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Method summary: 
Cross-contamination among samples in experiments involving next generation sequencing can readily masquerade as low level 
polymorphisms. In this manuscript we present a robust approach for identifying this type of contamination and tracking down 
its source. In addition, we provide a ready-to-use web platform for performing the analyses described here.
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Polymorphism discovery is a routine application of next-generation sequencing technology where multiple 
samples are sent to a service provider for library preparation, subsequent sequencing, and bioinformatic 
analyses. The decreasing cost and advances in multiplexing approaches have made it possible to analyze 
hundreds of samples at a reasonable cost. However, because of the manual steps involved in the initial 
processing of samples and handling of sequencing equipment, cross-contamination remains a significant 
challenge. It is especially problematic in cases where polymorphism frequencies do not adhere to diploid 
expectation, for example, heterogeneous tumor samples, organellar genomes, as well as during bacterial 
and viral sequencing. In these instances, low levels of contamination may be readily mistaken for polymor-
phisms, leading to false results. Here we describe practical steps designed to reliably detect contamination 
and uncover its origin, and also provide new, Galaxy-based, readily accessible computational tools and 
workflows for quality control. All results described in this report can be reproduced interactively on the 
web as described at http://usegalaxy.org/contamination.

Very high depth of coverage can be 
achieved for a moderate cost using 
high-throughput sequencing technol-
ogies. This allows identification of very 
low frequency variants in re-sequencing 
studies dealing with complex non-diploid 
mixtures represented by viral, bacterial, 
and organellar genomes, as well as genet-
ically abnormal samples such as altered 
genomic DNA isolated from malignant 
lesions. However, the power to detect 
rare variants is also the Achilles’ heel of 
these approaches in that contamination 
and carryover among the sequenced 
samples cannot be easily distinguished 

from true genetic variants. This is 
especially relevant with multiplexing 
approaches where large numbers of highly 
similar samples are handled simultane-
ously. Here we illustrate how to detect 
warning signs of sample contamination, 
describe best practices for re-sequencing 
study design, and provide readily usable 
computational workf lows aimed at 
detecting these artifacts.

A typical re-sequencing experiment 
entails processing of multiple samples 
that are expected to differ at relatively 
few sites. These may include bacterial 
isolates, viral DNA samples, or, in this 

study, human mitochondria l DNA 
(mtDNA). Human cells contain various 
numbers of mitochondria, each harboring 
a number of circular genomes (1,2). The 
individual genomes often differ from 
each other at a few polymorphic sites 
that display the whole possible range of 
allele frequencies (a phenomenon called 
heteroplasmy). As the role of mtDNA 
in the etiology of human disease is now 
well established (i.e., mtDNA mutations 
contribute to over 200 known diseases)
(3), the need to reliably identify hetero-
plasmic sites becomes more urgent with 
the realization that most disease-causing R
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mtDNA mutations exist as hetero-
plasmies, and their clinical manifesta-
tions depend on the relative proportion 
of normal to mutant alleles (4–6). This 
proportion can change dramatically 
during oogenetic bottlenecks, frequently 
leading to the increase of disease-
causing alleles in offspring (7–11). Thus 
detection of even low frequency variants 
becomes critical. 

Historically, Sanger sequencing has 
the sensitivity to detect minor alleles 
at ~10%–20% frequency (12). Appli-
cation of I l lumina technolog y has 
driven the detection threshold down 
to ~1%–2% (13), and increases in 
sequencing depth combined with appli-
cation of dynamic likelihood approaches 
for variant detection promise to drive 
the detection threshold below 1%. At 
this detection level, it becomes critical 
to separate true signal from contami-
nation, which can have multiple sources. 
For example, Illumina points out that 
insufficient f lushing of HiSeq instru-
ments between runs can lead to a 
sample carryover rate of 0.05%–0.1%. 
Additional contamination at this very 
low detection threshold is also highly 
likely due to sample handling, including 
pipetting, gel excision, and airborne 
droplets produced during opening and 
closing of PCR strips.

