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Abstract 

The most profound biochemical phenotype of cancer cells is their ability to metabolize glucose to 

lactate, even under aerobic conditions. This alternative metabolic circuitry is sufficient to support 

the biosynthetic and energy requirements for cancer cell proliferation and metastasis. Alterations 

in oncogenes and tumor suppressor genes are involved in the metabolic switch of cancer cells to 

aerobic glycolysis, increased glutaminolysis and fatty acid biosynthesis. MiRNAs mediate fine-

tuning of genes involved directly or indirectly in cancer metabolism. In this review, we discuss the 

regulatory role of miRNAs on enzymes, signaling pathways and transcription factors involved in 

glucose and lipid metabolism. We further consider the therapeutic potential of metabolism-related 

miRNAs in cancer. 
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Highlights: 

Metabolic reprogramming is a central hallmark of oncogenesis. 

Metabolic pathway alterations in cancer are tightly regulated by microRNAs. 

MicroRNAs regulating metabolic pathways are frequently silenced or overexpressed in cancer. 

MicroRNAs targeting the metabolic reprogramming cascade possess value for cancer therapy. 
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Metabolic reprogramming in cancer  

Cancer is a disease where cells have lost their normal checks on cell proliferation. Intrinsic and 

extrinsic molecular mechanisms converge to alter core cellular metabolism and provide support 

for the three basic needs of proliferating cells: rapid ATP generation to maintain energy status; 

increased biosynthesis of macromolecules; and maintenance of appropriate redox status [1]. To 

meet these needs, cancer cells often display fundamental changes in pathways of energy 

metabolism and nutrient uptake. Similar alterations are also observed in rapidly proliferating 

normal cells, representing responses to physiological growth signals [2, 3].  

In comparison to normal cells, malignant transformation is associated with excessive glucose 

uptake, aerobic glycolysis, glutaminolysis, altered lipid metabolism, de novo fatty acid synthesis 

and increased generation of reactive oxygen species (ROS) (Figure 1). These bioenergetics and 

metabolic features allow cancer cells to proliferate and survive under adverse conditions such as 

hypoxia, and enable their progression, invasiveness, and subsequent distant metastasis [4].  

The best characterized metabolic phenotype that distinguishes cancer from normal cells is the 

aerobic glycolysis, also termed the Warburg effect (Box 1). The fundamental finding of Warburg’s 

studies was that cancer cells metabolize glucose to lactate under aerobic conditions, despite the 

fact that this metabolic pathway is much less energy efficient when compared to oxidative 

phosphorylation. The Warburg phenomenon has been observed across several tumor types and 

is often associated with a high rate of glucose uptake [5]. However, since these alterations are 

also observed in the proliferating normal cells it is not clear whether this metabolic profile is 

specific to cancer or just cell proliferation. Moreover, the Warburg effect alone cannot explain all 

the metabolic alterations that are necessary for cell growth requirements [6]. Instead, the 

importance of other nutrients in fueling cell growth, such as glutamine, has gained much attention 

the recent years [7]. The metabolic interactions between tumor and stroma add more complexity 

to the understanding of metabolic reprogramming of cancer. Tumors with the same genetic 

lesions have different metabolic profiles depending on the tissue they arise in [8], suggesting that 
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the tissue microenvironment strongly affects the metabolic activity of cancer cells. Another 

mechanism that is not explained by the Warburg effect and still remains unclear is how cancer 

cells maintain the balance between enhanced glycolytic activity and the need for antioxidant 

production. ROS can directly suppress aerobic glycolysis, through inhibition of the glycolytic 

enzyme pyruvate kinase (PKM2), and induce the production of NADPH for anti-oxidant synthesis 

by allowing the accumulation of glycolytic intermediates [9]. In conclusion, although the Warburg 

phenomenon has become synonymous with the hallmark designation attributed to altered cancer 

metabolism, still remains unclear whether it plays a causal role in cancer or it is just an 

epiphenomenon.    

 

MiRNAs and Cancer  

MicroRNAs (miRNAs) are endogenous small non-coding RNAs, 18 to 25 nucleotides in length, 

which regulate gene expression [10]. The mechanism of miRNA biogenesis is described in Box 

2. MiRNA-mediated regulation of gene expression may take place either through mRNA 

degradation or inhibition of translation. MiRNAs bind to the 3’-untranslated region (3’-UTR) of the 

target mRNA through imperfect base-pairing, thus are able to regulate a large number of genes 

simultaneously [11-13]. Therefore, miRNAs act as master gene regulators, similar to transcription 

factors and the two may cooperate and ultimately determine gene expression patterns in the cell 

[14, 15].  

