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ABSTRACT. We consider a class of potential problems
on a periodic half-space for the modeling of electrified oil
films, which are used in the development of novel switch-
able liquid optical devices (diffraction gratings). A bound-
ary integral formulation which reduces the problem to the
study of the oil-air interface alone is derived and solved in
a highly efficient manner using the Nyström method. The
oil films encountered experimentally are typically very thin
and thus an interface-only integral representation is impor-
tant for avoiding the near-singularity problems associated
with boundary integral methods for long slender domains.
The super-algebraic convergence of the proposed method is
discussed and demonstrated via appropriate numerical exper-
iments.

1. Introduction. We consider a transmission problem for the La-
place equation in a periodic half-plane for modelling the electric po-
tential on an interface between a thin layer of oil and the surrounding
air. A fast solution algorithm is sought for the case where the time-
dependent interface position is given as the (discrete) data generated
from the solution of an associated coupled thin fluid and interface dy-
namics problem. In particular, the interface motion is a result of dielec-
trophoresis forces, where the potential is applied via electrodes placed
at the base of the oil layer. Dielectrophoresis is defined as the motion
of matter caused by polarization effects in a nonuniform electric field
[16, 17]. The use of dielectrophoresis forces to stimulate fluid motion
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has been considered in [11] and is of interest in optics due to potential
applications in the development of novel switchable liquid optical de-
vices (diffraction gratings) [5]. In this work, we focus on the solution
of the transmission problem for the Laplace equation and solve for the
electric potential on the oil-air interface. We also compute the normal
and tangential derivatives of the potential on the interface since these
are the quantities of interest for the boundary data of the associated
thin film fluid problem.

The work here aims to provide a first step in moving from the study
of the static problem described in [4] to the dynamic situation described
above, via an efficient solution method for the underlying potential
problem. Related work on the simulation of electrified fluids has been
carried out using a range of techniques including asymptotic approaches
[4, 23], level set methods [22], finite element approaches for coupled
fluid flow and dynamic interface models [9], and boundary integral
methods for coupled potential and dynamic interface problems [21].

Our strategy will be to reformulate our transmission problem in a
periodic half-plane as a boundary integral problem defined only on the
interface. A commonly cited advantage of boundary integral methods is
the reduction in dimensionality (by one) to the boundary of the domain
being studied. Here, by making explicit use of the half-space solution
of a related boundary value problem, we go one step further and reduce
our study to the interface part of the boundary. Considering that our
goal is the computation of the potential and its normal and tangential
derivatives on the interface, this reduction of the problem provides the
ideal platform for a highly efficient method. A major advantage over a
conventional boundary integral formulation where the entire boundary
of the finite domain is discretized, is that the near-singularity problems
due to the long slender geometry are completely avoided here.

Two further major reasons for adopting a boundary integral ap-
proach are that the relevant Green’s functions are available in a sim-
ple closed form making it relatively simple to implement a boundary
integral method (compared to, say, [21], where the periodic Green’s
function must be approximated via fast summation methods). Sec-
ondly, the infinite domains are dealt with intrinsically in the boundary
integral formulation, both along and perpendicular to the direction of
periodicity. This means that the imposition of artificial (non-reflecting)
boundaries, as would be required for finite element and finite difference
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approaches, is not necessary.

A related class of potential problems can be found in the study
of water waves. Preston, Chamberlain and Chandler-Wilde have de-
rived and analyzed a boundary integral formulation for the associated
Dirichlet problem on a half-space [18] and presented an efficient and
super-algebraically convergent Nyström method for its numerical solu-
tion in [19]. These two papers are a subset of a wider body of work on
boundary integral methods for scattering from rough surfaces (usually
concerned with the solution of the Helmholtz equation), and references
can be found within. Boundary integral methods for transmission prob-
lems can be found in [7, 8, 10, 12, 20] and references therein. Work
in this area is generally concentrated on the solution of the Helmholtz
equation in both the interior and (unbounded) exterior of a two or
three-dimensional bounded domain, given some regularity properties
on the interface between the interior and exterior domains. Boundary
integral methods for transmission problems between various configura-
tions of bounded domains are considered in [2, 3, 6]. The transmission
problem for the Laplace equation is also considered explicitly in [7].

The paper is structured as follows. In the next section, we describe
the governing transmission problem for the Laplace equation and show
that it has at most one solution. In Section 3, we reformulate this
problem as a second-kind integral equation on the interface, making
use of the solution to the periodic half-space boundary value problem,
which plays the role of our boundary data. The Dirichlet-to-Neumann
operator for the interface is also introduced, leading to the solution of a
first-kind integral equation for the interface Neumann data. Section 4
then describes the numerical solution of these two integral equations via
the Nyström method with appropriate quadrature rules. In particular,
we draw on the theory presented in [1, 13, 14, 19] to design a scheme
that will exhibit super-algebraic convergence properties. In Section 5,
we demonstrate this convergence rate via some numerical experiments
with a set of parameters that are appropriate for our application of
modelling the potential at the interface between a thin film of oil and
the surrounding air.

