- 1 Increase in bacteraemia cases in the East Midlands region of the United
- 2 Kingdom due to multi-drug resistant Escherichia coli ST73: High levels of
- 3 **genomic and plasmid diversity in causative isolates.**

4

- 5 Fahad Alhashash¹, Xiaohui Wang ², Konrad Paszkiewicz³, Mathew Diggle⁴,
- 6 Zhiyong Zong ², Alan McNally^{1*}

7

- 8 ¹Pathogen research group, Nottingham Trent University, Clifton Lane,
- 9 Nottingham NG11 8NS, United Kingdom
- 10 ²Department for Infection Control, West China Medical School, Chengdu, China
- ³Wellcome Trust Biomedical Informatics Hub, University of Exeter, Exeter, EX4
- 12 4QD, United Kingdom
- ⁴Nottingham University Hospitals NHS trust, QMC campus, Nottingham, NG7
- 14 2UH, United Kingdom

15

- *Corresponding author: Dr Alan McNally, Pathogen Research Group, Nottingham
- 17 Trent University, Clifton Lane, Nottingham, NG11 8NS. Tel 0044 1158483324.
- 18 alan.mcnally@ntu.ac.uk

- 20 Running title: *E. coli* ST73 genome analysis
- 21 Keywords: *E. coli*; bacteraemia; genomics, ESBL

22 **Abstract**

23 **Objectives** To determine the population structure of *E. coli* ST73 isolated from 24 human bacteraemia and urinary tract infections 25 Methods The genomes of 22 E. coli ST73 isolates were sequenced using the 26 Illumina HiSeq platform. High resolution SNP typing was used to create a 27 phylogenetic tree. Comparative genomics were also performed using a 28 pangenome approach. In silico and S1-PFGE plasmid profiling was conducted, 29 and isolates were checked for their ability to survive exposure to human serum 30 **Results** E. coli ST73 isolates circulating in clinically unrelated episodes show a 31 high degree of diversity at a whole genome level, though exhibit conservation in 32 gene content, particularly in virulence associated gene carriage. The isolates also 33 contain a highly diverse plasmid pool that confers multi-drug resistance via 34 carriage of CTX-M genes. All strains are highly serum resistant and uniformly 35 carry genes shown to be essential for serum resistance. 36 **Conclusions** Our data shows that a rise in incidence of multi-drug resistant *E.* 37 coli ST73 clinical isolates is not due to a circulating outbreak strain as in E. coli 38 ST131. Rather the ST73 circulating strains are distantly related and carry a 39 diverse set of resistance plasmids. This suggests that the evolutionary events 40 behind emergence of drug resistant *E. coli* differ between lineages.

Introduction

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Extra-intestinal pathogenic *Escherichia coli* (ExPEC) is the term used to describe strains of E. coli which can asymptomatically colonise the intestinal tract of humans and animals, but cause disease in non-intestinal sites.¹ In humans ExPEC most commonly cause urinary tract infections, which is thought to affect as many as 70% of the global female population.1 ExPEC are also capable of causing bacteraemia infections, where large numbers of bacterial cells gain entry to the bloodstream causing a potentially life-threatening infection. The incidence of bacteraemia caused by ExPEC has been increasing rapidly in the past 10 years, with ExPEC now the most common cause of bacteraemia in Europe, overtaking MRSA and *Clostridium difficile* bloodstream infections.² The rise in cases of ExPEC bacteraemia is mirrored by a marked increase in the carriage of multi-drug resistance (MDR) plasmids in ExPEC. In particular ExPEC are associated with the sustained carriage and dissemination of genes encoding ESBL, and especially the CTX-M variant. In some countries as many as 50% of bacteraemia **ExPEC** isolates positive isolates.2 are **ESBL** Numerous epidemiological studies have shown the E. coli ST131 clone to be the most commonly isolated MDR ExPEC strain type from human clinical cases.^{3,4} ST73 is another phylogroup B2 strain type that is also frequently isolated from human clinical cases.4 Unlike ST131, which has been extensively studied and characterised at a population and genomic level,⁵⁻⁷ very little is known about ST73 beyond the reference ExPEC strain CFT073.8 We recently conducted a molecular epidemiological survey of bacteraemia ExPEC isolates from the East Midlands area of the United Kingdom.⁹ Our study found that MDR ExPEC were significantly more abundant in bacteraemia