MiRNAs are involved in a number of biological processes, such as development. 

differentiation, proliferation, apoptosis or pluripotency [10, 16]. Recent studies have shown that 

miRNAs control different aspects of energy metabolism including insulin production and signaling, 

glucose transport and metabolism, cholesterol and lipid homeostasis and amino-acid biogenesis 

[17, 18]. MiRNAs regulate cell metabolic processes either directly by targeting key molecules of 

metabolic pathways (transporters, enzymes and kinases) or indirectly by modulating the 

expression of important transcription factors [16-18].    
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The full spectrum of miRNAs expressed in a specific cell type (the miRNAome) varies 

between normal and pathologic tissues and specific signatures of deregulated miRNAs harbor 

diagnostic and prognostic implications [16, 17]. Deregulation of miRNA expression is involved in 

the initiation and progression of tumorigenesis and has been investigated in almost all types of 

human cancer [19]. Some miRNAs act mainly as tumor suppressors while others have a well-

established role as oncogenes, depending upon their target genes. Multiple studies have revealed 

that the altered metabolic pathways in cancers are tightly regulated by miRNAs. The downstream 

targets of a number of miRNAs are directly or indirectly connected to metabolic regulation [18, 

20]. In this review, we discuss the regulatory role of miRNAs on essential cancer metabolism 

molecular mechanisms.  

 

MiRNAs and Metabolic Reprogramming 

Regulation of glucose uptake receptors by miRNAs  

Glucose transport across the plasma membrane of eukaryotic cells is mediated by two different 

types of membrane-associated carrier proteins, the Na+-coupled glucose transporters (SGLT) and 

glucose transporter facilitators (GLUT) (Figure 1). The SGLT family members function as sugar 

transporters (SGLT1 and SGLT2) or sensors (SGLT3) [21]. Eleven out of the 14 members of the 

GLUT family in humans facilitate glucose transport and exhibit differential regulation, tissue-

specific expression and substrate specificity. The levels of GLUT1, GLUT2 and GLUT3 are found 

elevated in most malignant tissues, while the mRNA of GLUT4 and GLUT5 are below sensitivity 

[22]. Presumably, the deregulation of GLUTs may increase glucose uptake, satisfy the high 

glucose requirements and accelerate metabolism in cancer cells.  

Among the different mechanisms regulating GLUTs, miRNAs may regulate glucose uptake via 

affecting GLUTs expression or indirectly through effects on other regulatory mechanisms (Table 

1). MiR-195-5p, which is downregulated in bladder cancer, has been identified as a direct 

regulator of GLUT3 [23]. A protein with glucose transporter function, SLC45A3, is directly 

regulated by miR-32 [24]. GLUT4 expression is indirectly upregulated by miR-223 and 
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downregulated by miR-133 [25, 26]. Other examples of indirect regulation of glucose transport 

include miR-23a, which regulates SMAD4 and subsequently GLUT4 translocation [27] and miR-

21, which affects GLUT4 translocation in adipocytes [28]. However, the direct links between 

miRNA deregulation and glucose transport in cancer are largely unknown. 

   

Functions of miRNAs in glycolysis 

Recent studies have emphasized the miRNA regulation of the irreversible steps in glycolysis 

(Table 1). Hexokinases catalyze the first and irreversible step of glucose metabolism, the ATP-

dependent phosphorylation of glucose to yield glucose-6-phosphate (Figure 1) [29]. Hexokinase 

2 (HK2) is overexpressed in tumors and contributes to aerobic glycolysis. Thus, it is characterized 

as a pivotal player in the Warburg effect and an emerging target for cancer metabolism 

therapeutics [30, 31]. MiR-143 inhibits HK2 expression in head and neck squamous cell 

carcinoma (HNSCC) cell lines. In accord, miR-143 inversely correlates with HK2 expression in 

HNSCC and lung tumors [32, 33]. Similarly, targeting of HK2 by miR-143 affects glucose 

metabolism in colon cancer cells [34]. Importantly, the 5q–syndrome a common subtype of the 

Myelodysplastic syndrome, is defined by an isolated interstitial deletion of chromosome 5q, where 

the MIR-143 gene resides [35]. This locus is often deleted in other malignancies [36], while miR-

143 has also been found down-regulated in a number of cancers [37, 38]. The miRNA-dependent 

regulation of hexokinase expression is not limited to HK2 as miR-138 targets HK1 [32]. Other 

important intermediate steps in the glycolysis pathway may be regulated by or regulate 

microRNAs. Aldolase A is a direct target of miR-122 in liver cells [39]. Phosphoglucose isomerase 

(PGI) has been associated with invasion and metastasis of cancer cells. PGI regulates the 

expression of the miR-200 family of microRNAs and subsequently the Epithelial-Mesenchymal 

Transition (EMT) in breast cancer cells [40].   

Cancer cells re-express the embryonic isoform of pyruvate kinase (PK), PKM2, which 

dephosphorylates phosphoenolpyruvate (PEP) to pyruvate (Figure 1). PKM2 provides a 

metabolic advantage in that it allows the tumor cells to use phosphometabolites upstream of 
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pyruvate as precursors for the synthesis of amino acids, nucleic acids and lipids [41, 42]. MiR-

326 has been shown to target PKM2 and suppress cell growth. As a result, in glioblastoma cell 

lines, the upregulation of PKM2 correlates with low levels of miR-326 [43]. Likewise, miR-122 

targets PKM2 and inhibits hepatocellular carcinoma (HCC) proliferation. Significantly, the 

increased miR-122 promoter methylation in HCC inhibits its expression and relieves PKM2 

suppression [44]. PKM2 overexpression in tongue SCC has been associated with the 

downregulation of miR-133a and miR-133b [45]. A set of microRNAs, deregulated in colorectal 

cancer, miR-124, miR-137 and miR-340 are proposed to regulate the switch of PKM gene 

expression from PKM2 to PKM1 [46]. Under hypoxic conditions, miR-210 represses ISCU1/2 and 

thus, decreases the activity of proteins controlling mitochondrial metabolism, including Complex I 

and aconitase [47]. Hence, miR-210 represses mitochondrial respiration and might indirectly 

facilitate aerobic glycolysis in cancer. 