2. The transmission problem for the Laplace equation. De-
note H = {(x, y) ∈ R2|y > 0}, and let h : R → R define an inter-
face at y = h(x) dividing H into Ω1 = {(x, y) ∈ H|y < h(x)} and
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Ω2 = {(x, y) ∈ H|y > h(x)}. Here, Ω1 represents a thin film of oil
with boundary Γ1 = ΓI ∪ Γ0, where ΓI = {(x, y) ∈ R2|y = h(x)} and
Γ0 = {(x, y) ∈ R2|y = 0}. The domain Ω2 represents the surround-
ing air and has boundary Γ2 = ΓI . We will assume that h is positive
and Ck for some k ≥ 2. Let BCk(Ωα) denote the space of bounded
functions in Ck(Ωα) that can be continuously extended into the closure
Ωα with α = 1, 2. Consider the following transmission problem for the
electric potential ϕα ∈ BC2(Ωα) for α = 1, 2:

△ϕα = 0 in Ωα,(2.1)

ϕ1 = ϕ2 on ΓI ,(2.2)

ϵ1
∂ϕ1
∂ν

= ϵ2
∂ϕ2
∂ν

on ΓI .(2.3)

In addition, we prescribe the boundary conditions

ϕ1(x, y) = f(x) on Γ0,(2.4)

∂ϕ2
∂y

(x, y) −→ 0 as y → ∞.(2.5)

Here, ϵα ∈ (0,∞) is the dielectric constant in Ωα and ν is the unit
normal vector pointing out of Ω1. Under the assumption that h and
f are 2L−periodic, the problem is reduced to the study of a single
periodic cell of H with −L ≤ x < L. Note that this is a reasonable
assumption here since f represents the potential applied by a regularly
spaced array of electrodes. The problem setup is shown in Figure 1.

Proposition 2.1. Consider the transmission problem (2.1)–(2.5) with
2L-periodic boundary condition f ∈ C(R) and 2L-periodic interface
0 < h ∈ Ck(R) for some integer k ≥ 2. If a solution ϕα ∈ BC2(Ωα),
α = 1, 2 of this problem exists, then it is unique.

Proof. A similar argument to that given for ([7, Proposition 4.7])
can be applied. We actually show that the boundary value problem
(2.1)–(2.5) with homogeneous boundary condition f = 0 only has
the trivial solution ϕ1 = ϕ2 = 0, from which the proposition is a
straightforward consequence.

Due to the periodicity restriction then a bound of the form 0 <
h < U holds for some constant U . Denoting the line y = U by ΓU and



MODELLING ELECTRIFIED OIL FILMS 411

Figure 1. Problem setup.

applying Green’s first identity on Ω1 and Ω∗
2 = Ω2∩{(x, y) ∈ R2|y < U}

gives ∫
Γ0

∂ϕ1
∂ν

ϕ1 dx+

∫
ΓI

∂ϕ1
∂ν

ϕ1 ds =

∫
Ω1

|∇ϕ1|2dA,(2.6)

−
∫
ΓU

∂ϕ2
∂ν

ϕ2 dx−
∫
ΓI

∂ϕ2
∂ν

ϕ2 ds =

∫
Ω∗

2

|∇ϕ2|2dA.(2.7)

Note that periodicity means that the terms from integrating along
the vertical sides exactly cancel and the boundary condition f = 0
means that the integral over Γ0 vanishes. Combining (2.6), (2.7) and
the interface conditions (2.2), (2.3) gives

−ϵ2
∫
ΓU

∂ϕ2
∂ν

ϕ2 dx = ϵ2

∫
Ω∗

2

|∇ϕ2|2dA+ ϵ1

∫
Ω1

|∇ϕ1|2dA.(2.8)

Taking the limit as U → ∞ and using that ϵα > 0, α = 1, 2, leads
to the conclusion that ϕα, α = 1, 2, are both constant functions. The
boundary condition (2.4) and the continuity condition (2.2) mean that
these constants must both be zero. �

In the full multi-physics model, where the potential problem here
is coupled with a dynamic fluid-interface model, we wish to study the
quasi-time-dependent case where f depends on time in the sense of
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switching the applied potential on or off. This would mean solving
for ϕα at a number of time-steps with varying interface position h.
In this work, we simply consider modelling a static potential for a
range of different interface geometries h, with the potential switched on.
However, we emphasize that the extension of the methods developed
here to the dynamic case would be straightforward.

3. Boundary integral formulation. In this section, we recast the
transmission problem (2.1)–(2.5) as a boundary integral equation on
a single periodic section of the interface ΓI . From hereon, we make
the abuse of notation that ΓI , Γ0 and Ωα for α = 1, 2; all refer to the
restriction of these curves/domains to a single periodic section from
x = −L to x = L.