samples than clinical urine samples over a concomitant time frame. Perhaps more surprisingly our study also showed that ST73 prevalence had risen to become the most commonly isolated MDR ExPEC strain type from bacteraemia samples, and not ST131 as observed in a previous study in the same region.⁴ Given that the rapid increase in clinical cases of MDR *E. coli* ST131 is attributable to rapid global dissemination of a successful clone,^{6,7} we sought to determine if the high incidence of MDR ST73 clinical isolates from our bacteraemia study was also due to the emergence of a successful dominant clone.

Methods

Bacterial isolates. An epidemiological investigation of bacteraemia and urinary tract infection (UTI) *E. coli* isolates conducted by our group in 2013 identified an increase in the number of *E. coli* ST73 clinical isolates containing the CTX-M gene conferring multi-drug resistance.⁹ Twenty-two isolates were selected for sequencing incorporating 10 ESBL positive blood isolates, 2 ESBL negative blood isolates, 3 ESBL positive UTI isolates, and 7 ESBL negative UTI isolates (table 1). These were selected to represent the diversity in ESBL phenotype in the samples population.

Genome sequencing and analysis. Isolates were sequenced on the Illumina HiSeq2500 platform using 2 x 250bp PE sequencing (Table 1). Genome assemblies were performed using Velvet and PAGIT,¹⁰ which reordered contigs based on the CFT073 reference genome.⁸ Assembled genomes were annotated using Prokka.¹¹ Progressive Mauve was used to create a whole genome alignment of the assembled genomes.¹² High-resolution SNP typing was

performed by mapping fastQ files against the reference ST73 genome CFT073

92	using SMALT (https://www.sanger.ac.uk/resources/software/smalt/#t_2) and
93	Samtools. Resulting VCF files were filtered using vcftools ¹³ to retain only SNPs
94	with a MinQ 30, MinDP 10, and MinAF 0.8. The filtered VCF files were used to
95	produce a consensus sequence for each strain relative to CFT073. The sequences
96	were aligned using Mugsy ¹⁴ from which a maximum likelihood phylogeny was
97	created using RaxML implementing the GTR-Gamma model. 15 All raw sequence
98	data has been deposited in the European Nucleotide Archive under project
99	accession number PRJEB9931.
100	Pangenome analysis. A pangenome of the 22 sequenced strains and CFT073
101	was made using Gegenees. ¹⁶ To determine if there were loci associated with
102	bacteraemia in ST73, the genetic content of bacteraemia isolates was compared
103	against UTI isolates using a cut-off of 80% identity across 80% of bacteraemia
104	strains, and 80% identity across 20% of UTI strains. An identical analysis was
105	conducted for ESBL positive against ESBL negative to attempt to identify loci
106	associated with ESBL carriage. Presence of virulence-associated genes ¹⁷ was
107	determined by BlastN analysis of gene sequences against the de novo assembled
108	genome of each strain.
109	Plasmid typing. In silico plasmid typing was performed using a locally installed
110	version of the PlasmidFinder database. 18 Assembled genomes were compared to
111	the database using BlastN to identify plasmid types present in each genome.
112	Plasmid profiling was also performed using the S1-PFGE method. ¹⁹

114 Results

113

115

116

The observed increase in MDR *E. coli* ST73 clinical isolates is due to a highly diverse group of strains.

