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Abstract 

This study investigated the effects of hydration status and fluid availability on appetite and 

energy intake. Sixteen males completed four 24 h trials, visiting the laboratory overnight 

fasted on two consecutive days. Standardised foods were provided during the 24 h and on 

day two an ad-libitum semi-solid porridge breakfast was provided. Water intake during the 

24 h (0 or 40 mL∙kg-1) and fluid provision during the ad-libitum breakfast were 

manipulated so subjects were euhydrated with (EU-F) and without fluid (EU-NF) available 

at breakfast; and hypohydrated with (HYPO-F) and without fluid (HYPO-NF) available at 

breakfast. Blood samples (0 and 24 h), urine samples (0-24 h) and subjective responses (0, 

24 and 24.5 h) were collected. HYPO trials decreased body mass by ~1.8%. Serum and 

urine osmolality increased and plasma volume decreased during HYPO trials (P<0.001). 

Total urine output was greater during EU than HYPO trials (P<0.001). Ad-libitum energy 

intake was not different between trials: 2658 (938) kJ (EU-F), 2353 (643) kJ (EU-NF), 

2295 (529) kJ (HYPO-F), 2414 (954) kJ (HYPO-NF), (P=0.131). Fluid intake was ~200 

mL greater during HYPO-F than EU-F (P<0.01). There was an interaction effect for thirst 

(P<0.001), but not hunger or fullness. These results demonstrate that mild hypohydration 

produced by inadequate fluid intake and fluid availability during eating does not influence 

ad-libitum energy intake of a semi-solid breakfast, at least in healthy young males.  
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Introduction 

Deviations in energy balance (positive and negative) can have a profound effect on health 

(Kleiner, 1999), thus a better understanding of the physiological systems affecting energy 

balance is required. Alterations in appetite influence energy intake and consequently may 

potentially impact on energy balance. Whilst much research has focused on the effects of 

the energy containing macronutrients on appetite, (Rodin et al., 1988; Metges and Barth, 

2000; Anderson et al., 2002; Clegg and Shaftat, 2010), relatively little is known about how 

deviations in water balance and water intake impact upon appetite and energy intake. 

Currently, the effect of hydration status on appetite regulation and ad-libitum energy intake 

in humans is not fully understood, but there are a number of situations where hydration 

status might impact appetite regulation and thus health or performance of an individual. 

Hypohydration might develop rapidly due to an acute loss of body water due to either 

exercise or heat exposure (Corney et al., 2015) or more slowly due to a chronic inadequate 

fluid intake (James and Shirreffs, 2013). Whilst hypohydration appears to be more 

prevalent among athletes competing in certain sports, it is also common in children 

(Stookey et al., 2012), the elderly (Lavizzo-Mourey, 1987), as well as the general adult 

population (Mears and Shirreffs, 2014). 

Research in animal models has consistently reported water intake being a major 

determinant of the amount of energy consumed (Lepkovsky et al., 1957; Silanikove, 1992; 

Senn et al., 1996; Watts, 1999). For example, Silanikove (1992) suggested that when water 

availability was reduced in ruminants there was a parallel reduction in ad-libitum feed 

intake. Similarly, Lepkovsky et al. (1957) reported that the restriction of fluid during 

feeding reduced energy intake in rats. Often (Senn et al., 1996; Watts et al., 1999), these 
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animal studies induce relatively large levels of hypohydration that are not consistent with 

the level of hypohydration commonly seen in humans. 

In humans, only a limited number of studies have investigated the impact of water balance 

on appetite regulation or energy intake. Shirreffs et al. (2004) reported a reduction in 

energy intake with 37 h of complete fluid restriction compared to when fluids were 

provided ad-libitum. Similarly, Engell (1988) reported a reduction in energy intake during 

6 meals over 48 h when fluid was restricted at meal times. In contrast, two recent studies 

(Kelly et al., 2012; Corney et al., 2015) observed no difference in ad-libitum energy intake 

between euhydrated and hypohydrated (2-3% body mass loss) conditions, with 

hypohydration induced using a combination of exercise and fluid restriction. In contrast to 

the studies of Shirreffs et al. (2004) and Engell (1988), Kelly et al. (2012) and Corney et 

al. (2015) provided fluid during feeding. Taken together with the animal literature, these 

studies suggest that whilst fluid restriction might result in hypohydration, it might be the 

fluid restriction during eating rather than the presence of hypohydration at the start of the 

meal that reduces energy intake in humans. 

