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Abstract  12 

Instream refuges are places where invertebrates persist during disturbances due to 13 

reduced adverse impacts. During droughts, low flows may be accompanied by 14 

elevated temperatures, and potential refuges including subsurface sediments and 15 

spring-fed headwaters are therefore characterized by hydrological and thermal 16 

stability. This study examined invertebrate use of benthic and interstitial habitats 17 

(analogous to the hyporheic zone) in a groundwater-dominated, perennial limnocrene 18 

spring during a supra-seasonal drought. Although exceptionally high air temperatures 19 

occurred as flow declined, environmental conditions in the spring were relatively 20 

stable, and refuge-seeking vertical migrations into interstitial habitats did not coincide 21 

with peak temperatures. However, maximum benthic abundance of two amphipods 22 

(Gammarus pulex and Crangonyx pseudogracilis) occurred shortly after the period of 23 

elevated temperatures. It is suggested that this temporary increase in the abundance of 24 

these mobile taxa reflected upstream migrations triggered by a combination of refuge-25 

seeking behaviour and thermally-stimulated activity. In addition, the spring provided 26 

a passive refuge for many lotic invertebrate taxa. A conceptual model is presented, 27 

which illustrates the potential contribution of multiple refuges to invertebrate 28 

persistence in drought-impacted ecosystems.   29 
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Introduction 35 

Hydrological droughts include seasonal and supra-seasonal events, the latter being 36 

unpredictable, infrequent and sometimes prolonged disturbances that increase 37 

gradually in intensity (Lake, 2000, 2003). In freshwater ecosystems, supra-seasonal 38 

droughts manifest as unusually long and/or severe reductions in surface flow 39 

(Humphries & Baldwin, 2003, Fleig et al., 2006), and while surface water is retained 40 

in perennial systems, instream habitats may experience significant changes. 41 

Submerged habitat availability, habitat heterogeneity and flow velocities may 42 

decrease, accompanied by reductions in water quality and changes to water 43 

temperature (Caruso, 2002, Dewson et al., 2007, Wood et al., 2010). Consequent 44 

impacts on invertebrate communities depend on the extent and nature of changes in 45 

the availability of suitable habitat. Taxonomic richness typically declines due to 46 

reduced habitat heterogeneity, while the abundance of individual taxa may either 47 

decrease or increase (Wood & Armitage, 2004, Dewson et al., 2007, Stubbington et 48 

al., 2011).  49 

 50 

Behavioural adaptations that promote persistence of benthic invertebrates during 51 

supra-seasonal droughts include active migrations into refugial habitats, in which 52 

environmental conditions remain favourable (Boulton, 1989, Lancaster & Belyea, 53 

1997, Boulton, 2003). The interstitial habitat of the hyporheic zone has been identified 54 

as a patchy refuge (Dole-Olivier et al., 1997), its utility depending on the fulfilment of 55 

various environmental criteria (see Dole-Olivier, 2011 and Stubbington, 2012 for 56 

recent reviews). While several studies have indicated that benthic invertebrates use 57 

the hyporheic zone as a refuge during floods (Williams & Hynes, 1974, Dole-Olivier 58 

& Marmonier, 1992, Holomuzki & Biggs, 2000) and streambed drying (Delucchi, 59 

1989, Clinton et al., 1996, Fenoglio et al., 2006), evidence of refuge use is equivocal 60 

during other hydrological disturbances (Dole-Olivier, 2011, Stubbington, 2012). In 61 

particular, there is little evidence that interstitial sediments act as a refuge during low 62 

flows in perennial streams (James et al., 2008, James & Suren, 2009), although Wood 63 

et al. (2010) reported active migrations of the amphipod Gammarus pulex into the 64 

hyporheic zone, these migrations being associated with elevated water temperatures 65 

during a supra-seasonal drought.  66 

 67 

Other research has indicated that habitats in the surface stream provide preferable 68 

refuges to subsurface sediments. Boulton (1989), for example, noted invertebrate 69 

persistence in nearby perennial waters rather than the hyporheic zone following 70 

streambed drying, while James et al. (2008) reported that benthic sediments remained 71 

preferable to interstitial habitats during periods of reduced flow. Depending on 72 

longitudinal patterns of flow recession, surface refuges may occur in headwaters 73 

(Lake, 2003), particularly in streams fed by hydrologically stable groundwater springs 74 

(Erman & Erman, 1995, Smith & Wood, 2002). The additional thermal stability of 75 

such upwelling springs may simultaneously provide a buffer against elevated water 76 

temperatures (Berrie, 1992, Smith et al., 2003, Barquín & Death, 2011). Headwater 77 

springs are therefore potential drought refuges for taxa capable of active upstream 78 

migration as well as offering passive protection to resident fauna (Hughes, 1970, 79 

Williams & Williams, 1993, Erman & Erman, 1995).    80 

 81 

Few studies have concurrently considered the effects of hydrological variability on 82 

benthic and interstitial invertebrates (but see Belaidi et al., 2004, Wood et al., 2010, 83 

