which suggests that the degree of individual alkalosis does 

not directly influence the individual response to exercise. Furthermore, GI discomfort could 

account for some, but not all, of the decline in cycling capacity shown following sodium 

bicarbonate supplementation. In the present study, participants were asked to rate their 

intensity of stomach ache, sickness and headache in order to account for these issues; 

although the intensity of headache reported was higher during the sodium bicarbonate trial 

(likely skewed by one participant reporting significant headache prior to exercise), 

participants reported almost no symptoms during either trial at any point, suggesting that 

none of these factors contributed to the lack of an ergogenic effect with sodium bicarbonate. 

 

The effect of sodium bicarbonate on repeated sprint exercise has been well researched, with 

supplementation effective in some (Costill et al., 1984; Lavender and Bird, 1989; Bishop et 

al., 2004a; Siegler et al., 2010; Zinner et al., 2011) but not all (Gaitanos et al., 1991; Webster 

et al., 1993; Price and Simons, 2010) studies. Few studies have investigated the effect of 

sodium bicarbonate on repeated sprints of durations similar to that seen in team sports (6 – 10 

s; Lavender and Bird, 1989; Gaitanos et al., 1991; Bishop et al., 2004a), and only Gaitanos et 

al. (1991) employed a protocol with an exercise modality that represents team sports. 

Interestingly, this is the only study of the three that did not show a beneficial effect of sodium 

bicarbonate on exercise performance. It has previously been suggested that running repeated 

sprint protocols require an increased number of preliminary sessions to allow for full 

familiarisation of the activity required (Sweeney et al., 2011); however, reliability data of the 

protocol used in the present investigation suggests that one familiarisation session was 
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sufficient to allow for consistent results for both MPO and PPO across trials. Therefore, a 

lack of familiarisation of the protocol cannot explain the results in the current investigation.  

 

Blood lactate was elevated following every set of sprints, with increased concentrations in the 

sodium bicarbonate trial following the first two sets, but not following the final set. Bishop et 

al. (2004a) showed no difference in post-exercise muscle pH between trials, despite increased 

muscle and blood lactate concentrations in the sodium bicarbonate trial, suggesting that there 

was an increased efflux of lactate and H
+
 out of the working muscle, delaying the decline in 

pHi allowing a better maintenance of performance. In the present investigation, lactate 

concentrations following the first set of sprints were only 15% higher in the sodium 

bicarbonate trial, while Bishop et al. (2004a) showed lactate concentrations 28% higher 

following supplementation with sodium bicarbonate which may account for some of the 

differences in results. Furthermore, Ibanez et al. (1995) suggested that a difference in blood 

lactate concentration of 2 mmol·L
-1

 between treatments was required to show a performance 

effect with sodium bicarbonate. Differences of 1.1 ± 1.9, 1.2 ± 1.5 and 0.5 ± 1.3 mmol·L
-1

 

were shown following the first, second and third sets of sprints, which may have contributed 

to the lack of an effect of sodium bicarbonate supplementation.  

 

Anaerobic glycolysis has been shown to be considerable during 6 s cycle sprints, contributing 

up to 44% towards total ATP production (Gaitanos et al., 1993), resulting in a large 

accumulation of H
+
. Decreased oxygen saturation may mean that increased anaerobic 

glycolysis will lead to a higher, and earlier, increase in H
+
 within the working muscle. 

Although H
+
 was not directly measured here, due to the high association between lactate and 

H
+
 production (Hultman and Sahlin, 1980), blood lactate concentration can be used as an 

indicator of H
+
 production. It was hypothesised that there would be an increased reliance on 
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the body’s buffering systems as a result of the exercise being performed at simulated altitude 

(Brooks et al., 1991; Wolfel et al., 1991). Despite this, the highest average lactate 

concentrations (Post Sprint 1: 8.5 ± 1.6 and 9.6 ± 2.3 mmol·L
-1

 for placebo and sodium 

bicarbonate) are not in excess of those shown by Bishop et al. (2004a) under normoxic 

conditions (Placebo: ~8 mmol·L
-1

 and sodium bicarbonate: ~12 mmol·L
-1

). However, 

differences may be attributed to the exercise modalities employed, as Bishop et al. (2004a) 

had participants perform cycling sprints on an ergometer. Furthermore, although exercise 

took place in hypoxic conditions, likely inducing a larger accumulation of H
+
, there may have 

been a saturation in the rate of removal of lactate and H
+
, which is near maximal during 

running sprints (Gaitanos et al., 1991). Jorfeldt et al. (1978) showed a linear relationship 

between the increase in muscle lactate production and efflux up to a concentration of 20 

mmol·L
-1

, where after no increase in efflux was shown with increased lactate production. 

Therefore, increased levels of circulating bicarbonate may not have increased the already 

maximal rate of H
+
 efflux out of the working muscle, explaining the lack of a performance 

benefit.  

 

5A.5 Conclusions 

Sodium bicarbonate supplementation did not affect 5 x 6 s repeated sprint performance 

during the FSINT at simulated altitude. The lack of a significant finding may be due to a lack 

of a difference in lactate and H
+
 production between trials, or a saturation in H

+
 efflux out of 

the working muscle due to the exercise performed, rendering any increases in blood buffering 

capacity insignificant.  
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Chapter 5.0 B) Effect of β-alanine 

supplementation, with and without 

sodium bicarbonate, on repeated sprint 

performance during intermittent exercise 

performed at 2500 m simulated altitude
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5B.1 Introduction 

In Chapter 5A, it was reported that repeated sprint performance throughout team sport 

specific exercise at simulated altitude was unaffected by sodium bicarbonate supplementation. 

The lack of an effect may be attributed to the lack of a difference in lactate production 

between trials (Ibanez et al., 1995), or could be due to a saturation in the efflux of H
+
 out of 

the working muscle (Jorfeldt et al., 1978). Despite this, increased extracellular buffering 

capacity has previously been shown to improve repeated sprint performance (Lavender and 

Bird, 1989; Bishop et al., 2004a). Furthermore, increasing intracellular buffering capacity 

may be of more benefit to exercise performance and capacity due to a more direct influence 

upon pHi. 

 

Although Hoffman et al. (2008) showed no effect of β-alanine on fatigue rates during 

repeated line drills (200 yards) following 30 days of supplementation, no baseline 

measurements were taken prior to the supplementation period. Therefore, any gains in 

performance due to increased muscle buffering capacity may have been overlooked due to an 

inappropriate testing strategy. Similarly, two sets of 5 x 5 s repeated sprints were unaffected 

following five weeks β-alanine supplementation (Sweeney et al., 2010), although a lack of 

familiarisation to the protocol may have contributed to a lack of an ergogenic effect. Both of 

these studies had limitations which may have masked any effect of β-alanine supplementation 

on repeated sprint performance. Furthermore, participants were not required to perform the 

sprints during sport specific exercise, which would place an increased metabolic demand on 

the individuals. Krustrup et al. (2006a) showed that repeated sprint performance was reduced 

following actual match play, and following the most intense five minutes in the first and 

second halves. Although decreased sprint performance was not directly correlated to reduced 

muscle pH in this study, previous research has shown an association between repeated sprint 
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performance and H
+
 buffering capacity (Bishop et al., 2003; Bishop et al., 2004b; Bishop and 

Edge, 2006; Rampinini et al., 2009).  

 

In the study reported in Chapter 4C, participants were co-supplemented with β-alanine and 

sodium bicarbonate, on the premise that increases in intracellular and extracellular buffering 

would be additive. Although co-ingestion of β-alanine and sodium bicarbonate did not confer 

any further significant benefit to exercise capacity, magnitude based inferences suggested a 

~70% probability of a meaningful positive difference, which suggests an additive effect 

should not be dismissed. When exercise is performed at altitude, there is an earlier reliance 

on anaerobic glycolysis due to the higher relative intensity for an absolute level of work 

(Levine et al., 2008), leading to an increase in both muscle and blood lactate accumulation 

(Brooks et al., 1991; Wolfel et al., 1991). The concomitant rise in H
+
 concentration reduces 

intracellular and extracellular pH, which may contribute to the onset of fatigue. An 

intervention designed to attenuate the decrease in muscle pH, via increases in intracellular (β-

alanine supplementation; Sale et al., 2010) or extracellular (sodium bicarbonate 

supplementation; McNaughton et al., 2008) buffering capacity, may individually, or 

additively, improve exercise performance at altitude.  

 

The effect of sodium bicarbonate on repeated sprints is equivocal (Lavender and Bird, 1989; 

Gaitanos et al., 1991; Bishop et al., 2004a), while repeated sprint performance has been 

shown to be unaffected by β-alanine supplementation (Hoffman et al., 2008; Sweeney et al., 

2011). However, differences in results may be attributed to a number of factors, and the 

ergogenic effect of increased buffering capacity on repeated sprint performance should not be 

dismissed. No study to date has considered the implications of the additional metabolic 

demands of performing sprints throughout simulated match play. Furthermore, co-
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supplementation of β-alanine with sodium bicarbonate may provide an additive effect to 

supplementation with β-alanine alone, particularly during exercise performed at simulated 

altitude. This study investigated the effects of 4 – 5 weeks β-alanine supplementation, with 

and without acute sodium bicarbonate supplementation, on repeated sprint performance 

during a football specific treadmill protocol at a simulated altitude of 2500 m. It was 

hypothesised that repeated sprint performance would be improved following supplementation 

with β-alanine, and that performance benefits would be additive when co-supplemented with 

sodium bicarbonate due to an increased protection against intracellular and extracellular 

acidosis.  

 

5B.2 Methods 

5B.2.1 Participants 

Twenty physically active games player participated in the study. Participants were split into 

β-alanine and placebo groups, matched for PPO. Four participants withdrew from the study 

due to injury, leaving eight participants in each supplementation group (Table 5B.1). 

Participants were fully informed of any risks and discomforts associated with the study 

before completing a health screen and providing informed consent (Chapter 3.1). 

 

Table 5B.1 Participant characteristics. 

 Placebo 

(N = 8) 

β-alanine 

(N = 8) 

Age (y) 23 ± 4 22 ± 3 

Height (m) 1.7 ± 0.07 1.83 ± 0.05 

Body Mass (kg) 72.3 ± 9.1 78.5 ± 10.9 

VO2max  

(ml·kg
-1

·min
-1

) 

55.7 ± 7.1 57.1 ± 9.7 

Compliance (%) 99 ± 3 96 ± 8 

Total supplement 

consumed (g) 

188.2 ± 5.6 182.3 ± 14.7 
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5B.2.2 Experimental Design 

Participants attended the laboratory on five separate occasions. The first session comprised of 

a running speed lactate and VO2max test (Chapter 3.3.3). The remaining four sessions were for 

the completion of an habituation of the main protocol, and three main trials, which comprised 

of the FSINT (Chapter 3.3.4). The final four sessions were performed in an environmental 

chamber set at conditions designed to simulate 2500 m altitude (%O2 15.5 ± 0.1%; 

temperature 18.0 ± 0.1
o
C; relative humidity 52.7 ± 4.0%). One of the main trials was 

completed before a 5 week supplementation period of either β-alanine or placebo. 

Participants were supplemented with 6.4 g·d
-1

 β-alanine or placebo for 4 weeks, and 3.2 g·d
-1

 

for a further 1 week. The dosing regimen consisted of two 800 mg β-alanine or placebo 

tablets ingested four times per day at 3 – 4 h intervals during the initial 4 weeks, followed by 

one 800 mg β-alanine or placebo tablet ingested four times per day at 3 – 4 h intervals for the 

final week. Compliance was monitored using supplementation logs, with a high degree of 

compliance being reported in both groups (Table 5B.1).  

 

The final two main trials were performed one week apart following 4 and 5 weeks of 

supplementation. Prior to the first main trial, participants’ ingested maltodextrin, and 

following the supplementation period, participants ingested either sodium bicarbonate or 

maltodextrin in a crossover design. Sodium bicarbonate and placebo were ingested in opaque 

gelatine capsules individually prepared for each participant, totalling 0.3 g·kg
-1

BM. 

