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Voltage-induced spreading and superspreading
of liquids
G. McHale1, C.V. Brown2 & N. Sampara2

The ability to quickly spread a liquid across a surface and form a film is fundamental for

a diverse range of technological processes, including printing, painting and spraying. Here

we show that liquid dielectrophoresis or electrowetting can produce wetting on normally non-

wetting surfaces, without needing modification of the surface topography or chemistry.

Additionally, superspreading can be achieved without needing surfactants in the liquid.

Here we use a modified Hoffman-de Gennes law to predict three distinct spreading regimes:

exponential approach to an equilibrium shape, spreading to complete wetting obeying

a Tanner’s law-type relationship and superspreading towards a complete wetting film.

We demonstrate quantitative experimental agreement with these predictions using dielec-

trophoresis-induced spreading of stripes of 1,2 propylene glycol. Our findings show how the

rate of spreading of a partial wetting system can be controlled using uniform and non-uniform

electric fields and how to induce more rapid superspreading using voltage control.
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T
he rate of spreading of a small droplet of a viscous liquid
on a solid surface is determined by the balance between
interfacial and viscous forces. This physical process can be

characterized by the dependence of the edge speed, ve, on the
dynamic contact angle, y(t), and often obeys the Hoffman-de
Gennes law, vEp y(cosyY� cosy)py(y2� yY

2), where cosyY¼
(gSV� gSL)/gLV gives the Young’s law contact angle, yY, and is
determined by the three interfacial tensions gij (refs 1,2). In the
case of complete wetting (yY¼ 0o) of a surface by a small droplet
of a non-volatile oil, the time dependence of the dynamic contact
angle obeys a simple power law yp1/(tþ t0)n, where t0 is a
constant and n¼ 3/10 for a spherical cap droplet (Tanner’s law)
and n¼ 2/7 for a circular arc cross-section stripe of constant
volume3,4. When a solid surface is rough or structured the
balance between interfacial forces changes resulting in a change in
equilibrium contact angle; a partial wetting surface can become
completely wetting. It also changes the driving force for spreading
so that a transition from a cubic law to a linear law occurs for the
edge speed5. Thus, the rate of spreading can be controlled by
topography, but such control is by surface design and so cannot
easily be changed.

One method of controlling the equilibrium contact angle is to
use the contact area of an electrically conducting droplet as a
contact on a conducting substrate, which has a thin electrically
insulating layer. In this case, a capacitive system is created in
which the charging of the solid–liquid interface induces
wetting6,7. This electrowetting-on-dielectric effect with voltage
control of the equilibrium contact angle has found application in
droplet microfluidics8,9, liquid-lenses10,11 and electronic paper12.
It has also been used to induce morphological changes from a
spherical cap droplet shape to a stripe droplet shape and to study
dynamics of filaments wetting along open, rectangular
microfluidic grooves13,14, and to increase maximum coating
speeds by delaying air entrainment15.

Recently, we showed that liquid dielectrophoresis using non-
uniform electric fields, non-conducting liquids and without any
need for direct electrical contact could be used to enhance the
spreading of a droplet; so-called dielectrowetting16. In both
electrowetting and dielectrowetting the change of surface free
energy, DF, due to a small change in area, DA, at the contact line
of a liquid with a contact angle y, in the presence of a voltage, V,
can be written as7,16,

DF � DA gSL� gSVþ gLV cos y� lV2
� �

ð1Þ
where the gij are the interfacial tensions and the precise form for l
depends upon whether the system involves an electrowetting or a
dielectrowetting energy contribution. The equilibrium state is
given by DF¼ 0 and when V¼ 0 this gives the Young’s law
contact angle, yY, satisfying cosyY¼ (gSV� gSL)/gLV, assuming the
liquid is intrinsically partially wetting and an equilibrium contact
angle can be defined. The dependence of the equilibrium contact
angle, ye(V), on the voltage, V, can be written as,

cos ye Vð Þ¼ cos yYþ
l
gLV

� �
V2¼ cos yYþ aV2 ð2Þ

For the electrowetting case, a¼ e0er/2dgLV is the ratio of
capacitive energy per unit area to the liquid–vapor interfacial
energy per unit area. In this case, the capacitive energy depends
on the permittivity e0er of the insulating dielectric solid, its
thickness d, and the liquid’s surface tension gLV (refs 6,7). In the
case of dielectrowetting, the ratio of interfacial liquid dielectric
energy per unit area to the liquid–vapor interfacial energy
per unit area predicts that a¼ e0(el� 1)/2dgLV, which depends
on the permittivity difference e0(el� 1) between the dielectric
liquid and air and the extent of the electric potential penetration
depth, d (ref. 16).