3.1. Green’s functions, layer potentials and the periodic half-
plane solution. A key ingredient in our boundary integral formulation
will be the 2L-periodic half-plane Green’s function for the Laplace
equation and its derivative with respect to ν. The periodic Green’s
function is given as (see, for example, [15])

(3.1) G(x,x0) = − 1

2π
ln

(
2

∣∣∣∣ sin( π

2L
(z − z0)

)∣∣∣∣),
where x = (x, y) ∈ H, z = x+ iy, x0 = (x0, y0) ∈ H and z0 = x0 + iy0.
It follows from the method of images that the periodic Green’s function
on H may be written

GH(x,x0) = G(x,x0)−G(x,x′
0),(3.2)

where x′
0 = (x0,−y0) is the mirror image of x0 in Γ0. Computing the

partial derivatives of G, we obtain

∂GH
∂x0

(x,x0) =
1

4L
ℜ
(
cot

(
π

2L
(z − z0)

)
− cot

(
π

2L
(z − z′0)

))
,

(3.3)

∂GH
∂y0

(x,x0) = − 1

4L
ℑ
(
cot

(
π

2L
(z − z0)

)
+ cot

(
π

2L
(z − z′0)

))
,

(3.4)



MODELLING ELECTRIFIED OIL FILMS 413

where z′0 = x0 − iy0. It is now straightforward from (3.3) and (3.4)
to compute the derivative of GH with respect to ν0, the unit normal
vector at x0 pointing out of Ω1.

It is convenient here to introduce interface single and double layer
potential operators S and D, respectively, acting on a continuous
function ϕ at x ∈ Ωα (α = 1, 2)

Sϕ(x) =
∫
ΓI

GH(x,x0)ϕ(x0) dΓ(x0),(3.5)

Dϕ(x) =
∫
ΓI

∂GH
∂ν0

(x,x0)ϕ(x0) dΓ(x0).(3.6)

In order to distinguish the case when x ∈ ΓI , we rename the interface
single and double layer potentials V and K, respectively.

Now let us consider the transmission problem (2.1)–(2.5) in the
absence of an interface. The problem is simplified to the study of a
boundary value problem for the Laplace equation on Ω1 = H, with
2L-periodic Dirichlet data f along Γ0 (2.4), and condition (2.5). Using
Green’s representation formula for x ∈ H, the solution of this half-plane
problem ϕH may be expressed in the form

ϕH(x) =

∫
Γ0

(
GH(x,x0)

∂ϕH
∂ν0

(x0)−
∂GH
∂ν0

(x,x0)f(x0)

)
dx0,(3.7)

=

∫
Γ0

∂GH
∂y0

(x,x0)f(x0) dx0.(3.8)

The uniqueness of ϕH follows from Proposition 2.1 with ϵ1 = ϵ2. We
will make use of the solution ϕH in the next section when deriving the
boundary integral formulation for the transmission problem (2.1)–(2.5).

3.2. Boundary integral formulation for the transmission prob-
lem. We derive a direct boundary integral formulation for the trans-
mission problem (2.1)–(2.5) using Green’s representation formula. This
has the advantage, in comparison with indirect formulations, that the
unknowns appearing in the boundary integral equations are the physi-
cal quantities (potentials) that we wish to compute. We note also that
a single layer potential solution ansatz would fail here due to GH van-
ishing on Γ0 where the boundary condition f is prescribed. A double
layer potential solution ansatz would lead to a more complicated equa-
tion for computing the Neumann data on the interface than the method
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proposed here. A further advantage of our direct approach is that it
allows our equations to be formulated only on the interface boundary
ΓI , by making use of the half-space solution ϕH , as described below.
This advantage not only provides efficiency savings through reducing
the size of the domain to be discretized, but also means that problems
due to near-singularities associated with boundary integral methods in
long slender domains are avoided too.

We first apply Green’s representation formula in Ω2 to give:

ϕ2 = Dϕ2 − S
(
∂ϕ2
∂ν0

)
.(3.9)

Note that the integrals as y → ∞ vanish due to both ϕ2 and GH
remaining bounded as y → ∞ and satisfying the radiation condition
(2.5). Taking the limit as the solution point tends to ΓI and applying
the interface conditions (2.2) and (2.3) yields

V

(
∂ϕ1
∂ν0

)
=
ϵ2
ϵ1

(
− I

2
+K

)
ϕ1.(3.10)

The next step is to apply Green’s representation formula in Ω1 giving
rise to

ϕ1(x) =

∫
Γ1

(
GH(x,x0)

∂ϕ1
∂ν0

(x0)−
∂GH
∂ν0

(x,x0)ϕ1(x0)

)
dΓ1(x0).

(3.11)

Splitting the integrals into the sum of an integral over ΓI and an integral
over Γ0 yields

ϕ1(x) = S
(
∂ϕ1
∂ν0

)
−Dϕ1

(3.12)

+

∫
Γ0

(
GH(x,x0)

∂ϕ1
∂ν0

(x0)−
∂GH
∂ν0

(x,x0)ϕ1(x0)

)
dx0.

Applying (2.4) and (3.7), then (3.12) simplifies to

ϕ1 = S
(
∂ϕ1
∂ν0

)
−Dϕ1 + ϕH .(3.13)
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Taking the limit as the solution point tends to ΓI as before and
rearranging yields

V

(
∂ϕ1
∂ν0

)
=

(
I

2
+K

)
ϕ1 − ϕH .(3.14)

Combining equations (3.10) and (3.14) results in the following second-
kind Fredholm integral equation for ϕ = ϕ1 = ϕ2 on ΓI(

I − 2
(ϵ2 − ϵ1)

(ϵ1 + ϵ2)
K

)
ϕ =

2ϵ1
(ϵ1 + ϵ2)

ϕH .(3.15)

Clearly, the case ϵ1 = ϵ2 reduces to ϕ = ϕH as expected. Note
that here we are effectively treating ϕH as our boundary data on
ΓI and that, since ϕH is harmonic, it is analytic. In the examples
considered later, a simple closed form expression will be available for
ϕH . However, in general, it may be necessary to approximate ϕH by, for
example, a truncated Fourier series (if solving the half-plane problem
via separation of variables) or quadrature (if computing ϕH directly
from the boundary integral formula (3.8)).