Therefore the purpose of the current study was to examine the effects of hydration status 

and/ or fluid availability during eating on ad-libitum energy intake. It was hypothesised 

that fluid restriction during feeding would reduce energy intake in both hypohydrated and 

euhydrated conditions, but that hypohydration would not affect energy intake when fluid 

was available. 
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Methods 

Subjects 

Sixteen healthy males (age: 25 (4) years; height: 1.78 (0.07) m; body mass: 72.6 (8.6) kg; 

body fat 15.1 (4.4)%; body mass index: 22.9 (1.7) kg∙m-2) volunteered for the present study, 

which was approved by the University’s Ethical Advisory Committee. Subjects were non-

smokers, were not currently on a weight gain/weight loss diet, had not been on any such 

diet during the previous 6 months, and were habitual breakfast eaters. Subjects completed 

a health-screening questionnaire and provided written informed consent. Using G*Power 

3.1.6 and the data of Engel (1988), an a priori power calculation with α of 0.05, statistical 

power of 0.8 and an estimated between groups correlation of 0.5 determined that 13 

subjects would be required to reject the null hypothesis. Therefore, to ensure an adequate 

sample size and maintain counterbalancing 16 subjects were studied. 

Experimental protocol 

All subjects completed a familiarisation trial followed by 4 experimental trials, which were 

completed in a randomised, counterbalanced fashion and separated by at least 7 days. For 

each trial, subjects underwent a 24 h period of dietary manipulation and control and an ad-

libitum breakfast was provided at 24 h. Water intake during day one and fluid availability 

during the breakfast were manipulated during each trial. This meant that the ad-libitum 

breakfast was served to subjects euhydrated with (EU-F) and without (EU-NF) fluid 

available during eating; and hypohydrated with (HYPO-F) and without (HYPO-NF) fluid 

available during eating. 

During the familiarisation trial, subjects arrived at the laboratory overnight fasted (~10 h) 

and emptied their bladder and bowels before body mass was recorded to the nearest 10 g 
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(Adam CFW 150 scale; Adam Equipment Co Ltd, Milton Keynes, UK) and height was 

measured to the nearest 1 mm (Stadiometer, Seca Ltd, Germany). Subcutaneous skinfold 

measurements were obtained (Tricep, Biceps, Subscapular and Suprailiac) and body fat 

percentage was estimated using the Siri equation (Durnin and Wormersley, 1974). Subjects 

were then provided with the ad-libitum breakfast (as described below). 

For each experimental trial, subjects visited the laboratory on two consecutive mornings in 

an overnight fasted state and at a time typical for them to consume breakfast (7-10 am). On 

day one, subjects emptied their bladder and bowels and their nude body mass was measured. 

Following 15 min seated rest, a baseline blood sample (15 mL) was collected from an 

antecubital vein and a subjective feelings questionnaire (Flint et al., 2000) was completed. 

Questions asked were: “How thirsty do you feel?” “How hungry do you feel?” and “How 

full do you feel?” with verbal anchors “not at all” and “extremely” at 0 mm and 100 mm, 

respectively. Subjects were provided with food and drink for the next 24 h and left the 

laboratory. On day two, subjects arrived again in an overnight fasted state and all 

measurements previously made on day one were repeated. After blood sampling, subjects 

consumed an ad-libitum porridge breakfast for a period of 30 min, after which they 

completed a final subjective feelings questionnaire. 