In this paper, we formulate a macroscopic theory of voltage-
induced dynamic wetting to find an analogue to the Hoffman-de
Gennes law that is independent of the specific droplet geometry
and which is valid when the excess free energy takes the form of
equation (1), applicable to both electrowetting or dielectrowet-
ting. Experimentally, we focus on voltage-induced wetting of
stripes of the dielectric liquid 1,2 propylene glycol using liquid
dielectrophoresis. The voltage modified Hoffman-de Gennes law
is shown to quantitatively reproduce the experimentally observed
time dependencies of the dynamic contact angle in the three
spreading regimes: (i) an exponential approach to equilibrium
contact angle with a rate constant t� 1 a ye

7/2(V) when VooVTh;
(ii) a Tanner’s law-type � 2/7th power law dependence at the
voltage needed to induce complete wetting, V¼VTh; and (iii) a
� 2/3rd power law dependence in a voltage-induced super-
spreading regime when V44VTh.

Results
A voltage-controlled analogue to the Hoffman-de Gennes law.
It is possible to view the a parameter in equation (2) as an
experimentally determined one given by the threshold voltage,
VTh, needed to induce complete wetting and a vanishing contact
angle, that is, ye(VTh)¼ 0o. Defining a¼ 1� cos yY½ �V � 2

Th allows
equation (2) to be re-written as,

cos ye Vð Þ¼ cos yYþ 1� cos yYð Þ V
VTh

� �2

ð3Þ

In a similar manner to topography enhanced wetting, which
has been shown to give topography driven spreading5, we expect
both electrowetting and dielectrowetting to modify the dynamics
of spreading, as well as the final equilibrium state. From
equation (1), the rate of change of the energy per unit length of
the contact line due to the unbalanced interfacial forces, including
the energy contribution from the electric field, is,

d Dfð Þ
dt

� � gLVvE tð Þ cos yY� cos y tð Þð Þþ 1� cos yYð Þ V
VTh

� �2
" #

ð4Þ

where vE is the edge speed and the time dependencies have been
shown explicitly. In the de Gennes macroscopic approach, the
viscous dissipation of energy per unit length of contact line is
given by2,4,17–21,

Dvisc � k0Zv2
E tð Þ
�
y ð5Þ

where Z is the viscosity of the liquid and k0 is a constant
representing the viscous dissipation over the volume of fluid from
some microscopic cutoff scale up to a hypothetical boundary
within the droplet2,21. This approximation to the viscous
dissipation is based on the lubrication approximation, assuming
a parabolic velocity profile. Equating the rate of change in energy
to the viscous dissipation gives,

vE tð Þ � k
gLV

Z

� �
y cos yY� cos y tð Þð Þþ 1� cos yYð Þ V

VTh

� �2
" #

ð6Þ

This formula is the electric field extended Hoffman-de Gennes
equation1,2 for the edge speed, vE, dynamic contact angle, y(t),
relationship including the effects of electrowetting or
dielectrowetting. This macroscopic approach does not take into
account additional dissipation processes associated with a
precursor film advancing ahead of the macroscopic contact line
when the spreading power, S¼ gSV� gSL� gLV, is positive and
the liquid is complete wetting, as discussed by, for example, de
Gennes2, and Bonn et al.21

Equation (6) predicts three distinct regimes according to
VooVTh, VBVTh and V44VTh. In the case that the liquid is
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partial wetting and the applied voltage increases the wetting by
only a small amount, that is, VooVTh and ye(V)40o, the edge
speed-dynamic contact angle relationship can be written as,

vE � k
gLV

Z

� �
y2

e Vð ÞDy tð Þ ð7Þ

where Dy(t)¼ y(t)� ye(V) is assumed to be small. For a small
non-volatile droplet or stripe of liquid this predicts an
exponential approach to the voltage-determined equilibrium
contact angle. In the case that VBVTh, the Hoffman law,
vEpy3, is obtained,

vE � k
gLV

Z

� �
y tð Þ3 ð8Þ

In the case that V44VTh, the edge speed becomes directly
proportional to the dynamic contact angle, that is,

vE � k
gLV

Z

� �
y tð Þ 1� cos yYð Þ V

VTh

� �2

ð9Þ

Equations (8) and (9) are derived under the assumption that the
dynamic contact angle is small.