Stubbington et al., 2011, Datry, 2012), and the present study is the first to compare the 84 

responses of these contiguous communities in a limnocrene spring. The study was 85 

conducted during the latter stages of a supra-seasonal drought (Marsh, 2007) in which 86 
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extremely high surface water temperatures were linked to invertebrate migrations into 87 

the hyporheic zone in lotic reaches downstream of the spring (Wood et al., 2010). It 88 

was predicted that: i) benthic invertebrates would not migrate into interstitial 89 

sediments in the spring unless adverse conditions developed in the surface water; and 90 

ii) densities of mobile taxa would fluctuate in response to migrations between the 91 

spring and downstream reaches, if unfavourable conditions affected the latter.    92 

 93 

Materials and methods 94 

 95 

Study site 96 

The Little Stour River is a lowland chalk stream which rises 4 km east of Canterbury 97 

(Kent, U.K.; 51º 15.9'N 1º 09.4'E) and flows for 11.5 km, draining an area of ~213 98 

km
2
; characteristics of the catchment are described by Wood et al. (2000, 2010). The 99 

present study was conducted in the headwater spring source of the Little Stour: a 100 

limnocrene spring comprising a permanent area of lentic water of approximately 100 101 

m by 20 m (Fig. 1) and with a maximum depth of <2 m. The spring is shaded by 102 

riparian trees and macrophyte growth is therefore limited, while filamentous algae 103 

(Cladophora spp.) are abundant. Surface sediments are gravel dominated, with some 104 

sand and finer sediments. The interstitial sediments are fed by upwelling groundwater 105 

and are analogous in character to hyporheic sediments of downstream lotic reaches.  106 

 107 

Mean annual precipitation in the catchment is c.650 mm (Wood & Petts, 1999) and 108 

the mean annual air temperature is 10.2 
o
C (Met Office, 2008). However, this study 109 

was conducted during the latter stages of a supra-seasonal drought which affected 110 

southern England between 2004 and 2006 (Marsh, 2007). Discharge in the Little 111 

Stour River declined from mid-June to mid-August 2006 then remained low until 112 

early September; the hydrological conditions experienced in lotic reaches downstream 113 

of the spring are described by Wood et al. (2010). The limnocrene spring is 114 

characterized by relatively stable hydrology, and reductions in water depth during the 115 

drought exposed only gently-sloping marginal areas. Air temperatures increased to a 116 

maximum of 26.3 ºC in July, these temperatures being extreme and the highest 117 

observed in the 348-year regional record (Prior & Beswick, 2007). Temperatures then 118 

declined for the rest of the study period, except for a brief increase in September, 119 

when mean daily maxima reached 17.7 ºC (Fig. 2). 120 

 121 

Field sampling 122 

Paired samples of benthic and interstitial invertebrate assemblages were collected at 123 

monthly intervals between April and November 2006 inclusive. Five sampling points 124 

were located in shallow (<0.5 m) areas of the spring, this number of replicates being 125 

selected to minimize impacts on the sensitive ecosystem (Cantonati et al., 2006). 126 

Benthic invertebrates were collected using a Surber sampler (0.1 m
2
 frame, 250 m 127 

mesh net) by manually disturbing the sediments within the frame to a depth of ~5 cm 128 

for 30 seconds. A current was generated manually to carry disturbed invertebrates into 129 

the net. Large clasts located within the sample area were inspected individually and 130 

attached invertebrates included in the sample.  131 

 132 

Prior to the study, a stainless steel T-bar was used to insert one open-ended PVC tube 133 

(internal diameter 19 mm) 20 cm into the sediments at each sampling point, to act as a 134 

semi-permanent interstitial habitat sampling well (Boulton & Stanley, 1995, 135 

Stubbington et al., 2009). Wells were sealed with bungs between sampling occasions 136 

to prevent colonisation by benthic fauna. Each month, 6 L (three 2 L aliquots) of 137 

interstitial water were extracted from the base of each well by manually operating a 138 
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bilge pump, as detailed in Boulton & Stanley (1995). The extracted water was filtered 139 

through a 90 µm-mesh sieve to retain invertebrates. All invertebrate samples were 140 

preserved in the field using a 4 % formaldehyde solution.  141 

 142 

Water temperature (C), dissolved oxygen (DO; mg l
-1

), pH and conductivity (S  143 

cm
-1

) were measured in situ for both surface and interstitial water using standard 144 

instrumentation (Hanna Instruments, Leighton Buzzard). Interstitial water 145 

measurements were recorded from the second 2 L aliquot.  146 

 147 

Laboratory analysis 148 

Invertebrates were identified to the lowest taxonomic resolution possible, in many 149 

cases species level. Some taxonomically demanding groups, including all Diptera 150 

families, Baetidae (Ephemeroptera), Planariidae (Tricladida), Oligochaeta, and all 151 

meiofauna (Ostracoda, Copepoda, Cladocera and Hydracarina), were left at the 152 

taxonomic resolutions stated. Adults and larvae of an individual taxon were 153 

considered as separate taxa due to recognized differences in environmental 154 

requirements (Elliott, 2008).  155 

 156 

Data analysis 157 

Temporal change in surface and interstitial water quality variables (temperature, DO, 158 

pH and conductivity) was analysed using one-way analysis of variance (ANOVA) in 159 