Let us now consider the operator K in further detail. Since, for
x ∈ ΓI , then (x, y) = (x, h(x)), then if we also have x0 ∈ ΓI , we may
write

TH(x, x0) :=
∂GH
∂ν0

(x,x0),(3.16)

and hence, with a slight abuse of notation,

Kϕ(x) =

∫ L

−L
TH(x, x0)ϕ(x0)

√
1 + h′(x0)2 dx0.(3.17)

Considering, therefore, a single periodic strip with x ∈ [−L,L], then
the behavior of K close to x = x0 is identical to that for the double
layer potential on a simple closed curve studied in ([1, Chapter 7]).
This is evident from taking limits in (3.3) and (3.4) as (x − x0) → 0.
Since h ∈ Ck([−L,L]) for some k ≥ 2, then it follows from ([1, Chapter
7]) that

TH ∈ Ck−2([−L,L]× [−L,L]).(3.18)

As a result of this, K is a compact operator on C([−L,L]) with the
maximum norm (see for example, [13, Theorem 2.21]). Using the
theory of compact integral operators [13], we now prove the existence
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and uniqueness of solutions to the integral equation (3.15). We first
prove the following:

f = 0 ⇐⇒ ϕH = 0

⇐⇒ ϕ = 0.
(3.19)

The implications f = 0 ⇒ ϕH = 0 and f = 0 ⇒ ϕ = 0 are
due to the uniqueness of solution to both the transmission problem
(Proposition 2.1) and the periodic half-plane problem, which follows
from Proposition 2.1 with ϵ1 = ϵ2. The implication ϕH = 0 ⇐ ϕ = 0
follows from (3.15). Finally, f = 0 ⇐ ϕH = 0 relies on the fact that
ϕH can be continuously extended to Γ0 ([18, Theorem 2.3]) so that

lim
y→0

ϕH(x) = f(x),

which may be derived from the jump properties of the double layer
potential (3.8).

Hence, assuming ϕH = 0, then (3.19) gives that ϕ = 0 is the only
solution of (

I − 2
(ϵ2 − ϵ1)

(ϵ1 + ϵ2)
K

)
ϕ = 0.(3.20)

Hence, the operator

I − 2
(ϵ2 − ϵ1)

(ϵ1 + ϵ2)
K(3.21)

is injective on C([−L,L]). It now follows from ([13, Theorem 3.4]) that
(3.15) is uniquely solvable and that the solution depends continuously
on ϕH .

Theorem 3.1. The integral operator I − 2µK : C([−L,L]) →
C([−L,L]) is invertible with bounded inverse for any |µ| < 1. Con-
sequently, there exists a unique solution ϕα ∈ BC2(Ωα) to the trans-
mission problem (2.1)–(2.5) considered in Proposition 1.

3.3. The Dirichlet-to-Neumann (DtN) operator. For our appli-
cation in tracking the dynamic evolution of a thin film of oil, the bound-
ary data for the fluid equations will depend on the normal and tangen-
tial derivatives of ϕ on ΓI . Furthermore, the normal derivative would
be needed for computing the domain potentials via (3.9) and (3.13).
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Later, we discuss interpolation formulae for obtaining the tangential
derivative. The normal derivative will be computed using the DtN
operator. Combining (2.3) and (3.10) yields the following first-kind
integral equation for ∂ϕα/∂ν0, α = 1, 2:

V

(
∂ϕα
∂ν0

)
=
ϵ2
ϵα

(
− I

2
+K

)
ϕ.(3.22)

The DtN operator will be bounded as a map from H1/2(ΓI) to
H−1/2(ΓI) if we can prove the invertibility of V : H−1/2(ΓI) →
H1/2(ΓI) with bounded inverse, where H±1/2 are the usual Sobolev
spaces ([13, subsection 8.2]). To prove this, we need to show that
V is bounded and elliptic so the Lax-Milgram theorem gives that
V −1 : H1/2(ΓI) → H−1/2(ΓI) is bounded. The proof that V :
H−1/2(ΓI) → H1/2(ΓI) is bounded can be done using a similar ar-
gument to the one presented in ([13, Theorem 8.23]) for the single
layer potential on a simple closed Ck curve in R2. The proof of ellip-
ticity is again similar to that for the case of a closed curve in R2. A

rough outline restricted to V : H
−1/2
∗ (ΓI) → H1/2(ΓI), where

H
−1/2
∗ (ΓI) =

{
σ̃ ∈ H−1/2(ΓI)

∣∣∣ ∫
ΓI

σ̃ ds = 0

}
,

is presented below.