 

MiRNAs involved in lactate metabolism 

In normal cells, when oxygen is available, pyruvate undergoes oxidative phosphorylation in 

mitochondria, through the tricarboxylic acid (TCA) cycle. When oxygen levels are low, pyruvate 

is converted to lactate in the cytoplasm by lactate dehydrogenase (LDH) (Figure 1). LDHB is a 

target of miR-375 which is downregulated in maxillary sinus and esophageal SCC (Table 1). This 

contributes to the increased levels of LDHB and correlates with increased tumor aggressiveness 

[48, 49].  

Most of the lactate is secreted and can be taken up by the liver where it is converted into 

glucose and recycled to the bloodstream and back to the tumors. The ability of cells to secrete 

lactate depends on the monocarboxylate transporters (MCTs) (Figure 1). MCT1 is targeted by 

miR-29a, miR-29b and miR-124 (Table 1) [50]. During the progression of malignant melanoma, 

the highly expressed protein basigin (Bsg) interacts with MCT1 and 4. Let-7b has been shown to 

target Bsg and inhibit the invasiveness of melanoma cells, potentially through the disruption of 

this interaction (Table 1) [51].  
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Glutamine Metabolism 

Apart from glucose, cancer cells exhibit increased glutamine intake and glutamine metabolism 

(glutaminolysis). This adaptive accelerated glutamine metabolism by cancer cells seems to 

provide substrates for increased lipogenesis and nucleic acid biosynthesis that are critical to the 

proliferative phenotype of the cancer cell. It has been demonstrated that cell transformation 

stimulates glutaminolysis and that many cancer cells are tightly dependent on this amino acid [52, 

53].  

Cancer cells are known to overexpress mitochondrial phosphate dependent and phosphate 

independent glutaminase, the enzyme that catalyzes the degradation of glutamine to glutamate 

and ammonia [54]. Glutamate can be converted directly into GsH, by the enzyme glutathione 

cysteine ligase (GCl), one of the most abundant antioxidants in mammalian cells important in 

controlling the redox state of all subcellular compartments [55]. Glutamate can also further 

oxidized to α-ketoglutarate and enter the TCA cycle to produce ATP. It has been documented that 

the ammonia produced following glutaminolysis stimulates autophagy, suggesting that when 

glucose-depleted cells become more dependent on glutamine via glutaminase and glutamate 

dehydrogenase to produce α-ketoglutarate, the excess ammonia triggers autophagy to provide 

sufficient energy to survive a period of glucose deprivation [56]. One of the major regulators of 

glutaminolysis is MYC, further supporting the concept that MYC promotes not only cell 

proliferation but also the generation of macromolecules and antioxidants required for growth. In 

the same line, the suppression of MIR-23A/B by MYC enhances mitochondrial glutaminase 

expression and glutamine metabolism [53]. 

 

MiRNA regulation of insulin secretion and signaling  

In response to increased nutrient levels in the blood, pancreatic β-cells synthesize and secrete 

insulin. The effects of insulin secretion include glucose uptake in muscles and adipocytes, 

inhibition of glucose production in the liver and increased storage of nutrients in forms of fat, 
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glycogen and protein. MicroRNAs have been implicated in insulin secretion regulation through 

effects on pancreatic development and insulin exocytosis. MiR-375 and miR-124a decrease 

insulin exocytosis through the repression of myotrophin [57, 58]. Additionally, miR-9 regulate 

insulin secretion through inhibition of the transcription factor one cut homeobox 2 [59]. 

Other miRNAs act in target tissues to regulate responses to insulin and glucose homeostasis.  

The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the 

RNA-binding proteins Lin28a/b promote malignancy by blocking let-7 biogenesis. In studies using 

transgenic mice, it has been demonstrated that the Lin28/let-7 pathway is a central regulator of 

mammalian glucose metabolism. Both Lin28a and LIN28B promoted an insulin-sensitized state 

that resisted high fat diet-induced diabetes, whereas muscle-specific loss of Lin28a and 

overexpression of let-7 resulted in insulin resistance and impaired glucose tolerance. These 

phenomena occurred in part through let-7-mediated repression of multiple components of the 

insulin-PI3K-mTOR pathway [60]. Furthermore, it was recently shown that Lin28 restores glucose 

metabolism in obese adipocyte stem cells through repression of let-7 expression [61]. MiR-29a 

and miR-29b, have been linked to insulin resistance, through the down-regulation of proteins that 

promote insulin signaling like caveolin 2 and phosphatidylinositol 3-kinase (PI3K) regulatory 

subunit-α [62, 63]. The inhibition of insulin receptor substrate-1 (IRS1) by miR-126 also promotes 

insulin resistance [64], while miR-33a and miR-33b affect insulin signaling and glucose regulation 

by targeting IRS2, SIRT6 and AMPKα1 [65]. Additionally, miR-33a may regulate Pim-1, a kinase 

that possesses overlapping functions with Akt [66]. In this context, it has been demonstrated that 

miR-33a may be an efficient strategy for microRNA replacement therapy [67]. IRS-2 is a target of 

miR-7-5p in melanoma cells. MiR-7-5p is downregulated in metastatic melanoma-derived cell 

lines and regulates melanoma cell migration and invasion through upregulation of IRS-2 and 

induction of Akt [68].  