Participants ingested 0.2 g·kg
-1

BM of sodium bicarbonate or maltodextrin alongside a 

standardised breakfast of 3 slices of toast and jam. A final 0.1 g·kg
-1

BM was ingested 

alongside a snack consisting of a banana and a cereal bar, 2 h prior to commencement of 

exercise. To ensure 100% compliance, participants were supervised during the ingestion of 

sodium bicarbonate and maltodextrin supplements. The study design comprised four 
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experimental conditions: placebo + maltodextrin (PMD), placebo + sodium bicarbonate 

(PSB), β-alanine + maltodextrin (BAMD) and β-alanine + sodium bicarbonate (BASB) 

(Figure 5B.1).  

 

Figure 5B.1 Study Design. 

 

Fingerprick blood samples were taken immediately prior to and immediately following every 

sprint bout, resulting in six individual samples (Pre-exercise, Post Set 1, Post FSINT 1, Post 

Set 2, Post FSINT 2, Post Set 3). Blood samples were analysed and used to determine blood 

lactate (Chapter 3.4.2.1), pH, bicarbonate and base excess (Chapter 3.4.2.2). Heart rate 

(Chapter 3.4.3) and SaO2 (Chapter 3.4.6) were recorded every 5 s throughout exercise. 

Participants rated their intensity of stomach ache, headache and sickness on an eleven point 

scale (Chapter 3.4.5) at breakfast, prior to the final dose, prior to exercise and immediately 

post-exercise. Participants were allowed to drink water ad libitum throughout.  
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5B.2.3 Statistical Analyses 

All data were analysed using Statistica 9 (Statsoft, USA) and are presented as mean ± 1SD. P 

plots and Cochran’s Q were used to confirm normality and homogeneity of variance of the 

data. A four-way factorial ANOVA (Group x Trial x Set x Sprint) was used to determine any 

difference in sprint times and blood measurements. A three-way factorial ANOVA (Group x 

Trial x Set) was used to determine any effect on percentage fatigue for MPO and PPO. Fisher 

LSD tests were used for post-hoc analyses where appropriate and statistical significance was 

accepted at the P ≤ 0.05 level. 

 

5B.3 Results 

5B.3.1 5 x 6 s Sprint Performance 

5B.3.1.1 MPO 

Sprint performance decreased as the number of sprints (Sprint, P ≤ 0.001) and sets (Set, P ≤ 

0.001) increased. There were no interaction effects for MPO between supplementation and 

any other variable (all P > 0.05). Furthermore, there was no effect of β-alanine or sodium 

bicarbonate alone on sprint performance (all P > 0.05). There was a trend towards higher 

MPO values in the β-alanine group (Group, P = 0.07), although there were no differences 

between groups for any trial (Group x Trial, P = 0.43, post hoc all P > 0.05; Table 5B.2).  

 

There was no difference in %fatigue across sets (Set, P = 0.68), indicating that performance 

decrements did not worsen as the number of sets performed increased. There were no 

interaction effects between supplements and any other variables (all P > 0.05).  
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5B.3.1.2 PPO 

PPO decreased as the number of sprints (Sprint, P ≤ 0.001) and sets (Set, P ≤ 0.001) 

increased. There were no interaction effects between supplementation and any of the other 

variables (all P > 0.05), nor was there an effect of β-alanine or sodium bicarbonate alone on 

PPO (all P > 0.05). PPO was higher overall in the β-alanine (Group, 723.5 vs. 706.0 W; P = 

0.04), although PPO was only different between groups during the sodium bicarbonate trial 

(post hoc P = 0.02; Table 5B.2).  

 

Performance decrements were not significantly different across sets (Set, P = 0.28), which 

suggests that the deterioration in PPO achieved during each set did not worsen as the number 

of sets performed increased. There was no interaction effect of supplementation and trial 

on %fatigue across sets (Group x Trial x Set, P = 0.43). Similarly, there was no effect of 

supplementation on fatigue rates across trials (Group x Trial, P = 0.64). 

 

Table 5B.2 Trial MPO and PPO for the β-alanine and placebo groups. *P ≤ 0.05 from placebo group. 

 Pre 

Supplementation 

Post 

Supplementation 

MD 

Post 

Supplementation 

SB 

    

MPO (W)    

β-alanine 567.4 ± 89.9 560.5 ± 82.9 580.5 ± 87.7 

Placebo 548.5 ± 94.0 560.2 ± 81.8 566.8 ± 85.2 

    

PPO (W)    

β-alanine 719.7 ± 128.0 711.2 ± 122.0 739.7 ± 127.7
*
 

Placebo 697.1 ± 106.0 715.9 ± 113.5 704.9 ± 93.4 
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5B.3.2 Measurements 

There was no interaction effect of supplementation across trials throughout the exercise on 

pH (Group x Trial x Time, P = 0.99), bicarbonate (Group x Trial x Time, P = 0.99) or base 

excess (Group x Trial x Time, P = 0.98). Supplementation did not affect trial pH, bicarbonate 

and base excess (Group x Trial, all P > 0.05), although overall trial blood values were higher 

following supplementation with sodium bicarbonate (post hoc all P ≤ 0.001; Table 5B.3) in 

both supplementation groups. There was an effect of time (Time, all P ≤ 0.001) on pH, 

bicarbonate and base excess values; immediately following FSINT 1 and FSINT 2, values 

were not significantly different from pre-exercise (post hoc P > 0.05) but were significantly 

reduced following every set of sprints (post hoc, all P ≤ 0.001).  

 

There was a main effect of time on lactate concentration (Time, P ≤ 0.001), with 

concentrations elevated above pre-exercise levels shown following every set of sprints (post 

hoc, P ≤ 0.001) but not FSINT 1 or FSINT 2. Lactate concentrations were higher in the 

sodium bicarbonate trial than both the pre and post supplementation maltodextrin trials (Trial, 

P = 0.001, post hoc P ≤ 0.01). There was an interaction effect of supplementation and trial, 

although this was due to between trial differences shown in the placebo, not the β-alanine, 

group (Table 5B.3). Supplementation did not affect lactate across trials and time (Group x 

Trial x Time, P = 0.57) or across time (Group x Time, P = 0.36).  

 

Mean heart rate was similar between groups (Group, P = 0.32; Placebo: 136 ± 17 b·min
-1

; β-

alanine: 138 ± 11 b·min
-1

) and was not difference between halves during any trial (Half, P = 

0.46). There were no interaction effects of mean heart rate with any variable (all P > 0.05). 

SaO2 was not different between groups at any time point (Group, P = 0.49; post hoc all P > 

0.05), but was affected by time (P ≤ 0.001), with significantly lower values during exercise 
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(85 ± 9%) than pre exercise (98 ± 2%) and during half-time (94 ± 5%) for both groups during 

all trials.  

 

Table 5B.3 Blood measurements averaged over the trials for both the placebo and β-alanine groups. 
*P ≤ 0.01 from placebo group during the same trial. ^P ≤ 0.05 from Pre-Supplementation. ~P ≤ 0.05 
from Post Supplementation MD. 

  Pre 

Supplementation 

Post 

Supplementation 

MD 

Post 

Supplementation 

SB 

     

pH     

Placebo  7.364 ± 0.077 7.365 ± 0.071 7.415 ± 0.072 

β-alanine  7.372 ± 0.072 7.376 ± 0.069 7.421 ± 0.061
*
 

     

Bicarbonate (mmol·L
-1

)     

Placebo  20.1 ± 3.8 19.8 ± 4.5 23.6 ± 4.5 

β-alanine  20.4 ± 4.0 20.2 ± 3.8 24.4 ± 4.7
*
 

     

Base Excess (mmol·L
-1

)     

Placebo  -3.8 ± 4.4 -4.2 ± 5.1 -0.1 ± 5.1 

β-alanine  -3.4 ± 4.8 -3.5 ± 4.6 1.1 ± 5.0
*
 

     

Lactate (mmol·L
-1

)     

Placebo  4.8 ± 2.8 5.3 ± 3.2
^
 6.0 ± 3.7

^~
 

β-alanine  4.7 ± 3.0 4.3 ± 2.8
*
 4.8 ± 2.9

*
 

     

 

5B.4 Discussion 

The main findings from this study were that repeated sprint performance was unaffected by 

β-alanine supplementation alone, or co-supplementation of β-alanine with sodium 

bicarbonate.  

 

Reported in the previous chapter, sodium bicarbonate supplementation was ineffective at 

improving repeated sprint performance during an identical exercise protocol. However, due 

to a more direct influence of increased carnosine levels on muscle pH, it was hypothesised 

that β-alanine supplementation would result in an improved performance. Despite this, β-

alanine supplementation did not have an effect on sprint performance. The results of the 
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present investigation are in accordance with Sweeney et al. (2010), who showed no effect of 

5 weeks β-alanine supplementation on horizontal power or performance decrement during 5 x 

5 s repeated sprints with 45 s passive recovery, performed twice with a 2 minute active 

recovery between sets. A lack of an effect was attributed to a change in pacing strategy in 

both groups since MPO was lower in both groups following supplementation, suggesting the 

participants were not fully familiarised with the protocol. The results in the current 

investigation showed that overall MPO was not different between any trial for either group, 

which suggests that participants did not adopt a pacing strategy and performed maximally 

during the trials, and cannot explain the lack of an effect.  

 

Further to the results reported in Chapter 4C, which indicated a ~70% likelihood of a 

meaningful improvement in exercise capacity when β-alanine was co-supplemented with 

sodium bicarbonate, it was hypothesised that co-supplementation would infer further 

improvements above any shown with β-alanine alone. Despite this, co-supplementation did 

not confer any benefits in MPO or PPO above that of bicarbonate or β-alanine alone. Indeed, 

power output was not improved from pre supplementation levels, suggesting that increased 

buffering capacity, both intracellular and extracellular, is ineffective at influencing 5 x 6 s 

repeated treadmill sprints. During maximal exercise, the requirement for ATP resynthesis is 

high and is supplemented by the hydrolysis of PCr and anaerobic glycolysis (Hultman and 

Sjöholm, 1983). PCr was reduced to 55% of resting levels following a single maximal 6 s 

cycle sprint (Dawson et al., 1997), and further reduced to 27% following a fifth maximal 

sprint. Bogdanis et al. (1993) showed that the halftime for PCr resynthesis was 57 seconds, 

which is more than double the recovery period between sprints in this study. Therefore, it 

could be hypothesised that the sprint protocol used in the current investigation did not allow 

for sufficient recovery of PCr levels, which was a greater contributor to fatigue than H
+
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accumulation and reduced muscle pH. This would render any increases in buffering capacity 

insignificant, and explain the lack of an effect of supplementation with β-alanine and sodium 

bicarbonate. 

 

Due to the decline in energy production from PCr because of incomplete resynthesis of stores, 

it has been proposed that an increased demand will be placed on anaerobic glycolysis with 

increasing sprints, although the reverse of this has been shown (Gaitanos et al., 1993). 

However, the decline in power output with repeated sprints has been shown to be 

disproportionately smaller than the reduction in anaerobic energy contribution (Bogdanis et 

al., 1996), with an increasing contribution in oxygen uptake contributing to this difference. 

With this type of exercise, H
+
 accumulation and muscle lactate concentrations are still likely 

to be high, but the increasing involvement of aerobic metabolism will not increase the 

acidosis in the muscle further. However, the low oxygen content of the hypoxic conditions 

will result in an earlier reliance on anaerobic glycolysis, resulting in an earlier accumulation 

of H
+
, which would theoretically be positively influenced by increased intracellular and 

extracellular buffering capacity. Therefore, other pathways related to H
+
 buffering, such as 

delaying the fatigue induced increase in ventilation rate (Stout et al., 2007), may be the 

mechanism behind an ergogenic effect. Nonetheless, no effects of increased intracellular and 

extracellular buffering capacity were shown, suggesting the contribution of anaerobic energy 

sources are not sufficient to induce performance limiting accumulations of H
+
 during this 

type of exercise.   