Let ϕ = Sσ, where ϕα = ϕ|Ωα for α = 1, 2 and σ is a so-called layer
density to be determined. The definition of S allows us to deduce that
ϕ|Γ0 = 0 and

(3.23) lim
y→∞

∂ϕ2
∂y

= 0.

Furthermore, V and its normal derivative will satisfy the standard jump
relations associated with the classical single layer potential operator for
the Laplace equation in two dimensions. This is simply a consequence
of the fact that GH is constructed using the method of images to both
incorporate periodicity and to restrict to a half-plane. The resulting
additional contributions to the classical operator and their normal
derivatives will all be continuous across ΓI (on the periodic section
considered). Hence, on ΓI , we have that ϕ1 = ϕ2 and

(3.24)
∂ϕ1
∂ν

− ∂ϕ2
∂ν

= σ.
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From the above, it is then straightforward to deduce that

(3.25)

∫
ΓI

(
ϕ1
∂ϕ1
∂ν

− ϕ2
∂ϕ2
∂ν

)
ds =

∫
ΓI

σV σ ds.

Arguing as in the proof of Proposition 2.1 using Green’s first identity,
(3.23) and that ϕ|Γ0

= 0, leads to∫
ΓI

ϕα
∂ϕα
∂ν

ds = (−1)α−1

∫
Ωα

|∇ϕα|2dA.(3.26)

Combining (3.25) and (3.26), we find∫
ΓI

σV σ ds =

∫
Ω1

|∇ϕ1|2dA+

∫
Ω2

|∇ϕ2|2dA

= |ϕ1|2H1(Ω1)
+ |ϕ2|2H1(Ω2)

.

(3.27)

Now, considering the norm of the layer density, we have

∥σ∥2H−1/2(ΓI)
=

∥∥∥∥∂ϕ1∂ν
− ∂ϕ2

∂ν

∥∥∥∥2
H−1/2(ΓI)

≤ 2

(∥∥∥∥∂ϕ1∂ν

∥∥∥∥2
H−1/2(ΓI)

+

∥∥∥∥∂ϕ2∂ν

∥∥∥∥2
H−1/2(ΓI)

)
≤ C

(
|ϕ1|2H1(Ω1)

+ |ϕ2|2H1(Ω2)

)
.

(3.28)

The final inequality follows by applying the Cauchy-Schwarz inequality
in the first Green identity to get∣∣∣∣ ∫

ΓI

ψ
∂ϕα
∂ν

ds

∣∣∣∣ ≤ |ϕα|H1(Ωα)|ψ|H1(Ωα),(3.29)

with ψ = Sσ̃ for some σ̃ ∈ H
−1/2
∗ (ΓI). Then, applying the inverse trace

theorem to ψ|ΓI
∈ H1/2(ΓI) and using duality of H±1/2(ΓI), leads to

an inequality of the form∥∥∥∥∂ϕα∂ν
∥∥∥∥
H−1/2(ΓI)

= sup
ψ∈H1/2(ΓI)\{0}

∣∣∣∫ΓI
ψ ∂ϕα

∂ν ds
∣∣∣

∥ψ∥H1/2(ΓI)

(3.30)

≤ Cα|ϕα|H1(Ωα),

where C and Cα are positive constants with C = 2max(Cα)
2. To

conclude the argument, we combine (3.27) and (3.28) to give ellipticity,
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that is,

C

∫
ΓI

σV σ ds ≥ ∥σ∥2H−1/2(ΓI)
.(3.31)

4. Discretization using the Nyström method. In this section,
we describe the discretization of the integral equations (3.15) and (3.22)
using the Nyström method with suitable quadratures. In particular,
we draw on the theory presented in [1, 13, 14, 19] in order to design
a method with super-algebraic convergence, as demonstrated by the
numerical results in the next section. It should be noted that, to obtain
these convergence rates, requires that h ∈ C∞([−L,L]), and so from
hereon we make this assumption. In the application to modelling the
potential in a layer of oil, where the (time-dependent) oil-air interface
position will only be given as a set of equi-spaced coordinates, we will
use interpolation by trigonometric polynomials to ensure the required
smoothness. This is a good choice of the interpolation scheme due to
the periodicity of h, and the availability of a highly efficient FFT based
implementation. Even though h will be given explicitly in the examples
here, we will interpolate anyway to ensure the algorithm can be applied
more generally.

4.1. Discretization for a smooth kernel. Let us first consider the
second-kind equation (3.15). Under the assumption of an infinitely
differentiable interface, we also have an infinitely differentiable kernel
and, as discussed before, the data term ϕH is also infinitely differen-
tiable. In this situation, a simple application of the trapezoidal rule
yields a super-algebraically convergent method [1, 19]. To implement
this scheme, we first use that x = (x, h(x)) on ΓI and write integrals
over ΓI in the form

(4.1)

∫
ΓI

F (x) dΓ(x) =

∫ L

−L
F̃ (x)

√
1 + h′(x)2dx.

Applying the trapezoidal rule with n subintervals gives

(4.2)

∫
ΓI

F (x) dΓ(x) ≈ 2L

n

n∑
j=1

F̃ (xj)

√
1 + h′ (xj)

2
,

where xj = −L + 2L(j − 1)/n. Note that, because we have assumed
above that h is given by trigonometric interpolation, its derivative
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may be computed simply by differentiating its Fourier components as
described in [19].