Thus, in a similar manner to topographic enhancement of the
capillary drive for spreading to obtain a superspreading law, a
voltage-induced superspreading should be achievable on what
would be a partial wetting surface in the absence of a voltage. It
also provides an alternative to the use of surfactants to both
induce wetting of a surface that would not normally wet (that is,
superwetting), and to increase the rate of spreading (that is,
superspreading) on surfaces20–27.
Voltage-induced spreading of dielectric liquid stripes. To
investigate whether the predicted voltage-induced spreading and
superspreading regimes could be realized experimentally, we used
a dielectrowetting configuration to modify the spreading of small
droplets of 1,2 propylene glycol with a volume of 0.08±0.01 ml
into stripes with fixed width. The experimental configuration uses
interdigitated electrodes of linewidth 40 mm and gaps of 40mm on
glass and with a thin 0.85 mm capping layer of SU-8 photoresist
with a hydrophobic treatment (see ref. 16 and inset in Fig. 1). In
all experiments, we used a 10-kHz sine wave voltage applied to
the interdigitated electrodes to generate the non-uniform electric
field extending vertically into the liquid.

We first determined the dependence of the equilibrium (long
time limit) contact angle on the applied voltage by applying a
droplet to the substrate with a constant amplitude voltage
maintained during the spreading into a stripe, shown in Fig. 1.
The interdigitated electrode configuration provides a periodic
energy barrier preventing spreading across the electrodes and so
spreading progresses in the x-direction as a stripe configuration
with the width of the liquid stripe in the y-direction remaining
largely unchanged. Side and top view images of the resultant
equilibrium droplet shape are shown inset in Fig. 1 for the
example where 200 V was applied to the electrodes. The contact
angle y, defined in Fig. 1, varies along the contour of the droplet
shape in the y-direction at each advancing edge. Side view images
of the equilibrium cross-sectional profile of droplets at each dif-
ferent voltage in the xz-plane were used to obtain the maximum
contact angle at one advancing edge. The solid line in Fig. 1 is a fit
of equation (3) to data below threshold,

cosy Vð Þ¼ 0:193 � 0:009ð Þþ ð 1:52 � 0:04ð Þ�10� 5Þ V=VThð Þ2 ð10Þ

where the deduced threshold voltage for inducing complete
wetting is VTh¼ (230±2) V.

We then conducted a series of spreading experiments mon-
itoring the dynamic contact angle y and stripe width w in the
x-direction with time for a fixed voltage; voltages below, near and

above the threshold voltage were selected. In all of our experi-
ments, the Weber number, which characterizes the relative
importance of inertial and surface tension effects, satisfied
Weoo1 and we have, therefore, neglected the effects of inertia in
the analysis.

Figure 2a–c show the profiles of droplets imaged from the y-
direction during the dynamic spreading process at different
instants in time, and at three different spreading voltages (200 V,
240 V and 270 V respectively). The droplet profiles were found to
be very well described by circular arc sections, shown by the red
dotted lines in Fig. 2, for all times for spreading voltages of 200 V
and below. As the voltage is increased significantly beyond 200 V
the droplet profiles are circular arcs only for a restricted time after
the onset of spreading, for example for times below 30 ms at
240 V, and for times below 20 ms at 270 V, as shown in Fig. 2b,c,
respectively. For these higher voltages a transition to a film type
cross-section at the foot of the profile can be observed at longer
times. Digitized droplet profiles are shown in Fig. 2d–f for three
different spreading voltages (200 V, 240 V and 270 V, respec-
tively) covering a full range of times from the start of spreading to
when the droplet shape is close to equilibrium. This illustrates the
distinct non-circular profile at 270 V for which the contact angle
at the advancing edge is not as well defined. Images of the evo-
lution of the equilibrium (long time limit) shape of the droplet
with voltage at high voltages are shown in Fig. 2g.