Dietary intake and standardisation 

During the 48 h before the first experimental trial subjects completed a weighed record of 

all food and drink consumed. They also recorded any light habitual physical activity. These 

diet and activity patterns were then replicated in the 48 h preceding subsequent 

experimental trials. Subjects refrained from any strenuous physical activity, alcohol intake 

and dietary supplementation during the 48 h before trials. To help ensure euhydration at 

the start of trials, subjects consumed an amount of water equivalent to 40 mL∙kg-1 body 



 7 

mass in 6 aliquots over the 24 h pre-trial period. This water was consumed in a manner 

identical to during euhydrated trials. During experimental trials subjects consumed only 

food and drink provided to them and only performed light habitual physical activity. 

For all trials, food was provided to subjects on day one in the form of dry foods (pizza, 

crisps, cereal bars, chocolate bars, sandwiches) to minimise water intake through foods.  

The appropriate amount of water was also provided to subjects during euhydrated trials 

(EU-F and EU-NF). Energy provided in foods was equal to the subjects estimated resting 

energy expenditure (Mifflin et al., 1990) multiplied by a physical activity level of 1.6. 

Nutritional intake (mean (SD)) for the 24 h was 10648 (859) kJ; 68 (11) g protein; 327 (35) 

g carbohydrate; 108 (12) g fat; 22 (7) g fibre. Total water provided during euhydrated trials 

was 40 mL∙kg-1 body mass (2903 (332) mL) and provided in 6 equal aliquots consumed at 

set times during each trial, (i.e 0 h, 4 h, 6 h, 8 h 10 h and 13 h after the start of each trial). 

No water was consumed in the hypohydrated trials. 

The ad-libitum breakfast consisted of porridge oats (Ready Brek, Weetabix, Kettering, UK) 

and semi-skimmed milk (Tesco Stores Ltd., Chestnut, UK) in a ratio of 100 g porridge oats 

to 400 mL milk. Each bowl of porridge received identical heating and cooling before being 

served. The ad-libitum breakfast was served in a custom built feeding booth inside an 

isolated feeding laboratory to minimise external distractions and to allow food to be 

provided with minimal interaction. Subjects were given standardised instructions to eat 

until they were ‘comfortably full and satisfied’ and to indicate satiation by leaving the 

booth and taking a seat in the adjoining laboratory. They had to remain in the laboratory 

for the whole 30 min eating period, and could return to the booth and continue eating if 

they desired, although no subject did. Subjects were initially provided with a single bowl 

of porridge and once approximately ½ to ¾ of the first bowl had been consumed a fresh 

bowl of porridge was supplied. This process continued until subjects indicated satiation by 
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leaving the booth. Warm porridge was continually available for subjects in the feeding 

booth. The time interval at which a new bowl of porridge was provided was determined 

during the familiarisation trial. This meant that finishing a bowl of porridge did not act as 

a satiety cue. During EU-F and HYPO-F, 500 mL of water and 500 mL of low sugar cordial 

were provided for subjects to drink ad-libitum, whilst during EU-NF and HYPO-NF no 

fluid was provided. During the EU-F and HYPO-F trials additional drink was available if 

required.  

Sample handling and analysis 

Venous blood samples (15 mL) were taken from an antecubital vein after 15 min rest in an 

upright seated position. Five mL blood was mixed with K2EDTA (1.75 mg·mL-1) and used 

for the determination of haemoglobin concentration using the cyanomethaemoglobin 

method and haematocrit by micro-centrifugation (Hawksley, Lancing, Sussex, UK). 

Haemoglobin and haematocrit values were used to estimate changes in plasma volume 

relative to 0 h (Dill and Costill, 1974). Five mL of blood was dispensed into a K2 EDTA, 

(1.75 mg·mL-1) tube (Sarstedt, Leicester, UK) containing a solution (10 µl·mL-1 blood) of 

potassium phosphate buffered saline (0.05 M), p-hydroxymercuribenzoic acid (0.05 M) 

and sodium hydroxide (NaOH), (0.06 M). The tube was then centrifuged at 3307 g for 10 

min at 4oC. Plasma was then transferred to a plain tube containing 1 M HCl (100 µl·mL-1 

plasma) and centrifuged for a further 5 min before being stored at -20oC for 24 h and then 

at -80oC until analysis of acylated ghrelin concentration by enzyme-linked immunoassay 

(SPI BIO, Montigny le Bretonneux, France; intra-assay coefficient of variation 12%). The 

remaining blood (5 mL) was allowed to clot and the serum was separated by centrifugation 

at 3307 g for 10 min at 4oC. Serum was refrigerated, before analysis for osmolality by 

freezing-point depression (Gonotec Osmomat 030 Cryoscopic Osmometer; Gonotec, 

Berlin, Germany). For urine samples at 0 h and 24 h subjects completely emptied their 
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bladder and collected the entire volume, whilst all urine produced between 0 h and 24 h 

was collected in a container provided. The volume and osmolality of all urine samples were 

determined.  

