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At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best
characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many
important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed
a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical
modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this under-
lying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order
network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biolog-
ical features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary
relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number
of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif
structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.

Introduction

Many biological systems can be described using the tech-
niques of network science1,2, which provides a powerful set
of tools for analysing the underlying connectivity structures
that naturally arise within all living organisms3,4. At the
cellular level, networks emerge via interacting proteins, and
other macro-molecules, resulting in various biochemical nets,
such as gene regulatory networks5,6, protein-protein interac-
tion networks7 and protein residue networks8,9. In this re-
gards, the metabolic process in particular plays a fundamental
role, providing the building blocks (nucleic acids and amino
acids) that enable genes to interact effectively, and thus for
the cell to function properly. Moreover, recent evidence sug-
gests that the interaction patterns described by metabolic net-
works reflect the evolutionary origins of important functional
changes10–12, and thus understanding their topological organ-
isation promises to unravel important features of biological
organisation at the systems level.

Metabolic networks have been the focus of a large number
of studies (see for example the review by Lacroix et al.13 and
references therein) and several important structural character-
istics have been evidenced. For example, modularity, i.e. the
propensity for a network to organise into nearly-independent
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structural units, has been shown to be a prevalent feature
within metabolic networks14,15, and has, for example, been re-
lated to important biological properties such as robustness16,17

and evolvability10,11,16. However, metabolic networks are by
no means perfectly modular; their inter-module connectivity
is relatively high, leading some authors to conclude that these
networks are better described as being hierarchically struc-
tured14, that is metabolic networks may be considered to pos-
sess fractal-like properties, such as self-similarity. Indeed, the
existence of many small highly integrated units, which then
group together to form larger modules and so on, provides
one possible explanation for the high level of inter-modular
connectivity observed in these networks.

Another popular approach for analysing metabolic net-
works is provided by network motifs18, i.e. recurrent, statis-
tically significant subgraphs. Motifs are of particular inter-
est since they are typically associated with certain biological
functions, and their relative over-abundance is considered to
be an evolutionary result reflecting their “importance” to the
organisms involved19,20. Moreover, they constitute the basic
structural units from which complex metabolic networks are
formed, and thus provide a simplified framework for prob-
ing large-scale topologies. For example, in a recent study
Shellman et al.21 successfully captured key evolutionary dif-
ferences between metabolic networks from the six different
kingdoms of life, employing network motif analysis. Another
example highlighting the considerable potential of such an ap-
proach, is provided by the work of Asgari and colleagues22,
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in which the authors employ recent advances in the theory
of network controllability as a method for improving drug-
target discovery techniques. In particular, they suggest that
network motifs provide ideal ‘driver’ candidates, which can
be employed to manoeuvre the system of interest into certain
desirable states.

Here, we introduce a novel technique for comparing biolog-
ical networks of varying size based on local network structure.
In particular, we propose a new embedding technique based
on low order network motifs. In our approach, each network
is mapped to a point in a high-dimensional vector space, the
dimension of which depends on the number of motifs consid-
ered (n = 212 in our work as we consider all 3 and 4 node
motifs23). By using a suitably defined low-rank approxima-
tion, we are able to combine the 212 motif frequency scores
into a single network specific measurement, which allows us
to compare and contrast networks in terms of just a single pa-
rameter. Using this new measure we investigated 383 bacterial
metabolic networks with identified growth conditions, as well
as a smaller subset of 115 networks classified according to the
amount of variability present within their natural habitats, and
found a number of significant correlations between network
motif structure and fluctuations in environmental conditions.

A new graph embedding approach

Motivated by the prominent role that network motifs have
played to date in the analysis of biological networks (see for
example the book of Alon3 and references therein), we pro-
pose a new, lossy graph embedding technique based on low-
order motifs. The proposed technique is lossy in the sense
that the original network cannot be recovered from the cor-
responding vector-space representation. Importantly, such an
approach takes a difficult and unwieldy problem, i.e. the anal-
ysis of many large, complex biological networks of differing
order, and replaces it by one which is ‘easier’ to manipulate
– a plethora of tools and techniques from statistical machine
learning24,25 already exist for the analysis of the resultant em-
bedded data.