IBM SPSS Statistics 19.0 (IBM Corporation, New York). Levene’s tests were used to 160 

verify the ANOVA assumption of homoscedasticity. Where ANOVA indicated 161 

significant temporal variability, differences between individual months were 162 

examined using Tukey’s post-hoc multiple comparison tests.  163 

 164 

Benthic and interstitial communities were analysed separately, to facilitate 165 

observation of contrasting patterns of temporal change in community composition. 166 

Total invertebrate abundance (TIA), taxon richness (number of taxa), and the 167 

abundance of common taxa were calculated for each month and expressed as the 168 

mean ± 1 standard error. TIA was calculated for all taxa and also for all non-insect 169 

taxa, to acknowledge the influence of seasonal insect emergence on abundance 170 

patterns. ‘Common taxa’ were defined as those comprising >1 % of all individuals 171 

recorded in benthic or interstitial samples. Abundance data were square-root 172 

transformed prior to further analysis. All metrics were then used as dependent 173 

variables in one-way ANOVA tests to determine the significance of temporal 174 

changes, as described for environmental variables.  175 

 176 

Detrended correspondence analysis (DCA) was conducted by segments in the 177 

program CANOCO 4 (ter Braak & Šmilauer, 2006) to examine temporal variability in 178 

invertebrate community composition. Rare species were downweighted and data log 179 

transformed (y’ = log (y + 1)) to reduce the influence of very abundant taxa. The 180 

significance of temporal change in sample scores on axis 1 and 2 was examined using 181 

one-way ANOVA tests. Relationships between axis scores and TIA, taxon richness 182 

and the abundance of individual taxa were examined using Pearson’s correlation 183 

coefficients (r), to determine those parameters having a significant effect on patterns 184 

of community change. 185 

 186 

To examine use of subsurface sediments by benthic invertebrates, the proportion of a 187 

population present in interstitial habitat (i.e. the interstitial proportion of the 188 

population, analogous to the hyporheic proportion sensu Stubbington et al., 2011) was 189 

determined for each month. The interstitial proportion was calculated by dividing a 190 
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taxon’s interstitial abundance by its total (benthic + interstitial) abundance at a 191 

sampling point, facilitating comparison of assemblages sampled using contrasting 192 

methods. The interstitial proportion was calculated for TIA and for individual taxa 193 

which: i) were found predominantly in benthic samples; ii) comprised >1 % of all 194 

interstitial invertebrates, and; iii) were not insects subject to development-related 195 

seasonal changes in vertical distribution. The calculated proportions were arcsine 196 

square-root transformed prior to inclusion in ANOVA tests to analyse temporal 197 

change in the use of interstitial habitat by benthic taxa.   198 

 199 

Results 200 

 201 

Environmental conditions 202 

Surface water temperatures increased from 8.1 ºC in April to 13.4 ºC in July, while 203 

mean interstitial water temperatures were less variable, increasing from 8.5 ºC in 204 

April to 12.8 ºC in July (Fig. 2). Considering both environments, temporal change was 205 

significant (ANOVA, p <0.001) due to successive increases between April, May and 206 

June (Tukey’s tests, p <0.05), but remained within 3.2 ºC of the mean annual air 207 

temperature. Surface water DO concentrations peaked in April, at 12 mg l
-1

, decreased 208 

to 5 mg l
-1

 in August and were particularly low (2.6 mg l
-1

) in September. Interstitial 209 

DO concentrations also peaked in April at 8 mg l
-1

 and mean values varied between 4-210 

6 mg l
-1

 in later months. Considering both environments, temporal variability was 211 

significant (ANOVA, p <0.001) due to the reduction in DO concentrations between 212 

April and June (Tukey’s test, p <0.001). Conductivity peaked at 730 µS cm
-1

 in April 213 

then declined and remained between 550-600 µS cm
-1

 between May and October in 214 

both surface and interstitial waters, before increasing in November (ANOVA, p 215 

<0.001). The pH was stable and circumneutral (7.2-7.6) in both surface and interstitial 216 

waters. 217 

 218 

Invertebrate communities  219 

A total of 17771 individuals from 55 taxa were recorded from the benthic sediments 220 

(Table 1). The family Chironomidae dominated this community, accounting for 36.3 221 

% of all individuals. The Oligochaeta, Ostracoda, Hydracarina, Planariidae, and two 222 

Amphipoda (Crangonyx pseudogracilis and G. pulex) each comprised between 4.0-223 

18.5 % of the community. Lentic water specialists were present at low abundance, 224 

including Berosus affinis (Coleoptera) and Plea leachi (Hempitera). In addition, three 225 

stygobiotic amphipods were recorded: Niphargus aquilex, N. fontanus and Crangonyx 226 

subterraneus the former accounting for 2.2 % of TIA (Table 1). No crenobiotic taxa 227 