Statistical Analysis  

All data were analysed using statistical package SPSS 20.0 (Chicago, IL, USA) and 

initially checked for normality of distribution using a Shapiro-Wilk test. Data containing 

two factors were analysed using a two-way repeated-measures ANOVA. Significant 

differences were identified by Bonferroni-adjusted paired t-tests for normally distributed 

data or Bonferroni-adjusted Wilcoxon signed-rank tests for non-normally distributed data. 

Data containing one variable were analysed using one-way repeated measures ANOVA 

followed by Bonferroni-adjusted paired t-tests or Bonferroni-adjusted Wilcoxon signed-

rank tests, as appropriate. Normally distributed data are presented as mean (SD). Non-

normally distributed data are presented as median (range). All differences were accepted 

as being significant when P<0.05. 

 

Results 

Pre-trial measurements 

Pre-trial body mass (P=0.920), urine osmolality (P=0.260) and serum osmolality 

(P=0.243), were not different between trials, indicating subjects started each trial in a 

similar hydration state. 

Hydration variables 

There was a main effect of trial (P<0.05) and time (P<0.001), as well as an interaction 

effect (P<0.001) for body mass. Body mass was similar at 0 h, but was lower at 24 h during 
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HYPO-F and HYPO-NF compared with EU-F and EU-NF (P<0.001) and over the trial 

body mass loss was greater during HYPO-F and HYPO-NF compared with EU-F and EU-

NF (P<0.001) (Table 1). Total 24 h urine output was greater for EU-F and EU-NF than 

HYPO-F and HYPO-NF (P<0.001) (Table 1). 

For both urine (Fig 1a) and serum (Fig 1b) osmolality, there were main effects of trial 

(P<0.001) and time (P<0.001), as well as interaction effects (P<0.001). Urine osmolality 

(P>0.163) and serum osmolality (P>0.492) did not change for EU trials over the 24 h, but 

both increased during HYPO trials (P<0.001). Furthermore, whilst there was no difference 

in urine or serum osmolality at 0 h, both were greater during HYPO trials compared to EU 

trials (P<0.001) at 24 h. The change in plasma volume over the trial meant that plasma 

volume at 24 h was greater during EU-F and EU-NF than HYPO-F and HYPO-NF 

(P<0.001) (Table 1).  

Ad-libitum energy intake and subjective responses 

There was no difference between trials for ad-libitum energy intake (P=0.131) (Fig 2). 

Furthermore, there was no difference in energy intake when data were grouped according 

to hydration status, (EU trials 2491 (796) kJ; HYPO trials 2313 (737) kJ; P=0.120) or fluid 

availability (F trials (2460 (761) kJ; NF trials 2344 (780) kJ; P=0.410). More fluid was 

consumed during HYPO-F, (618 (251) mL) than during EU-F (400 (247) mL) (P<0.05). 

For acylated ghrelin, there was a main effect of time (P<0.01), but no main effect of trial 

(P=0.089) or interaction effect (P=0.985). Mean values decreased over the 24 h for all 

trials, but this only reached significance during HYPO-F (P<0.05) and tended to decrease 

during EU-F (P=0.052) (Table 2). 
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There was a main effect of time (P<0.001) and trial (P<0.001), as well as an interaction 

effect (P<0.001) for subjective feelings of thirst (Table 3a). Compared to 0 h, thirst was 

increased at 24 h during HYPO-F (P<0.001) and HYPO-NF (P<0.05) and reduced at 24.5 

h during EU-F (P<0.01) and HYPO-F (P<0.01). Thirst was greater at 24 h during HYPO 

trials compared to EU trials (P<0.001) as well as at 24.5 h during NF trials compared to 

during F trials (P<0.001). For both fullness (Table 3b) and hunger (Table 3c) there was a 

main effect of time (P<0.001), but no main effect of trial (P>0.294) or interaction effect 

(P>0.069). 

