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Summary 1 

A study was conducted to evaluate a natural carbohydrate fraction (NCF) derived from mannan 2 

oligosaccharide in feed on growth performance, intestinal morphology and goblet cell number and 3 

area of male broilers. Dietary treatments included: 1) control diet (antibiotic and NCF free), 2) 4 

NCF at 200g/t, 3) NCF at 400g/t, and 4) NCF 800g/t. Birds were placed into 12 replicate 5 

pens/treatment (5 birds/pen). Body weight and feed intake were recorded weekly to day 42. At this 6 

time a 2.5cm section of jejunum and duodenum were excised post mortem for morphological 7 

analysis.  Birds fed 200g/t and 800g/t NCF were significantly (P<0.01) heavier from day 14 8 

onwards than the control birds. Feed intake was significantly increased for birds fed 200g/t NCF 9 

over the control in weeks 3 and 5 (P<0.05). Diet including 200g/t and 800g/t of NCF significantly 10 

decreased the FCR over the control in the first phase (1-14 days) (P<0.01), in the second phase all 11 

inclusion levels of NCF decreased FCR (P<0.05). NCF had no significant effect on villus height, 12 

villus width, crypt depth or villus to crypt ratio in either duodenum or jejunum. NCF did not 13 

significantly affect goblet cell area or goblet cell number in the duodenum, however in the jejunum 14 

800g/t NCF significantly (P<0.05) increased goblet cell area over the control. In conclusion under 15 

the conditions of this trial NCF showed a positive effect on performance in the starter and grower 16 

phases, and increased goblet cell area in the jejunum, suggesting higher levels of mucin production. 17 

This indicated that the performance benefit of NCF could be age-dependent with younger birds 18 

responding more than the older ones. In the conditions of the poultry research unit, there were no 19 

additional benefits to performance when feeding NCF for a longer period (post 4 weeks), however 20 

it is postulated that birds fed NCF would have greater defence to pathogenic challenge through 21 

increased storage capacity of mucin. 22 
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INTRODUCTION 24 

Over the past few years there has been increased concern about antibiotic resistant bacteria and the 25 

inclusion of antibiotics in animal diets for growth promotion. This led to the ban of a number of 26 

antibiotics growth promoter (Dibner & Richards, 2005). Since the EU ban on using antibiotic as 27 

growth promoters in 2006 (Huff, et al., 2006), there has been an increase in the incidence of 28 

endemic diseases in poultry (Chee, 2008), in addition to reports of slower growth and higher 29 

disease challenges causing significant economic losses (Thomke & Elwinger, 1998) and negative 30 

welfare implications for poultry. In particular the gut health has been affected. Without a healthy 31 

intestinal tract a broiler cannot reach its full performance potential. Due to this there has been a 32 

drive in the market for feed supplements that will improve health and production of poultry but 33 

remain safe for humans. The morphological structure of the gastrointestinal tract (GIT) offers key 34 

information to judge gut health. Longer, thinner villi are considered to indicate that the bird will 35 

have a better ability to absorb nutrients, due to the increased surface area (Gao, et al., 2008). Shorter 36 

villi height (VH) and deeper crypt depth (CD) are associated with decreased digestibility of 37 

nutrients (Zhang, et al., 2005). Deeper CD are considered a negative indication of gut health 38 

because new epithelial cells are produced in the crypts and migrate along the villi to the tip (Gao, 39 

et al., 2008), therefore deeper CD indicates that there is a higher tissue turnover of epithelium cells. 40 

It is thought that the faster turnover of tissue is due to the host’s compensating for villus atrophy 41 

due to inflammation resulting from pathogens and their toxins (Gao, et al., 2008).  42 

Mannan oligosaccharides (MOS) are mannose-based carbohydrates it can be derived from yeast 43 

cell walls and have a prebiotic function (Chee, 2008). MOS has been shown to have a positive 44 

effect on gut heath, by binding to enteropathogens, inhibiting their proliferation and stimulating 45 

specific microbial populations in the GIT (Spring, et al., 2000; Kocher, et al., 2004). This leads to 46 
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increased VH and decreased CD, which may in turn improve nutrient absorption (Santin et al 2001; 47 

