

A New Biometric ID-Based Cryptography Protocol
and Security Analysis Using Petri Nets

Dania Aljeaid
School of Science and Technology

Nottingham Trent University
Nottingham, United Kingdom

N0360890@ntu.ac.uk

Xiaoqi Ma
School of Science and Technology

Nottingham Trent University
Nottingham, United Kingdom

xiaoqi.ma@ntu.ac.uk

Caroline Langensiepen
School of Science and Technology

Nottingham Trent University
Nottingham, United Kingdom

caroline.langensiepen@ntu.ac.uk

Abstract—This paper presents a Petri net (PN) approach to
modelling, simulating, and analysing the new protocol we have
proposed. This new protocol is an enhanced authentication
scheme based on a biometric verification mechanism and identity
based cryptography. A formal approach like Petri nets allows one
to represent cryptographic protocols. For the sake of simplicity, a
complex PN model will not be discussed in this paper until all
attacks are demonstrated and the model proved to be secure.
This paper shows how Petri nets are used to model, analyse and
detect flaws in our new protocol. First, our proposed protocol is
modelled without an adversary, and then a generic adversary
model is added to examine all possible adversary behaviours.
Finally we demonstrate how Petri nets can be used to analyse
security threats such as man-in-the-middle attack, reflection
attack, and parallel session attack on this protocol.

Keywords- identity-based cryptosystem; biometrics; security
analysis; cryptographic protocol; Petri nets.

I. INTRODUCTION
Due to the unique characteristics possessed by

cryptographic protocols, analysis and evaluation tend to be
more difficult than normal protocols. Typically cryptographic
protocols, also known as security protocols, tend to inhabit a
complex environment by utilising various cryptographic
mechanisms, such as symmetric and asymmetric encryption,
hash functions, timestamps, and digital signature [1]. For this
reason, Petri nets offer the opportunity to conduct an in-depth
analysis and overcome security vulnerabilities and weaknesses.
Moreover, they simplify the modelling of exchange messages
between nodes and describe behaviour of authentication and
key agreement procedure. A number of researchers have used
Petri nets to model and analyse cryptographic protocols [2 -6].

The structure of this paper is organised as follows. In
Section 2, we briefly review previous works on Petri nets and
our new protocol. In Section 3, we model the client-server
trust model using PN. In Section 4, we add the adversary
entity to the trust model and simulate various attacks using
PN. We then provide a brief discussion on security analysis in
Section 5. Finally, the conclusions are given in Section 6.

II. REVIEW OF RELATED WORK

A. Petri Nets
The concept of the Petri net [7] was introduced in 1962 by

Carl Adam Petri [8]. Petri nets are graphical diagrammatic tools
based on strong mathematical foundations. It is used as a visual

communication aid to model concurrency, synchronisation,
limited resources, sequentially, mutual exclusion and behaviour
in distributed systems [9-11]. A Petri net is defined as a bipartite
directed, weighted graph with two types of nodes called places
and transitions, linked by directed arcs. In other words, a Petri
net must consist of the following components [9-11]:

§ A set of places (drawn as circles in the graphical
representation), represent conditions and possible states
of the system.

§ A set of transitions (drawn as rectangles or thick bars),
represent a change of state which caused by events or
actions

§ A set of arcs (drawn as arrows), connecting a place to
transition and vice versa.

§ Tokens (drawn as black dots), occupy places to
represent the truth of the associated condition.

The formal definition of a Petri net is shown in Table 1 [10].
Generally Petri nets focus on specific properties such as
liveness, deadlock, livelock, boundedness and safeness [9-11].

 Table 1. Formal Definition of a Petri Net

A Petri net is 5-tuple, PN=(P,T,F,W,M0) where:
P={p1, p2,…,pm} is a finite set of places,
T={t1,t2,…,tn} is a finite set of transitions,
F (P X T) U (T X P) is a set of arcs (flow
relations),
W: F à {1, 2, 3,…} is a weight function,
M0: P à {0, 1, 2, 3,….} is the initial marking,
P ∩ T= ø and P U T ≠ ø.