Obesity is an established risk and progression factor for many cancers. In obesity models, 

several miRNAs are overexpressed and exert regulatory effects on insulin signaling and glucose 

homeostasis. MiR-103, miR-107 and miR-143 are overexpressed and reduce insulin sensitivity 
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[69, 70]. Protein tyrosine phosphatase 1B (PTP1B), a target of miR-122, inhibits hepatic insulin 

signaling by dephosphorylating insulin receptor and IRS. In high-fat-diet-fed mice and hepatocyte 

models with insulin resistance, the expression of miR-122 is downregulated [71].     

 

MiRNAs and Lipid Metabolism 

Lipids form a diverse group of water-insoluble molecules and include triglycerides, phospholipids, 

sterols and sphingolipids. Triglycerides are mainly used for energy storage while phospholipids, 

together with sterols and sphingolipids, represent the major structural components of biological 

membranes. Lipids can also act as signaling molecules, functioning as second messengers (e.g. 

sphingolipids) and as hormones (e.g. steroid hormones) [72]. Lipids such as cholesterol and fatty 

acids are taken up in the diet and are synthesized de novo, predominantly in the liver. Regulation 

of the biosynthesis of cholesterol, fatty acids and phospholipids is mediated by transcription 

factors such as sterol regulatory element binding proteins (SREBPs) [73]. A major transcription 

factor of the liver that regulates lipid homeostasis and controls the expression of 12% of the genes 

expressed is hepatocyte nuclear factor α (HNF4α) [74]. Interestingly, adult liver-specific knockout 

mice of the HNF4A gene exhibit fatty liver and greater than 70% mortality by 8 weeks of age [75]. 

A more broad effect of HNF4α on metabolism is reflected on the finding that mutations on the 

HNF4A gene contribute to several forms of maturity-onset diabetes in children [76].   

Changes in lipid metabolism can affect numerous cellular processes, including 

proliferation, differentiation and cell motility. There is increasing evidence that cancer cells show 

specific alterations in different aspects of lipid metabolism. One characteristic is that irrespective 

of the concentration of extracellular lipids, fatty acids are mainly synthesized de novo [72]. Another 

characteristic is that some tumor types, instead of exhibiting a high rate of glucose uptake they 

exhibit increased dependence on lipid oxidation as their main energy source. One such example 

is prostate cancer, which generally displays a low rate of glucose utilization, showing increased 

uptake of fatty acids and overexpression of some β-oxidation enzymes [77, 78]. The increased 

availability of lipids in cancer cells contributes to several aspects of tumor biology such as cell 
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growth and proliferation, survival under oxidative and energy stress, chemoresistance, support of 

a high-glycolytic rate by promoting redox balance and stimulation of signaling pathways that lead 

to invasion and metastasis [72, 79].    

MiR-122 was the first miRNA to be linked to metabolic control. It is expressed primarily in 

the liver and was initially shown to affect hepatic cholesterol and lipid metabolism [80]. Antisense 

targeting of miR-122 in the whole animal results in a vast reduction in plasma cholesterol by 

affecting the expression of genes involved in cholesterol biosynthesis [81], and inducing fatty acid 

β-oxidation [82]. However, the genes affected by miR-122 in the liver and are involved in 

cholesterol and lipid metabolism, do not seem to be direct targets of miR-122 [81]. Interestingly, 

miR-122 was successfully targeted by antisense inhibitors using locked nucleic acid (LNA) 

chemistry in non-human primates, resulting in lowered circulating cholesterol [83]. Regarding 

cancer, deletion of miR-122 in mice causes several key phenotypes of chronic human liver 

diseases and eventually liver cancer [84, 85]. This lack of mechanistic understanding of miR-122 

and the carcinogenic effect of miR-122 suppression raised questions about the development of 

miR-122 antisense technologies as therapeutic approaches.  

Several recent studies have reported miR-33a/b as a regulator of cholesterol/lipid metabolism 

and energy homeostasis. MIR-33A/B embeds within intron sequences of the human SREBF 

genes and controls the levels of ATP-binding cassette transporter ABCA1, a cholesterol efflux 

pump [86, 87]. Thus, Srebp and miR-33 may cooperate to regulate cell proliferation and cell cycle 

progression [88]. MiR-33a/b also acts in the lipid homeostasis pathway by controlling the 

expression of fatty acid β-oxidation genes and energy homeostasis regulators like AMPK and 

SIRT6 [65].    

There’s evidence that miRNAs are involved in the differentiation of adipocytes and the 

development of obesity [89, 90]. MiR-335 is up-regulated in the white adipose tissue of obese 

mice and is associated with elevated hepatic triglycerides and cholesterol [90]. Additionally, miR-

370 acting via miR-122 may accumulate hepatic triglycerides by modulating initially the 
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expression of SREBP-1c, DGAT2, and Cpt1α and, subsequently, the expression of other genes 

that affect lipid metabolism [91].  