Sims, 2004; Mourão et  al., 2006).  Goblet cells are found in the epithelial layer along the villi of 48 

the bird’s GIT. Goblet cells produce and secrete mucin glycoproteins that make up part of the 49 

mucus layer, which protects the intestinal surface against damage by bacterial and environmental 50 

toxins, microorganisms and some coarse dietary components (Santos et al., 2007). Several studies 51 

have also found that feeding MOS increases the number and/or the volume of goblet cells found in 52 

the small intestinal tract (Baurhoo, et al., 2009; Brummer, et al., 2010). It has not only been found 53 

that MOS has increased the number of goblet cells but also their size (Uni and Smirnov, 2006). 54 

Mucin is also thought to be beneficial to developing the innate immune system (Koutsos and Arias, 55 

2006).  56 

Actigen™ (Alltech Inc. Nicholasville, Kentucky, USA), is a specific natural carbohydrate fraction 57 

(NCF) that has been derived from the cell wall of saccharomyces cerevisiae. NCF should contain 58 

a high affinity for the mannose- specific type-1 fimbriae of pathogenic bacteria such as Escherichia 59 

coli. (Ofek,  et al., 1977) and salmonellae (Spring, et al., 2000; Miguel, et al., 2004). The objective 60 

of this study was to evaluate the effect of this specific natural carbohydrate fraction isolated from 61 

yeast cell wall oligosaccharides, on VH, CD and the goblet cell profiles of broilers. 62 

MATERIALS AND METHODS 63 

Two hundred and forty day-old male Ross 308 birds were placed in 48 different pens, each 64 

containing 5 birds and fed 1 of 4 dietary treatments (12 replicates for each treatment). The diets 65 

were randomly allocated to remove any effect of the room environment on the study. The room 66 

temperature was initially adjusted to 32oC and then gradually lowered to reach approximately 21oC 67 

by d 21. Temperature was monitored on a daily basis and light was 23D:1L for the duration of the 68 

experiment. Birds were kept with a stocking density aiming for a 30kg per m2 on day 42. Birds 69 
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were provided with ad libitum access to water and feed. Feed was a wheat/soya based mash 70 

containing no enzymes or coccidiostats. The trial lasted 42 days with a 3 phase feeding programme, 71 

starter (1 to 14 d); grower (15 to 28 d) and finisher (29 to 42 d). The basal diet was formulated and 72 

made by Target feeds (Coton, Whitchurch, Shropshire, UK), formulations are shown in table 1. 73 

The dietary treatments were then added to the basal diet. The 4 dietary treatments were; 1) control 74 

diet (antibiotic and NCF free), 2) NCF at 200g per tonne, 3) NCF at 400g per tonne, and 4) NCF 75 

800g per tonne. Weekly and overall feed intake and weight gain was recorded of birds prior to 76 

culling on day 42. At this time a 2.5cm section of jejunum and duodenum were removed and 77 

immediately rinsed with PBS solution. The tissue was then placed in Bouin’s fixative for 8 hours 78 

and then stored in 70% industrial methylated spirits. The tissue samples were then embedded in 79 

paraffin and cut at 8µm using a rotary microtome (Leitz Wetzlar 1512 microtome Leitz, Milton 80 

Keynes, Bucks, UK). The sections were stained with a combination of 1% alcian blue (pH 2.5) and 81 

periodic acid-Schiff’s reagent. The following measurements were taken using a light microscope; 82 

CD, villus height (VH), villus width (VW), villus/crypt ratio (VCR), and goblet cell area and 83 

number of the jejunum. VH was measured as the length between the villus-crypt axis and the tip 84 

of the villus (20 villi per sample, 240 per treatment). 85 

The VW was measured at the midpoint between the villus-crypt axis and the tip of the villus. CD 86 

was measured from the villus-crypt axis to the base of the specific crypt. Goblet cell area was 87 

measured as the “cup” area of the goblet cells (µm2). Two hundred measurements (10 88 

measurements on 20 villi) were made for each intestinal sample. Goblet cell density was 89 

determined as the number of goblet cells per 165µm. Gut morphology was analysis using an 90 

Olympus BX51 microscope fitted with an Olympus DP71 camera (Olympus Microscopy, Essex, 91 