A Petri net structure N=(P, T, F, W) without any specific initial
marking is denoted by N.

A Petri net with the given initial marking is denoted by (N, M0).

Petri nets are used in this paper to ensure the soundness of
the protocol analysis. This approach is a very useful tool for
modelling and simulating a range of possible attacks on the
proposed protocol. The key features of using Petri nets can be
summarised as follows:

1. The ability to model the concurrency of the protocol
progress with tokens

2. The ability to model intermediate and final objectives as
places

3. The ability to model transitions as commands and inputs

B. Review of Proposed Protocl

In our previous work [12], we have developed a new
authentication protocol that allows remote mutual
authentication with key agreement. Our new protocol is based
on biometric verification and ID-based Cryptograph [13].

Moreover, the new protocol is aimed to initiate secure
authentication and communication between the client and
server by building a robust mechanism between
communicating parties The proposed protocol may be
described as a two-factor user authentication mechanism and
three-way handshake procedure to establish a reliable
connection and ensure secure data sharing. Our new protocol
consists of four phases: system initialising phase, registration
phase, login phase, and authentication phase. The new protocol
is summarised in Fig. 1 and the notations used for the new
protocol are summarised in Table 2.

R
eg

is
tr

at
io

n

Client Ci Registration Centre Ri
(1) IDci, PWci, Bioci,

(3) IDCi

, H4(.), Enc{}a/Dec{ }a,
fi, ei, τ, Pr_K Ci

(2) Computes:
• fi = H4(Bioci)
• ei = H4(IDci||y)⊕H4(PWCi||fi)
• Pr_Kci = (x+ H4(IDci

))-1.P

L
og

in

Client Ci Server Si
(1) Enters ID’ Ci

 and PW’Ci

(3) Inputs Bio’Ci

(5) Computes:
• z’i = H4(PWCi

 ||fi)
• M1=ei⊕z’i
• W1=r Ci

 . P
• M2= r Ci

 . Pr_K Ci

• M3= M1⊕rci
• k=H2(IDCi

, TCi
, W1, M2)

(6) C1=Enc{IDCi
, TCi

, W1, M3,
MACk(IDCi

, TCi
, W1 ,M3)}a

(2)Verifies the authenticity of ID’Ci

 and
PW’Ci

(4) Verifies
 Accept if d(BioCi

,

Bio*

Ci
) < τ

 Reject if d(BioCi
,

Bio*

Ci
) ≥ τ

 Client Ci Server Si

A
ut

he
nt

ic
at

io
n

(5) Decrypts C2 and verifies M7 ?=
H4(M4||rCi

) and the integrity of MACk(IDCi
,

TSi
, W2, M6,M7)

Server Si is authenticated
(6) Computes:
• KCi

 =rCi
 . W2

• Sk = H3(IDCi
, TCi

, TSi
, W1, W2, KCi

)
• M8=M6⊕M1 =rSi

• M9= H4(M6||M8)

(4) C2=Enc{IDCi
, TSi

,W2, M6,
M7, MACk(IDCi

, TSi
, W2, M6,

M7)}a

 (7) C3= Enc{M9, MACk(M9)}a

(1) Decrypts C1, then checks validity of IDci

and freshness of Tci

(2) Computes:
• M2=(x+H1(IDCi

))-1.W1
• k=H2(IDCi

, TCi
, W1, M2)

• Checks the integrity of MACk(IDCi
,

TCi
,W1, M3)

(3) Computes:
• M4=H4(IDCi

||y)
• W2=rSi

.P
• KSi

=rSi
.W1

• Sk=H3(IDCi
, TCi

, TSi
 W1, W2, KSi

)
• M5=M3⊕M4 = rCi

• M6=M4 ⊕ rSi

• M7 = H4(M3||M5)

(8) Decrypts C3 and verifies M9?=
H4(M6⊕rSi

)
Client Ci is authenticated

Figure 1. The new proposed protocol

TABLE 2. NOTATIONS USED IN THE NEW PROTOCOL

Symbol Definition
Ci User/Client /Computer
Si Server
Ri Registration Centre

IDSi
 Identity of Server

IDCi
 Identity of user C

PWCi
 User’s password

BioCi
 Biometric template of C

Pub_K Public Key
Pr_K Private Key

|| Message concatenation operation
P A point on elliptic curve E with order n

xP Denotes point multiplication on elliptic curve
y A piece of secret information maintained by the server