 

Despite this, Bishop et al. (2003) showed a correlation between the change in plasma H
+
 and 

the power decrement during 5 x 6 s cycle sprints. Furthermore, improved RSA has been 

associated with an increased ability to buffer H
+
 (Bishop and Spencer, 2004; Bishop and 
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Edge, 2006; Edge et al., 2006; Rampinini et al., 2009), which would suggest that increasing 

intracellular and extracellular buffering capacity would result in improvements in sprint 

performance. However, neither β-alanine nor sodium bicarbonate supplementation alone or in 

combination improved sprint performance in the current study. Since supplementation with 

these buffering agents would increase both intracellular and extracellular buffering capacity, 

it appears that repeated sprints of this nature are not influenced by the ability to maintain 

muscle pH. The studies that report on an association between RSA and H
+
 buffering capacity 

determined muscle buffering capacity by the titration of skeletal muscle homogenates, which 

may have affected results. The homogenisation of muscle causes changes to the chemical 

composition of the intracellular environment, even with the inhibition of glycolysis by 

iodoacetate (Bueding and Goldfarb, 1941), most notably the hydrolysis of PCr and ATP 

resulting in increases in inorganic phosphate (pKa 6.8) and hexose monophosphates (pKa 

6.1), which would contribute to an over estimation of muscle buffering capacity. Furthermore, 

considering that carnosine can contribute as much as 40% to buffering capacity in the 

physiological range, it would appear that H
+
 buffering capacity does not affect 5 x 6 s 

repeated treadmill sprints, explaining the lack of an effect shown following β-alanine and 

sodium bicarbonate supplementation. 

 

5B.5 Conclusions 

β-alanine supplementation did not affect 5 x 6 s repeated sprint performance throughout team 

sport specific exercise at simulated 2500 m altitude, nor did co-supplementation with sodium 

bicarbonate. Despite previous research suggesting an association between increased buffering 

capacity and improved RSA, the current investigation provides evidence that increased 

intracellular and extracellular buffering capacity does not improve repeated sprint 

performance. 
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Chapter 6.0 Effect of β-alanine 

supplementation on repeated sprint 

performance during the Loughborough 

Intermittent Shuttle Test 
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 Introduction 6.1

Reported in the previous chapter, repeated 5 x 6 s sprints were unaffected by β-alanine 

supplementation, or co-supplementation with β-alanine and sodium bicarbonate. This is 

similar to the findings of Hoffman et al. (2008) and Sweeney et al. (2010) on RSA, despite 

research showing an association between H
+
 buffering capacity and RSA (Bishop et al., 

2004b; Rampinini et al., 2009), though this is based on the titration of muscle homogenates. 

Although the 5 x 6 s repeated sprint protocol was used due to its association with the most 

intense period of running during a game, team sport players rarely perform sprints of this 

duration. However, Hobson et al. (2012) showed that β-alanine supplementation was 

ineffective at improving high-intensity exercise less than 60 s in duration. It has been 

suggested that an exercise duration of less than 60 s may not be sufficient to induce 

reductions in pHi that will limit exercise (Sale et al., 2010), although repeated short duration 

exercise may increase the sensitivity to reduced pHi (Katz et al., 1984).  

 

Previous studies have not shown a significant effect of β-alanine supplementation on repeated 

sprint performance (Hoffman et al., 2008; Sweeney et al., 2011). However, these studies did 

not determine repeated sprint performance during simulated or actual games play and, thus, 

did not consider the implications of the additional metabolic demand of the entire activity. 

The Loughborough Intermittent Shuttle Test was designed as an exercise test that could be 

performed indoors and replicates that activity profile of multiple sprint sports such as football 

(Nicholas et al., 2000). The protocol incorporates sixty-six maximal 15 m sprints, which 

represents the mean distance and duration of sprints during team sports which are between 10 

– 20 m and 2 – 3 s (Spencer et al., 2005). Blood lactate concentrations in excess of 6 mmol·L
-

1
 have been shown during the LIST (Nicholas et al., 2000), with the concomitant increase in 

H
+
 potentially contributing to a decline in sprint performance shown as the number of sprints 
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performed increases (Sunderland and Nevill, 2005; Phillips et al., 2010). This suggests the 

LIST may be an appropriate exercise model to investigate the effects of increased muscle 

buffering capacity on prolonged high-intensity intermittent exercise performance. 

 

The aim of this investigation was to examine the effects of four weeks β-alanine 

supplementation on multiple sprint performance during the LIST. Furthermore, to determine 

any differences of β-alanine supplementation on games players of varying standard, both elite 

and non-elite games players were recruited to the study, since reports have suggested 

improved buffering capacities in trained compared with recreational athletes (Sahlin and 

Henriksson, 1984; Parkhouse et al., 1985; Edge et al., 2006). It was hypothesised that an 

increased H
+
 buffering capacity due to higher muscle carnosine concentrations would result 

in an improvement in sprint performance during the LIST. 

 

 Methods 6.2

6.2.1 Participants 

Twenty elite and twenty recreationally active male games players volunteered for the study 

and were allocated into β-alanine and placebo groups, matched for estimated VO2max (Table 

6.1). The elite population consisted of national hockey players, all of whom had represented 

their country at U18, U21 or full international level. The non-elite population were 

recreationally active individuals who engaged in team sports (football and hockey) 1 – 2 

times per week. Four elite players withdrew from the study due to injury, meaning that 16 

elite players were included in the final data set. Participants were fully informed of any risks 

and discomforts associated with the study before completing a health screen and providing 

informed consent (Chapter 3.1).  
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6.2.2 Experimental Design 

Participants attended a sports hall on four separate occasions. Main trials comprised of the 

Loughborough Intermittent Shuttle Test (Chapter 3.3.7). Prior to the first main LIST trial, 

participants completed the multistage fitness test (Chapter 3.3.6), a progressive shuttle run 

test to volitional exhaustion (Ramsbottom et al., 1988), and an habituation of the LIST. 

Participants maintained a food diary in the 24 h period before the first main trial, and this was 

subsequently used to replicate diet prior to the second main trial. Main trials were separated 

by four weeks of supplementation with either 6.4 g·d
-1

 β-alanine or placebo. The dosing 

regimen consisted of two 800 mg β-alanine or maltodextrin tablets ingested four times per 

day at 3 – 4 h intervals. Participants completed a supplementation log to verify compliance, 

which was high in all groups (Table 6.1). 

 

Table 6.1 Participant characteristics. 

 Elite Non-Elite 

 Placebo 

(N = 8) 

β-alanine 

(N = 8) 

Placebo 

(N = 10) 

β-alanine 

(N = 10) 

Age (y) 19 ± 2 20 ± 1 22 ± 3 22 ± 2 

Height (m) 1.77 ± 0.05 1.80 ± 0.06 1.81 ± 0.07 1.79 ± 0.08 

Body Mass (kg) 72.1 ± 7.1 75.0 ± 11.0 84.9 ± 10.9 81.0 ± 11.5 

Estimated VO2max 

(ml·kg
-1

·min
-1

) 

59.4 ± 2.6 58.6 ± 2.4 50.7 ± 5.0 50.5 ± 4.4 

Compliance (%) 94 ± 5 87 ± 10 96 ± 4 96 ± 6 

Total supplement 

consumed (g) 

169.1 ± 8.8 155.2 ± 17.0 171.2 ± 7.2 171.0 ± 11.6 
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Fingerprick blood samples were taken immediately upon arrival to the sports hall, and during 

the 3 minute rest periods between sets; these were analysed for blood lactate concentration 

using portable lactate monitors (Chapter 3.4.2.1). All 66 individual sprint times over 15 m 

during the LIST were recorded (Brower Timing Systems IRD-T173, Utah, USA). 

Participants indicated their overall ratings of perceived exertion (RPE) during the last 

walking stage of each set on a 15 point scale (Chapter 3.4.4). Pre- and post-exercise body 

mass was measured (Chapter 3.4.1). Participants were allowed to drink water ad libitum 

throughout; total fluid ingested during the exercise protocol was recorded. 

 

6.2.3 Statistical Analyses 

All data were analysed using Statistica 9 (Statsoft, USA) and are presented as mean ± 1SD 

for 8 participants in the two elite supplementation groups and 10 participants in the non-elite 

groups except for heart rate data, which are presented for 8 participants in both groups due to 

heart rate monitor malfunction. Sprint data were filtered every set to remove any non-

maximal sprint times; any sprint time more than two SD outside of the mean of the 

corresponding set were removed from the data. P plots and Cochran’s Q were used to confirm 

normality and homogeneity of variance of the data. A three-way factorial ANOVA 

(Supplement x Trial x Time) was used to determine any difference in sprint times, blood 

lactate, heart rate and RPE. Fisher LSD tests were used for post-hoc analyses where 

appropriate and statistical significance was accepted at the P ≤ 0.05 level. 
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 Results 6.3

6.3.1 Elites 

6.3.1.1. Sprint Times 

There was no effect of supplementation on sprint performance across each set of the LIST 

(Supplement x Trial x Time, P = 0.99), or when taking into consideration all sprints 

(Supplement x Trial, P = 0.63). There was no main effect of time (P = 0.92) indicating that 

sprint times did not change significantly as the number of sprints performed increased (Figure 

6.1).   

 

6.3.1.2. Measurements 

Blood lactate concentration and RPE were increased over time (P ≤ 0.001), but not heart rate 

(P = 0.76) (Table 6.2), with no effect of supplementation on any of these variables. Body 

mass, as a percentage of pre-exercise body mass, was well maintained following exercise in 

both supplementation groups pre (Placebo: -0.8 ± 0.8%, β-alanine: -0.6 ± 0.8%) and post 

supplementation (Placebo: -0.9 ± 0.8%, β-alanine: -0.3 ± 0.5%) with no significant 

differences between trials (P = 0.49) or groups (P = 0.37). 

 

6.3.2 Non-Elites 

6.3.2.1. Sprint Times 

There was no effect of supplementation on sprint times across each set of the LIST 

(Supplement x Trial x Time, P = 0.99) or when taking into consideration all sprints 

(Supplementation x Trial, P = 0.58).  There was no main effect of time in the non-elites (P = 

0.12) indicating that sprint times did not become significantly slower as the number of sprints 

performed increased (Figure 6.1).   
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6.3.2.2. Measurements 

Lactate was increased from baseline following every set of the LIST (P ≤ 0.001) (Table 6.2) 

in both groups prior to supplementation, with no effect of supplementation. Heart rate 

remained stable over the duration of the LIST with no effect of supplementation (P = 0.19) 

(Table 6.2). There was a time effect on RPE (P ≤ 0.001), increasing throughout the LIST, 

although there was no effect of supplementation in either group. The level of dehydration was 

well controlled in both supplementation groups pre (Placebo: -1.0 ± 0.4%, β-alanine: -1.0 ± 

0.6%) and post supplementation (Placebo: -1.3 ± 0.5%, β-alanine: -1.2 ± 0.6%) with no 

significant differences between trials (P = 0.06) or groups (P = 0.8). 
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Figure 6.1 Sprint times during the LIST. Panels A and B display sprint times during the LIST for elite participants in the placebo (Panel A) and β-alanine 
(Panel B) groups both pre (white) and post (black) supplementation. Panels C and D display sprint times during the LIST for non-elite participants in the 
placebo (Panel C) and β-alanine (Panel D) groups both pre (white) and post (black) supplementation. 
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Table 6.2 Blood lactate, heart rate and RPE during the LIST for elite and non-elite participants. Pre-MD refers to Pre-supplementation, and Post-MD refers 
to Post-supplementation in the maltodextrin group. Pre-BA refers to Pre-supplementation, and Post-BA refers to Post-supplementation in the β-alanine 
group. *P ≤ 0.05 from baseline. 