UK) and Cell F software (Olympus Europa GmbH, Hamburg) was used for all measurements. Gut 92 
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morphology measurements and performance data were analysed using SPSS software version 12 93 

for Windows; First the data was analysed for normality. If the data was normally distributed a 1-94 

way ANOVA was used, if the data was not normally distributed a Kruskal-Wallis test was 95 

performed. Treatment means were separated using the Bonferroni’s post hoc test, and statistical 96 

significance was declared at P < 0.05. Institutional and national guidelines for the care and use of 97 

animals were followed and all experimental procedures involving animals were approved by the 98 

Nottingham Trent University College of Science ethical review committee. 99 

RESULTS AND DISCUSSION  100 

The live body weight is presented in table 2. Significant (P<0.01) differences between treatments 101 

were observed for body weight on days 14, 21, 28, 35 and 42, generally 200g/t and 800g/t NCF 102 

increased live weight over the control. Feed intake was significantly increased for birds fed 200g/t 103 

of NCF over the control in weeks 3 and 5 (respectively P = 0.021, P = 0.025, data not shown). The 104 

FCR is presented in table 2, a significant difference was observed for the first and second phase of 105 

feeding. Diet including 200g/t and 800g/t of NCF significantly decreased the FCR over the control 106 

in the first phase (P<0.01), whereas in the second phase all inclusion levels of NCF decreased FCR 107 

(P<0.05). However the FCR seen in week one for the control and 400g/t NCF is abnormally high 108 

for nutritionally complete diets, indicating excessive spillage. 109 

Morphometric measurements from the stained slides are shown in table 3. It was observed that 110 

NCF had no significant effect on VH, VW, CD or VCR in either the jejunum or duodenum.   111 

When looking at the goblet cell number and area in the duodenum  (table 4), it is observed that the 112 

diets including NCF did not significantly affect goblet cell area, goblet cell number per 165μm or 113 

goblet cell measurements as a ratio, however in the jejunum 800g/t NCF significantly (P<0.05) 114 

increased goblet cell area over the control.  115 
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Supplementation of 200g/t and 800g/t of NCF significantly increased weekly bird body weights 116 

compared to the control diet from 14 days, but the inclusion level of 400g/t NCF did not 117 

significantly change body weight from the control. This indicates that there may be two 118 

mechanisms behind the observed response to supplementation; one occurring at the lowest 119 

inclusion and one occurring at the highest inclusion, with apparently antagonist effects at the 120 

middle inclusion level. This contradicts both Reisinger et al. (2012) and Gao et al. (2008) who 121 

found a positive quadratic response in broiler body weight to a yeast derivative and yeast cell 122 

culture respectively. The authors suggest an explanation for these findings is that higher inclusion 123 

levels may be interacting with the immune system causing energy to be partitioned towards the 124 

immune system, rather than supporting growth. Whilst this mechanism may explain the observed 125 

response at 400g/t NCF, it does not support the improved performance at 800g/t NCF.  126 

Increased body weight following supplementation with MOS (such as that observed at 200g and 127 

800g/t in the current study) is often attributed to reduced effects of pathogenic bacteria in the 128 

intestinal tract as the binding of pathogenic bacteria to MOS results in their evacuation from the 129 

intestine with other non-digested feedstuffs (Spring et al., 2000). This may have reduced sloughing 130 

of villi in birds fed MOS thereby contributing to increased performance compared to the control, 131 

due to an increased capacity to absorb nutrients (Sun et al. 2005). When feeding NCF to broilers it 132 

could be postulated that birds will also have longer VH and shorter CD via a similar reduction in 133 

sloughing, because Spring et al. (2000) reported that pathogens with the mannose-specific type-1 134 

fimbriae, such as some strains of Escherichia coli, Salmonella typhimurium and Salmonella 135 

enteritidis, are attracted to mannans, which are reported to be present in NCF (Che, et al., 2012), 136 

and readily bound with them instead of attaching to intestinal epithelial cells (Castillo, et al., 2008). 137 

Therefore these pathogenic bacteria cannot colonise the GIT and release toxins. These bacterium 138 
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and their toxins can cause inflammation that in turn cause atrophy of the epithelial cells of the villi 139 

(Gao, et al., 2008), thus reducing the absorptive function of the gut through shorter VH and deeper 140 