Motif frequency vectors

Motif frequencies can be used to directly compare different
metabolic networks as they provide a ‘unique’ network signa-
ture21. Alternatively, networks can be compared by calculat-
ing a feature vector of z-score’s, computed in the usual way,
i.e.

zi, j =
Ni

j−
〈

Nrandi
j

〉
σ

randi
j

,

where here, Ni
j denotes the rate of recurrence of the jth motif

within the ith network whilst 〈Nrandi
j 〉 and σ

randi
j denotes the

mean and standard deviation of the rate of recurrence of the
jth motif in an ensemble of randomised networks3.

In this way, for each network of interest we can compute
a feature vector, zi, whose elements are the z-scores of each
network motif. For example, if, as in this work, we consider
all 3- and 4-node motifs then the result is a vector zi ∈ R212

representing the ith network.
Note that it is typically the case that the networks we wish

to compare are of varying order and as such we need to take
care that network size does not bias any results. To handle this
issue one can consider instead of the z-scores defined above, a
so-called significance profile26 defined by

si, j =
zi, j√
∑k z2

i,k

.

The motif significance profile for the ith network, si, is sim-
ply the normalised vector of z-scores. The motif significance
profile allows for direct comparisons between networks of dif-
ferent sizes. This is important due to the fact that motifs in
larger networks tend to exhibit larger z-scores than they do in
smaller networks23,26. Note also, that each entry of the motif
significance profile lies in the interval [−1,1].

In the work presented here, we threshold the network sig-
nificance profiles such that any entries si, j < 0 are set to zero
as we are only interested in those motifs that are over repre-
sented. Motifs that are under represented are known as anti-
significant motifs, or anti-motifs, and although we do not con-
sider them in this study, the approach forwarded here can eas-
ily be extended to that case. This results in a matrix

S = [s1, . . . ,sm]
T ≥ 0,

i.e. a non-negative matrix, whose rows consist of the signifi-
cance profiles (thresholded) for the m networks under investi-
gation.

To analyse the matrix S we use a matrix decomposition to
compute a low-rank approximation of the data25. Since our
data is non-negative, it is natural to decompose it using a non-
negative matrix factorisation27 (NNMF) (for algorithmic de-
tails see the Methods section). Such an approach is akin to
a principal component analysis, that reduces the dimension of
the problem, thus allowing us to detect important network fea-
tures. Mathematically, we approximate S as follows:

S≈WH, (1)

where W ∈ Rm×k and H ∈ Rk×212 are non-negative matrices.
Here, k is the rank of the approximation and m the number
of networks being considered. Importantly, both the columns
of W and the rows of H can be used to reveal important net-
work features28,29. Note, that in all of our experiments, the
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factorisation in (1) was carried out using k = 3, and W,H were
chosen so as to minimise the residual25

||S−WH||F .

Here, || · ||F denotes the Frobenius norm (see the Methods sec-
tion for further details concerning, for example, the choice of
k).

The approach can be concisely summarised into the follow-
ing three basic steps (see Figure 1 for a schematic description):

Step 1: For each metabolic network compute the signifi-
cance profile, si ∈R212, consisting of the normalised sig-
nificance scores for each of the 212 three- and four-node
motifs.

Step 2: Compute a low-dimensional (k << 212) repre-
sentation of the thresholded matrix of significance scores,
S = [s1, . . . ,sm]

T , using a non-negative matrix factorisa-
tion.

Step 3: Use the columns/rows of W/H to determine im-
portant network features.