118 genome and a high-resolution SNP phylogenetic tree was constructed (Fig 1). 119 The phylogenetic tree shows that bacteraemia and UTI isolates are intermixed 120 throughout the phylogeny, as are ESBL positive and negative isolates. Pairwise 121 SNP distance calculations between isolates showed that the minimum SNP 122 distance between any two isolates was 416 SNPs, and the maximum distance 123 6,026 SNPs (Fig S1.A). Comparative genomic analysis indicates diversity between ST73 genomes 124 125 occurs at single base pair mutation level, and in plasmid repertoire. 126 An alignment of all the ST73 genomes using progressiveMauve indicated genetic 127 variation predominantly occurring in small contigs of the assemblies (Fig S2.A) 128 suggestive that most gene-content variation occurs in plasmids and other mobile 129 genetic elements (MGE). We created a pangenome of the ST73 genomes using 130 Gegenees (Fig S2.B) showing a core genome of 3.81Mbp, and 1201 conserved 131 CDS from a total of 10,696 CDS, consistent with analyses performed on the *E. coli* 132 species and on *E. coli* ST131.^{20,21} We performed *in silico* analysis to determine the 133 presence of the major ExPEC virulence-associated genes in our data set (Fig. 134 S2.C). This shows some differences in carriage of virulence genes but a relatively 135 fixed virulence gene profile. The comparison of UTI and bacteraemia isolates for 136 virulence gene carriage also showed identical profiles between the two groups. 137 We sought to identify the presence of any loci over-represented in the UTI or 138 bacteraemia group of strains, or in the ESBL positive and ESBL negative group of 139 strains using Gegenees. This analysis failed to identify any loci associated with a 140 propensity towards bacteraemia or ESBL carriage.

Sequence data for all 22 isolates was mapped against the CFT073 reference

Highly diverse plasmid repertoire in circulating clinical *E. coli* ST73

isolates.

141

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Given the observations of our pangenome analysis we sought to determine the extent of MGE diversity in our ST73 isolates, focussing primarily on plasmids. Using the PlasmidFinder database we performed in silico plasmid typing on our 22 isolates (Table 1). Our analysis showed that FII, FIA and FIB plasmid types were predominant. To further investigate this we performed S1-PFGE plasmid profiling of every isolate. No plasmids were detected in the CTX-M negative isolates, but a large number of plasmid molecules were detected in the remaining isolates (Table 1). A 112Kbp plasmid was found in 6 isolates which showed the most similar accessory gene content in the pangenome analysis. Superimposing of the plasmid typing data on the phylogenetic tree showed that the 112Kbp plasmid is present in the 6 isolates that showed the lowest amount of core genome diversity (Fig 1). We compared the similarity of genomes at gene content level using the fragmented all-against-all comparison in Gegenees to show that the 6 strains sharing the 112kb plasmid also showed gene content similarity above 95% (Fig S1.B) suggesting that the plasmid pool in these 6 strains is highly similar if not identical.

Discussion

Epidemiological studies in the East Midlands area of the UK have highlighted an increase in incidence of *E. coli* ST73 MDR isolates over the past 5 years.^{4,9} In this study we present the genomic analysis of 22 ST73 isolates from human clinical bloodstream and UTI cases, all isolated within a 3-month period from the same region of the United Kingdom. Our analysis shows levels of diversity in the hundreds or thousands of SNPs between isolates. This is in stark contrast to