It was recently demonstrated that miR-24 and miR-629 suppress directly HNF4α 

expression inducing hepatocellular cancer initiation and growth. Furthermore, we have shown 

that miR-24 and miR-629 are upregulated in HCC and their expression is mediated by STAT3. 

We have further demonstrated that HNF4α controls the expression of miR-124, a miRNA 

suppressed in HCC. Our findings suggest that transient inhibition of HNF4α initiates 

hepatocellular transformation through a feedback loop circuit that consists of miR-124, miR-24, 

miR-629 and STAT3. Once this circuit is activated it maintains suppression of HNF4α and 

sustains oncogenesis [15].           

 

MiRNA regulation of signaling pathways  

The fact that a plethora of the predominant mutations observed in cancer also regulate cell 

metabolism led to the theory that oncogene and tumor suppressor networks influence the 

metabolic shift in cancer. Accordingly, the interrelation between deregulated microRNAs and 

imbalanced signaling pathways largely contributes to abnormal cell metabolism and 

carcinogenesis (Table 2). Major factors and pathways involved in metabolic reprogramming 

include HIF1A, MYC, AKT, AMPK, and p53 (Figure 2). 

 

HIF1 and MYC transcription factors: The hypoxia-inducible factor (HIF) complexes are 

transcription factors regulating gene expression upon oxygen deprivation. HIF1α or HIF2α 

subunits are stabilized upon exposure to hypoxia and form heterodimers of the HIF1β. These two 

transcription factors increase the cell capacity to carry out glycolysis, through the activation of 

genes encoding glucose transporters and most glycolytic enzymes, and reinforce the glycolytic 

phenotype through activation of the pyruvate dehydrogenase kinases (PDKs) which reduce the 

flow of pyruvate into the TCA cycle (Figure 2) [1]. MiR-199a downregulation upon oxygen 

deprivation is required for the rapid upregulation of its target, HIF1α [92]. In chronic lymphocytic 
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leukemia (CLL), the stabilization of HIF1 under normoxia is mediated by miR-92-1. MiR-92-1 

targets the von Hippel-Lindau (VHL) tumor suppressor [93], an E3 ubiquitin ligase which marks 

HIF1α for degradation in the presence of oxygen. Under hypoxia, miR-424 upregulation in 

endothelial cells stabilizes HIF1α through the targeting of cullin 2, a scaffolding protein critical to 

the assembly of ubiquitin ligase system [94]. Glycerol-3-phosphate dehydrogenase 1-like 

(GPD1L), an inhibitor of HIF-1α stability is a direct target of miR-210. Importantly, miR-210, a 

transcriptional target of HIF-1α is overexpressed in multiple cancers and reinforces HIF-1α activity 

[95]. The oncogenic transcription factor MYC collaborates with HIF in the activation of several 

glucose transporters, glycolytic enzymes, LDHA and PDK1. In parallel, MYC regulates glutamine 

metabolism and mitochondrial function through the activation of genes involved in mitochondrial 

biogenesis [4, 52]. MYC increases glutamine uptake by directly inducing the expression of the 

glutamine transporters slC5A1 and slC7A1 (also known as CAT1) [53]. MiR-33b has been 

identified as a negative regulator of c-MYC. Thus, in medulloblastomas loss of the 17p11.2 

genomic locus, where MIR-133b resides, results in c-Myc overproduction [96]. MYC directly up-

regulates a pro-tumorigenic group of miRNAs known as the miR-17-92 cluster (Figure 2) [97]. 

This cluster leads to inhibition of tumor suppressor PTEN, an antagonist of PI3K/Akt/mTOR 

pathway which plays important roles in facilitating aerobic glycolysis in cancer cells [98].  

 

The PI3K/AKT/mTOR pathway: The AKT pathway, commonly activated in human cancers, is a 

key regulator of survival and apoptosis, cell cycle and growth, protein synthesis and glucose 

metabolism [99]. AKT, which lies downstream of PI3K, stimulates glycolysis by increasing the 

expression and membrane translocation of glucose transporters and by phosphorylating key 

glycolytic enzymes, such as hexokinase [100, 101] (Figure 2). Through the inhibition of forkhead 

box subfamily O (FOXO) transcription factors, AKT increases the glycolytic capacity and lipid 

genesis [102, 103]. In addition, AKT strongly stimulates mTOR by phosphorylating and inhibiting 

its negative regulator tuberous sclerosis 2 (TSC2). Activated mTOR stimulates protein and lipid 

biosynthesis and cell growth in response to sufficient nutrient and energy conditions [103]. Finally, 
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sustained activation of the PI3K/AKT/mTOR pathway in cancer regulates metabolism partly 

through HIF-1α induction under normoxic conditions (Figure 2) [1, 99]. MiR-126, frequently lost 

in colorectal cancers, impedes tumor cell growth by targeting the p85b subunit of PI3K [104]. MiR-

21, a microRNA increased in multiple cancers, activates AKT through the inhibition of PTEN and 

induces the tumor cell migration, proliferation and invasiveness [105]. It has been demonstrated 

that AKT2, one of the three isoforms of AKT, under hypoxic conditions regulates miR-21 and 

promotes resistance to hypoxia through activation of all isoforms [106]. It was recently shown that 