Global and local motif significance scores

In order to determine the relative importance of the jth mo-
tif in the ith network we construct the following local motif
significance score:

P(i, j) = si, j ·h1, j. (2)

Note that this results in a matrix P ∈ Rm×212 (m = 115 or
m = 383 here), whose rows encapsulate the network motif
structure of each metabolic network, and whose columns pro-
vide information pertaining to the relative importance of spe-
cific motifs across the network ensemble.

In the experiments in the next section, we derive a global
significance score for each network by summing the rows of
P as follows

Pglobal(i) = ∑
j

P(i, j) = ∑
j

si, j ·h1, j, (3)

= si ·h1.

As alluded to by the second row in the above, this is equiv-
alent to projecting the significance vector si onto h1, the first
row of H. Note that in practice h1 is the row of greatest mag-
nitude and thus is likely to provide the optimal single-variable
projection of the data25. Moreover, we consider the global
significance score in (3) to be a proxy for network complexity,
in the sense that a large value indicates the presence of a rela-
tively large number of network motifs, whereas a low value is
indicative of a simpler, more tree-like structure.

Environment Number of Nodes Number of Edges
min median max min median max

Obligate (34) 78 273 620 91 340 840
Specialised (5) 442 480 541 566 641 692

Aquatic (4) 541 580 647 700 751 868
Facultative (41) 90 652 809 101 890 1160
Multiple (28) 430 615 800 560 821 1119
Terrestrial (3) 557 689 693 779 944 966

Total (115) 78 541 809 91 730 1160

Table 1 Network statistics for the reaction graphs of 115 bacterial
species studied classified according to environmental variability.
According to the NCBI32, obligate bacteria have the most constant
environment, followed by specialised and aquatic, and then
facultative, multiple and terrestrial bacteria in that order.

Environment Number of Nodes Number of Edges
min median max min median max

Aerobic (154) 65 605 892 74 809 1210
Facultative (180) 78 602 816 91 825 1168
Anaerobic (49) 307 488 681 381 645 969

Total (383) 65 581 892 74 789 1210

Table 2 Network statistics for the reaction graphs of the 383
bacterial species studied classified according to species’ oxygen
requirements. The degree of oxygen required increases in the order
anaerobic, facultative and aerobic.

Results and discussion

In this section we present the results of applying the approach
described in the previous section to a large cohort of metabolic
networks. We begin by giving a brief description of the organ-
isms studied, and details of the network construction process.

Metabolic networks

The metabolic data in this study is the same as used by Take-
moto30, and was derived from the KEGG database31 on May
20th, 2011. In total, we studied upto 383 bacterial species (see
Tables 1 and 2 for an overview of some basic network proper-
ties), each being characterised by a number of shared biolog-
ical features (e.g. environmental variability, oxygen require-
ments and genome size), using graph theoretical techniques.
A complete list of all the bacterial species used in our analysis
is provided in the Supplementary Materials†.

Metabolic processes can be modelled using simple graphs
in a number of ways33 and it is important to choose an appro-
priate representation. The most common representation is the
substrate-product graph whereby nodes and edges correspond
to metabolites and reactions, respectively. Note, that a poten-
tial caveat of such an approach is that it can lead to the detec-
tion of erroneous pathways (see, for example, the discussion
in Montañez et al.34). However, since we are not considering
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Fig. 1 A schematic illustration of our algorithmic approach in the case of E. coli. Step 1: by considering all 3- and 4-node motifs, the
metabolic network of E. coli is mapped into a 212-dimensional Euclidean space. Step 2: a low-dimensional representation of the data point is
obtained via a non-negative matrix factorisation. Step 3: important network features are determined by analysing the resultant
low-dimensional representation (not shown).

a path analysis here and for the ease of comparability with re-
lated studies, we consider the substrate-product representation
in all of our experiments. Moreover, ubiquitous metabolites
such as H2O, ATP and NADH were removed from the analysis
as they tend not to be involved in higher order functions, and if
included, typically lead to physiologically meaningless path-
ways. Finally, to further simplify the analysis, we consider
only the largest connected component for each network. This
avoids, for example, issues that arise when constructing ran-
domised networks through the rewiring of metabolic networks
consisting of a number of disconnected components. For fur-
ther details of the network construction the interested reader is
referred to the papers of Takemoto and colleagues11,30,35.