Applying the formula (4.2) to the integral in the definition of K
yields the following approximation

Kϕ(xi, h(xi)) ≈
2L

n

n∑
j=1

ki,jϕ(xj)

√
1 + h′ (xj)

2
,(4.3)

where

ki,j = TH(xi, xj).(4.4)

The following explicit formula for kj,j may be derived (for similar
derivations, see [1, Chapter 7] and [19]):

kj,j =
h′′(xj)

4π(1 + h′(xj)2)
+

1

4L
√
1 + h′ (xj)

2
coth

(
π

L
h(xj)

)
.(4.5)

As with the first derivative, h′′ may be computed simply by differen-
tiating the Fourier components for h twice. For i ̸= j, we can use the
formula obtained directly from (3.3) and (3.4), that is,

ki,j =
1

4L
√
1 + h′(xj)2

(
h′(xj)ℜ

(
cot

(
π

2L
(zi − z′j)

)
− cot

(
π

2L
(zi − zj)

))
−ℑ

(
cot

(
π

2L
(zi − zj)

)
+ cot

(
π

2L
(zi − z′j)

)))
.

Here we have denoted zj = xj + ih(xj) and z′j = xj − ih(xj).
Notice that (4.5) illustrates the smoothness result (3.18). Applying
the approximation (4.3) to the second-kind integral equation (3.15)
leads to the following approximate Nyström scheme for the approximate
solution ϕn

(4.6) ϕn(xi) +
4L(ϵ1 − ϵ2)

n(ϵ1 + ϵ2)

n∑
j=1

ki,jϕ
n(xj)

√
1 + h′ (xj)

2

=
2ϵ1

(ϵ1 + ϵ2)
ϕH(xi, h(xi))
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for i = 1, . . . , n. The super-algebraic convergence of ϕn to ϕ for
increasing n is a consequence of ([19, Theorem 3.12]).

4.2. Discretization for a kernel with a logarithmic singularity.
In this section, we consider a Nyström method for the solution of
equation (3.22), which is a first-kind integral equation for ∂ϕα/∂ν0,
α = 1, 2. In particular, we note that the kernel function GH of the
operator V contains a logarithmic singularity and may be written in
the form
(4.7)

GH(x,x0) = − 1

4π
ln

(
4 sin2

(
π

2L
(x− x0)

))
+ G̃(x, x0)−G(x,x′

0),

with

G̃(x, x0) = − 1

4π

{
ln

(
4

(
sin2

(
π

2L
(x− x0)

)
+ sinh2

(
π

2L
(h(x)− h(x0))

)))
− ln

(
4 sin2

(
π

2L
(x− x0)

))}
.

On ΓI where y = h(x) for h ∈ C∞([−L,L]), then both G̃(x, x0) and
G(x,x′

0) are infinitely differentiable with respect to x, x0 ∈ [−L,L]. In
particular, the diagonal term for G̃ is given by

(4.8) G̃(x, x) = − 1

4π
ln
(
1 + h′(x)2

)
.

Note that (4.7) implies that the first-kind equation (3.22) falls into the
class of first kind equations analyzed in [14]. We therefore base our
quadrature method here on the approach suggested in [14] (see also
[13] and references therein). Super-algebraic convergence rates will
then be attained due to ([14, Theorem 2.3]) if the right hand side of
(3.22) is infinitely differentiable. Note, however, that since in general
only an approximate numerical solution of (3.15) will be available, then
ϕ will need to be replaced by ϕn in (3.22). In order to satisfy the
necessary criteria for the super-algebraic convergence rates predicted
by ([14, Theorem 2.3]), we may interpolate ϕn using trigonometric
polynomials to obtain an infinitely differentiable interpolant. The right
hand side of (3.22) may then be written ϵ2(−ϕn+2Kϕn)/(2ϵα), which



422 DAVID J. CHAPPELL

is clearly infinitely differentiable since

(4.9)
dm

dxm
(Kϕn)(x) =

∫ L

−L

∂m

∂xm
TH(x, x0)ϕ

n(x0)
√

1 + h′(x0)2dx0,

and TH is infinitely differentiable for h ∈ C∞([−L,L]).
We now outline the quadrature rule we employ to approximate the

interface single layer potential V . For the term containing a logarithmic
singularity, we employ a quadrature rule of the form

(4.10) − 1

4π

∫ L

−L
ln

(
4 sin2

(
π

2L
(x− x0)

))
F (x0) dx0

≈
2N∑
j=1

Rj(x)F (xj) ,

for positive integer N = n/2 (assuming n is even), with xj = −L +
L(j − 1)/n, j = 1, . . . , n, as before. The quadrature weight function
Rj(x) is given by:

(4.11) Rj(x)

=
L

2πn

{N−1∑
m=1

1

m
cos

(
mπ

L
(x− xj)

)
+

1

n
cos

(
Nπ

L
(x− xj)

)}
.