(x, Pub_Ks) The server S’s Private/Public key pair, where
Pub_Ks = xP

rCi
, rSi

 A random number chosen by the Ci and Si respectively
H(.) A secure one-way hash function

MACk(m) The secure message authentication code of m under the
key k

 XOR operation

We have examined and validated the behaviour of the
proposed protocol by using finite-state machines and Petri nets
[14]. The following steps explain the methodology to model
the proposed protocol with Petri nets:

1) Build a PN trust model of the trust relationship using
TAPAAL [15] simulation and verification software.
The following steps are necessary for the process of
modelling:

(a) Define the places and transitions and declare
their functionalities

(b) Implement a token passing scheme once the
initial marking is set

(c) Assess the model’s behaviour by examining
reachability, boundedness, and liveness

(d) Validate the model using simulation

2) Add the adversary model. This step involves the
following:

(a) Extend the original model and define places
and transitions for the adversary entities

(b) Implement the token-passing scheme with
the adversary

(c) Model different attack and identify any
insecure behaviour

III. CLIENT-SERVER TRUST MODELLED VIA PN
The trust model is a notation for determining whom the

organisations should trust with its assets. For example,
organisations usually verify the applicants’ resumes and
references, and conduct background and history checks before
trusting their employees. Once they are employed, they will be
issued photo ID badges and parking permits. In contrast to the
real world, it is challenging in the virtual world to identify
individuals who are trusted and those who are not. A trust

relationship between a client and a server can be obtained in
different practices. Some systems use the traditional way that
relies on passwords and digital certificates. Sometimes it may
involve a trusted third party to operate the authentication and
validation, such as the Kerberos login protocol [1], while other
systems deploy biometric automated verification systems to
recognise trusted users.

In the proposed trust model, the client-server trust
relationship is initiated during the registration phase. First, the
client submits his/her ID, password (PWCi

), and biometric data
(BioCi

). Then the server will issue in return a corresponding
private key (Pr_KCi

), secret key (a) for the symmetric
encryption, and τ predetermined threshold for biometric
verification. The assumption for this model is that the client
and server are trustable entities, and they never cheat. Timed-
arc Petri Nets are used to model the new protocol. The trust
model consists of two Petri net entities: one for the client C
and the other for the server S. The protocol entities are derived
from the protocol description in [12]. The assumption made
for this model is that each legitimate participant is honest, i.e.
behaves according to the protocol rules. The Petri net model in
Fig. 2 represents the trust model for the proposed protocol.
The definitions of the places and transitions used in this model
are illustrated in Table 3 and Table 4, respectively.

Table 3. DEFINITIONS OF PLACES FOR THE TRUST MODEL

Place Definition Place Definition
P1 Client random number P14 Encrypted SYN/ACK
P2 Client timestamp P15 Decrypted SYN/ACK
P3 SYN request P16 Verification message
P4 Login request P17 Rejected request
P5 Encrypted login

request
P18 Accept request – Server

is authenticated
P6 Decrypted login req. P19 Session key
P7 Verification message P20 ACK
P8 Rejected request P21 Encrypted ACK
P9 Accepted request P22 Decrypted ACK
P10 Server random number P23 Verification message
P11 Server timestamp P24 Rejected request
P12 Session Key P25 Accept request – Client
P13 SYN/ACK is authenticated