(spring specialists) were identified.  228 

 229 

In total, 2747 individuals from 29 taxa were collected from interstitial habitats (Table 230 

1). Of these, 25 were also found in the benthic zone and four were restricted to the 231 

subsurface: Cladocera, Valvata cristata (Gastropoda), an unidentified Diptera larva, 232 

and Proasellus cavaticus (Isopoda), a nationally notable stygobiont (Robertson et al., 233 

2009). Ostracoda were numerically dominant (59.1 %), and Copepoda, Chironomidae, 234 

G. pulex and Oligochaeta each accounted for 2.2-13.6 % of the community. N. 235 

aquilex, N. fontanus, C. subterraneus and P. cavaticus comprised the stygobiotic 236 

component of the interstitial community, while a coarse taxonomic resolution 237 

prevented assignment of habitat preferences to other taxa and no crenobionts were 238 

recorded. 239 

 240 

Temporal change in the benthic invertebrate community  241 
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Mean benthic TIA peaked at 846 ± 358 individuals (ind.) m
-2

 in July, before 242 

decreasing in each subsequent month to 130 ± 10 ind. m
-2

 in November; these 243 

temporal changes were not significant (ANOVA, p = 0.110). TIA was influenced by 244 

seasonal development and emergence of insect taxa, particularly the Chironomidae, 245 

and exclusion of insects from this analysis shifted peak abundance to August 246 

(ANOVA, p <0.05). Abundance peaks varied between common non-insect taxa, 247 

occurring in April for Ostracoda, June for Hydracarina and Planariidae, and August 248 

for Oligochaeta, G. pulex (Fig. 3a) and C. pseudogracilis (Fig. 3b); these changes 249 

were not significant (ANOVA, p >0.05). Mean taxon richness was lower in 250 

September (13.6 ± 1.0 taxa 0.1 m
-2

) and October (13.2 ± 1.0 taxa 0.1 m
-2

) than in 251 

other months (≥16.6 ± 0.5 taxa 0.1 m
-2

); temporal change was not significant 252 

(ANOVA, p = 0.492). 253 

 254 

Axis 1 of the benthic community DCA explained 21.1 % of the variation in the 255 

species data (Fig. 4a). Sample scores on axis 1 changed significantly over time, 256 

increasing between April and September then decreasing moderately in later months 257 

(ANOVA, p <0.001). Moderate (r = -0.41–0.63), significant (p <0.01) negative 258 

correlations with axis 1 scores were recorded for TIA, taxon richness, and the 259 

abundance of Limnephilus lunatus, Valvata piscinalis, Hydracarina, Asellus and 260 

Drusus annulatus. Positive correlations with this axis were highly significant for 261 

Haliplus lineatocollis adults and Haliplus spp. larvae (both r = 0.68, p <0.001). Axis 2 262 

explained an additional 8.6 % of community variation. Sample scores did not vary 263 

significantly between months on axis 2 (ANOVA, p = 0.182) but were negatively 264 

correlated with G. pulex abundance (r = -0.66, p <0.001).   265 

 266 

Temporal change in interstitial invertebrate community 267 

Mean interstitial TIA peaked in November (251 ± 208 ind. 6 L
-1

), due to exceptionally 268 

high ostracod abundance, was also high in June (109 ± 29 ind. 6 L
-1

) and was lowest 269 

in September (12 ± 3 ind. 6 L
-1

); these changes were not significant (ANOVA, p = 270 

0.120) and exclusion of insect taxa had no significant effects on the observed patterns 271 

(ANOVA, p = 0.430). Considering predominantly benthic non-insect taxa, G. pulex 272 

abundance peaked in October, was also high in July and was low in all other months 273 

(p = 0.140; Fig. 3a). The other common benthic amphipod, C. pseudogracilis, 274 

occurred at very low abundance in interstitial habitats (Fig. 3b). The abundance of all 275 

stygobionts was low and temporally variable, for example a single P. cavaticus was 276 

recorded in July; seven C. subterraneus were found in May; and N. aquilex abundance 277 

peaked at nine individuals in August. Taxon richness was particularly high in 278 

November (10 ± 0.5 taxa 6 L
-1

), partly due to the occurrence of new Diptera families 279 

at low abundance. Richness in November was significantly higher than in April, 280 

September, October and May (Tukey’s tests, p <0.05), the latter month having lowest 281 

mean richness (4 ± 0.5 taxa 6 L
-1

). 282 

 283 

Axis 1 of the interstitial DCA ordination (Fig. 4b) explained 15.5 % of the variance in 284 

the species data. Sample scores changed significantly over time on this axis (p 285 

<0.001) but followed no clear trajectory, being highest in April and August and 286 

particularly low in July. Axis 2 explained a further 9.2 % of the community variance, 287 

and temporal change was again significant (p <0.01) due to low sample scores in May 288 