This choice of quadrature computes the integral in (4.10) exactly when
F has been replaced by its trigonometric interpolation polynomial. To
see this, replace F in (4.10) by the Lagrange trigonometric polynomial
of order j, then the formula (4.11) may be derived for the integral on
the left hand side; see ([13, page 208]) and [14] for details.

The remaining integrals involved in approximating V have smooth
kernels and thus may be well-approximated using the trapezoidal rule
as before. We, therefore, arrive at the following approximation for the
interface single layer potential
(4.12)

V
∂ϕα
∂ν0

(xi, h(xi)) ≈
n∑
j=1

(
Rj(xi) +

2L

n
si,j

)
∂ϕα
∂ν0

(xj)
√
1 + h′(xj)2

for α = 1, 2 and i = 1, . . . , n. Here si,j is the smooth part of the
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integrand for V given by

si,j = − 1

4π

{
ln

(
4

(
sin2

(
π

2L
(xi − xj)

)
+ sinh2

(
π

2L
(h(xi)− h(xj))

)))
− ln

(
4

(
sin2

(
π

2L
(xi − xj)

)
+ sinh2

(
π

2L
(h(xi) + h(xj))

)))
− ln

(
4 sin2

(
π

2L
(xi − xj)

))}
,

for i ̸= j, and

sj,j = − 1

4π

{
ln
(
1 + h′(xj)

2
)
− ln

(
4 sinh2

(
π

L
h(xj)

))}
.(4.13)

Applying the approximation (4.12) to the first-kind integral equation
(3.22) leads to the following Nyström scheme for the approximate
solution ∂ϕnα/∂ν0

n∑
j=1

(
Rj(xi) +

2L

n
si,j

)
∂ϕnα
∂ν0

(xj)
√
1 + h′(xj)2

=
ϵ2
ϵα

(
−ϕn(xi)

2
+

2L

n

n∑
j=1

ki,jϕ
n(xj)

√
1 + h′ (xj)

2

)
,

(4.14)

for i = 1, . . . , n and α = 1, 2. Here ϕn and ki,j are computed as
described in the previous section.

5. Numerical experiments. We test our boundary integral model
and numerical solution scheme using the same boundary condition
for (2.4) as employed in [4] for a static applied potential f(x) =
A cos(πx/L), where A is a constant amplitude term. Note that, one
can then derive the half-space solution ϕH , either using separation of
variables or directly from the boundary integral formula (3.8), to get

ϕH(x) = A cos(πx/L) exp(−πy/L).(5.1)
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In addition, we set the parameter ϵ1 = 8 and ϵ2 = 1 to reflect the
values for oil and air in our application of interest [4]. For the interface
position h(x), we consider three possibilities:

I1. A constant profile h(x) = h0 since in this case the results can
be checked against an exact solution.

I2. A single period sine curve h(x) = h0(1+0.2 sin(πx/L)) of mean
height h0, similar to that used for numerical tests in [19].

I3. A double period cosine curve h(x) = h0(1− cos(2πx/L)/(2π))
as considered in [4, Section II], which is representative of
a typical interface geometry that would be encountered in
application to an electrified oil-air interface.

Note that, to allow the input of numeric interface position data,
trigonometric interpolation is used to represent the interface position
(exactly for the examples above), and derivatives of h are computed
via differentiation of its Fourier components as described before.

We use the methods described in the previous section to approximate
the interface potential ϕ by ϕn and the normal derivative ∂ϕα/∂ν by
∂ϕnα/∂ν (α = 1, 2). We also approximate the tangential derivative
∂ϕα/∂τ , where τ denotes the tangent vector to ΓI . To do this, we first
compute the derivative with respect to x by applying trigonometric
interpolation to ϕn using an FFT and then differentiating the Fourier
components (exactly the same as the procedure we carry out for
the interface position function h). One then obtains the tangential
derivative by correcting for arc-length via division by a factor of√
1 + h′(x)2. A similar procedure is described and rigorously analyzed

in [19], where it is shown super-algebraic convergence will also be
achieved in the approximation of ∂ϕα/∂τ by ∂ϕnα/∂τ , α = 1, 2. Note
that here the continuity of ∂ϕnα/∂τ across ΓI follows from the continuity
of ϕn across ΓI , so we may simply write ∂ϕn/∂τ for both ∂ϕnα/∂τ ,
α = 1, 2.

In the case of interface I1, an analytic solution to the transmission
problem (2.1)–(2.5) with boundary data f(x) = A cos(πx/L) can be
derived using separation of variables to give

ϕ1(x) =
A cos(πx/L)(ϵ1 − ϵ2) exp(πy/L)

(ϵ1 + ϵ2) exp(2πh0/L) + (ϵ1 − ϵ2)
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+
A cos(πx/L)(ϵ1 + ϵ2) exp((2h0 − y)π/L)

(ϵ1 + ϵ2) exp(2πh0/L) + (ϵ1 − ϵ2)
,

ϕ2(x) =
2Aϵ1 cos(πx/L) exp((2h0 − y)π/L)

(ϵ1 + ϵ2) exp(2πh0/L) + (ϵ1 − ϵ2)
.