ST131, where isolates from the identical UK region over a 6 month period showed diversity of under 10 SNPs between strains isolated from unrelated clinical episodes, and a maximum diversity of dozens of SNPs.⁵ Analysis of our ST73 genomic data set identified the presence of a limited number of plasmid types based on in silico rep typing, however both genomic analysis and classical plasmid profiling show plasmid diversity in the small ST73 population sampled here. The presence of a 112Kbp plasmid was inferred in 6 isolates, which were also the 6 most closely related isolates phylogenetically and at gene content level. It is tempting to speculate there may be a circulating subclone of ST73 but such inference is hampered by our small and geographically restricted sample size. The small population we have sequenced limits the inferences we can make from our data set. However there are several key points that our study highlights. The first is that the evolution and emergence of MDR lineages of ExPEC does not have a one-size-fits-all model. E. coli ST131 became a predominant clinical ExPEC isolate by clonal expansion and rapid global dissemination of an MDR clone of the wider ST131 lineage.⁷ Our data of clinically unrelated ST73 isolates shows a highly diverse population of circulating ST73 strains, with a diverse plasmid pool driving multi-drug resistance in this lineage. In order to gain a more comprehensive understanding of the emergence and population structure of this important lineage of pathogenic *E. coli* it is vitally important that larger global isolate collections are analysed. Equally as important is that these collections include non-human reservoir isolates. By doing this we will acquire a far greater understanding of the ways in which ExPEC lineages can emerge as dominant MDR clinical isolates, and move our focus beyond just *E. coli* ST131.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

191	Acknowledgements
192	All sequencing was performed at the Exeter Sequencing service at University of
193	Exeter.
194	Funding
195	This study was funded by an EMDA iNET award to AM and MD, a Kuwaiti
196	government studentship award to FA, and Royal Society grant award IE121459
197	to ZZ and AM.
198	Transparency declaration
199	The authors declare there are no competing interests in the research conducted
200	or in the reporting of this research.
201	
202	References
203 204 205 206 207 208 209 210	 Foxman B. The epidemiology of urinary tract infection. <i>Nat Rev Urol</i> 2010; 7: 653–60. De Kraker MEA, Jarlier V, Monen JCM, <i>et al</i>. The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. <i>Clin Microbiol Infect</i> 2013; 19: 860–8. Johnson JR, Johnston B, Clabots C, <i>et al</i>. <i>Escherichia coli</i> Type ST131 as the Major Cause of Serious Multidrug-Resistant E. coli Infections in the United States. <i>Clin Infect Dis</i> 2010; 51: 286–94. Croxall G, Hale J, Weston V, <i>et al</i>. Molecular epidemiology of extraintestinal
211 212 213 214 215	pathogenic <i>Escherichia coli</i> isolates from a regional cohort of elderly patients highlights the prevalence of ST131 strains with increased antimicrobial resistance in both community and hospital care settings. <i>J Antimicrob Chemother</i> 2011; 66 : 2501–8.
216 217 218 219	5. Clark G, Paszkiewicz K, Hale J, et al. Genomic and molecular epidemiology analysis of clinical <i>Escherichia coli</i> ST131 isolates suggests circulation of a genetically monomorphic but phenotypically heterogeneous ExPEC clone. <i>J Antimicrob Chemother</i> 2012; 67 : 868–77.

