
MSOR Connections Vol 7 No 1 February – April 2007

35

Peter James Rowlett
School of Computing & Informatics
Nottingham Trent University
peter.rowlett@ntu.ac.uk

Generating a triangle with SVG

In SVG a polygon can be specified using the polygon tag with the attribute points listing
the coordinates of the vertices, e.g.:
<polygon points=”50,250 200,250 200,125”/>

in fact, it is sensible to add some style information, so use:
<polygon points=”50,250 200,250 200,125” style=”fill:#cccccc;s

troke:#000000;stroke-width:1”/>
Putting this in an SVG document gives:
<?xml version=”1.0”?>

<svg xmlns=”http://www.w3.org/2000/svg” xmlns:xlink=”http://

www.w3.org/1999/xlink” width=”230” height=”300” x=”0” y=”0”>

<polygon points=”50,250 200,250 200,125” style=”fill:#cccccc;

stroke:#000000;stroke-width:1”/>

</svg>

Which can be saved as an SVG file (.svg or .xml) and loaded into an SVG capable browser
(such as Firefox, or Internet Explorer with an SVG plugin).

Using PHP to dynamically define a triangle in SVG

The angle θ is determined by a pseudo-random number generator in
PHP, and is set between 30 and 70.

$theta = rand(30,70);

Fig 1 - Triangle with coordinates marked

Peter James Rowlett

A simple example of dynamic graphics1

MSOR Connections Vol 7 No 1 February – April 2007

36

The origin is at the top left of the stage and y increases
downwards. The triangle is defined by coordinates (a,b), (c,d),
(e,f) (see Fig 1). If we decide on a length for the hypotenuse
(200, say) then we can determine the lengths of the adjacent
and opposite sides from θ (200cos(θ) and 200sin(θ),
respectively). If we set a=50 and b=250 to place the triangle
a reasonable distance from the top left of the stage, then the
remaining coordinates are determined as:

c = a+200cos(θ)

d = b = 250

e = c

f = b-200sin(θ)

Encoding this in PHP has the complication of some
syntax changes and that the functions cos and sin deal in
radians (of course, useful if you wish your example to be
in radians). Then, the definitions of the coordinates are:
$a = 50;

$b = 250;

$c = $a + 200*cos(deg2rad($theta));

$d = $b;

$e = $c;

$f = $b - 200*sin(deg2rad($theta));

Using PHP to insert the values $a-$f into the definition of
the triangle above gives:
echo “<polygon points=\”$a,$b $c,$d $e,$f\”

style=\”fill:#cccccc;stroke:#000000;stroke-

width:1\”/>”;

Some notes on using PHP to generate SVG

Firstly, PHP is normally used to generate webpages. When
a page is sent from a web server to a web browser it is sent
with a MIME type, which allows the browser to determine
how to interpret the file. By default, PHP sends the MIME type
for a HTML page. Here, we want it to send the MIME type for
SVG, image/svg+xml [1].

Additionally, note that the XML declaration at the top of the
file starts “<?”. In PHP, this is reserved for PHP code. Thus the
XML declaration must be output from PHP code.

Labels

Finally, the rect tag is used to define a rectangle to mark the
right angle and the text tag used to add labels to the other
two angles.

The rect tag is fairly easy to use. A 10 by 10 rectangle is placed
10 up and 10 across from the vertex of the right angle. Again
some style information is given. width and height define the
width and the height, and x and y define the position of the
upper-left point.

<rect width=”10” height=”10” x=”<?php

echo $c-10; ?>” y=”<?php echo $d-10; ?>”

style=”fill:rgb(240,240,240);stroke-

width:1;stroke:rgb(0,0,0)”/>

For the labels, the text tag uses attributes x and y to define
the position of a text string. The labels must move to be a
suitable distance from the vertices to which they relate: too
far away and they get close to other corners, introducing
ambiguity; too close, and the label overlaps the edge of
the triangle. PHP is used to position the labels a certain
percentage of the distance along each line (determined
by trial and error), in order that they are kept in a sensible
position.