It is worth noting that, in addition to the modelling issues
touched upon above, there are general limitations to any com-
plex network study of metabolism due to noisy and incom-
plete metabolic maps (e.g. missing/spurious links), the omis-
sion of reaction stoichiometry data and incomplete reaction
reversibility data. Nevertheless, the approach taken here is
standard within the field and provides a global picture of the
biochemical systems under investigation.

As an illustration of the approach introduced in the previ-
ous section, we carried out two experiments with the aim of
testing the hypothesis that organism adaptability is manifested
via the network motif structure of the corresponding metabolic
networks.

Habitat variability and network motif structure

The first experiment undertaken considered 115 metabolic
networks, each being categorised according to their environ-
mental habitat (see Table 1). The organisms can be found in
a variety of conditions, ranging from highly specialised (e.g.

Environment
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g
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a
l(
i)
〉

0.5

0.6

0.7

O S A F M T

Fig. 2 Relationship between environmental variability and the mean
global significance score 〈Pglobal〉 for the six bacterial habitats:
Obligate, Specialised, AQuatic, Facultative, Multiple and
Terrestrial. Vertical bars represent standard errors.
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Environment Significant motifs

Specialised (43)
motif 5 motif 9

Varied (72) motif 5 motif 9 motif 14 motif 26

motif 15 motif 62

Table 3 Motifs significantly overrepresented in networks pertaining
to a specialised and varied environment.

symbiotic bacteria living within a host), to extremely hetero-
geneous conditions such as soil, and thus have evolved under
very different selective pressures.

Figure 2 shows a plot of the mean global significance score,
〈Pglobal〉, versus environmental variability for the 115 different
bacterial networks. Note that the average here is taken over
each of the six environmental classes: obligate, specialised,
aquatic, facultative, multiple and terrestrial. Importantly, we
found that motif frequency, and thus network complexity, in-
creased significantly with environmental variability. The low-
est motif frequency was found for the bacteria within the ob-
ligate class, followed by a relatively steep increase to the spe-
cialised and aquatic classes, then higher again for the facul-
tative and multiple classes, and then highest for the terrestrial
class. The group differences shown in Figure 2 are statistically
significant (Kruskal-Wallis test, p < 10−9).

This result provides evidence supporting the view that vari-
ability in an organisms habitat has important consequences for
the topology of the resultant metabolic networks, and is con-
sistent with previous studies10,12,36,37 that have demonstrated
important links between the metabolic networks of organisms
and their biochemical environments. In the current context,
these results can be understood as an evolutionary effect due to
the greater uncertainty that accompanies an increasingly fluc-
tuating environment: greater numbers of 3- and 4-node motifs
lead to larger numbers of cycles, i.e. closed paths, and thus to
increased redundancy in the metabolic network, which in turn
promotes greater adaptability and robustness.

The effect of oxygen requirement on network structure

Next, we considered the effect of oxygen requirements on
metabolic network structure. We studied 383 bacterial species
which were categorised into three groups: 154 aerobes, 180
facultatative aerobes and 49 anaerobes.

Figure 3 shows a plot of the mean global significance
scores versus growth conditions for the 383 different bacte-
rial species. Interestingly, we found that networks that have
evolved in the presence of oxygen, i.e. aerobes and facultative

aerobes, have a significantly larger number of network mo-
tifs. The group differences shown in Figure 3 were found to
be significant (Kruskal-Wallis test, p < 10−4).

Aerobic AnaerobicFacultative

Oxygen requirement

〈P
g
lo
b
a
l(
i)
〉

0.69

0.72

0.75

Fig. 3 Relationship between growth conditions, in particular
oxygen requirements, and mean global significance score 〈Pglobal〉.
Vertical bars represent standard errors.

