RANK/RANKL/OPG pathway: genetic associations with stress fracture period prevalence in elite athletes

Varley, I. ORCID: 0000-0002-3607-8921, Hughes, D.C., Greeves, J.P., Stellingwerff, T., Ranson, C., Fraser, W.D. and Sale, C. ORCID: 0000-0002-5816-4169, 2015. RANK/RANKL/OPG pathway: genetic associations with stress fracture period prevalence in elite athletes. Bone, 71, pp. 131-136. ISSN 8756-3282

[img]
Preview
Text
PubSub1288_Varley.pdf - Post-print

Download (420kB) | Preview

Abstract

Context: The RANK/RANKL/OPG signalling pathway is important in the regulation of bone turnover, with single nucleotide polymorphisms (SNPs) in genes within this pathway associated with bone phenotypic adaptations.
Objective: To determine whether four SNPs associated with genes in the RANK/RANKL/OPG signalling pathway were associated with stress fracture injury in elite athletes.
Design, Participants, and Methods: Radiologically confirmed stress fracture history was reported in 518 elite athletes, forming the Stress Fracture Elite Athlete (SFEA) cohort. Data were analysed for the whole group, and were sub-stratified into male and cases of multiple stress fracture group. Genotypes were determined using proprietary fluorescence-based competitive allele-specific PCR assays.
Results: SNPs rs3018362 (RANK) and rs1021188 (RANKL) were associated with stress fracture injury (p<0.05). 8.1% of stress fracture group and 2.8% of the non-stress fracture group were homozygote for the rare allele of rs1021188. Allele frequency, heterozygotes and homozygotes for the rare allele of rs3018362 were associated with stress fracture period prevalence (p<0.05). Analysis of the male only group showed 8.2% of rs1021188 rare allele homozygotes to have suffered a stress fracture while 2.5% of the non-stress fracture group were homozygous. In cases of multiple stress fractures, homozygotes for the rare allele of rs1021188, and individuals possessing at least one copy of the rare allele of rs4355801 (OPG) were shown to be associated with stress fracture injury (p<0.05).
Conclusions: The data support an association between SNPs in the RANK/RANKL/OPG signalling pathway and the development of stress fracture injury. The association of rs3018362 (RANK) and rs1021188 (RANKL) with stress fracture injury susceptibility supports their role in the maintenance of bone health, and offers potential targets for therapeutic interventions.

Item Type: Journal article
Publication Title: Bone
Creators: Varley, I., Hughes, D.C., Greeves, J.P., Stellingwerff, T., Ranson, C., Fraser, W.D. and Sale, C.
Publisher: Elsevier
Date: 2015
Volume: 71
ISSN: 8756-3282
Identifiers:
NumberType
10.1016/j.bone.2014.10.004DOI
Divisions: Schools > School of Science and Technology
Depositing User: EPrints Services
Date Added: 09 Oct 2015 11:07
Last Modified: 09 Jun 2017 13:49
URI: http://irep.ntu.ac.uk/id/eprint/22993

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year