- 220 6. Price LB, Johnson JR, Aziz M, et al. The epidemic of extended-spectrum-β-
- lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic
- 222 subclone, H30-Rx. *MBio* 2013; **4**: e00377–13.
- 7. Petty NK, Zakour NL Ben, Stanton-Cook M, et al. Global dissemination of a
- multidrug resistant *Escherichia coli* clone. *Proc Natl Acad Sci U S A* 2014; **111:**.5694-9.
- 8. Welch RA, Burland V, Plunkett G, et al. Extensive mosaic structure revealed by the
- 226 complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci
- 227 USA. 2002; **99**: 17020–4.
- 9. Alhashash F, Weston V, Diggle M, et al. Multidrug-Resistant Escherichia coli
- 229 Bacteremia. *EmergInfectDis* 2013; **19**: 1699–701.
- 230 10. Swain MT, Tsai IJ, Assefa SA, et al. A post-assembly genome-improvement toolkit
- 231 (PAGIT) to obtain annotated genomes from contigs. *Nat Protoc* 2012; **7**: 1260–84.
- 232 11. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014;
- 233 **30**: 2068–9.
- 12. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment
- with gene gain, loss and rearrangement. *PLoS One* 2010; **5**: e11147.
- 236 13. Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools.
- 237 *Bioinformatics* 2011; **27**: 2156–8.
- 238 14. Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole
- 239 genomes. *Bioinformatics* 2011; **27**: 334–42.
- 240 15. Stamatakis A, Ludwig T, Maier H. RAxML-III: a fast program for maximum
- likelihood-based inference of large phylogenetic trees. *Bioinformatics* 2005; **21**: 456.
- 242 16. Agren J, Sundstrom A, Hafstrom T, et al. Gegenees: fragmented alignment of
- 243 multiple genomes for determining phylogenomic distances and genetic signatures
- unique for specified target groups. *PLoS One* 2012; **7**: e39107.
- 245 17. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains
- from patients with urosepsis in relation to phylogeny and host compromise. J Infect
- 247 *Dis* 2000; **181**: 261–72.
- 18. Carattoli A, Zankari E, Garcia-Fernandez A, et al. In silico detection and typing of
- 249 plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob
- 250 Agents Chemother 2014; **58**: 3895–903.
- 251 19. Barton BM, Harding GP, Zuccarelli AJ. A general method for detecting and sizing
- 252 large plasmids. *Anal Biochem* 1995; **226**: 235–40.

20. Alqasim A, Scheutz F, Zong Z, et al. Comparative genome analysis identifies few traits unique to the *Escherichia coli* ST131 H30Rx clade and extensive mosaicism at the capsule locus. *BMC Genomics* 2014; **15**: 830.
21. McNally A, Cheng L, Harris SR, et al. The evolutionary path to extra intestinal pathogenic, drug resistant *Escherichia coli* is marked by drastic reduction in detectable recombination within the core genome. *Genome BiolEvol* 2013; **5**: 699–

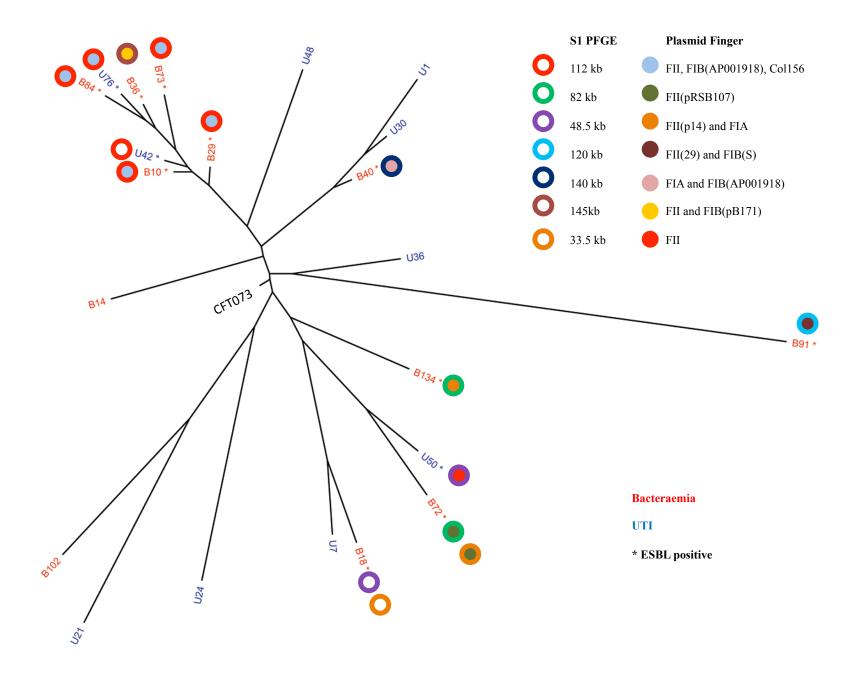
260

259

710.