Materials and methods
Ethical approval
This study was approved by the Human 
Subjects Protection Office of the Penn 
State College of Medicine.

DNA isolation
Blood was collected from the finger 
using a BD Microtainer contact-activated 
lancet (catalog # 366593 or 366594; BD, 
Franklin Lakes, NJ) and was preserved in a 
BD Microtainer Tubes with K2E (catalog 
# 365974) until DNA extraction. DNA 
was isolated using QIAGEN DNeasy 
Blood and Tissue Kit (QIAGEN, Hilden, 
Germany) in either the low-throughput 
microtube-based format (catalog # 69504 
or 69506) or the 96-well plate format 
(catalog # 69581 or 69582). During 
high-throughput extractions, alternate 
columns on the plate were left empty to 
minimize the risk of cross-contamination 
from the use of multichannel pipettes. 
DNA was eluted using the kit buffer AE 
and stored at -20°C. DNA extraction from 
buccal cells was carried out according to 
the method detailed in Reference 14. 
Buccal cells were collected by scraping 
the inside of the mouth with ten cotton 
swabs on plastic sticks. These swabs were 
placed in Slagboom buffer (0.1 M NaCl, 
10 mM Tris-HCl pH 8.0, 10 mM EDTA, 

0.5% SDS) with Proteinase K (0.2 mg/
mL). After storage at room temperature, 
samples were sorted into a pseudo-random 
order (separating family members) before 
DNA extraction was carried out. Proteins 
were removed using an organic de-protein-
ization reagent (ORPR), and DNA was 
precipitated with isopropyl alcohol. The 
DNA was re-suspended in 250 µl of TE 
buffer and stored at -20°C or below.

mtDNA amplification
W hole m itochond r ia l  DNA wa s 
amplified with two sets of primers: 
L * 2 8 1 7  ( 5´ - G C G A C C T C G -
G AGCAG A AC-3´) a nd H*11570 
(5´- G TAG G C AG AT G G AG C T T-
GT TAT-3´); L10796 (5´-CCACT-
G ACATG ACT T TCCA A-3´) a nd 
H3370 (5´-AGA ATTTTTCGTTC-
G GTA AG -3´).  T h is  produced 2 
overlapping products, each ~9 kb in 
size. These primers are based on those 
described in our previous publication 
(13) and also by Tanaka et al. (15) 
except that L*2817 and H*11570 have 
been modified to improve amplification 
success. The PCR amplification was 
performed in 50 µl with 10 µl (blood-
derived) or 2 µl (cheek-derived) DNA, 
0.2 mM dNTPs (PCR grade; Roche 
Applied Science, Pleasanton, CA), 0.84 
units Expand High Fidelity PCR Enzyme 

Figure 1. Boxplot summarizing the distribution of allele frequencies across samples in a contaminated mitochondrial re-sequencing study. The 
x-axis represents individual samples, with the numbers above each sample name indicating the number of detected heteroplasmies. The y-axis 
represents minor allele frequency. 
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mix (Roche Applied Science), 1 × buffer 
including 1.5 mM Mg2+, and 0.2 µM each 
forward and reverse primer (Integrated 
DNA Technologies, Inc., Coralville, IA). 
PCR reactions were carried out in 8-well 
strips.

Thermal cycling conditions consisted 
of a progression of two cycles. After an 
initial denaturation step of 94°C for 
2 min, the first cycle was 94°C for 15 
s, 62.3°C for 30 s, and 68°C for 8 min 
for 10 repeats. The second cycle was 
94°C for 15 s, 62.3°C for 30 s, and 
72°C for 8 min (plus 5 s per cycle) for 
20 repeats. The terminal extension 
step consisted of 72°C for 8 min. After 
visualizing aliquots by gel electropho-
resis, two overlapping amplicons from 
each individual were mixed in approx-
imately equimolar proportions (based 
on 2-D densitometry estimates). Mixed 
amplicons for each individual were 
cleaned up using column purification 
(QIAGEN’s QIAquick). The Qubit 
dsDNA BR assay (Invitrogen, Carlsbad, 
CA) was used to quantitate samples after 
mixing using a Qubit 2.0 f luorometer 
(Invitrogen).