AKT isoforms differentially regulate microRNA expression. In specific, through the downregulation 

of miR-200 family of microRNAs, AKT signals may govern EMT and cancer stem cell-like 

properties [107]. On the other hand, miR-143 upregulation in the liver of obese mice results in 

downregulation of oxysterol-binding-protein-related protein 8 and thus impaired ability of insulin 

to induce AKT activation [70]. In liver cancer the upregulation of miR-221 negatively correlates to 

the expression of DNA damage-inducible transcript 4 (DDIT4), a modulator of mTOR [108]. In 

addition, miR-100 was found to target mTOR and its downregulation in ovarian cancer cell lines 

enhanced mTOR signaling [109]. MiR-199a-3p, downregulated in several human malignancies, 

inversely correlates with its target mTOR in hepatocellular carcinomas [110].   

 

AMP-activated protein kinase: The AMPK pathway couples energy status to growth signals. It 

functions as a metabolic checkpoint, regulating the cellular responses to energy availability [111]. 

LKB1 a kinase that lies upstream of AMPK, in the presence of AMP, when intracellular levels of 

ATP are low, phosphorylates and activates AMPK (Figure 2) [112]. Thus, during periods of 

energetic stress, AMPK becomes activated in response to an increased AMP/ATP ratio, and is 

responsible for shifting cells to an oxidative metabolic phenotype and inhibiting cell proliferation. 

In tumor cells uncoupling the fuel signals from growth signals, allows them to divide under 

abnormal nutrient conditions. In fact, many cancer cells exhibit a loss of appropriate AMPK 

signaling which may also contribute to their glycolytic phenotype [1, 111]. Interestingly, miR-451 

promotes glioma cell adaptation to metabolic stress through suppression of the LKB-1-associated 
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protein CAB39 and indirect activation of mTOR signaling [113]. Recently, miR-195 has been 

found to also target CAB39 and regulate mTOR [114]. 

 

The p53 pathway: Tumor suppressor p53, best known for its functions in the DNA damage 

response and apoptosis, it is also an important regulator of metabolism. p53 activates the 

expression of HK2 [115], TP53-induced glycolysis and apoptosis regulator (TIGAR) [116], PTEN 

[117] and SCO2 [118]. TIGAR decreases the levels of the glycolytic activator fructose-2,6-

bisphosphate and PTEN inhibits the PI3K pathway, and collectively suppress the glycolytic 

pathway, while SCO2 increases mitochondrial metabolism (Figure 2). Hence, loss or suppression 

of p53, an event common in cancers, might function as a major force behind the acquisition of the 

glycolytic phenotype. Several studies have identified miRNAs as regulators of p53 activity as well 

as its downstream effectors (Table 2). The 3'-UTR of p53 mRNA contains a conserved response 

element for miR-125b [119]. MiR-504 acts as a negative regulator of human p53, decreases p53 

protein levels and promotes tumorigenicity [120]. A library screen identified a group of microRNAs 

regulating p53 activity. Among them, miR-30d downregulate p53 protein levels and inhibit p53-

transcriptionally activated genes [121]. A screen for microRNAs against p53 activity, reported to 

be deregulated in human tumors, revealed the positive regulation of p53 by the miR-29 family 

members. This effect was attributed to direct suppression of the p85 regulatory subunit of PI3K 

and CDC42, a Rho family GTPase, both of which negatively regulate p53 [122]. The oncogenic 

role of miR-122 loss in the liver has been attributed to the indirect regulation of p53. In specific, 

by modulating cyclin G1, miR-122 influences p53 protein stability and transcriptional activity [123]. 

MiR-25 and miR-32 are also indirect regulators of p53 by targeting directly Mdm2 and TSC1, 

which are negative regulators of the p53 and the mTOR pathway. MiR-25 and miR-32 induce 

accumulation of p53 and subsequently inhibition of glioblastoma cell growth [124]. MiR-7 has 

been found to target YY1, a p53 suppressor. Hence, downregulation of miR-7 in a subset of 

colorectal cancers correlates with repression of p53 [125]. In another subset of colorectal cancers 

miR-218 downregulation has been correlated with inhibition of p53, through derepression of its 
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target BMI1 [126]. Downstream of p53, a p53 response element in the promoter of miR-145 

provides the link between this tumor suppressor miRNA and its direct target, c-Myc [127]. It has 

also been shown that under genetic stress, p53 may interact with the Drosha processing complex 

and thus enhance the post-transcriptional maturation of several miRNAs with growth-suppressive 

function, including miR-16-1, miR-143 and miR-145 [128]. The members of the pro-apoptotic miR-

34 family are expressed at very low levels in several types of cancers [129, 130] and have been 

characterized as direct transcriptional targets of p53 [131-133]. However their role as downstream 

effectors of p53 is currently under debate. A recent report investigating the role of miR-34 in the 

intact mouse showed that mir-34 knockouts remain healthy with no spontaneous tumors [134].  