 

Discussion 

This study compared energy intake, acylated ghrelin and subjective appetite responses to 

alterations in hydration status and fluid availability. The main findings indicated that ad-

libitum energy intake, acylated ghrelin and appetite sensations were not different between 

trials, although thirst was increased with hypohydration. These findings suggest that 

appetite and energy intake in humans are not affected by moderate levels of hypohydration 

or fluid restriction, which contrasts with previous research in animals (Lepkovsky et al., 

1957; Silanikove, 1992; Senn et al., 1996; Watts, 1999) and humans (Engell, 1988; 

Shirreffs et al., 2004), as well as our main hypothesis. 

Shirreffs et al. (2004) reported that complete fluid restriction over a 37 h period reduced 

ad-libitum energy intake by ~28% compared to a euhydrated control trial where subjects 

were free to consume fluids ad-libitum, despite no difference in subjective appetite 

responses. Shirreffs et al. (2004) limited subjects to the consumption of “dry foods” during 

the fluid restriction trial, but subjects could consume any foods during the control trial. It 

is possible that these changes in eating behaviour or the consumption of energy containing 
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fluids in the control trial might explain the difference in energy intake between the trials. 

Engell (1988) investigated energy intake during six consecutive meals over 48 h and found 

that when fluid was limited to 43% of ad-libitum fluid intake, ad-libitum energy intake was 

reduced by ~37% compared to a trial where fluids were available ad-libitum. Although 

fluid was restricted, hydration status was not measured and therefore the findings have 

been attributed to a close relationship between eating and drinking patterns (Engell, 1988). 

This is further described by McKiernan et al. (2008) who reported that drinking 

independently of eating is rare and approximately 75% of daily fluid intake is consumed 

at meal times.  

Although it appears there is a strong behavioural link between food intake and drink intake, 

it has been suggested that there may be certain other physiological mechanisms that might 

explain changes in energy intake in response to fluid restriction and/ or hypohydration. 

Walsh et al. (2004) and Oliver et al. (2008) have reported that hypohydration decreases 

salivary flow rate. Others have reported that hypohydration decreases the rate of gastric 

emptying and reduces gastric secretions (Neufer et al., 1989; Rehrer et al., 1990). 

Symptoms of dry mouth, which are likely related to a reduced salivary flow rate have been 

reported to decrease energy intake in irradiated patients (Bäckström et al., 1995) and the 

elderly (Lovat, 1996). This reduced energy intake may be due to peri-prandial feelings of 

satiety from reduced palatability of foods and/ or slower oral processing (i.e. increased 

chewing etc.) (Smit et al., 2011). Silanikove (1992) linked reductions in salivary secretions 

and feed intake in ruminants during 72 h water restriction. These mechanisms might 

provide a plausible explanation as to why previous studies that restricted fluid ingestion 

during eating (Engell, 1988; Shirreffs et al., 2004) or restricted foods to those with a low 

moisture content (Shirreffs et al., 2004) observed reduced energy intake with 

hypohydration/ fluid restriction. Alterations in hydration status might also influence 
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appetite regulation and a previous study reported that acylated ghrelin was reduced after 

exercise-induced dehydration compared to when euhydration was maintained (Kelly et al., 

2012), but that there was no change in peptide YY or pancreatic polypeptide. Neither the 

present study nor that of Corney et al. (2015) observed any differences in acylated ghrelin 

between hypohydration and euhydration. The divergent findings between studies might be 

accounted for by the different protocols used to induce hypohydration.  