Galaxy pipeline
Our intention was not only to develop a 
computational methodology for contam-
ination detection but to also make it 
readily accessible to anyone wishing to 
test it or apply it to their own studies. 
To achieve this, we have implemented a 
number of components described below 
and incorporated them into our widely 
used Galaxy platform (http://usegalaxy.
org) as described at the following URL: 
http://usegalaxy.org/contamination.

Naive Variant Caller tool
The Naive Variant Caller tool processes 
a ligned sequencing reads from the 
BAM format and produces a VCF file 
containing per position variant calls. 
This tool allows multiple BAM files to 
be provided as input and utilizes read 
group information to make calls for 
individual samples. User configurable 
options allow filtering reads that do not 
pass mapping or base quality thresholds 
and minimum per base read depth; users 
can also specify the ploidy and whether 
to consider each strand separately. In 
addition to calling alternate alleles based 

upon simple ratios of nucleotides at a 
position, per base nucleotide counts are 
also provided. A custom tag, NC, is used 
within the Genotype fields. The NC field 
is a comma-separated listing of nucleotide 
counts in the form of <nucleotide> = 
<count>, where a plus (+) or minus (-) 
character is prepended to indicate strand 
if the strandedness option was specified.

Variant Annotator tool
The Variant Annotator tool processes 
the raw variant count data from the 
Naive Variant Caller tool. SNV counts 
and allele statistics are reported for each 
site in a simple tabular format. Data 
from multiple samples are supported, 
via sample columns in the input VCF. 
The first (major) and second (minor) 
most abundant alleles are reported, 
along with the frequency of the latter. 
The user can set a coverage threshold, 
which is applied to each strand individ-
ually. An al lele count is computed 
based on the number of alleles passing 
a user-supplied frequency threshold. 
A basic filter for strand bias is applied 
at this stage, excluding sites where the 
threshold-passing alleles differ between 
the strands. At these sites, neither allele 
count is used, and the tool will instead 
mark the count as zero.

Get FASTA from Variants Table tool
Provided a table defining the major 
and minor alleles per position and the 
length (L) of the target sequence, the 
Get FASTA from Variants Table tool 
generates a string of length L where 
every position is an N nucleotide. Then, 
position by position in the alleles table, 
every N is replaced by the inferred major 
allele nucleotide (or the minor allele at 
heteroplasmic positions when generating 
the minor allele sequence). Positions that 
are not described in the alleles table will 
remain as N.

Since all sequences share the same 
length, all the major allele sequences are 
included into a single file (with proper 
headers per sample) to create a multiple 
sequence alignment in FASTA format 
that can be used for downstream phylo-
genetic analyses. In contrast, the minor 
allele sequences are recorded as single 
FASTA files per sample to ease their 
downstream manipulation. For our 
purposes, L was set to the length of the 
Revised Cambridge Reference Sequence 
(NC_012920), 16,569 nucleotides.