CD (Yason, et al., 1987). If the NCF bind the pathogenic bacteria and reduce the level of these 141 

bacteria in the GIT, there will be less villi damage in the gut therefore improving the gut health of 142 

the bird. To compensate for this atrophy the bird has to increase it’s tissue turn over, and as 143 

epithelial cells are produced in the crypts and migrate along the villi to the tip, it is thought that the 144 

higher turnover in the crypt cell cause it to become deeper (Gao, et al., 2008). Therefore shallower 145 

CD are considered a good indicator of gut health. MOS are also thought to increase the number of 146 

beneficial bacteria in the gut.  147 

Morphometric analysis at 6 weeks revealed that NCF had no significant effect on the gut 148 

morphology of the birds at this time point. A possible reason why no effect was evident in the gut 149 

morphology and performance of birds fed NCF at 6 weeks, may be due to the birds not being 150 

challenged with pathogenic microbes at this point. This trial supports the VH findings of White, et 151 

al. (2002) in pigs and Yitbarek et al. (2012) and Sohail et al. (2012) in broilers when feeding MOS. 152 

However, Iji et al. (2001) and Zhang et al. (2005) found that birds fed yeast cell wall fractions had 153 

longer VH than control birds at 21 days. Similarly, Baurhoo et al. (2007) measured VH and found 154 

that MOS improved VH at 28 days but not at 42 days. A similar, early age response may have 155 

occurred in this present study, but as histological measures were not taken at 21 or 28 days this 156 

cannot be verified. 157 

When looking at CD, Zhang et al. (2005), Yitbarek et al. (2012) and Sohail et al. (2012) found 158 

feeding MOS had no effect on CD in birds, which was also shown in this study. Santin et al. (2001) 159 

also saw no effect of MOS at 42 days, however, decreased CD was seen when feeding MOS at 7 160 

days. In addition, this present study found no effect on VCR, which can be used as a marker of 161 
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overall intestinal health as it takes into account both CD and VH. This trial included a total of 240 162 

measures for each treatment, which is a considerable amount and therefore it should be noted that 163 

taking more measures to try and reduce associated error would have major time and cost 164 

implications. The inherent variability both in this study and other studies suggests that measuring 165 

VH and CD may not be an optimal approach to quantifying gut health.  166 

This study showed that the greatest benefit of NCF to FCR occurred at the beginning of the trial, 167 

indicating there may be an optimum time for the supplementation of NCF to increase the efficiency 168 

of the birds. This may be due to the fact that the gut microflora of younger birds is more transient 169 

in nature and less established than in older birds and therefore more susceptible to colonisation by 170 

pathogenic bacteria. Therefore prebiotic intervention may shorten the time required to create a 171 

beneficial microflora population if it is offered early in life. However, similar studies have found 172 

variable early performance effects (Zhang et al., 2005; Iji et al., 2001; Sun et al., 2005; Midilli et 173 

al., 2008). In this study it was generally shown that NCF improved FCR over the starter and grower 174 

feeding phases. This suggests that the inclusion of NCF in the diet at both the starter and grower 175 

phase, increases the efficiency of the birds. This concurs with Zhang et al. (2005), however, other 176 

studies have shown no early response (Iji et al., 2001; Sun et al., 2005; Midilli et al., 2008). 177 

It could be hypothesised that the improvements observed in FCR early on in the study when feeding 178 

NCF may have been due to an increase in absorptive area, due to an increase in lactobacilli and 179 

bifidobacterial populations and a reduction in pathogenic bacteria. This  has been seen in other 180 

studies where improvements in gut morphology is associated with increased lactobacilli and 181 

bifidobacterial populations (Baurhoo, et al., 2009). However, improvements in gut health were not 182 

observed in this present study as histological measurements were only recorded at 6 weeks, when 183 

the microflora is already established with a population of beneficial bacteria. This means that birds 184 
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on all treatment groups were not under any challenge and it was seen that NCF had no effect on 185 

the performance in the last phase of the trial, which is consistent with the histological measurements 186 

at 6 weeks. 187 

There is no consensus on whether an increase in goblet cell numbers and area is considered an 188 

improvement in bird health. Increasing the number and area of goblet cells is thought to increases 189 

the volume of mucin stored in the GIT and possibly its production (Brümmer et al., 2010). Mucin 190 