From the solution above, it is easy to calculate ϕ and its tangential and
normal derivatives, which here correspond to partial derivatives with
respect to x and y, for interface I1. A plot of ϕ for A = L = 1 and a
thin film with h0 = 0.03L (comparable to the parameter choice of [4])
is given in Figure 2. The tangential and normal derivatives are also
shown.
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Figure 2. Analytic solution of the potential and its tangential and normal
derivatives on a flat interface.

We use these analytic solutions to compute the discrete l2 error in our
numerical approximations of ϕ, ∂ϕ/∂τ and ∂ϕ/∂ν with the above choice
of parameters. The results are shown in Figure 3 and demonstrate
the predicted super-algebraic convergence since the rate of convergence
speeds up as n is increased, until rounding errors become significant
for n > 128. The results for ϕ and ∂ϕ/∂τ are almost identical until the
rounding errors dominate, and then the errors for ∂ϕ/∂τ and ∂ϕ/∂ν
are very similar. The general trends are very similar to those shown in
the Dirichlet problem studied in [19].
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Figure 3. Relative errors in the potential and its tangential and normal
derivatives on a flat interface.

Table 1. Relative errors and estimated orders of convergence for interface
I1.

Results for ϕn Results for ∂ϕn/∂τ Results for ∂ϕn
1 /∂ν

n Error EOC Error EOC Error EOC

16 4.506e-02 - 4.506e-02 - 0.6025 -
32 2.307e-03 4.29 2.307e-03 4.29 2.983e-02 4.34
64 5.551e-06 8.70 5.551e-06 8.70 7.279e-05 8.68
128 3.199e-11 17.40 3.199e-11 17.40 4.227e-10 17.39
256 1.187e-15 14.72 1.611e-13 7.63 1.566e-13 11.40
512 1.769e-15 -0.58 4.579e-13 -1.51 4.724e-13 -1.59

Since analytic solutions are not available for the cases of interface
I2 and I3, we compute the discrete l2 relative errors and estimate
their rates of convergence by using ϕ2n, ∂ϕ2n/∂τ and ∂ϕ2n/∂ν in the
role of the ‘exact’ solution for ϕn, ∂ϕn/∂τ and ∂ϕn/∂ν, respectively
(using only the coincident data points). For consistency, we also
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Table 2. Relative errors and estimated orders of convergence for interface
I2.

Results for ϕn Results for ∂ϕn/∂τ Results for ∂ϕn
1 /∂ν

n Error EOC Error EOC Error EOC

16 4.872e-02 - 5.462e-02 - 7.231e-01 -
32 3.248e-03 3.91 4.610e-03 3.57 4.832e-02 3.90
64 1.721e-05 7.56 3.410e-05 7.08 2.806e-04 7.43
128 7.230e-10 14.54 2.055e-09 14.02 1.293e-08 14.41
256 1.861e-15 18.57 2.692e-13 12.90 3.476e-13 15.18
512 2.786e-15 -0.58 7.637e-13 -1.50 1.046e-12 -1.59

Table 3. Relative errors and estimated orders of convergence for interface
I3.

Results for ϕn Results for ∂ϕn/∂τ Results for ∂ϕn
1 /∂ν

n Error EOC Error EOC Error EOC

16 5.8841e-02 - 7.029e-02 - 9.647e-01 -
32 4.455e-03 3.72 7.084e-03 3.31 6.920e-02 3.80
64 2.517e-05 7.47 5.694e-05 6.96 4.186e-04 7.37
128 9.063e-10 14.76 3.011e-09 14.21 1.644e-08 14.63
256 1.847e-15 18.90 2.762e-13 13.41 3.618e-13 15.47
512 2.715e-15 -0.56 8.407e-13 -1.61 1.164e-12 -1.69

show the results for the case of interface I1 in this form, which are
presented in Table 1. The results clearly reflect those shown in
Figure 3. The estimated order of convergence (EOC) is computed
via log2(Error(n)/Error(n/2)), where we are referring to the discrete
l2 relative error as a function of n. The super-algebraic convergence
is clear from the increasing EOC, which eventually reaches a value
of around 17 in all cases before rounding errors begin to destroy the
convergence rate when n = 256.

Tables 2 and 3 show the relative error and EOC results for interfaces
I2 and I3, respectively. Again, super-algebraic convergence is apparent
until n = 256, reaching peaks of almost order 19 in both cases. Once
again, rounding errors begin to destroy the convergence rate when
n = 256. Both higher convergence rates and accuracy levels are
observed in the computations of ϕn as compared with its directional
derivatives. However, since the derivatives are computed from ϕn, then
this is probably to be expected; these trends are also consistent with
the observations made in [19].
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6. Conclusion. The transmission problem for the Laplace equation
on a periodic half-space has been considered. The study was motivated
by its application to the modelling of electrified oil films used in the
development of novel switchable liquid optical devices (diffraction grat-
ings). A boundary integral formulation which reduces the problem to
the study of the interface alone was derived and solved in a highly ef-
ficient manner using the Nyström method. The quadrature rules were
chosen with reference to supporting results in numerical analysis, and
were predicted to converge super-algebraically. Numerical experiments
demonstrated this convergence rate in practice for a choice of param-
eters appropriate to our goal application, and for a range of interface
geometries.
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