(Fig. 4b). The abundance of Niphargus aquilex was positively correlated with axis 1 289 

scores (r = 0.46, p <0.01), while the chironomid abundance was negatively correlated 290 

with axis 2 (r = -0.49, p = 0.001). 291 

  292 

Proportion of benthic invertebrates in interstitial habitats 293 
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The interstitial proportion of the total (benthic + interstitial) population was calculated 294 

for TIA and two taxa which fulfilled the stated criteria: G. pulex and Oligochaeta. The 295 

interstitial proportion of TIA varied considerably between months, declining 296 

gradually between June (0.22 ± 0.12) and September (0.03 ± 0.01) then peaking at 297 

0.37 ± 0.14 in November due to high ostracod abundance (ANOVA, p <0.05). The 298 

interstitial proportion of the G. pulex population increased gradually from April (0.11 299 

± 0.10) to July (0.60 ± 0.23), fell in September (0.10 ± 0.09), then increased to 1 in 300 

October, when all 53 individuals occurred in interstitial habitat (ANOVA, p <0.01; 301 

Fig. 3a); all significant differences related to comparisons between this October value 302 

and earlier months (Tukey’s tests, p <0.05). The interstitial proportion of the 303 

Oligochaeta was low (<0.1) and comparable in all months (ANOVA, p = 0.790).  304 

 305 

Discussion 306 

 307 

Environmental conditions 308 

Water temperatures in the spring peaked at 13.4 ºC and 12.8 ºC in surface and 309 

interstitial water respectively, considerably lower than equivalent values (19.5 ºC and 310 

20.4 ºC) at the river site 1.5 km downstream (Fig. 1; Wood et al., 2010). The 311 

temperature range was also low in the spring: 5.3 ºC and 4.3 ºC in surface and 312 

interstitial water, respectively, compared to and 9.5 ºC and 11.4 ºC at the river site. 313 

Both surface and interstitial water were therefore characterized by relative thermal 314 

stability at the spring, as is typical of groundwater-fed headwaters (Mackey & Berrie, 315 

1991, Barquín & Death, 2011). DO concentrations were reduced in August and 316 

September, despite decreases in temperature and potential increases in upwelling 317 

water velocities (see Wood et al., 2010); the absence of a clear pattern may reflect 318 

complex pathways of  interstitial flow and/or biological activity in the chalk aquifer 319 

(Malard and Hervant 1999).  320 

 321 

The spring as an invertebrate refuge  322 

Few studies have compared the invertebrate communities of springs and their 323 

associated streams (Smith & Wood, 2002, von Fumetti et al., 2007, Wood et al., 324 

2005). While the present study examined only a limnocrene spring, comparisons with 325 

lotic reaches of the Little Stour are possible using previously published data 326 

(Stubbington et al., 2009, Wood et al., 2010). In this system, longitudinal linkages are 327 

rarely severed by streambed drying, and never by drying of the spring. This 328 

connectivity increases the potential of the spring to act as a refuge for benthic taxa 329 

that predominantly inhabit lotic waters.   330 

 331 

Mobile taxa capable of upstream migrations may exploit nearby refuges during 332 

droughts (Henry & Danielopol, 1998, Wood et al., 2005). Such migrations are largely 333 

restricted to strong swimmers, exemplified in the Little Stour by G. pulex and C. 334 

pseudogracilis. Amphipod metabolic and behavioural activities are positively related 335 

to temperature (Williams, 1980, Lagerspetz & Vainio, 2006), and upstream 336 

migrations may be promoted by moderate temperature increases (Hultin, 1971). The 337 

benthic abundance of both G. pulex and C. pseudogracilis was particularly high in 338 

August (Fig. 3) and these sudden, temporary, abundance peaks may be lagged 339 

evidence of migrations from downstream lotic reaches exposed to elevated 340 

temperatures in July; further research employing multidirectional cage traps (e.g. 341 

Elser, 2001) would be required to test this hypothesis.   342 

 343 

Wood et al. (2010) attributed peak hyporheic abundance of G. pulex to vertical 344 

migrations triggered by high water temperatures. The maximum surface water 345 
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temperature recorded by Wood et al. (2010) was 22.7 
o
C, which promotes high 346 

metabolism and activity in G. pulex (Wijnhoven et al., 2003, Maazouzi et al., 2011). 347 

Equally, survival may decline at only 20 
o
C (Maazouzi et al., 2011); Wijnhoven et al. 348 

(2003) also recorded stress responses at >25 
o
C. In addition, amphipods acclimatize to 349 

prevailing temperatures (Lagerspetz & Vainio, 2006, Maazouzi et al., 2011) and so 350 

may not tolerate rapid-onset extremes (Buchanan et al., 1988). Given that 351 

temperatures recorded in the Little Stour were close to the tolerance thresholds of G. 352 

pulex, its increased abundance in the cooler sediments of both the spring and the 353 

river’s hyporheic zone (Wood et al., 2010) may partly reflect refuge-seeking 354 

behaviour. However, there is little existing evidence that amphipods follow thermal 355 

gradients into cooler waters, and the proposed vertical and longitudinal migrations 356 

would also have involved atypical movement against a DO gradient (Henry & 357 

Danielopol, 1998). Therefore, migrations in both vertical and longitudinal dimensions 358 

may reflect a temperature–induced increase in activity. Positive rheotaxis combined 359 

with increased activity levels may have manifested as upstream migrations (Hultin, 360 