 Elite Non-Elite 

 Baseline Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Baseline Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Lactate 

(mmol
.
L

-1
) 

              

Pre-MD 1.4 ± 0.5 2.7 ± 0.9* 2.5 ± 0.7* 2.7± 1.1* 2.7 ± 0.8* 3.2 ± 1.1* 2.9 ± 0.9* 1.8 ± 0.4 5.8 ± 2.2* 7.4 ± 3.4* 5.9 ± 2.6* 6.2 ± 2.7* 6.6 ± 2.7* 7.0 ± 3.0* 

Post-MD 2.0 ± 1.0 3.0 ± 1.4 2.7 ± 1.0 3.0 ± 1.5 2.9 ± 1.2 2.8 ± 1.0 3.6 ± 1.3* 1.5 ± 0.4 5.3 ± 2.3* 6.1 ± 2.6* 6.1 ± 2.8* 5.8 ± 2.7* 6.2 ± 3.5* 6.2  ± 3.4* 

Pre-BA 1.6 ± 0.7 3.3 ± 1.6* 2.7 ± 1.3 2.9 ± 1.7* 3.7 ± 1.3* 2.9 ± 0.7* 3.5 ± 1.5* 1.6 ± 0.6 6.2 ± 1.7* 5.7 ± 2.2* 5.1 ± 2.1* 5.8 ± 3.0* 4.5 ± 1.8* 4.9 ± 2.0* 

Post-BA 1.4 ± 0.5 2.9 ± 1.1* 3.2 ± 1.6* 4.0 ± 1.7* 2.6 ± 0.9* 2.1 ± 0.7 2.5 ± 0.9 1.6 ± 0.5 6.1 ± 2.7* 5.3 ± 3.8* 4.5 ±3.0* 4.5 ± 2.1* 3.9 ± 2.1* 4.5 ± 2.6* 

               

Heart Rate 

(b·min
-1

) 

              

Pre-MD - 159 ± 8 163 ± 10 162 ± 11 161 ± 10 159 ± 8 159 ± 7 - 161 ± 11 166 ± 10 168 ± 9 170 ± 10 170 ± 10 170 ± 10 

Post-MD - 156 ± 10 160 ± 12 160 ± 13 158 ± 12 158 ± 13 160 ± 14 - 161 ± 11 166 ± 12 168 ± 9 168 ± 10 167 ± 10 169 ± 10 

Pre-BA - 155 ± 5 159 ± 6 157 ± 5 156 ± 5 157 ± 5 160 ± 5 - 167 ± 12 171 ± 13 172 ± 12 172 ± 13 171 ± 14 170 ± 10 

Post-BA - 152 ± 10 156 ± 11 155 ± 10 154 ± 10 154 ± 10 154 ± 10 - 161 ± 11 166 ± 12 166 ± 12 166 ± 11 167 ± 12 167 ± 10 

               

RPE               

Pre-MD - 11 ± 2 12 ± 1 14 ± 2* 15 ± 1* 16 ± 1* 17 ± 1* - 14 ± 2 15 ± 1 16 ± 2* 17 ± 2* 18 ± 1* 19 ± 1* 

Post-MD - 10 ± 1 13 ± 1* 14 ± 2* 14 ± 2* 15 ± 2* 16 ± 2* - 14 ± 2 15 ± 2 16 ± 2 16 ± 2* 17 ± 2* 18 ± 2* 

Pre-BA - 11 ± 2 12 ± 1 13 ± 1* 14 ± 1* 15 ± 1* 15 ± 1* - 13 ± 1 14 ± 2* 15 ± 1* 16 ± 2* 16 ± 2* 18 ± 2* 

Post-BA - 11 ± 1 12 ± 2 13 ± 2 13 ± 3* 14 ± 2* 15 ± 2* - 12 ± 2 13 ± 2 15 ± 2* 15 ± 2* 17 ± 2* 17 ± 2* 
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 Discussion 6.4

This is the first study to investigate the effects of β-alanine supplementation on repeated 

sprint performance during prolonged intermittent activity simulating team sport games play.  

Contrary to the hypothesis, β-alanine did not have an effect on sprint performance during the 

LIST. The lack of a deterioration in sprint times during the LIST, in either group prior to 

supplementation might, however, have masked any effects of an increase in muscle buffering 

capacity brought about by elevated muscle carnosine content.  

 

Balsom et al. (1992a) showed that 15 m sprint performance could be maintained over forty 

exercise bouts separated by 30 s rest, suggesting that changes in the intracellular environment 

for this type of exercise were not sufficient to induce fatigue. An increase in blood lactate 

concentration following the second sprint was, however, reported by Balsom et al. (1992a) 

suggesting that anaerobic glycolysis contributed to every sprint. In the present study, 

participants completed a total of 66 sprints, albeit with a different recovery profile than 

Balsom et al. (1992a), in addition to the increased demand of the additional intermittent 

activity between sprints. For this reason it was hypothesised that a greater decrement in 

performance would occur during our protocol as the result of H
+
 accumulation and that, as a 

result, β-alanine supplementation would attenuate any decline in sprint performance. 

However, no significant decrement in sprint performance was observed in either group, and 

the blood lactate concentrations in the current investigation are similar to those reported by 

Balsom et al. (1992a). They are also lower (3 – 6 mmol·L
-1

) than previous repeated sprint 

activity studies that have shown a correlation to H
+
 buffering capacity (>8 mmol·L

-1
; Bishop 

et al., 2003; 2004b). As such, the intensity of the LIST and the duration of the sprints may not 
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have been sufficient to induce reductions in performance due to a reduced muscle pH, which 

would then subsequently have been influenced by β-alanine supplementation. 

 

In contrast to the present study, other studies using the LIST have shown a deterioration in 

sprint performance as the number of sprints performed increased in trained (Sunderland and 

Nevill, 2005) and youth (Phillips et al., 2010) games players. The decline in sprint times in 

those studies (>0.09 s) are higher than the maximum shown by the elites (+0.02 s) and non-

elites (+0.09 s), which may explain some of the differences. McGregor et al. (1999) showed 

semi-professional footballers could maintain sprint performance throughout the LIST when 

fluid was administered, although sprint times worsened when fluid was restricted in the same 

population. In the present study, the elite population demonstrated inconsistent sprint times 

across the test including the ability to improve performance in the final set. Sprint times in 

the non-elites showed a more consistent, but still non-significant, decline in sprint times 

across the LIST, and, as such, may be a truer reflection of their inclination to perform each 

sprint maximally. The elite athletes may have adopted a pacing strategy to delay fatigue and 

optimise performance (Foster et al., 1994), thereby subconsciously affecting the performance 

outcome of the study.  

 

The ability to perform repeated sprints has been associated with H
+
 buffering capacity 

(Bishop et al., 2003 & 2004b; Bishop and Edge, 2006; Rampinini et al., 2009) as a large 

accumulation in intramuscular H
+
 can negatively impact upon muscle function. Male and 

female games players of a high standard have increased H
+
 buffering capacity compared to 

games players of a lower standard (Edge et al., 2006; Rampinini et al., 2009) and untrained 

females (Edge et al., 2006). In addition, higher levels of muscle carnosine have been shown 
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in runners, rowers (Parkhouse et al., 1985) and bodybuilders (Tallon et al., 2005) than in their 

endurance trained or untrained counterparts. Although muscle carnosine concentration was 

not directly determined in this study, it can be hypothesised that baseline carnosine 

concentration was higher in the elite versus the non-elite population. Nonetheless, β-alanine 

supplementation has been shown to significantly increase muscle carnosine concentrations in 

trained sprinters (Derave et al., 2007). The dose of β-alanine used in the present study was 

higher than that employed by Derave et al. (2007) and has consistently been shown to 

increase muscle carnosine, with all individuals showing a response to supplementation (for a 

review see Sale et al., 2010). Therefore, a lack of response to β-alanine supplementation in 

terms of elevated muscle carnosine concentrations is unlikely to explain the lack of an effect 

on sprint performance in this study.    

 

Suzuki et al. (2002) showed a positive correlation between muscle carnosine content and 

power output during the last two 5 s periods of a 30 s maximal cycling bout, although the 

area occupied by type II muscle fibres is likely to have been of more importance in their 

study. Indeed, Hill et al. (2007, unpublished thesis) showed no effect of β-alanine 

supplementation on mean power output, peak power output or fatigue index during three 

repeated 30 s maximal sprint cycles. It has been suggested that muscle buffer capacity does 

not affect performance during exercise less than 60 s in duration (Bogdanis et al., 1998) and 

would therefore be unaffected by increased levels of muscle carnosine brought about by β-

alanine supplementation, a suggestion supported by a meta-analysis of the literature by 

Hobson et al. (2012). Nonetheless, an increased RSA, consisting of repeated 6 s maximal 

bouts every 30 s, has been shown to be positively correlated to H
+
 buffering capacity (Bishop 
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et al., 2003 & 2004b), which suggests that repeated short duration exercise bouts could well 

be affected by β-alanine supplementation.   

 

Previous studies have examined the effect of β-alanine supplementation on isolated repeated 

sprint performance (Hoffman et al, 2008; Sweeney et al., 2011), although not as part of 

simulated game activity as in the present study. Hoffman et al. (2008) showed no effect of β-

alanine supplementation on repeated 200 yard line drills in collegiate football players, 

although they only compared differences between groups since no baseline measurements 

were taken. Similarly, Sweeney et al. (2011) showed no effect of β-alanine supplementation 

on two sets of repeated 5 x 5 s sprints, although the short recovery period (45 s) between 

sprints may not have been enough to restore PCr to initial levels (Bogdanis et al., 1996), and 

may have contributed more to fatigue than reduced pHi. Due to the increased period between 

sprints and additional metabolic demand of the active recovery, it was hypothesised that the 

LIST would be a more suitable repeated sprint protocol likely affected by large 

accumulations of H
+
. Furthermore, the ecological validity of the LIST (Nicholas et al., 2000) 

makes it a more suitable protocol to investigate the effect of β-alanine supplementation on 

team sport performance. Similar to previous studies however, β-alanine supplementation did 

not have an effect on performance lasting less than 60 s in duration. 

 

 Conclusions 6.5

The ingestion of 6.4 g·d
-1

 β-alanine over 4 weeks did not improve repeated sprint 

performance during simulated games play. The lack of a significant finding may be due to the 

lack of deterioration in performance, in both groups, prior to supplementation, which might 

have masked any effect of increased muscle carnosine content.  
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Chapter 7.0 Effect of β-alanine 

supplementation on YoYo Intermittent 

Recovery Test Level 2 performance 
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 Introduction 7.1

Reported in Chapter 6, 15 m repeated sprint performance during the LIST was unaffected by 

four weeks of β-alanine supplementation. The lack of a deterioration in sprint times, in either 

group, prior to supplementation might, however, have masked any effects of an increase in 

muscle buffering capacity brought about by elevated muscle carnosine content. Furthermore, 

repeated sprint performance was unaffected during a football-specific treadmill protocol 

performed at simulated altitude. However, these laboratory based protocols measure high-

intensity exercise performance less than 60 s in duration; in a meta-analysis of the literature, 

Hobson et al. (2012) showed that β-alanine was most effective in improving exercise capacity 

during exercise lasting in excess of 60 s. Therefore, β-alanine supplementation may be more 

effective in increasing sport specific high-intensity intermittent exercise capacity.  

 

The YoYo Intermittent Recovery Tests (Level 1 [YoYo IR1] and 2 [YoYo IR2]) were 

designed (Bangsbo, 1994b) to evaluate the ability of an individual to repeatedly perform and 

recover from intense exercise, and is applicable to team sports players due to the specificity 

of the exercise undertaken (Bangsbo et al., 2008). These tests have been shown to be 

sensitive to training adaptations (Krustrup et al., 2006b; Mohr et al., 2007), seasonal variation 

(Krustrup et al., 2003 & 2006b) and differences in playing position and playing standard 

(Mohr et al., 2003; Krustrup et al., 2006b). Furthermore, YoYo IR Test performance is 

closely related to football match performance. YoYo IR1 performance was correlated to high 

intensity running and total distance covered during a football match for both top class 

referees (Krustrup and Bangsbo, 2001) and footballers (Krustrup et al., 2003). The highest 

distance covered in a 5 min period during a game was associated with YoYo IR2 

performance (Bangsbo et al., 2008). These findings suggest that the YoYo IR Tests are 
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appropriate models for examining the effects of interventions designed to manipulate changes 

in individual performance during team sport exercise.  

 

Football is a sport that requires players to perform substantial high-intensity running with a 

large contribution from both aerobic and anaerobic energy pathways. The YoYo IR2 best 

evaluates an individual’s capacity to perform repeated high-intensity exercise while 

simultaneously stimulating both aerobic and anaerobic energy systems (Krustrup et al., 

2006b). At volitional exhaustion, muscle lactate and glycogen utilisation are higher, and 

muscle pH is lower following the YoYo IR2 compared to the YoYo IR1 test (Bangsbo et al., 

2008), suggesting a larger activation of the anaerobic energy system towards the end of the 

YoYo IR2. Interestingly, muscle pH was significantly decreased (and muscle lactate 

increased) at exhaustion compared with at 85% exhaustion time, while muscle 

phosphorylcreatine and glycogen were not (Krustrup et al., 2006b). This indicates that 

decreased muscle pH may be a significant contributing factor to fatigue during the YoYo IR2, 

suggesting that the YoYo IR2 is a suitable model to investigate the effect of increased muscle 

buffering capacity on team sport specific fitness. 