Phylorelatives tool
The Phylorelatives tool takes as input 
the set of sequences generated by the 
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Get FASTA from Variants Table tool, 
and reports the closest relatives of the 
test minor allele sequence in a Neighbor-
Joining (NJ) tree (16), along with a 
picture of the tree, and the resulting NJ 
tree in Newick format. In addition, the 
set of sequences used during the analysis 
is returned as a single multiple sequence 
alignment FASTA file. This tool uses a 
combination of R and Python libraries 
implemented in a Python script. The R 
package Analysis of Phylogenetics and 
Evolution (ape)(24) is used to generate 
the NJ tree. The pairwise distance 
between the sequences is calculated 
using the raw model, which is simply the 
proportion of different sites between the 
two sequences. Sites with missing infor-
mation are excluded by default (complete 
deletion), but this option can be set to 
pairwise deletion at run time. Also, by 
default the tool runs 1000 bootstrap 
replicas and does not root the tree. 
Options can be set to include a rooting 
sequence, suppress bootstrap, or change 
the number of replications. Next, the 
Python library Dendropy (25) is used 
to process the resulting tree topology 
and infer the relatives of the samples. 
Starting from the leaf node representing 
the minor allele sequence in question, the 
tool travels up the tree looking for the 
closest node whose descendants include 
at least one major allele sequence. The list 
of descendants of this node is informed 
as the relatives of the sample in question 
(i.e., the closest related samples in the NJ 
tree). Input minor allele sequences are 
required by default. However, the tool 
can disregard the absence of minor allele 
sequences by setting the option major-
alleles-only at run time.

MAF Boxplot tool
The MAF Boxplot tool takes a table 
listing heteroplasmic sites per sample 
and their corresponding minor allele 
frequency (MAF) values. It generates 
a boxplot of the MAFs per sample by 
default. Optionally, it can generate a 
report including the total number of 
heteroplasmic sites and the median 
and median absolute deviation (MAD) 
of the MAFs per sample. Sites with a 
maximum of 2 alleles and an MAF ≥2% 
were selected from the table generated by 
the Variant Annotator tool. This table 
was used as an input to the MAF Boxplot 
tool to generate the graph and text report.

Results and discussion
The first warning sign of sample carryover 
is an unexpectedly high number of 

apparent variants. In a recent study 
utilizing a sequencing service provider, 
we analyzed a total of 56 mitochon-
drial DNA samples, representing blood 
and buccal cells. Normally, we expect a 
relatively small number of heteroplasmic 
sites per sample, with maternal trans-
mission evidence and varying MAFs across 
sites (13,17). The sequencing reads were 
processed using a previously published 
workf low (13), which identifies hetero-
plasmies above a 2% frequency threshold. 
For example, a site may have 2.5% reads 
supporting an A allele and 97.5% reads 
supporting a G allele; in this case, A is 
the minor allele with frequency 2.5%. 
After identifying heteroplasmies, we have 
calculated the distribution of MAFs for 
each individual and represented them as 
box plots in Figure 1. The immediately 
striking observation was the large number 
of heteroplasmic sites in many individuals 
(indicated along the x-axis). The situation 
in Figure 1 is rather extreme; based on 
previous studies (13,17) we expect 
~0–3 heteroplasmies per individual. 
The boxplots highlight the fact that 
individuals with a high number of hetero-

plasmic sites have a narrow distribution 
of MAFs. This is indicative of carryover 
from another sample that differs from 
the one being analyzed at a number of 
fixed sites. For instance, if 2 samples 
differ at 10 non-polymorphic positions 
(i.e., they belong to 2 different mtDNA 
haplogroups) and there is carryover 
between them, the sites will appear as 
10 heteroplasmies with identical MAFs. 
While Figure 1 clearly suggests such a 
problem, it does not identify the source 
of the putative contamination. 

To understand the direction of 
carryover, we employed a phylogenetic 
approach. For each sample, we created 
an mtDNA sequence in which nucleo-
tides at all detected heteroplasmic sites 
have been set to the major allele at that 
site. Applying the NJ phylogenetic tree 
reconstruction approach (16) to these 
sequences recapitulated family stratifi-
cation of the samples as shown in Figure 
2 . Next, for each suspected instance 
of contamination such as samples 
F41M52 and F41M52C1, which have 
the narrowest distribution of MAFs as 
per Figure 1, we created another version 

Figure 2. Phylogenetic analysis of minor allele consensus sequences for samples F41M52 and F41M52C1. 
Minor allele consensus sequences are shown in red on the background of major allele consensus se-
quences from all samples (shown in black). The numbers above branches and line thickness reflect 
bootstrap support (from 1000 iterations). Alternating black and gray lettering signifies distinct families 
used in the study. RSRS: a hypothetical version of mtDNA designed for rooting of phylogenetic trees (23). 