To analyse the data, we applied the conservation of volume of
the liquid, O, and the circular arc cross-section stripe geometry
for a stripe of length L0 in the y-direction. The assumption is that
the spreading alters the circular arc defined by the contact angle,
y (assumed small) and contact width on the substrate, w¼ 2x0,
but always conserves the volume of liquid. From geometry,
the edge speed of the contact line on the substrate is given by
McHale et al.4,

vE tð Þ¼ dx0

dt
¼ O

L0

� �1=2 y cos y� sin y

y� sin y cos yð Þ3=2

dy
dt

� � 3O
8L0

� �1=2 1

y3=2 1þ y2

5
þ y4

50
þ ::::

� �
dy
dt

ð11Þ
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Figure 1 | Voltage-dependent equilibrium contact angles. The closed

circles show the advancing equilibrium contact angle viewed perpendicular

to the electrodes and measured in the long time limit with a constant

amplitude sine wave voltage (10 kHz sine wave r.m.s.) applied to the

electrodes. The solid line is a fit of equation (3) to the data below threshold;

the deduced threshold voltage for inducing complete wetting is

VTh¼ (230±2) V. Inset: schematic of experimental configuration, top view

and side profile view (perpendicular to electrodes) of a droplet at 0 V

and 200 V.
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Thus, to first order in the prefactor, the electric field extended
form of the Hoffman-de Gennes law, equation (6), for a
circular arc cross-section stripe of constant volume can be
written as,

dy
dt
� � ay5=2 cos yY� cos y tð Þð Þþ 1� cos yYð Þ V

VTh

� �2
" #

ð12Þ

where a¼ k(gLV/Z)(8L0/3O)1/2. The assumption that the pre-
factor can be expanded is numerically reasonable for contact
angles below around 60o because the series only involves even
powers.

Equation (12) allows solutions to be obtained for the
dynamic contact angle behaviour with time in each of the
three regimes VooVTh, VBVTh and V44VTh. In the case
that VooVTh, the dynamic contact angle is predicted
to approach its long time limit equilibrium value, ye,
exponentially, that is,

Dy tð Þ¼Dy0 exp � t=t Vð Þf g ð13Þ

where t� 1¼ k(gLV/Z)(8L0/3O)1/2ye
7/2(V) and Dy0¼ y(t¼ 0)� ye

is the constant of integration. Figure 3 shows the dependence of
loge(Dy) with time for the spreading of
stripes for voltages in 10 V steps from 100 to 200 V so that
all are below the threshold voltage. The solid lines are
linear regression fits to the data. According to equation (13)
these slopes should reduce as the voltage is increased and the
wetting becomes stronger. The inset to Fig. 3 tests quantitatively
whether the time constant in the approach to equilibrium follows
a ye(V)� 7/2 power law as predicted by equation (13). This shows
that for voltages away from the threshold, the exponential
approach is well-described by equation (13) but, as expected, the
data is less well-described by this equation as V-VTh.

In the case that VBVTh, the dynamic contact angle tends
to zero in the long time limit, and integration of equation (12)

gives,

y tð Þ � 1

k gLV
Z

	 

49L0
6O

� �1=2

8<
:

9=
;

2=7

1

tþ t0ð Þ2=7 ð14Þ

where t0 is a constant of integration. The dynamic contact angle is
predicted to decrease according to a � 2/7th power law in time as
previously reported for the complete wetting of stripes of
polydimethylsiloxane on glass slides. This is the stripe form of
Tanner’s law, which holds for complete spreading of
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axisymmetric droplets of polydimethylsiloxane4. In the case that
V44VTh, integration of equation (12) gives,

y tð Þ � 1

k gLV
Z

	 

6L0
O

� �1=2
1� cos yYð Þ V

VTh

	 
2
� 1

� �
8>><
>>:

9>>=
>>;

2=3

1

tþ t0ð Þ2=3 ð15Þ

where t0 is a constant of integration. The dynamic contact angle is
predicted to follow a � 2/3rd power law in time. The clear linear
dependences shown in Fig. 4 confirm that the power law
relationship, yp1/(tþ t0)n, holds for voltages between 200 V and
270 V, where the value of n is given by the gradient at each
voltage. The inset in Fig. 4 show the value of the exponent n rises
from close to 2/7 at voltages just below VTh to 2/3 as the voltage is
increased above VTh, in excellent agreement with the predictions
of equations (14) and (15).