 Table 4. DEFINITIONS OF TRANSITIONS FOR TRUST MODEL

Trans. Definition Trans. Definition
T1 Compute login request +

SYN
T10 Split the packet and

verify
T2 Encrypt T11 Drop the packet
T3 Decrypt T12 Accept
T4 Split the packet and verify T13 Compute ACK and

session key
T5 Drop the request T14 Encrypt ACK
T6 Accept T15 Decrypt ACK
T7 Compute SYN/ACK and

session key
T16 Split the packet and

verify
T8 Encrypt SYN/ACK T17 Drop the packet
T9 Decrypt SYN/ACK T18 Accept

In the trust model, the channels between C and S are
depicted by interconnected arcs, which are attached to places.
The exchange messages procedure is represented by tokens.
Places represent storage for requests, messages, ciphers, or
session keys. Transitions in the model describe particular
functions or procedures, which may be performed while in an
execution state. For example, the following events produce a
new state: encryption, decryption, verification, and
computations. Tokens are modelled in PN as shown in Fig. 2
to represent the key agreement and message exchange
between the client and server. During simulation, the token
firing rule imitates the three-way handshake procedure. The
structure of a place linked to a transition represents a segment
of serial processes performed by the entity to fulfil its role in
the protocol run. For instance, the transition T1 in Fig. 2
consumes three tokens from P1, P2, and P3 to calculate the
login request. The PN trust model represents a three-way
handshake producer between C and S. It allows both C and S
to agree on a shared session key over an insecure channel. The
steps of protocol analysis for PN trust model are described as
follows:

• At first, the protocol is initiated by a client. The client
entity of the PN trust model generates a random value
(P1), Timestamp (P2), SYN request (P3) to compute the
login request (P4) within a certain period of time. C sends
the encrypted request (P5) to S.

• Upon receiving the request, S will check the age of the
token. Note that, computing and sending the request to S
takes some units of time. S will drop the request if the
time processing exceeds the deadline. This is guaranteed
by the use of transport arcs that preserve the age of the
tokens and the corresponding invariants.

§ In the second message of the handshake, the server entity
generates a random value (P10), timestamp (P11) to
compute the session key (P12), and SYN/ACK request
(P13). Then S sends the encrypted SYN/ACK (P14) to C.

• Upon receiving SYN/ACK, C checks the token age and
computes the session key (P19). At this stage, C
authenticates S and sends an enciphered ACK (P21) to S.

• Finally, the server entity checks the token age and
authenticates C.

IV. TRUST MODEL WITH ADVERSARY MODELLED VIA PN
The purpose of this analysis is to find weaknesses and flaws

in the proposed protocol. It is essential to examine the
behaviour of the protocol with the presence of a malicious
adversary. An adversary entity can be a hacker, a malicious
insider, a disgruntled employee, a terrorist, organised crime, or
competitors.

Client Server

Figure 2. The client-server trust model

The worst-case scenario would be if attackers obtained
illegitimate access to the target system. They could install
malicious software, like a rootkit, to remove or modify data.
This act of unauthorised access could lead to privilege
escalation and allow the attacker to gain elevated entry to
resources that are meant to be protected from other application
users. Moreover, faulty protocols may allow an attacker to
compromise other machines in the network to act as zombie
computers to launch denial-of-service attacks.

PN modelling is capable of mapping out how messages
flow throughout the protocol with an adversary. A high-level
view of the adversary model with information flow is shown
in Fig. 3.

The adversary entity is composed of processes, each
designed for a specific function in the protocol. Each process
models the adversary’s possible actions to capture tokens. It
can intercept messages from the channel, alter them, and pass
them to the target source.

Conceptually, the adversary entity is nondeterministic, in
that it may perform different possible actions under different
client identities at a given time to ultimately compromise the
target system. The following assumptions are considered for
the adversary model:

1) The adversary can eavesdrop, intercept, and store
messages. It may block or pass any of these
messages. Additionally, it may construct forged
messages from captured data and inject them into the
channel.

2) The adversary has zero knowledge such that it does
not possess any elements of messages transmitted
between the legitimate nodes but it can learn by
observing the traffic.

3) The traffic between client and server is not encrypted.

The main goal of the adversary model is to examine the
protocol behaviour with the presence of an adversary while
modelling attacks. In the adversary model (attack model), the
description of client and server entities is similar to the trust
model descried in section 3. For adversary entity, places
represent an adversary database, which store, control,
knowledge and accumulate all the intercepted messages.