139Vol. 56 | No. 3 | 2014

of the mitochondrial genome by setting 
each heteroplasmic site to its minor allele 
nucleotide (termed F41M52_MINOR 
and F41M52C1_MINOR in Figure 2). 
Adding these sequences to the phyloge-
netic reconstruction showed that minor 
allele sequences for individuals F41M52 
and F41M52C1, who belong to family 
F41, cluster with family F46 instead of 
F41, suggesting that these samples are 
contaminated by DNA originating from 
family F46 individuals (also see Supple-
mentary Figure S1). In the case of this 
particular re-sequencing experiment, 
we have tracked the order of samples as 
they were sent to the sequencing facility. 
This allowed us to determine that these 
particular samples were located in 
adjacent cells on a 96-well plate. (Supple-
mentary Figure S1 demonstrates the 
analysis of two additional samples with 
the number of minor alleles falling into 
a gray zone where one of the samples 
appears to be contaminated while the 
other is not.) 

While the approaches described 
above seem to work well for controlling 
the data quality in re-sequencing exper-
iments, we wanted to integrate them 
into a workf low that can be repro-
duced and re-used by others. Repro-
ducibility is particularly important, as 
even with the latest advances in high-
throughput sequencing studies such 
as those described here remain costly 
(18). Because the sequencing is often 
performed outside of the laboratory 
by an institutional core facility or a 
commercial sequencing provider, it is 
necessary to show where the problem 
occurred. Therefore, being able to run 
the contamination analysis in a trans-
parent way such that all steps of the 
process can be reviewed and shared 
among involved parties becomes critical. 
The Galaxy platform (w w w.galaxy-
project.org), developed and maintained 
by our group, is an ideal solution for 
implementing such a workf low. A Galaxy 
page at http://usegalaxy.org/contami-
nation provides detailed description of a 
workf low that performs contamination 
analysis as described in this paper. This 
online document also provides original 
sequencing data that can be used to 
reproduce the results shown in Figures 
1 and 2. By providing a turnkey solution 
to the detection of contamination and 
making suggestions for best practices 
in experiments, we hope to encourage 
reproducible and accurate studies that 
fully leverage these novel capabilities.

To supplement our abi l it y  to 
reliably detect contamination with an 

independent approach, we now routinely 
employ DNA spike-ins in our experi-
ments. For this purpose, we chose DNA 
from the high copy number plasmid 
pUC18, a standard, readily available 
cloning vector, and double-stranded 
genomic DNA from bacteriophage 
fX174. These spike-ins lack extensive 
homology with human mtDNA or with 
each other and are added prior to the 
preparation of barcoded libraries in an 
alternating fashion. Spike-ins allow for 
straightforward detection of contami-
nation by mapping all reads generated 
in an experiment against reference 
sequences, in this case from pUC18 and 
fX174.

Our experience with sequencing at 
external facilities indicates that contam-
ination is a significant threat affecting 
outcome in a research study. We have 
adopted the following set of procedures 
for performing re-sequencing for rare 
variant detection in a large number of 
samples:
1.	 Utilize two types of spike-ins in a striped 

layout by adding spike-ins in a sequence 
(i)  spike-in 1, (ii)  spike-in 2, (iii)  no 
spike-in. Make every effort to keep 
samples with the same spike-in from 
being in physical proximity to each other, 
such as adjacent wells within a 96-well 
plate or adjacent tubes in a PCR strip.

2.	 Physically separate samples expected to 
have a high degree of sequence homology. 
For example, in the case of mitochondrial 
DNA we determine haplogroups for our 
samples using Sanger sequencing prior to 
beginning the re-sequencing experiment. 
We use this information while handling 
the samples to make sure that samples 
belonging to similar haplogroups are not 
adjacent to each other. It is also advisable 
to sequence the mtDNA of the inves-
tigator performing the experiments in 
order to rule out an additional potential 
source of contamination.