<text x=”<?php echo ($a+17*($c-$a)/100);

?>” y=”<?php echo ($b-5); ?>” style=”font-

family:Verdana;font-size:12”><?php echo

$theta; ?></text>

<text x=”<?php echo ($e-15*($e-$a)/100);

?>” y=”<?php echo ($f+17*($d-$f)/100);

?>” style=”font-family:Verdana;font-

size:12”>a</text>

Final code

The full code is given below. This can be saved as a PHP file
(.php) and run on a server that has PHP installed to give an
SVG output viewable in an SVG-capable browser.

<?php

$theta = rand(30,70);

$a = 50;

$b = 250;

$c = $a + 200*cos(deg2rad($theta));

$d = $b;

$e = $c;

$f = $b - 200*sin(deg2rad($theta));

// MIME type

header(“content-type: image/svg+xml”);

// XML information

echo “<?xml version=\”1.0\”?”.”>”;

?>

<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”

width=”230” height=”300” x=”0” y=”0”>

<?php echo “<polygon points=\

”$a,$b $c,$d $e,$f\” style=\

”fill:#cccccc;stroke:#000000;stroke-

width:1\”/>”; ?>

<text x=”<?php echo ($a+17*($c-$a)/100);

?>” y=”<?php echo ($b-5); ?>” style=”font-

MathML/XML Series: A simple example of dynamic graphics– Peter James Rowlett

MSOR Connections Vol 7 No 1 February – April 2007

37

family:Verdana;font-size:12”><?php echo

$theta; ?></text>

<text x=”<?php echo ($e-15*($e-$a)/100);

?>” y=”<?php echo ($f+17*($d-$f)/100);

?>” style=”font-family:Verdana;font-

size:12”>a</text>

<rect width=”10” height=”10” x=”<?php

echo $c-10; ?>” y=”<?php echo $d-10; ?>”

style=”fill:rgb(240,240,240);stroke-

width:1;stroke:rgb(0,0,0)”/>

</svg>

The result

Putting this together and running it on a web server with PHP,
we get a triangle (see Fig 2) and each time the page is reloaded
the angles of that triangle change.

This could be included in a webpage with a suitable question
(“If a right-angled triangle has an angle 38°, what is the value
of the remaining angle (a)?”, say) and answer mechanism. In
this case, the question and answer mechanism is unrelated
to the graphic, which is really just an illustration. Of course,
a similar effect could be produced with much less effort by
simply having a static image of a triangle whose angles are
labelled with θ and a and telling the user that angle θ is 38o.
However, it is believed that there is an advantage in ensuring
that the angle θ actually looks like it is 38o. For example, if the
triangle in Fig 2 was so marked, and a student was told angle
θ is 70o, and their calculations told them angle a was not 20o
it might be useful if the angle a looked as though it were 20o,
so that an error in calculation would (should) be more obvious
to the student.

Non-SVG capable browsers

SVG support in web browsers is not yet ubiquitous. The java-
based Batik toolkit [2] contains a program SVG Rasterizer which
can be used to convert SVG graphics into PNG, JPEG, TIFF or
PDF files, which can be served as an alternative to browsers as
yet without SVG support.

Further applications

Of course, a similar effect could easily be replicated with a
server side scripting language other than PHP.
It should be obvious that this is a simple example, which

produces a simple graphic. It is hoped the techniques used
here give a useful insight into what might be possible with
SVG.

References

Mozilla SVG Project Frequently Asked Questions [online].
Mozilla, 2006. Available at: http://www.mozilla.org/
projects/svg/faq.html [Last accessed: 27 July 2006].

Batik SVG Rasterizer [online]. Apache, 2005. Available at:
http://xmlgraphics.apache.org/batik/svgrasterizer.html
[Last accessed: 27 July 2006].

1.

2.

Fig 2 - A dynamically generated triangle

MathML/XML Series: A simple example of dynamic graphics– Peter James Rowlett