1971, Stanley et al., 1994) and the consequent entrance of amphipods into the 361 

headwater spring. 362 

 363 

Seasonal changes may also have contributed to the August peaks in amphipod 364 

abundance (Fig. 3). While several studies have noted stable G. pulex abundance 365 

during summer (Macan & Mackereth, 1957, Mortensen, 1982, Stubbington et al., 366 

2011), late summer peaks may also occur (Welton, 1979), and in the Little Stour high 367 

temperatures may have promoted reproduction and population expansion. Sutcliffe et 368 

al. (1981) noted maximum juvenile growth rates at 20 ºC, and Moenickes et al. (2011) 369 

reported comparable maxima. Considering: i) that mean brood size may exceed 30 370 

eggs in G. pulex and 70 eggs in C. pseudogracilis (Sutcliffe, 1993); ii) the positive 371 

relationship between brood development time and water temperatures up to 20 ºC (G. 372 

pulex; Sutcliffe, 1993) or 25 ºC (C. pseudogracilis; Sutcliffe & Carrick, 1981) and; 373 

iii) a development time as short as 16 days (G. pulex; Welton & Clarke, 1980), high 374 

reproductive activity may have contributed to the amphipod population increase 375 

recorded between July and August. However, no such increase was observed in 376 

downstream reaches (Wood et al., 2010).  377 

 378 

Regardless of temporal changes in abundance, the spring provided a passive refuge 379 

from extreme temperatures for all invertebrates present. Of the 55 taxa recorded in the 380 

benthic zone of the spring, 34 were also found at the nearest downstream site (Fig. 1; 381 

Table 1) and only eight taxa were not noted further downstream (Wood et al., 2010). 382 

This community nestedness indicates that, despite contrasting environmental 383 

characteristics, the lentic spring acted as a refuge for a substantial subset of the stream 384 

fauna, in which taxa persisted during the drought, and from which individuals could 385 

recolonize downstream reaches following the end of the disturbance.  386 

 387 

Subsurface sediments as an invertebrate refuge 388 

Wood et al. (2010) noted invertebrate migrations into the hyporheic zone during a 389 

period of elevated surface water temperatures in the stream, but the thermal stability 390 

of the spring removed this migration trigger. It was therefore predicted that no 391 

thermally-driven migrations into deeper sediments would occur at the spring, and 392 

accordingly, no significant changes in the interstitial abundance and/or interstitial 393 

proportion of common, predominantly benthic, non-insect taxa were observed during 394 

peak temperatures. However, the interstitial proportion of the G. pulex population did 395 

vary considerably between months, increasing gradually from 0.11 in April to 0.60 in 396 

July, which coincided with a moderate temperature increase. This correlation may 397 
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indicate vertical range extension stimulated by increased activity rather than refuge-398 

seeking behaviour (Hultin, 1971, Stubbington, 2012), although a link between 399 

temperature and burrowing activity has not been confirmed. The migration of the 400 

entire G. pulex population into interstitial habitat in October occurred during moderate 401 

hydrological conditions, after flow had begun to recover (Wood et al., 2010); this 402 

migration remains unexplained and contradicts previous research suggesting that 403 

upwelling groundwater impedes downward movements into subsurface sediments 404 

(Stubbington et al., 2011).  405 

 406 

C. pseudogracilis occurred at very low abundance in interstitial habitat throughout the 407 

study. Previous research has recorded C. pseudogracilis in subsurface habitats (Martin 408 

et al., 2009), populations may be groundwater-adapted (Gibson et al., 2008), and the 409 

taxon may migrate into deeper sediments to survive surface drying in temporary 410 

waters (Holsinger & Dickson, 1977, Harris et al., 2002). In addition, the larger G. 411 

pulex predates C. pseudogracilis (Dick, 1996), and subsurface sediments are a 412 

potential refuge from biotic interactions (Stubbington et al., 2011). However, despite 413 

their morphological similarity, the habitat preferences of C. pseudogracilis and G. 414 

pulex differ (MacNeil et al., 1999), and the scarcity of the former taxon in interstitial 415 

sediments suggests that some undetermined feature of this habitat (e.g. water 416 

chemistry or pore size distribution) was unsuitable.  417 

 418 

Droughts increase groundwater residence times in deep sediments (Manga, 1999, 419 