Transitions represent a set of input events and commands the
adversary may perform to launch an attack. The input token in
the adversary entity indicates that the message has been
captured. The token movement from place to place through
the directed arcs indicates the progress of an attack. To
distinguish a genuine traffic from forged traffic, the grave
symbol ` is used to indicate that the variable could be
modified. For example, if the adversary intercepts the message
[A, B, C], the output message would be [A`, B`, C`], which
means the message has been manipulated by the adversary.

A. Analysis of Man-in-the-Middle Attack
After adding an adversary entity to the model, it can be
noticed that there is the possibility of a man-in-the-middle
between the two entities C and S. An active adversary A can
intercept the communication line between a legitimate client
and a trusted server as well as manipulate the protocol by
using some means to successfully masquerade either as server
or client. The attack model in Fig. 4 represents the man-in-the-
middle attack for the proposed protocol. The definitions of the
places and transitions used in this model are illustrated in
Table 5 and Table 6, respectively.

Table 5. DEFINITIONS OF TRANSITIONS - MAN-IN-THE-
MIDDLE ATTACK MODEL

Trans. Definition Trans. Definition
T1 Compute login request T13 Send forge SYN/ACK
 + SYN T14 Receive forge SYN/ACK
T2 Send MSG T15 Split the packet and verify
T3 Intercept MSG T16 Drop the request
T4 Duplicate MSG T17 Accept
T5 Send forge MSG T18 Compute ACK and
T6 Received Forge MSG session key
T7 Split the packet and T19 Send ACK
 verify T20 Intercept MSG
T8 Drop the request T21 Send forge ACK
T9 Accept T22 Receive forge ACK
T10 Compute SYN/ACK T23 Split the packet and verify
 and session key T24 Drop the request
T11 Send SYN/ACK T25 Accept
T12 Intercept MSG

Server Adversary Client

Figure 3. High-level view of adversary entity attacking the protocol

Table 6. DEFINITIONS OF PLACES - THE MAN-IN-THE-
MIDDLLE MODEL

According to Fig. 4 the man-in-the-middle attack proceeds as
follows:

• In the login phase, when the client C initiates and sends
the login request (P4) to the server S, an adversary A may
intercept the login message. Transition T3 represents the
initial phase of the attack. A can duplicate the login
message and then start two sessions with S by sending
two copies of request: P7 = P8 = [ID`C, T`C, W`1, M`3,
MAC`k(IDC, TC, W1 ,M3)] to S.

• Upon receiving (P11) and (P12), S generates two random
numbers and two timestamps and computes the following:

o Two session keys (P18, P19) for A and C,
respectively

o Two SYN/ACK messages (P20, P21) for A
and C, respectively

Then, S sends the messages (P22, P23) for the two sessions
respectively.

• In the meantime, A captures (P22, P23) and sends a forged
message (P25) to C.

• After receiving the (P27), C verifies it, which in this case
is a genuine request [IDC, TS, W2, M6, M7, MACk(IDC, TS,
W2, M6, M7)]. Consequently, C authenticates A
masquerading as S. Then C computes the shared session
key (P31) and sends ACK (P32) to S.

Place Definition Place Definition
P1 Client random number P22 Sent SYN/ACK for A
P2 Client timestamp P23 Sent SYN/ACK for C
P3 SYN request P24 Received SYN/ACK for C
P4 Login request P25 Received SYN/ACK for A
P5 Sent request P26 Sent forge SYN/ACK to C
P6 Intercepted MSG P27 Received forge SYN/ACK
P7 Forge MSG A P28 Verification message
P8 Forge MSG C P29 Rejected request
P9 Sent forge MSG A P30 Accept request – A is
P10 Sent forge MSG C authenticated
P11 Received forge MSG A P31 Session key
P12 Received forge MSG A P32 ACK
P13 Verification message P33 Sent ACK
P14 Rejected request P34 Intercepted ACK
P15 Accepted request P35 Forge ACK
P16 Server random number P36 Received forge ACK
P17 Server timestamp P37 Verification message
P18 A Session Key P38 Rejected request
P19 C Session key P39 Accept request – A is
P20 SYN/ACK for A authenticated
P21 SYN/ACK for C

Server Adversary Client

Figure 4. Modelling man-in-the-middle attack

• A intercepts (P32) and forwards it to S.
• After receiving (P36), S verifies ACK= H4(M6⊕rS). Thus,

A is successfully authenticated by S masquerading C.