The results shown in Figure 3 are in agreement with recent
studies (see, for example, the paper by Raymond and Segré38)
demonstrating that bacterial networks that are exposed to oxy-
gen are able to form additional pathways, compared to those
that are oxygen deprived. In particular, the study by Raymond
and Segrè38 found that aerobic bacteria have approximately
a 1.5 fold increase in the number of reactions and metabo-
lites relative to anaerobic bacteria, resulting in the expansion
of metabolic networks evolving in the presence of oxygen, and
thus supporting the view of oxygen induced network complex-
ity.

Motifs responsible for the observed differences

To determine the specific motifs driving the observations of
the previous section, we considered the quantity ∑i P(i, j), that
is, the column sum of the matrix P defined in Equation (2) –
recall that the columns of P contain information specific to
individual motifs. Moreover, by restricting the sum above to a
particular subgroup of interest (specialised, obligate, multiple,
etc.), it is possible to detail the extent to which any particular
motif featured within that group. In the following we consider
a motif to be significant within a particular group, if the mean
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Environment Significant motifs

Aerobic & Facultative (334)

motif 5 motif 9 motif 14 motif 15 motif 26

Anaerobic (49)

motif 5 motif 9 motif 14 motif 26

Table 4 Motifs significant to networks with differing oxygen requirements.

local significance score of that motif (restricted to the group
of interest) is at least 2 standard deviations greater than the
mean score across the entire network ensemble. Note that a list
of all 3- and 4-node motifs is provided in the Supplementary
Material.

Habitat variability In order to simplify the analysis we
considered two groups: specialised (consisting of the obli-
gate, specialised and aquatic classes) and varied (consisting
of facultative, multiple and terrestrial classes). The signifi-
cant motifs are displayed in Table 3. The first thing to note
is that motifs 5 and 9, a feed forward loop and closed cycle,
respectively, are prominent throughout the entire ensemble of
networks, regardless of environmental factors. This is perhaps
not too surprising as both of these patterns are considered to
play important functional roles in many biological networks.
The addition of a feed forward loop to a linear cascade of bio-
chemical reactions, for example, has been hypothesised to ac-
celerate the metabolic process39. Importantly, we found the
number of significant motifs to be greatest in those metabolic
networks exposed to more variable environments: 2/212 for
specialised and 6/212 for varied (see Table 3). Clearly, this
represents only a very small percentage of available 3- and
4-node motifs (≈ 1-3%), and so the differences observed in
Figure 2 can be attributed to a small set of motifs more or less
specific to the different kinds of bacteria.

The increased numbers of network motifs present within the
varied class indicates a potentially significant growth in net-
work redundancy within those organisms inhabiting fluctuat-
ing environments, and can be considered as further evidence of
so-called functional redundancy mediated robustness40, that
is, the observed perseverance of systems level redundancies
prevalent in metabolic, as well as more general, cellular net-
works. More specifically, of the 4 additional significant motifs
found in the varied class, motifs 14 and 15 may be considered
variants of the single-input motif, motif 62 a bi-parallel fan,
and motif 26 a multi-input motif, all of which have been im-
plicated as potential indicators of network redundancy. For
example, in the context of metabolism the single-input motif
consists of a substrate X that is consumed in multiple reac-

tions, the result of which are the products Y,Z, . . .; whilst the
bi-parallel fan implies the presence of multiple, or compen-
satory, pathways whose efficiencies may vary according to al-
terations in environmental conditions. Indeed, these findings
are in agreement with a number of recent studies relating ge-
netic robustness and organism adaptability40,41, and suggest
that bacteria that live in more variable environments typically
display a greater abundance of redundant metabolic reactions.