is essential for a number of brush border processes, including facilitating absorption of nutrients, 191 

containing enzymes, lubrication and decreasing the binding and colonisation of pathogenic bacteria 192 

to the intestine (Blomberg et al., 1993; Smirnov et al., 2004). Therefore an increase in the level of 193 

mucin could have a beneficial effect on the first line of defence of the immune system (Baurhoo et 194 

al., 2009) and the absorptive function of the gut. Contrarily, overproduction of mucin may result 195 

in an negative effect, by increasing the mucus thickness on the GIT wall to a level that might 196 

negatively affect the ability of nutrients to pass through to the gut epithelial to be absorbed 197 

(Smirnov et al., 2004; Brummer, et al., 2010).  198 

In this study, the number and area of goblet cells in the duodenum and jejunum were not affected 199 

by the supplementation of NCF at 42 days. This would suggest that NCF has no effect on the mucin 200 

profile of broilers in the duodenum in this study. This absence of response was also reported by 201 

Castillo et al. (2008) and Yitbarek et al. (2012), however Baurhoo et al. (2007; 2009); Chee et al. 202 

(2010); Morales-lopez et al. (2010) and Muthusamy et al. (2012) all found goblet cell numbers 203 

were increased by yeast cell wall product supplementation. In the jejunum it was seen that NCF 204 

increases the area of goblet cells and there was a trend for increasing goblet cell area per 165 μm 205 

of villi, suggesting that NCF at 800g/t affects the mucin profile of broilers in the jejunum. Published 206 

data on goblet cell area is very limited: Brummer et al. (2010) also found that the area of goblet 207 
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cells increased with supplementation of MOS. Insight into the mechanisms behind this goblet cell 208 

response would be highly beneficial to understanding the effect of NFC supplementation on gut 209 

health.  210 

An increase in goblet cell area is thought to show that the storage capacity of the goblet cell for 211 

mucin has increased (Smirnov et al., 2005). The increase in mucin storage may suggest that the 212 

bird is more capable of forming a protective layer on the villi, thereby helping protect the intestine 213 

from damage caused by enteropathogens if there was a challenge from pathogenic bacteria 214 

(Smirnov et al., 2006; Brümmer et al., 2010). One suggested mechanism of MOS on mucin 215 

production is through changing the gene expression of key genes through direct crosstalk between 216 

beneficial intestinal microbes and goblet cells, (Mack et al., 1999; Freitas et al., 2003; Smirnov et 217 

al., 2005 Uni and Smirnov 2006; Chee, 2008). The effects of NCF on the goblet cell area observed 218 

in the current study agree with this suggestion in that goblet cell area increased with increased 219 

supplementation level, but it is also possible that NCF is having a direct effect on mucin production 220 

and subsequently increasing Bifidobacteria due to the increase in mucin production, as 221 

bifidobacteria can produce enzymes allowing them to utilise and proliferate on mucin glycoproteins 222 

(Katayama et al., 2005; Jung et al., 2008; Ruas-Madiedo et al., 2008).  223 

CONCLUSION  224 

Published research in this field appears to be highly variable, which may be due to differences in 225 

the type of MOS product, experimental conditions, diet formulation, or health status of the birds. 226 

This means that the mechanism of action of MOS and NCF and interactions with other nutritional 227 

and production  parameters are still not fully understood. In conclusion, under the conditions of 228 

this trial, NCF is having an positive effect on performance in the starter and grower phases 229 

indicating that the performance benefit of NCF could be age-dependent with younger birds 230 
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responding more than the older ones. Also, although there were no additional performance benefits 231 

to feeding NCF for a longer period, goblet cell area in the jejunum was increased, suggesting that 232 

birds fed NCF would have greater defences to pathogenic challenges due to higher levels of mucin. 233 
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Table 1. Composition of basal diet and calculated analysis of the basal diet 361 

Item  Starter Grower Finisher 

Ingredients (%)       

Barley 10.60 8.46 7.23 

Wheat 50.00 55.00 60.00 

Soya ext hipro 26.00 23.00 19.00 

Full fat soya bean meal 5.00 5.00 0.50 
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L lysine HCL 0.31 0.26 0.25 