 

Therapeutic Potential of Metabolism-Related MiRNAs 

MiRNA Therapeutics in Cancer Metabolism  

The possibility that agents targeting cell metabolism could be effective across diverse cancer 

types has historical precedent. For example, antifolate drugs were developed before there was 

an understanding of how folic acid contributes to nucleic acids generation. Today, the 

antimetabolite class of nucleoside analogues — among them 5-fluorouracil and gemcitabine — 

is widely used in the treatment of diverse human tumors [135]. Although these drugs are not 

considered ‘targeted therapies’, they have clear targets in metabolism and remain effective 

therapies for many human cancers. Considering the recent increase in our understanding of 

cancer metabolism the question arises: could metabolism be cancer’s Achilles heel? Are there 

differences between normal and cancer cell metabolism that provide clinically relevant therapeutic 

windows? These questions have been addressed by recent recommendable reviews [6, 136, 

137], and here we focus on the therapeutic potential of metabolism-related miRNAs.     

It has been identified through gain- and loss-of-function studies that miRNA deregulation 

could have therapeutic effects by suppressing the growth of cancer cells without affecting the 

growth of normal cells [138]. These findings have enforced the development of miRNA-based 

therapeutics in the last few years. To overcome delivery challenges innate with small RNA 
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therapeutics, chemical modifications, nanoparticles, liposomes, polymers are being exploited for 

effective delivery of miRNAs to targeted sites.  

Different chemical modifications in antisense-miRNAs have been developed aiming to 

enhance the specificity and potency of these inhibitors [138]. The LNA modification increases the 

stability of antisense miRNAs, which could be delivered by intratumoral, intraperitoneal and 

intravenous injections. A Phase 2 trial of the LNA anti-miR-122 is being carried out in human 

subjects in Denmark [139]. In addition to the LNA technology, cholesterol-modified miRNAs (chol-

anti-miRs) exhibit improved pharmacokinetics and anti-tumor efficacy. For example, chol-anti-

miR-221 suppresses effectively liver tumor growth in vivo [140].       

Regarding miRNA mimics, they are administered either directly by injection or indirectly 

through systemic adenoassociated viral (AAV) delivery [141]. It was recently demonstrated that 

systemic administration of miR-124 suppresses liver cancer growth in vivo, through suppression 

of the IL6/STAT3 inflammatory pathway [15]. Furthermore, AAV-delivery of miR-26a or miR-122 

suppresses MYC-driven liver carcinogenesis in vivo without affecting normal hepatocytes [84, 

142]. One recent study proposes the systemic delivery of miRNA mimics in complex with neutral 

lipid emulsion, showing therapeutic benefits in mouse models of lung cancer. Therapeutic delivery 

was demonstrated for the two well-characterized families of tumor suppressor miRNAs let-7 and 

miR-34: let-7 targets RAS and MYC oncogenes while miR-34 is directly transcribed by p53 [143].    

 

Metformin: From Diabetes to Cancer Therapy 

Links between cancer and metabolic disorders such as diabetes have long been suspected [144]. 

Metabolic disorders cause alterations in glucose metabolism and could be associated with 

increased cancer risk. As a result antidiabetic drugs such as metformin, which is currently taken 

by 100 million people worldwide, are being explored for anti-tumor activity [144-146]. Multiple 

epidemiological studies show that diabetic patients treated with metformin have reduced 

incidence of cancer and reduced cancer mortality [145]. In addition, metformin affects the 

progression and relapse of breast, prostate and lung cancer, when combined with suboptimal 
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doses of standard chemotherapeutic agents [147-149]. Metformin activates AMPK that leads to 

suppression of mTOR and stimulation of the p53 axis, hence affecting metabolic and carcinogenic 

processes. The anticancer activity of metformin on different types of cancer suggests the 

existence of a broader mechanism of action for this drug. This was further supported by a recent 

study demonstrating that miRNA modulation underlies the anticancer metabolic actions of 

metformin [112]. Metformin-modulated miRNAs were predicted to impinge mainly on the energy 

metabolism and insulin signaling pathways. In addition, it was shown that metformin affects the 

mRNA levels of c-MYC, IRS-2 and HIF1α as well [146]. 

 

Concluding remarks and future perspectives 

Over recent years, miRNAs have emerged as major players in the complex network of gene 

regulation and have been implicated in various aspects of human disease. The fact that miRNAs 

can be found circulating in the blood, either inside exosomes or as “free” molecules, not only 

points to their potential use as biomarkers, but also suggests that circulating miRNAs may be 

actively secreted from cells to act as signaling molecules that alter the gene expression output of 

distant target cells. The involvement of miRNAs in carcinogenesis has been well documented for 

almost a decade and scientists have roughly categorized those miRNAs to oncogenic and tumor 

suppressor miRNAs. For years now, cancer researchers have been seeking molecular 

mechanisms underlying the Warburg effect in an effort to model cancer metabolism and select 

target combinations for possible therapeutic intervention. The recent finding that miRNAs are 

important regulators of cell metabolism makes clear that it is particularly significant to complement 

these models with the function of miRNAs in cancer cells. This approach will provide new insight 

into which enzymes, miRNAs or their combination represent promising targets for cancer therapy.         
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Box 1 – The Warburg effect 