Table 1. List of isolates and genome assembly statistics used in this study

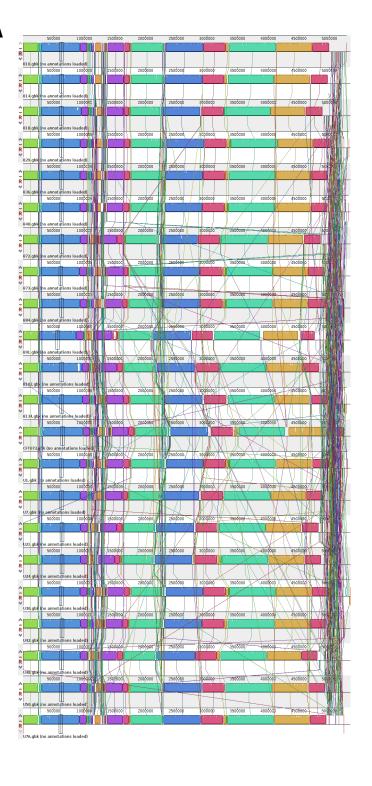
Isolate	PCR ESBL	Genome	N	N50	%	S1-PFGE	In silico Inc typing
	type	size (bps)	Contigs	contig	mapped	plasmid	
				size	reads	profile	
B10	CTX-M-15	5173276	106	108731	94.5	112Kbp	FIB(AP001918), FII, Col156
B14	Negative	5099552	158	113745	90.21	Negative	
B18	CTX-M-15	5120683	125	122417	91.93	33.5Kbp,	Non-typable
						48.5Kbp	
B29	CTX-M-15	5261474	168	101820	93.7	112Kbp	FIB(AP001918), FII Col156
B36	CTX-M-15	5191523	152	125321	92.26	145Kbp	FIB(pB171), FII, Col156
B40	CTX-M-15	5257611	165	103459	91.43	140Kbp	FIA, FIB(AP001918)
B72	CTX-M-15	5158804	110	134654	84.53	33.5Kbp,	FII(pRSB107)
						82 Kbp	
B73	CTX-M-15	5150717	156	121329	94.38	112Kbp	FIB(AP001918), FII, Col156
B84	CTX-M-15	5182704	137	134972	93.42	112Kbp	FIB(AP001918), FII, Col156
B91	CTX-M-15	5155911	197	79515	90.23	120Kbp	FIB(S), FII, Col156
B102	Negative	5075956	160	87164	93.51	Negative	
B134	OXA-1	5230535	154	116039	93.61	82Kbp	FIB(AP001918), FII, FIA
	CTX-M-15						
U1	Negative	5243352	151	123112	86.52	Negative	
U7	Negative	5176031	145	126228	93.16	Negative	
U21	Negative	5145668	162	113459	91.81	Negative	
U24	Negative	5120446	147	110560	89.83	Negative	
U30	Negative	5287542	160	139416	87.12	Negative	
U36	Negative	5162072	138	114804	91.04	Negative	
U42	CTX-M-15	5188710	155	106920	93.92	112Kbp	FIB(AP001918), Col156, Col8282,
							Col(MG828)
U48	Negative	5080928	112	113440	87.44	Negative	
U50	CTX-M-15	5256879	145	117621	94.03	48.5Kbp	FII
U76	CTX-M-15	5179037	140	133761	94.11	112Kbp	FIB(AP001918), FII, Col156

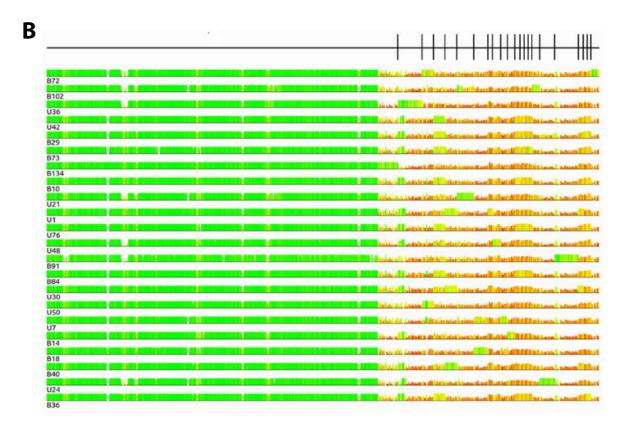

Isolates with the prefix B were isolated from bacteraemia cases, those with prefix U from UTI. % reads mapped equates to reads mapped against the CFT073 genome