 

No study has examined the effects of supplementation on team sport specific exercise 

capacity. Therefore, the aim of this investigation was to examine the effect of β-alanine 

supplementation on YoYo IR2 performance in well-trained amateur footballers throughout a 

competitive season. It was hypothesised that β-alanine would significantly improve the 

distance covered during the test due to an increase in intracellular pH buffering as the result 

of muscle carnosine elevation.  
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 Methods 7.2

7.2.1 Participants 

Seventeen amateur male footballers (age 22 ± 4 y, height 1.83 ± 0.06 m, body mass 76.9 ± 

6.6 kg) from the same club competing in the lower divisions of the English football pyramid 

volunteered for the study and were randomly allocated to either a placebo (PLA) or β-alanine 

(BA) group. All players were members of the same team and were engaged in an identical 

team sport specific training regime over the season. Participants were fully informed of any 

risks and discomforts associated with the study before completing a health screen and 

providing informed consent (Chapter 3.1).  

 

7.2.2 Experimental Design 

All tests were performed indoor on an artificial running track in ambient conditions 

(temperature 21.0 ± 0.7ºC, relative humidity 52.4 ± 0.8%). Every participant had performed 

the YoYo IR2 on a minimum of two previous occasions, and were aware of the requirements 

of the protocol. Participants were requested to attend the sports hall to perform the YoYo IR2 

(Chapter 3.3.8) on two separate occasions during the season, separated by 12 weeks of 

supplementation. Participants maintained a food diary in the 24 h period before the first main 

trial, and this was subsequently used to replicate the diet prior to the second main trial. 

 

Participants were randomly allocated to a supplementation group, and were supplemented 

with either 3.2 g·d
-1

 of β-alanine (CarnoSyn
TM

, NAI, USA) or placebo (maltodextrin; NAI, 

USA) in tablet form over a 12 week period. Players were supplemented from early to mid-

season (PLA: N = 5; BA: N = 6) or mid- to the end of the season (PLA: N = 3; BA: N = 3). 

The dosing regimen consisted of one 800 mg β-alanine or placebo tablet ingested four times 
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per day at 3 – 4 h intervals. Compliance with the supplementation regimen was monitored 

using supplementation logs, with a high degree of compliance being reported in both groups 

(PLA: 89%, total of 238.0 ± 21.4 g maltodextrin; BA: 95%, total of 243.2 ± 13.7 g β-alanine). 

There were no reports of symptoms of paraesthesia from any of the participants in either 

group.  

 

7.2.3 Statistical Analyses 

All data were analysed using Statistica 9 (Statsoft, USA) and are presented as mean ± 1SD. A 

two factor ANOVA (Group x Trial) was used to determine any differences in YoYo 

performance. Tukey tests were used for post-hoc analyses and effect sizes were calculated 

using Cohen’s d.  Statistical significance was accepted at the P ≤ 0.05 level.    

 

 Results 7.3

There was no significant difference in distance covered during the YoYo IR2 (P = 0.83; PLA: 

1185 ± 216 m and BA: 1093 ± 148 m, d = 0.54) between PLA and BA prior to the 

supplementation periods. There was a significant interaction effect (Group x Trial, P ≤ 0.001), 

with no difference for PLA (-7.6 ± 16.2%; post hoc P = 0.62, d = 0.43) and a significant 

improvement for BA (+34.3 ± 22.5%; post hoc P ≤ 0.001, d = 1.83) following 

supplementation (Figure 7.1).  
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Figure 7.1 Distance covered during the YoYo IR2 for both supplementation groups pre (white bars) 
and post (black bars) supplementation. *P ≤ 0.001 from pre supplementation. 

 

Performance changes ranged from -37.5 to + 14.7% in PLA, and +0.0 to +72.7% in BA. In 

total, 2 of the 8 players in PLA showed an improvement in performance, with the remaining 

participants having a reduction in performance from -40 to -480 m. In comparison, 8 out of 9 

players showed improvement in BA (+160 to +640 m), with the remaining player in BA 

unchanged (Figure 7.2). Subject 17 in the BA group showed an unusually high increase in 

YoYo IR2 performance (+72.7%) given that the response usually shown in response to pre-

season training is 42%. Due to this, participant 17 was removed and the data reanalysed, 

which did not change any of the study outcomes (Group x Trial, P = 0.001; BA: +29.4 ± 

18.4%, post hoc P = 0.003).  
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In the group of players supplemented from early to mid-season, 2 out of 5 in PLA and 6 out 

of 6 in BA group improved YoYo IR2 performance. Of the remaining players supplemented 

from mid until the end of season, no one in PLA showed an improvement while 2 out of 3 in 

BA improved their distance covered. 

 

 

Figure 7.2 Individual response to supplementation in the placebo and β-alanine groups pre (YoYo 1) 
and post (YoYo 2) supplementation. Players supplemented from early to mid-season are indicated 
by a solid line and players supplemented from mid- to the end of the season are indicated by a 
dotted line. 

 

 Discussion 7.4

There was a clear effect of 12 weeks of β-alanine supplementation on the distance covered 

during the YoYo IR2 test. This is in contrast to previous research that has shown no effect of 

β-alanine on repeated sprint exercise (Hoffman et al, 2008; Sweeney et al., 2011; data 
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reported in Chapter 6), although these studies used exercise protocols consisting of 

performance tests incorporating periods of high-intensity and sprint activity of less than 60 s 

in duration, which are suggested to be unaffected by β-alanine supplementation (Hobson et 

al., 2012). The YoYo IR2 is an exercise capacity test designed to last between 5 and 15 

minutes and aims to evaluate an individual’s ability to perform repeated bouts of high-

intensity exercise with a large contribution from anaerobic energy sources. Furthermore, 

distance covered during the YoYo IR2 has been associated with high-intensity running 

performed during competitive games play (Krustrup et al., 2003; Bansgbo et al., 2008). 

Therefore, the results of the present investigation suggest that β-alanine supplementation is 

effective at improving team sport specific exercise capacity. 

 

Blood measures were not taken in the current investigation, although others have reported 

lactate concentrations in excess of 10 mmol·L
-1

 at exhaustion (Krustrup et al., 2006b), which 

is higher than the concentrations shown in repeated sprint activity studies that have shown a 

correlation to H
+
 buffering capacity (~8 mmol·L

-1
; Bishop et al., 2003; 2004b). Although the 

rate of muscle phosphorylcreatine and glycogen utilisation are high during the YoYo IR2 

(Krustrup et al., 2006b), there is no difference in muscle concentrations of these substrates 

between 85% and 100% of exhaustion time, indicating that depletion of these substrates is 

not a main contributing factor to fatigue. Interestingly, muscle pH was significantly lower at 

exhaustion compared with at 85% of exhaustion time (Krustrup et al., 2006b), which suggests 

increasing muscle acidity is a limiting factor to YoYo IR2 performance. Although muscle 

carnosine concentrations were not directly determined in this study, Stellingwerff et al. (2012) 

showed that as little as two weeks of β-alanine supplementation at half the dose used in the 

current study was sufficient to increase muscle carnosine by 11.8 ± 7.4% in the tibialis 
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anterior. Therefore, it can be hypothesised that 12 weeks of β-alanine supplementation at 3.2 

g·d
-1

 significantly increased muscle carnosine concentrations in the current population. As 

such, since one of the undisputed roles of muscle carnosine is in muscle buffering, the most 

likely explanation for the improvement in YoYo IR2 performance is due to an increase in 

intracellular buffering capacity, resulting in an attenuation of the reduction in intracellular pH 

during high-intensity exercise.   

 

The YoYo IR2 has been shown to be a highly reproducible capacity test, with a CV of ~10% 

for two tests performed within a one week period (Krustrup et al., 2006b). In addition, the test 

is sensitive to detect training adaptions, with performance improvements of approximately 42% 

shown following pre-season training. In the present investigation, players in the placebo 

group showed a ~7% decline in performance while β-alanine supplementation improved 

YoYo IR2 performance by ~34%, which compares favourably with the effects of pre-season 

training, and exceeds the expected CV of the test (Krustrup et al., 2006b). Furthermore, all 8 

of the players who improved with β-alanine did so above this expected CV, while the placebo 

group showed more variation with 3 players exceeding the CV (1 improved and 2 decreased 

their performance), which suggests that performance improvements in the β-alanine group 

can be attributed to the nutritional intervention employed in the current investigation. In 

addition, 4 of the players in the β-alanine group improved above the highest improvements 

shown following a 6 – 8 week training period (+45%; Bangsbo et al., 2008). Since all players 

were involved in an identical training structure throughout the supplementation period, the 

further increases in these participants could be attributed to an increased ability to train due to 

increased muscle buffering capacity (Hoffman et al., 2008), providing an additive effect over 

supplementation alone. 
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Footballers were supplemented during a competitive season as the YoYo has been shown to 

be sensitive to seasonal variation (CV: 14%; Krustrup et al., 2006b) with scores, on average, 

lower during the season than at the start. Although mid-season scores were not different from 

the start of the season for First Division Scandinavian footballers, YoYo IR2 performance 

was decreased at the end of the season compared to the start of the season in another group of 

First and Second division players (Krustrup et al., 2006b). Furthermore, only 4 out of 15 

players improved their YoYo IR2 performance during the season, while a further 9 showed a 

performance decrement (Krustrup et al., 2006b). In the present investigation, performance for 

players in the placebo group supplemented from early to midseason followed a similar 

pattern to this, and all 3 supplemented from the middle until the end of the season showed a 

decline in performance. In contrast, all players supplemented with β-alanine from early- to 

mid-season improved their YoYo scores, while 2 of the 3 supplemented from mid-season 

until the end of the season showed a performance improvement, with the remaining player 

unchanged. These data provide evidence to suggest that β-alanine supplementation can not 

only halt the decline in YoYo IR2 performance shown during a competitive season (Krustrup 

et al., 2006b), but may even improve them above typical levels.  

 

 Conclusions 7.5

The ingestion of 3.2 g·d
-1

 β-alanine over 12 weeks improved YoYo IR2 performance in 

amateur footballers during a competitive season. Improvements can be attributed to an 

increase in muscle buffering capacity due to increased muscle carnosine concentration, 

attenuating the decline in pHi during repeated high-intensity exercise bouts. 

  



149 

 

 

 

 

 

Chapter 8.0 High-intensity and sprint 

activity during competitive football 

match play: Effect of β-alanine 

supplementation  
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 Introduction 8.1

Reported in the previous section, YoYo IR2 performance was improved during a competitive 

season with β-alanine supplementation, which suggests that football specific exercise 

capacity can be improved with prolonged β-alanine supplementation throughout a 

competitive season. Since performance in the YoYo IR tests has been positively associated 

with distance covered at high-intensity during competitive match play (Krustrup et al., 2003; 

Bangsbo et al., 2008), it can be hypothesised that this match variable may also be positively 

influenced by supplementation with β-alanine.  

 

Team sports such as football are comprised of periods of high-intensity running (>15 km·h
-1

; 

Abt and Lovell, 2009) interspersed with low intensity activity and rest. The total distance 

covered at high-intensity during match play has been shown to be higher in high-standard 

players and successful teams in comparison to comparatively lower standard players and 

unsuccessful teams (Mohr et al., 2003; Bradley et al., 2009), which suggests that high-

intensity activity is an appropriate measure of match performance. It also appears to be an 

appropriate measure of fatigue during a match since high-intensity running has been shown to 

be decreased in the second half compared to the first half of matches (Bradley et al., 2009). 

Therefore, high-intensity activity during match play may be a suitable measure to determine 

any changes in team sport performance.  

 

This thesis has reported on the effect of β-alanine supplementation on repeated sprint 

performance during high-intensity intermittent exercise protocols designed to replicate the 

demands of competitive match play. Laboratory based studies, while providing a controllable 

environment to obtain physiological and performance data, lack external validity as they fail 



151 

 

 

to incorporate several factors including match-to-match variability, competition level and 

player position. Therefore, the aim of this investigation was to examine the effect of β-alanine 

supplementation on high-intensity and sprint activity during match play in amateur 

footballers throughout a competitive season. It was hypothesised that players would perform 

more high-intensity and sprint activity, and show less of a decline in distance covered in these 

locomotion categories from the 1
st
 to 2

nd
 half, during games play when supplemented with β-

alanine. 