 By analysing the protocol, without encrypting the traffic, the
proposed protocol is prone to man-in-the-middle attack. The
adversary has the ability to control the negotiation between the
client and the server. In fact, the adversary can clearly modify,
substitute or delete all subsequent messages. It is obvious that
both the client and the server have established a bogus session
with the adversary.

B. Analysis of Reflection Attack
The reflection attack consists of two parties. The

adversary in this model is masquerading as the server. In this
PN model, places represent either input or output of protocol
run. Transitions are used to explicit the client and adversary
actions. Tokens indicate the progress of the attack. Fig. 4
describes the execution of a reflection attack for the proposed
protocol with presence of the client and adversary. The
definitions of the places and the transitions used in this model
are illustrated in Table 7 and Table 8, respectively.

Table 7. DEFINITIONS OF PLACES - THE REFLECTION
ATTACK MODEL

Table 8. DEFINITIONS OF TRANSITIONS - REFLECTION
ATTACK MODEL

Trans. Definition Trans. Definition
T1 Compute login request T7 Split the packet and verify
 and SYN T8 Drop the request
T2 Send MSG T9 Accept the request
T3 Intercept MSG T10 Compute ACK and
T4 Fabricate SYN/ACK session key
T5 Send fake SYN/ACK T11 Send ACK
T6 Received fake T12 Receive ACK
 SYN/ACK

Place Definition Place Definition
P1 Client random number P9 Received forge SYN/ACK
P2 Client timestamp P10 Verification message
P3 SYN request P11 Rejected request
P4 Login request P12 Accepted request
P5 Sent request P13 Session key
P6 Intercepted MSG P14 ACK
P7 Sent forge SYN/ACK P15 Sent ACK
P8 Received forge

SYN/ACK
P16 Received ACK

Adversary Client

Figure 5. Modelling reflection attack

Since client C’s login request [IDC, TC, W1, M3,
MACk(IDC, TC, W1 ,M3)] is symmetrical to server S response
[IDC, TS, W2, M6, M7, MACk(IDC, TS, W2, M6, M7)] but the
differences between them can be only found in the timestamps
and hash values. This symmetry flaw leads to reflection attack.
To exploit the reflection attack, the adversary A intercepts the
login request while listening to the electronic conversation
between client C and server S. Then, the adversary sends the
same login request [ID`C, T`C, W`1, M`3, MAC`k(IDC, TC, W1
,M3)] to C in a timely manner.

It is obvious that, upon receiving the forged server’s
response (which is in fact the adversary’s reply request), C
will automatically acknowledge the response since the
computation is accomplished with the correct key, so the
MAC integrity check will succeed. Consequently, A
successfully masquerades as S and the protocol fails to
provide mutual authentication.

Although, A can cheat C into believing it is
communicating with S, A cannot obtain the corresponding
session key sk. Still this type of attack is deemed to represent a
breach of the basic obligation of mutual authentication with
limited damage. A performed the exploit without the
knowledge of key k, merely by intercepting the challenge and
sending it back to C.

C. Analysis of Parallel Session Attack
Another attack, which is effective against the proposed

model without encrypted traffic, is parallel session attack. This
attack uses deception to compromise authentication protocols.
It involves selecting a valid combination of information from
ongoing protocol executions. Fig. 6 explains the exploitation of
parallel session attack on the proposed protocol with presence
of adversary. The message exchange in this attack is mainly
between the server and the adversary leaving the client
completely out of the picture. The definitions of the places and
the transitions for this model are defined in Table 9 and Table
10, respectively.