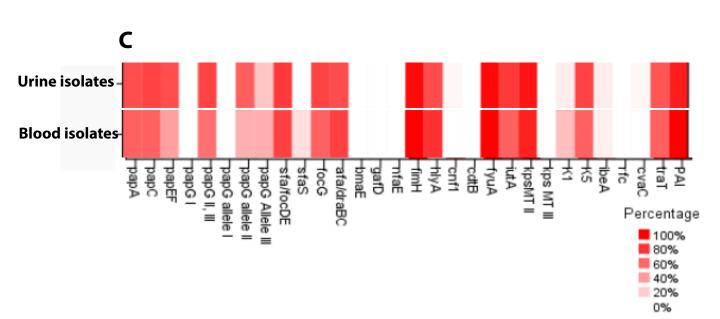
N50 is a weighted median statistic such that 50% of the entire assembly is contained in contigs or scaffolds equal to or larger than this value

Figure 1. Maximum likelihood phylogenetic tree of clinical ST73 isolates, with S1-PFGE and *in silico* plasmid profiling superimposed. Plasmid sizes as determined by S1-PFGE, and inc-types as determined by *in silico* analysis are indicated in the legend to the right. This figure appears in colour in the online version of *JAC* and in black and white in the printed version of *JAC*

Figure S1. (A) Pairwise distance matrix of the number of SNPs difference between any two isolates on the phylogenetic tree. Numbers of SNPs are relative to those obtained from mapping against the CFT073 reference genome for each isolate. (B) Pairwise comparison of percentage similarity between each genome at gene content level, as determined by fragmented-all-against-all comparison in Gegenees. This figure appears in colour in the online version of *JAC* and in black and white in the printed version of *JAC*


Figure S2. Comparative genomics of ST73 isolates. (A) Mauve alignment of all 22 isolates alongside CFT073. Co-coloured blocks indicate genome segments containing syntenic genetic loci. Regions to the 3' end of the alignment indicate low levels of synteny. (B) Pangenome analysis of the 22 ST73 isolates alongside CFT073. Levels of nucleotide identity between genomic regions are indicated as heatmap colours. Green regions indicate genomic segments with levels of identity above 80% at nucleotide level, down to red regions that indicate levels of identity below 20%. (C) Heatmap representation of carriage of common ExPEC virulence associated genes in bacteraemia and UTI isolates of ST73. This figure appears in colour in the online version of *JAC* and in black and white in the printed version of *JAC*