 

 Methods 8.2

8.2.1 Participants 

Twenty-three football players playing for the same amateur football team volunteered for the 

study. Due to several dropouts and transfers across the season, only data from seventeen 

players (age 21 ± 1 y, height 1.82 ± 0.05 m, body mass 76.5 ± 4.2 kg) was considered 

suitable for analysis. Participants were fully informed of any risks and discomforts associated 

with the study before completing a health screen and providing informed consent (Chapter 

3.1).  

 

8.2.2 Experimental Design 

Match analysis was carried out during 52 competitive matches throughout the 2009 – 2010 

campaign, and participants were monitored for high-intensity and sprint activity using 

individual portable GPS systems (Chapter 3.3.9). Only full match (90 min) data files were 

analysed; the decision to start and substitute players were made at the discretion of the team’s 

manager and were not influenced by the investigator, resulting in 236 individual player match 

analyses. The team played a 4-4-2 formation, with playing positions for each match 
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categorised as centre backs (CB), full backs (FB), central midfielders (CM), wingers (W) and 

forwards (F). High-intensity was defined as >15 km·h
-1

 (Abt and Lovell, 2009) and sprinting 

as >21 km·h
-1

.  

 

The season was split into three sections and participants were randomly allocated into one of 

three supplementation groups (Table 8.1). Following an initial baseline period, participants 

were supplemented with either 3.2 g·d
-1

 of β-alanine or placebo in tablet form over the 

remainder of the football season. The dosing regimen consisted of one 800 mg β-alanine or 

placebo tablet ingested four times per day at 3 – 4 h intervals.  

 

Table 8.1 Supplementation design. 

 Baseline 

(Week 1 - 16) 

Supplementation 1 

(Week 16-28) 

Supplementation 2 

(Week 28 – 39) 

Group 1 (N = 6) - Placebo Placebo 

Group 2 (N = 5) - Placebo β-Alanine 

Group 3 (N = 6) - β-Alanine β-Alanine 

 

8.2.3 Statistical Analyses 

All data were analysed using MLwiN (v. 2.25, Bristol, UK) and are presented as mean ± 1SD. 

To explain the variation in match activities, an additive multilevel model (Goldstein et al., 

1994) was used to examine potential contributing factors including number of games played, 

player position and supplementation. All parameters were fixed except the constant, which 

was allowed to vary randomly at level 1 (repeated measures) and level 2 (individual).  
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 Results 8.3

8.3.1 High-Intensity Running 

Players covered a total of 1631.1 ± 497.0 m (range: 670.4 – 2739.0 m) at high-intensity 

speeds during match play, covering 818.1 ± 261.8 m in the 1
st
 half and 813.0 ± 282.2 m in the 

2
nd

 half. Multilevel analysis revealed that the variance in distance covered at high-intensity 

was significantly influenced by position, but not any other explanatory variable including 

group, supplement or days on active supplement (Table 8.2). The decline in distance covered 

from the 1
st
 to 2

nd
 half (-5.2 ± 222.0 m) was not influenced by any explanatory variable. 

 

Table 8.2 Multilevel analysis of total distance covered at high-intensity (m) during competitive 
match play throughout a season. *P ≤ 0.05. 

Fixed Explanatory Variables Parameter Estimate (SE) 

Constant  1319.4 (96.4) 

Position (vs. CB) FB + 411.2 (81.6)
*
 

 CM + 292.7 (98.7)
*
 

 W + 773.2 (117.7)
*
 

 F + 487.9 (113.8)
*
 

β-alanine (vs. placebo) - 2.9 (85.7) 

Days on active supplement + 0.4 (1.0) 

  

Random Variance  

Level 2 (Individual) 68775.8 (26113.8) 

Level 1 (Repeated Measures) 82436.5 (7895.3) 

-2*loglikelihood (IGLS Deviance) 3368.3 
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8.3.2 Sprinting 

Players covered a total of 306.1 ± 164.4 m (range: 35.2 – 776.8 m) sprinting during match 

play, covering 148.1 ± 95.8 m in the 1
st
 half and 158.0 ± 87.8 in the 2

nd
 half. Multilevel 

analysis revealed that the variance in distance covered while sprinting was significantly 

influenced by position, but not any other explanatory variable, including group, supplement 

or days on active supplement (Table 8.3). Similarly, the variance in the decline in distance 

covered sprinting from the 1
st
 to 2

nd
 half was influenced by position, but no other variable.  

 

Table 8.3 Multilevel analysis of total distance covered sprinting (m) during competitive match play 
throughout a season. *P ≤ 0.05. 

Fixed Explanatory Variables Parameter Estimate (SE) 

Constant  238.4 (30.7) 

Position (vs. CB) FB + 100.2 (29.0)
*
 

 CM - 10.3 (32.4) 

 W + 242.7 (37.3)
*
 

 F + 180.8 (37.2)
*
 

β-alanine (vs. placebo) + 21.6 (24.3) 

Days on active supplement - 0.1 (0.1) 

  

Random Variance  

Level 2 (Individual) 4042.4 (1721.4) 

Level 1 (Repeated Measures) 11235.0 (1075.7) 

-2*loglikelihood (IGLS Deviance) 2887.7 
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 Discussion 8.4

This study investigated the effect of β-alanine supplementation on high-intensity and sprint 

activity during competitive match play during a season in amateur footballers. The variability 

in distance covered in these locomotion categories were not influenced by β-alanine 

supplementation, although positional differences were a significant contributing factor. 

 

Although high-intensity exercise accounts for approximately 10% of all match activities 

(Bangsbo et al., 1991), it has been shown to be a suitable measure of team sport performance 

(Mohr et al., 2003; Bradley et al., 2009). Furthermore, activity of a high-intensity will result 

in the largest accumulations of H
+
, and will likely be most affected by increases in muscle 

buffering capacity. Gregson et al. (2010) showed that total distance covered at high-intensity 

varied on average by ~18% and total sprint distance by ~31%, which suggests that large 

sample sizes are required to detect systematic changes in performance characteristics. 

However, the data analysed by Gregson et al. (2010) comprised match observations from 

players from different teams over a number of seasons, which may have contributed to the 

large variation in results due to differences in team formations and tactics. The current study 

used players from a solitary team that employed the same formation (4-4-2) over the entire 

duration of one season with the aim of minimising any variation due to these factors. Despite 

this, variability between individuals and repeated measures variability in high-intensity and 

sprint activity was high, and may have been too large to detect any changes with β-alanine. 

Although high-intensity and sprint activity was not shown to be influenced by β-alanine 

supplementation, variability in these performance measures may have been too high to detect 

any changes due to supplementation. 
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This study aimed to investigate the effects of β-alanine in an actual performance setting, 

monitoring amateur footballers during competitive match play over the duration of a season. 

Total distance covered at high-intensity has been shown to be dependent on player position 

(DiSalvo et al., 2009), with wide and attacking players covering more distance at these high 

speeds than their central playing counterparts. Indeed, in the current study, player position 

was shown to be a significant contributing factor towards the variation in high-intensity 

running and sprint activity. Laboratory based protocols that simulate games play (Nicholas et 

al., 2000; Greig et al., 2006) standardise the amount of running performed at all intensities, 

thereby eliminating the bias of positional differences. However, due to the applied nature of 

this study, control is lost over several factors including player position, with a number of 

players playing in multiple positions throughout the season, which will have influenced the 

amount of high-intensity running and sprinting performed from match-to-match. Although no 

effect of supplementation was shown when positional differences were accounted for, the 

lack of an effect due to positional variation of individuals throughout the season cannot be 

dismissed.  

 

Large variations in muscle and blood lactate concentration during games play are indicative 

of the intermittent nature of competitive match play, with increased lactate concentrations 

suggesting a high rate of glycolysis is required for periods during a match. Concomitantly, 

muscle H
+
 can double during the most intense periods of match play (Krustrup et al., 2006a), 

with muscle pH dropping to as low as 6.96, which could impair muscle function and 

contribute to fatigue (Fabiato and Fabiato, 1978; Spriet et al., 1989). Players supplemented 

with β-alanine would likely be able to better maintain muscle pH due to increased carnosine 

concentrations, potentially allowing them to perform more high-intensity activity, though this 
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was not shown in the present study. Krustrup et al. (2006a) showed that, despite the decline 

in muscle pH, this was not correlated to the decrement in repeated sprints during actual match 

play, which suggests low muscle pH may not contribute to fatigue during games play. 

However, Krustrup et al. (2006a) only monitored eleven players across three games, which 

may not have been sufficient to show an effect due to the variability of match play. 

Furthermore, in the current study, the footballers used were of an amateur standard, who have 

been shown to perform less high-intensity running and sprinting than their comparatively 

higher standard counterparts (Mohr et al., 2003). Subsequently, a larger increase in H
+
 due to 

a higher volume of high-intensity activity can be expected in professional and elite 

footballers, perhaps making them more susceptible to improvements with increased muscle 

buffering capacity due to β-alanine supplementation.  

 

The conception of this study developed from the lack of research into the prolonged 

supplementation of β-alanine, and supplementation on an applied exercise measure. Only one 

study has supplemented participants for a period of more than 10 weeks (Hoffman et al., 

2008), but this was performed on elderly participants at a low dose (2.4 g·d
-1

 for 90 days).  

Several studies exist on the effect of β-alanine on applied exercise (Derave et al., 2007; van 

Thienen et al., 2009; Baguet et al., 2010), although none of these investigated team sports 

performance. Although this study aimed to fill the void in the current literature, there remain 

several limitations which should be considered in future investigations that will serve to 

enhance the quality of the research undertaken. Twenty-three players were allocated into 

three supplementation groups in order to identify the effect of β-alanine, although a 

maximum of six players in any group remained. Furthermore, although two weeks has been 

shown to be sufficient to increase muscle carnosine (Stellingwerff et al., 2012), the 
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corresponding gains in buffering capacity, and their contribution to improved performance, 

have not yet been quantified. Although the number of days on active supplement was 

accounted for in the analysis, the loading phase of supplementation with β-alanine means that 

a limited number of matches remained that took place after a period of time sufficient to have 

increased muscle buffering capacity to theoretically ergogenic levels. Therefore, larger 

sample sizes are needed which, in the current study, could have been done by eliminating 

Group 2, leaving only a β-alanine and a placebo group. 

 

 Conclusions 8.5

High-intensity and sprint activity performed by amateur footballers during competitive match 

play was unaffected by β-alanine supplementation. The lack of an effect may have been due 

to the large variability in these performance characteristics, which is likely to be greater than 

any potential increases in performance due to β-alanine supplementation. 
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Chapter 9.0 General Discussion 
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 Overview of the Key Findings  9.1

 The CCT110% was shown to be a reliable test for the determination of high-

intensity cycling capacity.  

 High intensity cycling capacity was only improved with sodium bicarbonate when 

participants experiencing GI discomfort were removed from the data. 

 β-alanine supplementation improved high-intensity cycling capacity during the 

CCT110%. Co-ingestion of β-alanine and sodium bicarbonate did not confer any 

further significant benefit to exercise capacity, although magnitude based 

inferences suggested a ~70% probability that the additive effect was meaningful.  

 5 x 6 s repeated sprint performance throughout team sport specific exercise at 

simulated 2500 m altitude was unaffected by sodium bicarbonate, β-alanine or co-

supplementation of the two.  

 15 m sprint performance throughout the LIST was unaffected by β-alanine 

supplementation for both elite and non-elite games players. 

 YoYo IR2 was improved following 12 weeks β-alanine supplementation during a 

competitive football season. 

 The amount of high-intensity and sprint activity performed during competitive 

match play was not influenced by β-alanine supplementation, although variability 

of the data may have been too large to detect any changes.  

 

 Reliability and Validity 9.2

This aim of this thesis was to investigate the separate and combined effects of two buffering 

agents on high-intensity exercise performance and capacity using various exercise modalities, 

progressing from single bout high-intensity exercise to high-intensity intermittent exercise. 
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An exercise test should be both reliable and valid in order to interpret the meaningfulness of 

the data (Atkinson and Nevill, 1998); reliability allows the determination of whether 

differences are due to the intervention or are simply due to the natural variation of the test, 

and the validity reflects the ability of the test to measure exactly what it is required to 

measure. 