Both Kelly et al. (2012) and Corney et al. (2015) reported no difference in energy intake 

from a breakfast buffet meal when subjects were either euhydrated or hypohydrated at the 

start of the meal, with hydration status manipulated through a combination of exercise and 

fluid restriction. Both these studies provided fluids ad-libitum during eating and as such 

support the notion that hydration status does not affect ad-libitum energy intake when 

fluids are provided with a meal. In line with this, studies in rats report a rapid restoration 

of normal eating patterns when water is provided again after 5 days of dehydration induced 

anorexia produced by saline ingestion (Watts, 1999). 

As discussed above, there are a number of studies in both humans (Engell, 1988; Shirreffs 

et al. 2004) and animals (Lepvoksky et al. 1957; Silanikove, 1992; Senn et al., 1996; Watts, 

1999) that suggest fluid restriction during eating decreases energy intake, but the results of 

the present study do not support this. Even comparison of just the EU-F and EU-NF trials 

with a t-test revealed no effect of fluid restriction (P=0.128). We speculate that the lack of 

agreement between this and previous studies might be caused by two possible explanations. 

Firstly, the choice of a semi-solid breakfast might have been enough to maintain energy 

intake during the meal. Indeed, whilst thirst compared to 0 h was increased immediately 

before the meal during HYPO-NF, the consumption of the meal (but no fluid) reduced 

thirst such that it was no longer different from 0 h. We chose to use the single item porridge 

breakfast in the present study as previous studies have utilised a buffet style breakfast (i.e. 
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Kelly et al., 2012 and Corney et al., 2015). Buffet style meals are known to encourage over 

feeding (Mirtch et al., 2006) and might encourage learned eating behaviours between trials 

(e.g. I ate one slice of bread last week, so I’ll do the same this week). Secondly, breakfast 

is perhaps the most habitual meal of the day and therefore expected satiety might have a 

greater impact on energy intake at breakfast than the effects of small manipulations of 

hydration status or fluid availability. Future studies should examine eating behaviour at 

meals other than breakfast, as well as over longer time periods, incorporating multiple 

meals. 

Previous studies that have examined the influence of hydration status on appetite regulation 

(Kelly et al., 2012; Corney et al., 2015) have induced hypohydration of 2-3% body mass 

in comparison to the <2% induced in the present study. Therefore, at least in healthy young 

populations, small deviations in hydration status (<2-3% body mass) are unlikely to explain 

alterations in eating behaviour. Whether hypohydration of greater than 2-3% body mass 

influences appetite and eating behaviour is not known. The reduction in food intake caused 

by hypohydration in animal studies is often associated with much larger degrees of 

hypohydration (Senn et al., 1996; Watts, 1999), and it may be that the level of 

hypohydration at which human eating behaviour is affected is greater than 2-3%. Whilst 

hypohydration of >3% body mass is not a common occurrence, some athletes in training 

or competition (Cheuvront and Haymes, 2001) or military personnel during field exercise 

or sustained operations (Lieberman et al., 2005) might be exposed to these levels of 

hypohydration. A decrease in appetite and/ or food intake might therefore impair recovery 

from exercise, training adaptation or military duties.  

If fluid is not available during feeding, then a reduction in energy intake might be observed 

with hypohydration (Engell, 1988; Shirreffs et al., 2004), although the present study 

suggests this might depend on the nature of the food available. Only a few studies have 
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examined the effect of fluid intake during or in close proximity to meals, but alterations in 

hydration status that influence thirst sensation might have the potential to influence eating 

behaviour. If sufficient, water intake causes gastric distension and thus might attenuate 

food intake. This effect has been demonstrated in animal models (Share et al., 1952), and 

is likely to be explained by activation of the vagal nerve due to gastric distension (Paintal 

et al., 1954). In young healthy adults, ingestion of a bolus of water (~500 mL) 30 min (Van 

Walleghen et al., 2007) or 60 min (Rolls et al., 1990) before an ad-libitum meal does not 

influence eating behaviour. However, immediate pre-meal water intake that produces 

gastric distension might reduce food intake (Corney et al., 2014). If thirst is greatly 

increased due to hypohydration it seems likely that at least some water ingestion will occur 

immediately prior to eating. Although whether this is sufficient to influence eating 

behaviour is likely to depend on the volume of fluid required to satiate thirst prior to eating, 

which was not determined in the present study. 