DL methionine 0.38 0.35 0.33 

L threonine 0.14 0.13 0.14 

Soya oil 4.00 4.50 4.75 

Limestone 1.25 1.25 1.25 

Monocalcium phosphate 1.50 1.25 1.25 

Salt 0.25 0.25 0.25 

Sodium bicarbonate 0.15 0.15 0.15 

Premix* 0.40 0.40 0.40 

Calculated analysis       

ME MJ/kg 12.80 13.00 13.20 

CP % 21.80 20.60 19.10 

Lys % 1.37 1.16 1.13 

Met + Cys % 1.01 0.95 0.89 

Ca 0.96 0.90 0.90 

Available P 0.73 0.66 0.65 

*Premix content (volume/kg diet): Mn 100mg, Zn 80mg, Fe 20mg, Cu 10mg, I 1mg, Mb 0.48mg, 362 

Se 0.2mg, Retinol 13.5mg,Cholecalciferol, 3mg, Tocopherol 25mg, Menadione 5.0mg, Thiamine 363 

3mg, Riboflavin 10.0mg, Pantothenic acid 15mg, Pyroxidine 3.0mg, Niacin 60mg, Cobalamin 364 

30µg, Folic acid 1.5mg, Biotin 125mg 365 

 366 

 367 

 368 

 369 

Table 2. Effect of NCF in broiler diets on the average body weight (g/bird) and FCR 370 

Attribute Age Dietary treatment SEM P value 

  (days) Control NCF 200g/t NCF 400g/t NCF 800g/t     

Body wt  1 43.33   43.90   43.58   43.05   0.34 0.851 

 (g) 7 102.44   114.20   106.68   107.05   2.02 0.227 
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  14 216.99 A 302.66 B 249.85 AC 290.68 BC 8.15 0.000 

  21 524.63 A 741.19 B 599.76 AC 680.33 BC 20.42 0.000 

  28 1026.17 A 1380.77 B 1198.38 AB 1287.23 B 31.17 0.000 

  35 1804.11 A 2179.73 B 1943.19 AC 2112.13 BC 36.98 0.001 

  42 2593.70 A 2927.65 B 2654.53 A 2841.69 AB 38.69 0.005 

FCR 0-14 2.03 A 1.59 B 1.91 AB 1.61 B 0.05 0.003 

  15-28 1.85 A 1.61 B 1.63 B 1.63 B 0.03 0.011 

  29-42 1.76   1.81   1.84   1.82   0.02 0.524 

  0-42 1.80   1.73   1.76   1.74   0.01 0.308 

(Differing superscript within one week denote means are significantly different at P ≤ 0.05) 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

Table 3. Effect of NCF on the gut morphology of the duodenum and jejunum (± s.e) 380 

Attribute Control NCF 200g/t NCF 400g/t NCF 800g/t SEM P value 

Duodenum             

Villus Height 2819 2791 2891 2704 52.6 0.682 



 

19 

 

Villus Width 274 265 262 282 5.5 0.575 

Crypt Depth 209 209 210 213 5.6 0.995 

Villus/Crypt Ratio 15.1 13.6 14.2 12.7 0.47 0.361 

Jejunum             

Villus Height 1284 1285 1379 1315 25.5 0.528 

Villus Width 247 235 223 249 5.5 0.351 

Crypt Depth 163 151 152 153 2.4 0.304 

Villus/Crypt Ratio 8.1 8.6 8.9 8.4 0.17 0.466 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

Table 4. Effect of NCF on the goblet cell of the duodenum and jejunum(± s.e) 392 

Attribute             

Duodenum Control NCF 200g/t NCF 400g/t NCF 800g/t SEM P value 
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GC Area (µm2) 59.2 69.4 58.3 62.6 2.5 0.263 

No of GC per 165µm 11.8 11.4 11.7 11.9 0.2 0.860 

GC Area per 165µm 683.1 747.0 664.4 719.3 23.6 0.314 

Jejunum   

 

          

GC Area (µm2) 67.6B 68.3B 73.8AB 82.8A 2.2 0.041 

No of GC per 165µm 12.4 12.2 12.0 11.8 0.2 0.741 

GC Area per 165µm 847.0 868.0 882.1 988.4 21.9 0.089 

(Differing superscript within one week denote means are significantly different at P ≤ 0.05) 393 