In addition to the topological differences observed between
varied and specialised bacteria, we found that the distribution
of those metabolites occurring within motif structures present
across the entire network ensemble, i.e. motifs 5 and 9, also
differed significantly. Figures 4 and 5 shows the mean fre-
quency for metabolites occurring within motif 5 for the 115
metabolic networks, again grouped into the specialised (blue
bars) and varied classes (red bars). Note that the frequencies
plotted in Figures 4 and 5 have been normalised to remove
any bias due to network size (see Methods section for further
details), and metabolites are displayed in decreasing order ac-
cording to the varied class. Figure 4 displays the distribution
for those 263 metabolites that occurred at least once within
motif 5 across the two classes under consideration. Interest-
ingly, we see that the distribution for the varied class is rel-
atively broad, with a large number of metabolites occurring
with a relatively low frequency, whereas the distribution for
the specialised class is more akin to a scale-free or power-law
distribution, consisting of a small set of relatively high fre-
quency metabolites. Note that similar results were found for
motif 9 (see Supplementary Material).

Next we used a Chi-square test (Fisher’s exact test, p <
0.01) to explore the differences in proportions of the indi-
vidual metabolites between the two groups. Figure 5 shows
the 47/263 metabolites for which a significant difference in
proportions was found, again displayed according to decreas-
ing frequency of the varied class. Metabolites displaying
the most significant differences (Fisher’s Exact test, p <
10−5) included (2R)-2-Hydroxy-3-(phosphonooxy)-propanal,
Tetrahydrofolate and Isopentenyl diphosphate, all of which
were overrepresented in the specialised group compared to
the varied group. Note that the aforementioned overrepre-
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sented metabolites are required for biosynthesis of various
amino acids, folates and terpenoids and are also responsible
for the regulation of carbohydrate metabolism in many bacte-
rial species.

Oxygen requirements Similar to the above, we then in-
vestigated which motifs were driving the observed differences
between metabolic networks that evolved in the presence or
absence of oxygen. Again, for simplicity we divided the bac-
teria into two separate groups: anaerobic and aerobic (in-
cluding facultative aerobes). The significant motifs are dis-
played in Table 4. For aerobic networks 5/212 possible motifs
were found to be significant, whilst for the anaerobic networks
4/212 were found to be significant. Again, motifs 5 and 9
were significant across the entire cohort, along with motifs 14
and 26 in this instance. The only motif that differed between
the two groups was motif 15, which was specific to the aer-
obic class. Interestingly, the study by Raymond and Segré38

found that the effects of oxygen exposure on metabolic net-
work structure was most prolific at the periphery of the net-
work, that is, network alterations were largely due to the ad-
dition of new reactions and pathways, rather than network
rewiring. Thus, the enrichment of motif 15 is a natural con-
sequence, as it acts as a branch point on these newly formed
peripheral reactions and pathways.

Figures 6 and 7 shows the distribution of metabolites across
motif 5 for the two groups, ordered according to decreasing
metabolite frequency for the aerobic class (blue bars). Note,
that the aerobic class exhibits a fairly broad distribution,
whilst the anaerobic distribution tails off slightly quicker, in
a similar but less pronounced manner to that displayed by
the specialised bacteria in Figure 4. Figure 7 shows those
metabolites that displayed a significant group difference.
Interestingly, the majority of metabolites, some 37/52, were
found to be overrepresented in the aerobic group com-
pared to the anaerobic group, the most significant of which
were Isopentenyl diphophosphate, Fatty acid, trans,trans-
Farnesyl diphosphate, Phosphatidylethanolamine, Phos-
phatidylserine, L-Threonine, L-2-Amino-3-oxobutanoate,
Phosphatidylcholine, 2-Acyl-sn-glycero-3-phosphocholine,
L-2-Lysophosphatidylethanolamine, 3’.5’-Cyclic GMP
(Fisher’s Exact test, p < 10−5). These metabolites are known
to be involved in the biosynthesis of a range of amino acids
and secondary metabolites. Again, similar results where
found for motif 9 (see Supplementary Material).