In the 1920s, Otto Warburg first proposed the theory that cancer cells exhibit atypical metabolic 

characteristics. Specifically, Warburg found that in contrast to normal cells cancer cells metabolize 

glucose into lactate under aerobic conditions [251, 252]. Normal cells, in the presence of oxygen, 

metabolize glucose to pyruvate which in turn is completely oxidized to carbon dioxide in 

mitochondria through oxidative phosphorylation (Ref). The metabolism of glucose to lactate is far 

less efficient, in terms of ATP generation per molecule of glucose, (2 ATPs) when compared to 

oxidative phosphorylation (36 ATPs). A possible explanation for this seemingly paradoxical 

phenomenon is the necessity for a cell to produce metabolic products that extend beyond the 

ATP. Acetyl-coA is necessary for fatty acid biosynthesis, glycolytic intermediates for non-essential 

amino acids and ribose for nucleotides [2, 253]. The Warburg phenomenon has been supported 

by multiple studies in a variety of tumor types, and is now exploited in the clinic for diagnostic 

purposes. Fluorodeoxyglucose positron emission tomography imaging is used today for the 

detection of primary tumors and metastases of several types of cancer [254]. Emerging 

understanding on the molecular mechanisms responsible for the Warburg effect indicate that the 

hypoxic altered tumor microenvironment, activation of proto-oncogenes (c-MYC) and kinases 

(AKT, AMPK), activation and/or stabilization of transcription factors (HIF-1), as well as the 

inactivation of tumor suppressors (p53), induce the glycolytic phenotype of cancer cells [2]. 
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Box 2 – The canonical miRNA biogenesis pathway 

A canonical pathway driven by RNAse III enzymes generates the majority of animal miRNAs. 

MiRNA genes are either independent genes (intergenic) or portions of introns of protein-coding 

genes (intragenic) [255]. RNA polymerase II transcribes miRNA genes, generating long primary 

transcripts (pri-miRNAs). Subsequently, the process to yield mature miRNAs involves two 

consecutive cleavages by two RNase-III enzymes and the companion of double-stranded RNA-

binding proteins. In the nucleus, the single strand-double strand junction of the pri-miRNA hairpin 

is recognized by DGCR8, which positions the catalytic site of the RNase III enzyme Drosha. This 

cleavage yields hairpin precursors (pre-miRNAs), consisting of approximately 70 nucleotides, that 

are exported to the cytoplasm [256, 257]. The pre-miRNA hairpins are cleaved toward the terminal 

loop by the RNase III enzyme Dicer. This process gives rise to unstable, miRNA/miRNA duplex 

structures of 19-25 nucleotides length [258, 259]. The miRNA/miRNA* duplexes are loaded into 

miRNA-class Argonaute effectors (in mammals, Ago1–4). One of the duplex strands is 

preferentially retained in Ago to form the functional RNA-induced silencing complex (RISC) [260, 

261]. The RISC–miRNA assembly is then guided to specific target sequences in mRNAs. The 

initial recognition of mRNAs by the RISC–miRNA complex is driven primarily by Watson–Crick 

base-pairing of nucleotides 2 to 8 in the mature miRNA (seed sequence) with specific mRNA 

target sequences chiefly located in the 3′-untranslated region (3’-UTR).   
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Figures 

 

Figure 1: The biochemistry of 

cancer cell metabolism  

Exemplified schematic representation 

of our current understanding of the 

biochemical pathways involved in 

metabolic reprogramming. On 

entering the cell through GLUTs, 

glucose is converted to pyruvate by 

glycolysis. Under normoxic 

conditions, in normal cells, pyruvate 

undergoes oxidative phosphorylation 

in mitochondria, through the TCA 

cycle. However, upon oxygen 

deprivation, pyruvate is metabolized 

to lactate in the cytoplasm. In cancer 

cells both glycolysis and 

glutaminolysis are modified. Pyruvate 

conversion to lactate dominates, even in the presence of oxygen. In parallel, increased glycolysis 

contributes to anabolic pathways for the production of building materials (such as lipids and amino 

acids) for the formation of new cells. GLUT, glucose transporter; MCT, monocarboxylate 

transporter; GT, glutamine transporters; HK, hexokinase; PFK, phosphofructokinase; PK, 

pyruvate kinase; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; GA, glutaminase. 
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Figure 2: Regulation of signaling pathways involved in cancer metabolism by miRNAs The 

shift to aerobic glycolysis in cancer cells may be driven or enhanced by miRNAs through the 

deregulation of signaling pathways and/or transcription factors. AKT activation downstream of 

PI3K, upregulates several glycolytic enzymes and activates mTOR. In turn, mTOR enhances the 

activity of HIF. HIF cooperates with MYC in the transcriptional activation of genes encoding 

glycolytic enzymes. Activation of the PI3K/AKT/mTOR pathway or HIF- and MYC-dependent 

transcription (red quadrangles) through suppression of inhibitory miRNAs (blue) or upregulation 

of the oncogenic microRNAs (red), support increased glycolysis and inhibit the TCA cycle. 

Conversely, LKB1/AMPK signals inhibit mTOR and p53 suppresses glycolysis through TIGAR 

and increases mitochondrial metabolism through SCO2 (blue quadrangles). Therefore, miRNAs 

targeting elements of these two pathways, or loss of miRNAs that reinforce them, enhance the 

glycolytic phenotype. Red and blue indicate molecules and interactions with a positive and 

negative role in the metabolic reprogramming of cancer cells, respectively.  
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