 

The CCT110% was chosen as a suitable single bout high-intensity cycling capacity test to 

investigate the effects of β-alanine and sodium bicarbonate supplementation, both separately 

and in combination, due to its association with increasing acidosis (Hill et al., 2007). The 

results reported in Chapter 4A showed the CCT110% to be a highly reliable protocol, with CVs 

less than 5% for both TTE and TWD, which allows the improvements in exercise capacity to 

be contextualised with regard to the natural variation of the test. 

 

The remaining exercise tests were chosen due to their relevance to team sports. Greig et al. 

(2006) based their intermittent treadmill protocol on notional match analysis from Bangsbo 

(1994a), and the 5 x 6 s repeated sprint protocol has previously been associated with the most 

intense period during a team sports game (Dawson et al., 1997) and the decrement in 15 m 

sprint time during a simulated game (Bishop et al., 2001). A reliability study reported in 

Chapter 5A showed the sprint protocol to be a highly repeatable test (CV: ~4%) when 

performed ~45 min and 48 h apart. The LIST is a prolonged intermittent running protocol 

designed to simulate the demands of match play, and has been shown to be a valid and 

reliable protocol (Nicholas et al., 2000). Furthermore, the 15 m sprints performed during the 

LIST represents the length of a typical sprint performed during actual games play (Spencer et 

al., 2005), giving further credence to the test as a tool to investigate the effects of an 
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intervention on team sport performance. The YoYo IR2 is a reliable (Krustrup et al., 2006b) 

test of team sport fitness and is applicable to team sports due to the specificity of the exercise 

undertaken (Bangsbo et al., 2008).  

 

Despite the high reliability and validity of the protocols used in this thesis, there is no 

substitution for the implementation of an intervention strategy in an applied setting, where the 

true effect of the supplement can be monitored. Therefore, players were monitored for high-

intensity and sprint activity during actual competitive match play over an entire season with 

the use of individual GPS units worn by outfield players. The validity of these units for 

monitoring the types of speeds and movements performed by team sports players was 

assessed by MacLeod et al. (2009), who showed a 1-Hz non-differential GPS system is 

suitable for obtaining running data during games play.  

 

The protocols and techniques used to assess changes in performance and capacity due to 

dietary interventions reported in this thesis are unique in that they have all been shown to 

have a degree of reliability and validity within their own respective areas. The effects of the 

two buffering agents, β-alanine and sodium bicarbonate, on exercise performance and 

capacity are equivocal (for reviews see Sale et al., 2010 and McNaughton et al., 2008), 

though contrasting results may be due to exercise protocols not limited by increasing acidosis. 

The CCT110% had previously been associated with increasing acidosis (Hill et al., 2007), and 

was therefore considered an appropriate model to investigate the true effect of buffering 

agents once reliability of the test was determined. Following confirmation of the true effects 

of β-alanine and sodium bicarbonate supplementation using the CCT110%, it was then possible 
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to investigate their effects on different exercise modalities, where increasing acidosis might 

not be the only contributing factor towards fatigue.  

 

 Supplementation Protocols 9.3

Harris et al. (2006) were the first to report on the symptoms of paraesthesia associated with β-

alanine supplementation, with participants describing an unpleasant prickly sensation on the 

skin around the body with increasing doses from 20 to 40 mg·kg
-1

BM of β-alanine. The likely 

mechanism for this sensation is the mas-related gene family of G protein coupled receptors, 

which are triggered by interactions with specific ligands, such as β-alanine (Crozier et al., 

2007). Consequently, several studies have reported symptoms of paraesthesia within their 

sample population (Hill et al., 2007; Sweeney et al., 2010), which would compromise the 

double-blinded nature of the investigation. Early β-alanine supplementation studies used a 

maximum single dose of 800 mg administered up to 8 times a day to give a total dose of 6.4 

g·d
-1

 (Harris et al., 2006; Hill et al., 2007) in order to prevent symptoms of paraesthesia. This 

thesis reports on the first β-alanine supplementation studies to employ a sustained release 

formulation (CarnoSynTM SR, from Natural Alternatives International, San Marcos, 

California, USA) enabling two 800 mg SR tablets to be given simultaneously without 

symptoms of paraesthesia. Significantly, no participant in any of the experimental chapters 

discussed in this thesis reported any symptoms of paraesthesia (N = 56), meaning the 

integrity of the blinding in the investigations was maintained and would not have influenced 

the results. 

 

Similar to β-alanine, acute sodium bicarbonate supplementation is associated with side 

effects that can compromise the blinding of the supplement. Due to the acute nature of 
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sodium bicarbonate supplementation, associated discomfort may also contribute to a lack of 

an ergogenic effect. McNaughton (1992) reported increased GI disturbance in all participants 

consuming doses of 0.4 and 0.5 g·kg
-1

BM, despite no further increases in circulating levels of 

bicarbonate above that of 0.3 g·kg
-1

BM, suggesting this to be the optimal dose. In an attempt 

to maintain blinding of the supplement and to minimise the discomfort associated with 

supplementation at this level, the studies in this thesis reporting on sodium bicarbonate 

supplementation incorporated a total dose of 0.3 g·kg
-1

BM in opaque gelatine capsules using 

a split dose strategy (0.2 g·kg
-1

BM and 0.1 g·kg
-1

BM ingested 4 and 2 h prior to exercise). 

Increases in blood bicarbonate were shown in all participants prior to exercise and 

concentrations compare favourably to those reported previously using different 

supplementation strategies but an identical dose (Price et al., 2003; van Montfoort et al., 

2004).  

 

Several participants reported symptoms of GI discomfort, despite the split dose strategy, 

which may have contributed to the uncertainties surrounding the results of the sodium 

bicarbonate studies reported in this thesis. In the studies reported in chapters 4B and 4C, 

immediately prior to exercise, participants were asked to report any feelings of GI discomfort, 

rating them as mild or severe. Despite the split dose ingestion protocol, four and five 

participants reported symptoms of GI discomfort, which suggests it is not always possible to 

reduce symptoms of discomfort. Nonetheless, this prompted a different approach in 

subsequent studies to quantify the amount of discomfort experienced by each individual. In 

the studies reported in chapters 5A and 5B, participants were asked to rate their intensity of 

stomach ache, sickness and headache on a 10 point scale from 0 to 10 on four occasions 

during each main trial. These were based on the scales used by van Montfoort et al. (2004), 
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and reports of these symptoms were low across both studies, with only the incidence of 

headache higher during the sodium bicarbonate trial reported in Chapter 5C.  

 

The ingestion protocols reported in this thesis are a unique approach to the conventional 

procedures associated with β-alanine and sodium bicarbonate supplementation, and were 

designed to avoid any discomfort experienced by the participants with supplementation of 

this nature, and to maintain full blinding of the supplements. This was maintained with β-

alanine, and research has shown that the slow release formulation improves whole body 

retention of β-alanine (Décombaz et al., 2012), which suggests that carnosine levels will have 

been elevated in all participants (Harris et al., 2006; Stellingwerff et al., 2012). There were 

several incidences of GI discomfort with sodium bicarbonate, which may have contributed to 

the contrasting results. Nonetheless, blood markers suggest that the dosing strategy was 

successful in inducing alkalosis in all participants prior to exercise. Therefore, these two 

supplementation strategies can be used in future research into the effects of β-alanine and 

sodium bicarbonate supplementation. 

 

 β-alanine Supplementation and High-Intensity Exercise Capacity and Performance 9.4

Chapter 4C reported on the effect of β-alanine supplementation on high-intensity cycling 

capacity using an exercise test designed by Hill et al. (2007), who had previously shown 

TWD to be improved by 13.0% following 4 weeks supplementation with β-alanine. TWD 

was improved by 14.6%, likely due to an increased muscle buffering capacity due to 

increases in muscle carnosine, delaying the decrement in muscle pH. The slightly increased 

improvement in TWD seen in the study reported in this thesis could be attributed to a slightly 

higher dose of β-alanine over the initial four week period, although muscle carnosine 
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concentrations were not directly measured here. However, the results shown in this study are 

in contrast to those of Bellinger et al. (2012) who showed no effect of β-alanine on average 

power output during a four minute cycling time trial in highly-trained cyclists, and magnitude 

based inferences demonstrated that there was only a 37% likelihood of a meaningful increase 

in power output with β-alanine supplementation. The differences in results between the two 

studies could be attributed to the differing exercise protocols, as Hobson et al. (2012) showed 

that exercise capacity is more likely to be improved following β-alanine supplementation 

than exercise performance. Furthermore, it is possible that the trained cyclists adopted a 

pacing strategy, similar to the elite games players reported in Chapter 6, which may have 

masked any true effect of increased muscle carnosine. 

 

Despite the hypothesis that β-alanine supplementation would improve repeated sprint 

performance, the studies reported in this thesis were unanimous in showing that there was no 

effect on repeated sprints of a short duration (2 – 6 s). Previous research has suggested that 

the ability to perform repeated sprints is associated with the ability to effectively buffer H
+
 

(Bishop et al., 2003; Bishop et al., 2004; Bishop and Edge, 2006; Rampinini et al., 2009), 

suggesting that increased intracellular buffering capacity would result in an increased RSA. 

Furthermore, the repeated sprint protocols in the current thesis were performed during 

simulated games play, which would theoretically increase the metabolic demands on the 

muscle and result in an increased reliance on the buffering systems of the body. However, 

this thesis has contributed to the increasing body of evidence to suggest that high-intensity 

exercise less than 60 s in duration is unaffected by β-alanine supplementation (Hoffman et al., 

2006; Sweeney et al., 2010; Kern and Robinson, 2011). The cause of fatigue during this type 

of exercise is unlikely to be an extreme acidosis and more likely to be due to the gradual 
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decline in anaerobic ATP production and/or an increase in ADP accumulation, and therefore 

the increased ability of the muscle to buffer H
+
 is unlikely to be fully utilised. 

 

Hobson et al. (2012) showed that exercise capacity was improved with β-alanine 

supplementation, as was exercise of durations in excess of 60 s due to the large accumulation 

of H
+
 associated with high-intensity exercise of this duration. However, the studies analysed 

in this meta-analysis all incorporated single bout exercise capacity tests which are not 

representative of the intermittent nature of the exercise undertaken by team sports players. 

The YoYo IR 2, a protocol designed to assess an individual’s ability to repeatedly perform 

high-intensity exercise, was improved with β-alanine supplementation, suggesting 

intermittent exercise is affected by the accumulation of H
+
 within the muscle. Indeed, muscle 

pH has been shown to be significantly lower at exhaustion compared with at 85% of 

exhaustion time, which suggests increasing muscle acidity is a limiting factor to YoYo IR2 

performance. One of the undisputed roles of muscle carnosine is as a muscle buffer, 

contributing to the attenuation of the reduction in intracellular pH during exercise; increased 

carnosine concentrations due to β-alanine supplementation would increase the buffering 

capacity of the muscle (Harris et al., 2006).  Therefore, the results of this study contribute to 

the growing evidence that the ergogenic effects of β-alanine supplementation are due to an 

increased muscle buffering capacity of the working muscles.  

 

An increasing number of studies have looked to investigate the effect of β-alanine 

supplementation on applied exercise performance, with no effect shown on 400 m running 

(Derave et al., 2007) and 2000 m rowing (Baguet et al., 2010) performance, although 30 s 

sprint performance was improved following a simulated endurance cycle race (van Thienen et 
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al., 2009). The CV for match-to-match performance in team sports is much more variable 

than these single-bout events (Gregson et al., 2009), meaning significantly more 

measurements are required to meaningfully interpret any changes in performance. Although 

multiple measures were taken throughout the season, the median improvement from β-

alanine compared with placebo (+2.85%; Hobson et al., 2012) is far less than the individual 

(~40%) and repeated measures (~35%) variability of match-to-match performance. The 

results of this study have further contributed to the lack of an effect of β-alanine shown on 

applied exercise performance, although any changes in performance due to supplementation 

may have been masked by the large variation in performance measures.  