There are limitations to the present study that need to be acknowledged. The study design 

was limited in scope, in that only one level of hypohydration (~2% body mass loss) was 

examined and the measurement of energy intake was only determined at a single meal. It 

seems from this and previous studies that future investigations should seek to examine the 

effects of larger losses of body water (i.e. >3% body mass). Additionally, future studies 

should examine situations where larger deviations in hydration status are likely to occur 

such as prolonged endurance exercise with inadequate fluid intake (Cheuront and Haymes, 

2001) or military training (Lieberman et al., 2005). Although also limited in scope, 

previous studies in humans that have reported reductions in energy intake with reductions 

in fluid intake and hydration status have examined energy intake over an extended period 

(Engel, 1988; Shirreffs et al., 2004). Therefore, future studies should examine the influence 

of hypohydration on energy intake at meals other than breakfast and/ or multiple meals. 
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In conclusion, these results demonstrate that in a laboratory setting there appears to be little 

effect of hypohydration or fluid availability on ad-libitum intake. These findings are likely 

explained by the use of a semi-solid breakfast meal, which might be more palatable to the 

hypohydrated/ fluid restricted individual. 
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Table 1. Body mass change relative to 0 h (%), 24 h urine (mL), plasma volume change 

relative to 0 h (%). Values are mean (standard deviation). ^ Significantly different from 

EU-F and EU-NF. 

 EU-F EU-NF HYPO-F HYPO-NF 

Body mass 

change % 

 -0.28 (0.59) -0.35 (0.51) -1.78 (0.53)^ -1.89 (0.45)^ 

24 h urine 

volume (mL) 

2262 (494) 2478 (494) 724 (272)^ 806 (201)^ 

Plasma 

volume change 

(%) 

+0.3 (3.9) +2.0 (3.5) -2.9 (2.8)^ -4.1 (2.3)^ 
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Table 2. Acylated ghrelin (pg∙mL-1). Values are median (range). * Significantly different 

from 0 h.  

 0 h 24 h 

EU-F 122 (29-292) 105 (21-263) 

EU-NF 97 (24-295) 88 (5-267) 

HYPO-F 147 (15-542) 103 (18-473)* 

HYPO-NF 149 (17-311) 112(19-303) 
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Table 3. Subjective feelings reported using 100 mm visual analogue scales for thirst (a), 

fullness (b) and hunger (c). Values are median (range). ^ Significantly different from EU-

F and EU-NF. # Significantly different from EU-NF and HYPO-NF. * Significantly 

different from 0 h. 

  0 h 24 h 24.5 h 

a) Thirst EU-F 

EU-NF 

56 (16-100) 

51 (31-85) 

52 (5-78) 

56 (15-100) 

9 (0-67)*# 

73 (14-86) 

 HYPO-F 

HYPO-NF 

47 (19-96) 

67 (18-86) 

91 (69-100)*^ 

92 (29-100)*^ 

12 (0-75)*# 

74 (4-92) 

 

b) Fullness EU-F 

EU-NF 

26 (0-51)  

25 (3-51) 

22 (12-50) 

35 (2-52)* 

80 (61-95)* 

82 (67-96)* 

 HYPO-F 

HYPO-NF 

31 (6-49) 

29 (0-66) 

15 (4-75) 

22 (6-85)  

87 (54-100)* 

79 (50-94) * 

 

c) Hunger EU-F 

EU-NF 

52 (3-100) 

69 (25-92) 

70 (14-85) 

61 (13-87) 

7 (0-37)* 

13 (0-54)* 

 HYPO-F 

HYPO-NF 

68 (32-90) 

66 (40-86) 

70 (27-94) 

75 (6-96) 

8 (0-28)* 

7 (0-45)* 
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Fig 1. Osmolality (mosmol·kg-1) of serum (a) and urine (b) of samples collected at 0 h and 

24 h. Bars represent mean values and error bars are SD. * Significantly different from 0 h. 

^ Significantly different from EU-F and EU-NF. 
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Fig 2. Energy intake (kJ) at the ad libitum breakfast. Bars are mean and error bars are SD. 
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