McGuire et al., 2002) and resultant hypoxia may trigger the migration of stygobionts 420 

into shallower substrates (Wood et al., 2010). Accordingly, Wood et al. (2010) 421 

recorded a significant increase in groundwater Crustacea in the Little Stour hyporheic 422 

zone in July, which coincided with peak temperatures as flows receded. Similar 423 

evidence of upward migrations at the spring is limited: N. aquilex abundance peaked 424 

in August, P. cavaticus was only recorded in July, and C. subterraneus was most 425 

abundant in May; no temporal changes were significant. Stygobionts are tolerant of 426 

low oxygen availability (Danielopol et al., 1994, Malard & Hervant, 1999) and so 427 

may have been unaffected by changes in water chemistry at a site dominated by 428 

upwelling groundwater.   429 

 430 

Refuges at the stream scale 431 

The interstitial habitat of the hyporheic zone has been posited as a vital component in 432 

the suite of refuges available to benthic invertebrates at sub-reach scales (Stubbington, 433 

2012). However, while individual invertebrates always act at the smallest spatial 434 

scales (Lancaster, 2008), recolonisation following a disturbance can occur at the 435 

segment scale and, over time, at the stream scale, particularly in small systems such as 436 

chalk streams (Dole-Olivier, 2011). It is therefore appropriate to place individual 437 

refuges in a stream context, and the conceptual model presented in Fig. 5 outlines the 438 

survival options available to invertebrates at disturbance onset. Using the drought-439 

impacted Little Stour as an example, tolerant, eurytopic and sedentary taxa may 440 

remain in affected habitats such as warm, shallow riffles in preference to expending 441 

energy (Fig. 5). Other individuals may actively follow thermal gradients (Wood et al., 442 

2010) into subsurface sediments, but interstitial habitats present their own challenges 443 

to inhabitation and invertebrates may therefore remain in the benthic zone (James et 444 

al., 2008). Near the sediment surface, refuge-seeking behaviour includes localized 445 

lateral movements into habitats such as deep pools (Covich et al., 2003), and mobile 446 

taxa such as amphipods may undertake longitudinal migrations. While active and 447 

passive drift to downstream refuges are less energetically expensive, positively 448 

rheotactic behaviour favours active upstream migrations (Stanley et al., 1994), and 449 
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during drought, such movements may be promoted by elevated temperatures (Hultin, 450 

1971) and facilitated by slow flow velocities (Hughes, 1970).    451 

 452 

Conclusion  453 

The few studies that have considered concurrent benthic and interstitial (hyporheic) 454 

invertebrate responses to environmental variability have noted divergent trajectories 455 

of community change (Belaidi et al., 2004, Wood et al., 2010, Stubbington et al., 456 

2011, Datry, 2012). While our study was unique in examining these communities in a 457 

limnocrene spring, the typical pattern was observed: a temporally homogeneous 458 

interstitial community including both benthic and stygobiont taxa (Fig. 4b), and a 459 

diverse, temporally variable benthic fauna (Fig. 4a). In addition, comparison with 460 

published data from downstream lotic reaches (Wood et al., 2010) identified 461 

contrasting benthic community responses to drought in adjacent spring and stream 462 

habitats. With climate change scenarios predicting increases in air temperature and 463 

drought frequency (Solomon et al., 2007, Kundzewicz et al., 2008), this study 464 

highlights perennial headwaters and interstitial habitats as vital refuges that promote 465 

invertebrate persistence at the stream-system scale (Frissell et al., 1986). The 466 

importance of these habitats should be recognized in management and rehabilitation 467 

activities seeking to enhance community survival during drought disturbances.  468 
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Table 1: Taxa present in the benthic zone (BZ) and interstitial habitat (IH) of the 765 

lentic headwater spring of the Little Stour River and a lotic reach 1.5 km downstream 766 

(Fig. 1); data from the latter site have been published by Wood et al. (2010). Numbers 767 

indicate the % contribution of a taxon to total invertebrate abundance (TIA), where 768 

TIA = 17771 individuals in the spring BZ, 2747 in the spring IH, 8231 in the river 769 