 

 Sodium Bicarbonate and High-Intensity Exercise Capacity and Performance 9.5

The effects of sodium bicarbonate on exercise performance and capacity are equivocal; 

contrasting results can be attributed to unsuitable exercise protocols not limited by increasing 

acidosis, GI disturbance and individual variation in the response to supplementation. These 

contributing factors were assessed using the CCT110%, with exercise capacity only shown to 

be improved if participants did not experience GI discomfort, although variation in the blood 

response to exercise may also have contributed to a lack of an effect in some participants. 

Bellinger et al. (2012) showed improved four minute time trial cycling performance in trained 

cyclists when supplemented with sodium bicarbonate. The exercise duration used by 

Bellinger et al. (2012) is longer than the duration of the CCT110% reported in Chapter 4B 

(~145 s), and may be more likely to be influenced by the efflux of H
+
 out of the working 

muscles, while the CCT110% was more directly influenced by intracellular buffering (Chapter 

4C). 
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Sodium bicarbonate has previously been shown to improve 5 x 6 s cycle sprints (Bishop et al., 

2004), which suggests that running sprints of an identical duration may also benefit from 

increased extracellular buffering capacity. However, the results described in this thesis 

showed no effect on three bouts performed during simulated team sports treadmill running. 

The suggested mechanism by which performance was improved in Bishop et al. (2004) is the 

maintenance of muscle pH despite an increased anaerobic energy contribution, due to an 

increased efflux of H
+
 out of the working muscle. Although muscle pH and lactate were not 

directly measured in the studies reported in this thesis, blood lactate was used as an indirect 

measure of muscle metabolism due to its association with H
+
 production (Hultman and Sahlin, 

1980). Despite this study taking place in a simulated altitude environment, blood lactate 

concentration during the sodium bicarbonate trial was lower than shown by Bishop et al. 

(2004) and only ~15% higher than the placebo trial, suggesting that there was a minimal 

increased contribution from anaerobic energy sources. The length of these sprints may not 

have been of sufficient duration to be affected by an increased efflux of H
+
 out of the 

working muscle. 

 

 Co-Supplementation of β-alanine and Sodium Bicarbonate and High-Intensity 9.6

Exercise Capacity and Performance 

Numerous studies exist investigating the separate effects of β-alanine and sodium bicarbonate 

on exercise performance and capacity, though no study had examined the effect of co-

supplementation of these buffering agents. Two studies reported within this thesis 

investigated the effect of co-supplementation of β-alanine and sodium bicarbonate, thereby 

increasing both intracellular and extracellular buffering capacity, on exercise capacity and 

performance. The first of these looked at the effect on high-intensity cycling capacity and 
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showed no further benefit of co-supplementation of β-alanine and sodium bicarbonate above 

that of β-alanine alone, although magnitude based inferences suggested a ~70% likelihood of 

a meaningful difference, likely due to the additive effect of increased intracellular and 

extracellular H
+
 buffering capacity. Bellinger et al. (2012) showed TWD during a four minute 

cycling time trial was improved when participants supplemented with β-alanine were co-

supplemented with sodium bicarbonate (+3.2 ± 3.1%, P = 0.04), although the beneficial 

effects were similar to those seen with sodium bicarbonate (+3.0 ± 2.2%, P = 0.04) and were 

not statistically improved over β-alanine alone (P = 0.13), which suggests the performance 

benefits were due to acute sodium bicarbonate supplementation. Despite this, Bellinger et al. 

(2012) report that 6 of the 7 participants on β-alanine showed a further improvement with 

sodium bicarbonate supplementation yet only performed magnitude based inferences in 

comparison with the pre supplementation trial. Similar to the results reported in Chapter 4C, 

Bellinger et al. (2012) perhaps should have investigated the further benefit of co-

supplementation over supplementation with a single buffering agent to discover its true 

beneficial effect. 

 

The results reported in Chapter 4C suggest that an additive effect through co-supplementation 

of β-alanine and sodium bicarbonate should not be dismissed, and current research from this 

this group suggest an additive effect in rowing (Hobson et al., Unpublished data) and 

swimming (Painelli et al., Unpublished data). Further to this, the effect of co-supplementation 

of β-alanine and sodium bicarbonate on repeated sprint performance was investigated. 

Despite previous research showing an association between increased H
+
 buffering capacity 

and improved RSA (Bishop and Spencer, 2004; Bishop and Edge, 2006; Edge et al., 2006; 

Rampinini et al., 2009), co-supplementation did not improve 5 x 6 s repeated sprint 
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performance from baseline, or above supplementation with β-alanine or sodium bicarbonate 

alone. Since both intracellular and extracellular buffering capacity would have been increased, 

it is surprising that there was no subsequent effect on performance and provides strong 

evidence to suggest that, despite the claims of several studies, H
+
 buffering capacity is not a 

contributing factor to RSA.  

 

 Conclusions 9.7

The results in this thesis showed that β-alanine was effective at improving exercise capacity 

(CCT110%; YoYo IR 2) but not exercise performance (5 x 6 s sprints; LIST) (Table 9.1). 

Furthermore, exercise less than 60 s in duration was unaffected, but in excess of 60 s was 

positively influenced by β-alanine supplementation which supports the work of Hobson et al. 

(2012). 

 

The effects of sodium bicarbonate were equivocal, with a large variation in the response to 

exercise contributing to contrasting results. Furthermore, GI discomfort is likely to contribute 

to a lack of an effect with supplementation, which further contributes to the growing amount 

of data that suggests that sodium bicarbonate supplementation is only beneficial to some, and 

not all, individuals. 

 

Co-supplementation of β-alanine and sodium bicarbonate did not have a statistically 

significant benefit on single-bout high-intensity exercise performance and capacity over β-

alanine alone, although benefits to exercise capacity may be meaningful in an applied setting. 

Therefore, an additive effect through co-supplementation of β-alanine and sodium 

bicarbonate should not be dismissed and warrants further investigation. 
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Short duration repeated sprints were unaffected by β-alanine, sodium bicarbonate and co-

supplementation of the two which suggests that H
+
 buffering capacity might not influence 

exercise of this nature.  

 

Table 9.1 Percentage change in exercise performance and capacity following supplementation 
reported in this thesis. PLA refers to placebo, SB refers to sodium bicarbonate, BA refers to β-
alanine and BA + SB refers to β-alanine plus sodium bicarbonate. *P ≤ 0.01 from pre 
supplementation.  

   PLA SB BA BA + SB 

       

Chapter 4B CCT110% TTE - +2.5% - - 

  TWD - +2.6% - - 

       

Chapter 4C CCT110% TTE +1.6% +6.5% +12.1%
*
 +16.2%

*
 

  TWD +1.7% +6.9% +14.6%
*
 +18.8%

*
 

       

Chapter 5A 5 x 6 s  MPO - -2.6% - - 

 Sprints PPO - -2.3% - - 

       

Chapter 5B 5 x 6 s  MPO +2.1% +3.3% -1.2% +2.3% 

 Sprints PPO +2.7% +1.1% -1.2% +2.8% 

       

Chapter 6 LIST Elites -0.6% - +0.1% - 

  Non-Elites +0.6% - +1.4% - 

       

Chapter 7 YoYo  -7.6% - +34.3%
*
 - 

       

Chapter 8 Games Play HI Running - - +6.1% - 

  Sprinting - - +0.1% - 
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 Future Investigation 9.8

 β-alanine: There is now extensive evidence to support the ergogenic effects of β-

alanine on exercise limited by increasing acidosis, therefore future investigation 

should focus on the potential ergogenic effects on applied performance in events of a 

duration theoretically limited by increasing muscle acidosis (Table 9.2).  

Further research is warranted on prolonged intermittent exercise capacity such as the 

YoYo IR1 and Part B of the LIST (Nicholas et al., 2000), performed following five 

sets of the LIST, and intended to exhaust participants within ten minutes. A capacity 

test of this sort may be more sensitive to changes in muscle buffering capacity than 

the performance measures in the main part of the LIST.   

The effect of β-alanine combined with training would be of interest considering the 

results shown in Chapter 7; supplementation improved intermittent exercise capacity 

to levels similar to those seen following pre-season training and a 6 to 8 week training 

program. A study to this effect could determine whether team sport specific training, 

in combination with β-alanine, has an additive effect. 

Further to the study reported in Chapter 8, it would be of interest to supplement elite 

games players over a season; players of a higher standard perform more high-intensity 

activity during competitive match play and may, therefore, be more susceptible to 

improvements with increased muscle buffering capacity. 

In addition, more long term supplementation studies are merited to determine the 

upper limits to muscle carnosine concentration and concomitant exercise 

improvements, and if these are influenced by certain factors including body mass, age 

and gender. Subsequent effects on the washout period could be investigated, as well 

as long term health implications.  



174 

 

 

 Sodium bicarbonate: Future studies should employ the CCT110% and have 

participants perform exercise following acute sodium bicarbonate supplementation on 

a repeat number of occasions to determine the variability in the response to 

supplementation and exercise. This would allow for detailed analysis into the reasons 

for these large individual differences and whether the ergogenic effect, or lack thereof, 

is consistent for individuals.  

YoYo IR2 was improved with β-alanine supplementation, and is of sufficient duration 

to theoretically be improved by sodium bicarbonate supplementation. Furthermore, 

the effect of sodium bicarbonate supplementation on YoYo IR1 would also be of 

interest. 

Sporting events of an intensity and duration that could theoretically be benefited by 

the increased efflux of H
+
 out of the working muscle should be investigated to 

determine if sodium bicarbonate supplementation can improve performance (Table 

9.2). 

 

 β-alanine and sodium bicarbonate: To determine the true benefits of increased 

intracellular and extracellular buffering capacity due to co-supplementation of β-

alanine and sodium bicarbonate, future investigation should again use the CCT110% 

and incorporate large sample sizes and repeated trials to account for individual 

variation in the response to sodium bicarbonate supplementation and exercise. In 

addition to this, the contribution of increased intracellular and extracellular buffering 

to increased exercise capacity could be determined by taking multiple muscle biopsies 

and blood samples.  



175 

 

 

YoYo IR 2 performance was shown to be improved with β-alanine alone, therefore 

investigation into the additional benefit of co-supplementation with sodium 

bicarbonate is warranted. Additionally, research into co-supplementation of these 

buffering agents on other high-intensity intermittent exercise capacity tests (YoYo 

IR1, LIST Part B) is of interest.  

Furthermore, sporting events that could theoretically be enhanced by a single 

buffering agent may be further benefited by co-supplementation (Table 9.2). 

Long term β-alanine supplementation, resulting in the highest attainable muscle 

carnosine concentrations, could potentially minimise the contribution of increased 

extracellular buffering capacity. To determine this, investigation into the effect of 

prolonged β-alanine supplementation should also incorporate acute supplementation 

with sodium bicarbonate. 
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Table 9.2 Olympic sporting events of a duration which theoretically may evoke an ergogenic benefit 
from buffering agents. 

 

  

Olympic Sporting Event Recent Summer and 

Winter Olympics 

Gold Medal Time 

Men Women 

Running 400 m Hurdles 47:63 52:70 

800 m 1:40:91  1:56:19 

1500 m 3:34:08 4:10:23 

Swimming 100 m freestyle 47:52 53:00 

200 m freestyle 1:43:14 1:53:61 

400 m freestyle 3:40:14 4:01:45 

Flat-Water 

Kayaking 

500 m K1 N/A 1:51:46 

1000 m K1 3:26:46 N/A 

Cycling Track team pursuit 3:51:66 3:14:05 

Rowing 2000 m 8+ 5:48:75 6:10:59 

Double Sculls 6:31:67 6:55:82 

Speed skating 1500 m 1:45:57 1:56:89 

Alpine skiing Downhill 1:54:31 1:44:19 
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Intensity of Sickness 
 

 

0 Not at all   

 

1  

 

2  

 

3 Slightly   

 

4  

 

5  

 

6 Quite   

 

7  

 

8  

 

9 Very   

 

10 Throwing up  
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Intensity of Stomach ache 
 

 

0 None at all   

 

1  

 

2  

 

3 Dull ache on and off  

 

4  

 

5  

 

6 Moderate continuous  

 

7  

 

8  

 

9 Severe continuous  

 

10 Severe doubled up 
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Intensity of Headache 
 

 

0 None at all   

 

1  

 

2  

 

3 Dull ache on and off  

 

4  

 

5  

 

6 Moderate continuous  

 

7  

 

8  

 

9 Severe continuous  

 

10 Searing pain 