	Ref	U48	U50	B84	B2	.9 T	J42	B14	B40	B73	U	24	U30	Ul	U76	Bl	8 U	J36	B72	U7	B10	B36	B91	B102	U21	B13
Ref																										
U48	1887																									
U50	1874	3109																								
B84	1800	2475	2901																							
B29	1079	1966	2411	1079	_																					
U42	1223	2046	2523	989	56																					
B14	1589	2596	2836	2658			210																			
B40	1232	2278	2443	2337	_		779	2206		_																
B73	1551	2011	2772	1133			836	2350	1896																	
U24	2471	3679	3743	3510	_		187	3514	3196	3427																
U30	1598	2458	2696	2421			020	2412	816	2017		140														
Ul	2117	2916	3077	2898	_		513	2925	1276	2525	_	_	1039													
U76	1724	2336	2870	728	97		841	2539	2209	1037			2309	2776												
B18	2235	3497	2840	3230			869	3294	2868	3085			3047	3520	3198		_									
U36	1252	2359	2712	2093	_		825	2395	2117	2216			2424	2936	2068	318										
B72	2182	3262	1453	3173			777	3145	2669	2997			2854	3234	3119	311		936								
U7	2168	3444	2781	3153			795	3224	2814	3042			3022	3432	3136	136		107	3008	2700						
B10	1207	2032	2487	944	49		416	2175	1736	811			2027	2479	840	286		833	2772	2788	772					
B36 B91	1664 3854	2282 4848	2814 5082	687 5025	90		779 617	2501 4502	2155 4531	941	_		2258 4752	2732 5201	626 4983	313 548		023 361	3061 5221	3051 5387	773 4611	4932				_
B102	2828	3942	3505	3697			338	3786	3484	3545			3616	4075	3695	356		727	3413	3471	3339	3618	5963			
U21	3028	4142	4013	4139			705	4134	3611	3949			3936	4288	4123	424		913	3995	4141	3686	4090	6026	3206		
B134	1506	2948	2282	2697			217	2616	2206	2503			2427	2853	2606	269		433	2634	2435	2221	2545	4757	3443	3798	
D134																							4131	3443	3196	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22				
1: B10	10	96	96	96	96	96	95	92	92	92	91	91	91	92	91	90	89	90	94	94	94	85				
2: B29	96	100	96	96	96	96	95	92	92	92	91	91	90	92	91	90	88	89	94	94	94	85	В			
3: U76	97	97	100	97	97	96	96	93	93	93	92	92	91	93	92	90	89	90	95	94	94	86	D			
4: B36	97	97	97	100	97	96	96	93	93	93	92	92	91	93	92	90	89	90	95	95	95	86				
5: B84	96	97	97	97	100	96	96	93	93	93	92	92	92	93	92	90	89	91	95	94	94	86				
6: U42	96	97	97	97	97	100	96	93	93	93	92	92	92	93	92	91	90	91	95	94	94	86				
7: B73	96	97	97	97	97	96	100	93	93	93	91	92	91	93	92	90	89	90	95	95	94	86				
8: B14	94	95	94	95	95	94	94	100	93	93	92	92	92	93	93	92	90	90	95	94	95	86				
9: U48	95	95	95	95	95	95	94	93	100	93	93	92	91	93	93	91	90	92	94	94	94	88				
10: U5	0 93	94	93	94	94	94	93	92	91	100		94	93	95	91	91	90	91	94	94	94	87				
11: B72		92	92	92	93	92	91	91	91	95	100	93	92	93	91	91	91	91	93	92	92	87				
12: U7	92	93	93	93	93	92	92	91	91	94	93	100		93	90	90	90	91	93	93	93	85				
.2: 07	92	93	93	90	93	92	92	91	91	94	93	100	95	93	90	90	90	91	95	90	93	05				

Α

1: 2: 3: 5: 7: 9: 10: 11: 12: 93 92 92 93 93 100 94 91 91 91 13: B18 92 92 90 90 93 92 92 100 91 90 90 14: B134 92 92 92 92 93 92 91 91 90 92 90 93 93 93 91 90 15: U36 92 92 92 92 92 92 91 91 91 91 90 92 100 90 89 89 92 91 16: U24 91 92 92 92 92 92 91 91 91 91 91 91 91 92 91 91 92 92 92 85 93 93 91 92 17: B102 91 92 92 92 92 92 91 91 92 93 92 100 94 92 92 92 91 86 93 18: U21 91 92 91 91 92 91 91 92 92 92 91 92 90 91 100 92 91 91 90 91 86 19: U30 93 93 94 93 93 91 92 91 91 90 92 90 88 89 100 96 96 84 93 93 92 89 20: B40 89 97 **100** 96 **84** 93 93 93 93 93 93 93 92 91 92 91 91 91 93 90 88 89 93 93 93 93 94 93 93 91 92 91 91 91 89 89 97 21: U1 92 93 91 90 97 22: B91 86 87