Using the relationship ve(t)¼ 1/2(dw(t)/dt), equation (12), and
the dynamic contact angle expressions, also allows solutions to be
obtained for the dynamic contact width, w(t), behaviour with
time. These are given in equations (16), (17) and (18) for each of
the three regimes VooVTh, VBVTh and V44VTh, respectively,

Dx tð Þ � � 3O
8L0

� �1=2Dy0

y3=2
e

exp � ay7=2
e t

	 

ð16Þ

w tð Þ � 7a1=7 4
7

� �6=7 3O
8L0

� �1=2

tþ t0ð Þ1=7 ð17Þ

w tð Þ � 6a1=3 2
3

� �2=3 3O
8L0

� �1=2

1� cos yYð Þ1=3 V
VTh

� �2=3

tþ t0ð Þ1=3 ð18Þ

Below the threshold voltage V/VTho1, the dynamic contact width
tends to a constant value, we¼ 2xe, in the long time limit and so
equation (16) is written in terms of the difference from the
equilibrium contact half-width, Dx(t)¼ x0(t)� xe. In this regime,
the contact width approaches its equilibrium value exponentially
with the same time constant as that for the exponential approach
to equilibrium of the contact angle.

The clear linear dependences shown in Fig. 5 confirm that the
power law relationship, wp1/(tþ t0)n, also holds for the stripe

width for voltages between 200 and 270 V where the value of n is
given by the gradient at each voltage. The inset in Fig. 5 shows that
the classic Tanner spreading law for a stripe in equation (17),
wB(tþ t0)1/7, is found at 200 V and a superspreading regime is
found at higher voltages in which the magnitude of the spreading
exponent increases as the voltage is increased, reaching
wB(tþ t0)1/3.39 at 270 V; this is consistent with the theoretically
expected power law in equation (18) of wB(tþ t0)1/3. The
increase in this exponent is a characteristic of ‘superspreading’
phenomenon referred to in ref. 25 and other references on
superspreading achieved through surfactants. These data illustrate
that partial wetting systems can be forced to become wetting and
that a transition to a more rapid superspreading regime can be
achieved in a relatively simple manner.

Discussion
In this work, we have formulated a macroscopic theory of
voltage-induced dynamic wetting that extends the Hoffman-de
Gennes law and which is independent of the specific droplet
geometry. Experimentally, we have focused on stripes of a
dielectric liquid using liquid dielectrophoresis to achieve the
voltage control. However, the same principles apply to axisym-
metric ‘spherical cap’ droplets and in this case three regimes are
also predicted, giving a dynamic contact angle with: an
exponential approach to equilibrium contact angle with a rate
constant t� 1¼ k(gLV/Z)(27p/4O)1/3ye

10/3(V) when VooVTh,; a
� 3/10th power law at complete wetting when VBVTh; and a
� 3/4 power law in the voltage-induced superspreading regime
when V44VTh (Supplementary Equations (S3), (S4) and (S5) in
Supplementary Note 1). The cross-over from an exponent of
� 3/10 to � 3/4 is the same as for topography-induced super-
spreading5, but with voltage rather than roughness controlling the
transition and its strength. The corresponding behaviour for the
axisymmetric droplet contact radius is an exponential approach
to equilibrium with the same rate constant as for the contact
angle, a 1/10th power law at complete wetting, and 1

4 power law in
the voltage-induced superspreading regime (Supplementary
Equations (S6), (S7) and (S8) in Supplementary Note 1). This
can be compared with the exponents measured for surfactant-
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induced superspreading of axisymmetric droplets, which have
been reported to increase from the 1/10th power law up to as
much as a linear law with time depending on concentration of
surfactant21,26. In our experiments, we have used liquid
dielectrophoresis as the controlling method, but the theory and
formulae apply equally to voltage control achieved using an
electrowetting configuration.

Our theory and measurements show that it is possible to
induce spreading on an otherwise partially wetting substrate
using electric fields. This is an approach complementary to the
use of topographic or chemical modification of the solid surface
or modification of the liquid by including surfactants or
otherwise. It has the advantage that the final equilibrium contact
angle or the strength of the superspreading can be tuned simply
by adjusting an applied voltage. This work has relevance for any
process involving control of films, such as in inking and painting
where controlled spreading of droplets may be beneficial28, or in
high speed coating involving forced wetting where increasing the
wetting delays the onset of bubble entrainment15,29.