BZ, and 1152 in the river IH.  770 

  Headwater spring River site 

Group Species BZ IH BZ IH 

TURBELLARIA      
Planariidae  4.2  1.3 0.9 
OLIGOCHAETA  18.5 2.2 7.3 2.7 
HIRUDINEA      
Erpobdellidae Erpobdella octoculata 0.7  1.4 <0.1 
Glossiphoniidae Glossiphonia complanata 0.1  0.5  
 Glossiphonia heteroclita <0.1    
 Helobdella stagnalis <0.1 <0.1 0.4  
 Theromyzon tessulatum   <0.1  
Piscicolidae Piscicola geometra <0.1 <0.1 <0.1 <0.1 
MOLLUSCA      
Hydrobiidae Potamopyrgus antipodarum   <0.1  
Lymnaeidae Lymnaea peregra 0.2  <0.1  
Physidae Physa fontinalis <0.1  <0.1 <0.1 
Planorbidae Planorbarius corneus   <0.1  
 Planorbis planorbis   <0.1  
 Planorbis vortex   0.1  
Sphaeriidae  <0.1  0.7 0.3 
Valvatidae  Valvata cristata  <0.1 <0.1  
 Valvata piscinalis 0.3 <0.1 <0.1  
HYDRACARINA  4.9 1.6 0.4 0.2 
CRUSTACEA      
Cladocera   1.0 <0.1 <0.1 
Copepoda  0.7 13.6 <0.1 3.1 
Ostracoda   11.9 59.1 2.9 3.6 
Asellidae Asellus aquaticus 2.7 0.2 0.3 0.9 
 Proasellus meridianus 2.7 0.3 0.1 1.2 
 Proasellus cavaticus  <0.1   
Crangonyctidae Crangonyx pseudogracilis 4.5 0.1 <0.1 <0.1 
 Crangonyx subterraneus 0.3 0.6   
Gammaridae Gammarus pulex 4.0 6.4 47.8 44.4 
Niphargidae Niphargus aquilex 2.2 0.8  2.5 
 Niphargus fontanus <0.1    
PLECOPTERA      
Nemouridae Nemurella picteti <0.1    
EPHEMEROPTERA      
Baetidae   <0.1 0.1 1.8 1.6 
Caenidae Caenis horaria   1.6 0.2 
 Caenis sp. (luctuosa group)   0.2 <0.1 
Ephemerellidae Serratella ignita <0.1  1.6 0.7 
TRICHOPTERA      
Glossosomatidae Agapetus fuscipes <0.1  21.9 23 
Goeridae Silo nigricornis <0.1 0.4 0.2  
Hydropsychidae Hydropsyche siltalai <0.1  1.3 0.2 
Hydroptilidae Hydroptila spp. <0.1 <0.1 0.2  
 Oxyethira spp. 0.1    
Leptoceridae Athripsodes spp.   0.2 0.2 
 Mystacides spp.   <0.1 0.2 
Limnephilidae Drusus annulatus 0.2 0.7   
 Limnephilus lunatus 0.2 0.3 <0.1  
Polycentropodidae Plectrocnemia conspersa <0.1    
 Polycentropus flavomaculatus <0.1    
Psychomyiidae Tinodes waeneri   <0.1  
Rhyacophilidae Rhyacophila dorsalis   <0.1  
Sericostomatidae Sericostoma personatum 0.1  0.3 <0.1 
ANISOPTERA  <0.1    
MEGALOPTERA      
Sialidae  Sialis lutaria 0.2  <0.1  
HEMIPTERA      
Corixidae  <0.1    
Pleidae Plea leachi <0.1    
COLEOPTERA (adult unless otherwise stated)     
Curculionidae  <0.1    
Dytiscidae Stictotarsus duodecimpustulatus <0.1    
 Unidentified (larvae) <0.1 <0.1   
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Elmidae Elmis aenea <0.1  0.2  
 Elmis aenea (larvae) <0.1  0.6 0.4 
 Limnius volckmari (larvae)   0.4  
 Oulimnius spp. (larvae)   <0.1  
Haliplidae Brychius elevatus   <0.1  
 Haliplus confinis  <0.1    
 Haliplus lineatocollis  2.0 <0.1   
 Unidentified (larvae) 2.8 0.2 <0.1  
Hydrophilidae Berosus affinis <0.1    
Hygrobiidae Hygrobia hermanni <0.1    
DIPTERA      
Ceratopogonidae  0.1 <0.1 0.3 0.2 
Chironomidae  36.3 0.4 5.8 12.0 
Empididae  <0.1 <0.1 <0.1  
Ephydridae  <0.1    
Limoniidae  <0.1  0.2  
Psychodidae  <0.1 <0.1 <0.1  
Simuliidae    0.6 0.7 
Stratiomyidae    <0.1  
Unidentified (larvae)   <0.1 <0.1  
Unidentified (pupae)  <0.1    

771 
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Figure legends 772 

 773 

Fig. 1: Map of the Little Stour River headwaters, indicating the location of the spring 774 

source and a river site studied by Wood et al. (2010). 775 

 776 

Fig. 2: Maximum daily air temperature at Manston (51º 34.6'N 1º 33.4'E) and mean 777 

surface and interstitial water temperature in the Little Stour River spring source, April 778 

to November 2006. 1 SE was ≤0.22 
o
C in all cases. 779 

 780 

Fig. 3: Mean ± 1 SE benthic and interstitial abundance of a) Gammarus pulex and b) 781 

Crangonyx pseudogracilis between May and November 2006. Abundance data are 782 

presented as individuals per sample for both benthic (0.1 m
2
) and interstitial (6 L) 783 

samples. 784 

 785 

Fig. 4: Detrended correspondence analysis (DCA) sample plots for the invertebrate 786 

community of the Little Stour River spring source, between April and November 787 

2006: a) benthic sediments; b) interstitial sediments.  788 

 789 

Fig. 5: Benthic invertebrate drought refuges at the stream scale. Thick lines indicate 790 

active migrations, thin lines indicate passive movements. An amphipod (Crustacea) 791 

and a chironomid (Diptera) are depicted (not to scale), as representative highly mobile 792 

and sedentary benthic invertebrate taxa, respectively. 793 
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Fig. 4 859 
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