3.	 Perform spike-in detection with a 
sensitive assay prior to sequencing but 
after library construction. This would 
avoid additional sequencing costs if 
contamination is detected.

4.	 After sequencing, map the reads against 
the reference genome, as well as sequences 
of spike-ins, and perform the analysis of 
distribution of MAFs. Identify suspi-
cious samples with unusually high minor 
allele counts (≥10).

5.	 Perform the phylogenetic distri-
bution analysis on suspicious samples 
to determine the source of contami-
nation.
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Our approach relies on the assumption 
that heteroplasmic sites are rare and 
exhibit over-dispersed MAFs. Our first 
method (Figure 1) identifies contami-
nation by visualizing mutation frequency 
and MAF variation. Contamination is 
manifested by multiple polymorphic 
sites with a tight MAF distribution. This 
approach rapidly identifies the existence 
of contamination, but not the source. In 
contrast, previously deployed methods by 
Li et al. (17) and Avital et al. (19) identify 
contamination by assigning samples to 
Phylotree (20)-derived haplogroups 
(with Avital et al. utilizing Haplogrep)
(21). While these methods offer the 
advantage that contamination can be 
identified from any source, they are of 
limited utility when an exhaustive list 
of haplotypes is unavailable (as might 
be expected for most heterogenous 
samples and certainly from samples 
drawn from recombining populations). 
Even if relevant databases are estab-
lished, integrated with an analysis 
platform, and suitably maintained, it 
would be relatively costly to implement 
a search across a large panel of samples. 
Furthermore, as the number of possible 
haplotypes and samples increases, inter-
pretation would become challenging. 
Our simple approach is therefore more 
generalizable and scalable.

To determine the source of contami-
nation in a sample f lagged by our first 
method, our second method employs a 
phylogenetic approach. On the principle 
that the source and sink of contami-
nation should cluster, we identify the 
most likely source of contamination for 
the focal sample. This contrasts with 
the above-mentioned methods based 
on haplogroup comparison in that our 
detection method does not depend on 
intervening data sets or structures. Li 
and Stoneking (22) likewise adopted a 
direct approach by searching all samples 
to identify those that explained a signif-
icant proportion (≥3) of apparent minor 
allele identities in potentially contami-
nated samples. Our approach is better 
suited to large data sets for two reasons. 
First,  Li and Stoneking f lag all samples 
with >5 polymorphic sites (verified 
using their bias statistics); this fixed 
threshold might lead to an unsustainable 
number of comparisons in a large data 
set (although this could be mitigated 
if our first method were used to select 
candidates based on MAF variation). 
Second, their approach entails repeated 
pairwise comparisons whereas ours 
jointly considers all intra-experiment 
hypotheses regarding the origins of 

contamination and displays the result 
in a single graphic.

While our methods cannot substitute 
for careful experimental controls and 
evaluation of raw data, we do believe they 
provide a broadly applicable two-step 
approach. Our first filter encourages 
the experimenter to consider both the 
numbers of polymorphic sites and the 
amount of MAF variation at these sites. 
By visualizing both sources of infor-
mation, all suspicious samples can be 
identified together in a manner that is 
sensitive to the experimenter’s expec-
tations regarding polymorphism in the 
data set. (Although MAF variation is the 
more important of these two measures, 
we feel that a single summarizing statistic 
would be misleading and prefer a visual 
approach). Our second method can be 
selectively deployed by the researcher 
to identify sources of contamination in 
particular samples. This method also 
yields a visualization that represents 
the relative likelihood of contamination 
from other samples in the data set. Due 
to their ease of use, we hope that our 
computational tools, which are based 
on these methods, will become useful 
additions to the quality control toolkit 
that investigators use to examine next-
generation sequencing data.
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