Methods
Device fabrication. The device substrate was a borosilicate glass slide of thickness
1.1 mm, which was precoated with a 25-nm layer of indium tin oxide of resistivity
100 Ohm per square (Praezisions Glas and Optik GmbH, Iserlohn, Germany). The
experimental configuration used interdigitated electrodes of linewidth 40 mm and
gaps of 40mm on glass covering an area of 5 mm by 5 mm. The indium tin oxide
electrodes were patterned using standard photolithographic procedures using
S1813 photoresist (Shipley Europe Ltd, Coventry, UK). The pattern was etched in a
solution of 12.5% 1 M hydrochloric and 12.5% 1 M nitric acid in water for 6 min. A
thin 0.85 mm capping layer of SU-8 negative photoresist (MicroChem Corp.,
Newton, MA, USA) on top of the electrodes was used to help prevent electrical
breakdown. This was produced by spinning 30:70 by volume of SU-8 10 negative
photoresist and Microposit EC solvent (ROHM and HAAS Europe trading APS,
Lyngby, Denmark) onto the substrates (10 s at 500 r.p.m. and 30 s at 3,000 r.p.m.),
followed by soft baking (65 �C for 1 min, then 95 �C for 1 min), flood ultraviolet
exposure (6 s in a Microtec SUSS MJ4B Mask Aligner) and hard baking (65 �C for
1 min, then 95 �C for 3 min, then 155 �C for 10 min). An ultraviolet/ozone treat-
ment and a hydrophobic treatment were applied to the SU-8 capping layer. This
treatment increases the contact angle of sessile droplets of 1,2 propylene glycol on
the surface. The SU-8 samples were oxidized in a UV/Ozone ProCleaner (Bioforce
Nanoscience Inc., Ames, IA, USA) for 20 min, then immersed in Granger’s solution
(Granger’s Extreme Wash-in, Grangers International Ltd, Alfreton, Derbyshire
UK) diluted to 1:20 by volume in deionised water for 20 min, followed by rinsing in
deionised water, drying with nitrogen gas and baking at 80 �C for 20 min.

Actuation of voltage-induced spreading. A volume-calibrated ‘Gilson Pipetman’
micropipette (Gilson, Inc., Middleton, USA) was used to dispense 1,2 propylene
glycol droplet into the centre of the electrode area. Droplet volumes used were in
the range 0.08±0.01 ml. Electrical addressing of the device was performed with a
10-kHz sine wave voltage provided by a TTi TGA1244 arbitrary wave form gen-
erator (Thurlby Thander Instruments Limited, Cambs, UK) connected to a
PZD700A-1 amplifier (Trek Inc., Medina, New York, USA). The voltage was
applied to each alternate electrode finger with the interposed electrodes at earth
potential. All voltages reported are root mean square values.

Measurement of dynamic contact angles. The measurement geometry is shown
inset in Fig. 1. Time dependent side view images of the droplet during voltage
spreading were obtained from the y-direction (side view) using a high speed video
camera (Hotspot, NAC Image Techonology, Devon, UK) fitted with a � 10
objective lens, while the top view from the z-direction was monitored using a
standard USB video camera (DCC1645C, ThorLabs, Ely, UK) fitted with a � 4
objective lens.

The dynamic contact angles were obtained from the greyscale images of the
droplet taken from the y-direction (Fig. 1) during voltage spreading analysed using
automated Drop Shape Analysis software (KRÜSS GmbH, Hamburg, Germany).
The images were contrast enhanced to make the edges of the droplet distinct using
a mapping with three linear sections between (0,0), (76,0), (181,255) and (255,255),
where the first number in the brackets is the input pixel greylevel and the second is
the output pixel greylevel. The baseline was defined manually, and this did not
change for a sequence of images at a given voltage. The Drop Shape Analysis
software fitted a circular arc to each image in the sequence and then extracted the
contact angle values used in Figs 1, 3 and 4 from the height and width of the arc
using standard trigonometry. An exception applied to the equilibrium contact
angle values obtained for voltages between 210 and 245 V in Fig. 1: the droplet
profiles at these voltages, shown in Fig. 2g, were not well-described by circular arcs

and so these contact angles were calculated manually from the gradient at the
advancing edge of the droplet.
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