Conclusions

In this work, we have introduced a new graph embedding ap-
proach for studying large numbers of networks, of possibly
differing order, and employed it to investigate the effect of
environmental variability on the metabolic network structure

of a large cohort of bacterial species. Using the new tech-
nique, we found evidence supporting the view that organisms
that evolve in more uncertain environments exhibit more com-
plex metabolic connectivity structures than those evolving un-
der more stable conditions. Note, that the motif based ap-
proach forwarded here strongly supports the view that envi-
ronmental conditions play a pivotal role in shaping the resul-
tant metabolic networks, and is robust in the sense that the
patterns described in Figures 2 and 3 are reproducible in both
the latest and older, less complete versions of the data42 (data
not shown). This is in contrast to recent studies in which net-
work features that were found to correlate with environmen-
tal variability (e.g. modularity) disappeared when tested on
newer versions of the data30,43. These findings suggest that
alterations in the motif signature provide a robust indicator of
adaptability and evolvability in bacterial metabolic networks.

Methods

Detection of network motifs and the choice of null model

Network motif frequencies were computed using the open-
source software mfinder 23,44. To determine significance, mo-
tif frequencies were compared against frequency distributions
for some 1000 random graphs, chosen so as to preserve both
the in- and out degree, as well as (n− 1)-node motifs. Note
that the latter condition ensures that the enrichment of n-node
motifs is not simply due to the presence of highly significant
subgraphs.

Non-negative matrix factorisation

There are many different variants of the non-negative matrix
factorisation algorithm28. In our work we used the Multi-
plicative Update algorithm which is included in the MATLAB
statistics toolbox∗. Starting with initial guesses W 0, H0, typi-
cally random matrices, the method computes a rank-k approx-
imation to the data matrix A≈WH (here A∈Rn×m,W ∈Rn×k

and H ∈ Rk×m) via successive iterations of the equations

H i+1 = H.∗ W iT A
W iH iH iT +10−9

W i+1 =W i.∗ AH iT

W iH iH iT +10−9 .

Here .∗ denotes point-wise multiplication.
Note that due to the iterative nature of the scheme, the re-

sulting decomposition can vary depending upon (a) the choice
of initial matrices W 0, H0; (b) the choice of the parameter k,
which is usually not obvious a priori, and tends to be based on
heuristics such as the number of expected clusters in the data,

∗http://www.mathworks.com/
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Fig. 6 Mean normalised frequency for the 291 metabolites obtained for the 383 metabolic networks. Blue bars represent the
aerobic-facultative class and red bars represent the anaerobic class. Metabolites are displayed in descending order of the metabolite
frequencies for the varied class.
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or a visual inspection of the scree plot. In our experiments, we
ran the algorithm with 100 different random initial conditions,
choosing as our factorisation the matrices W , H for which the
residual ||A−WH||F was minimised, according to the Frobe-
nius norm. Moreover, we repeated the experiments for a range
of different k values (up to and including k = 25) to test the ro-
bustness of our results. We found the effects of varying k to
be inappreciable, in the sense that the patterns reported were
reproduced for most values of k.

Determining significant metabolites

When considering the differences between the frequency of
metabolites occurring in a motif of interest (5 or 9 in our case)
care must be taken to eliminate the influence of network size
on the analysis. This bias is due to the increased number of
motifs exhibited by larger networks which naturally leads to
greater frequencies of metabolites. Thus, given a network i
and a metabolite j, we denote by fi, j the frequency with which
metabolite j appears within the motif of interest, motif q say,
for the ith network. Now, in order to remove any bias due to
network size we normalise the statistic fi, j by dividing it by the
frequency with which motif q appears in network i, which we
denote by fi,motq . This then leads to the following normalised
statistic:

f̂i, j =
fi, j

fi,motq
,

describing the relative importance of metabolites via their par-
ticipation within specific motifs.
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