Table 9. DEFINITIONS OF PLACES - PARALLEL SESSION
ATTACK MODEL

Table 10. DEFINITIONS OF TRANSITIONS - PARALLEL
SESSION ATTACK MODEL

Trans. Definition Trans. Definition
T1 Compute login request T10 Send SYN/ACK
 + SYN T11 Intercept MSG
T2 Send MSG T12 Fabricate SYN
T3 Intercept MSG T13 Send fake SYN
T4 Send forge MSG T14 Receive forge SYN
T5 Received Forge MSG T15 Split the packet and verify
T6 Split the packet and T16 Drop the request
 verify T17 Accept
T7 Drop the request T18 Compute SYN/ACK and
T8 Accept session key
T9 Compute SYN/ACK T19 Send SYN/ACK
 and session key T20 Receive SYN/ACK

 In the authentication phase of the proposed protocol, the
adversary A can masquerade as an authorised client without
prior knowledge of the password or biometric data. The
exploit starts when A eavesdrops on the communication
between C and S. A intercepts and blocks the S response
message: P16 = [IDCi

, TSi
, W2, M6, M7, MACk(IDCi

, TSi
, W2,

M6, M7)]. Then, A instantly impersonates C and initiates a new
session with S by sending a fabricated login request: P19 =
[IDA =ID`C

, TA = T`S, W1=W`2, M3 = M`6, M7, MAC`k(IDC,
TS, W2, M6, M7)], which is S original reply to C.

Assume if the fabricated message arrives to S at time T, it will
pass the verification check for the following reasons:

(1) The likelihood of correlation associated with T –̀ TC ≤
∆T will be high considering the time-delay in wide-
area networks is unpredictable and varies most of the
time. Thus, ∆T is often set higher than the timespan
of a complete round-trip [16-18]

(2) The MAC integrity check will give a positive result
since MAC`k(IDC, TS, W2, M6, M7) is actually
computed with the correct key k by S.

Based on the above assumptions, S generates random
number P24 and timestamp P25 to computes session key P26
and SYN/ACK response P28, and sends it to A.

D. Analysis of Impersonation Attack
One possible attack against the proposed model is

impersonation attack. Based on the simulation of man-in-the-
middle attack, reflection attack, and parallel session attack, the
model reveals a potential risk and weakness that lead to
impersonation attack. The adversary A can mount
impersonation attack without knowing any other secret
information or credentials by intercepting the login request
[IDC, TC, W1, M3, MACk(IDC, TC, W1 ,M3)]. Hence, A can
exploit the proposed protocol by using any of the methods
explained previously and hijacking sessions transmitted
between C and S. Eventually, A succeeds to impersonating
either the client or the server.

Place Definition Place Definition
P1 Client random number P16 Sent SYN/ACK
P2 Client timestamp P17 Received SYN/ACK
P3 SYN request P18 Fabricated Fake SYN
P4 Login request P19 Sent fake SYN
P5 Sent request P20 Received fake SYN
P6 Intercepted MSG P21 Verification message
P7 Forge MSG P22 Rejected request
P8 Sent Forge MSG P23 Accepted request
P9 Verification message P24 Server random number
P10 Rejected request P25 Server timestamp
P11 Accepted request P26 Session Key
P12 Server random number P27 SYN/ACK
P13 Server timestamp P28 Sent SYN/ACK
P14 Session Key P29 Received SYN/ACK
P15 SYN/ACK

V. SECURITY ANALYSIS AND DISCUSSION
 Security analysis is a crucial significant process in
evaluating communication and cryptographic protocols. The
flaws within the protocol can be quickly removed via two
solutions. First, encrypting the traffic between client and
server creates a private channel to transmit a confidential
conversation and calculate the session key. This mechanism is
the most cost-effective solution. It is insignificant if the
adversary gets hold of an encrypted form of sensitive data as
long as it does not obtain the corresponding decryption key. In
the second solution, the absence of server identity allows an
adversary to simply masquerade as a trusted server. It is
possible to optimise the protocol with a simple technique such
as adding the server IDS, which can fix the problem.
Encrypting traffic protects client’s anonymity; user anonymity
is one of the security features of remote login system.

 Variations of these attacks can be modelled in all phases of
mutual authentication and key agreement of cycle. Modelling
and simulation revealed that the unencrypted traffic does not
provide a full secure authentication and permit a sensitive
credential information travel in clear.

Replay Attack. The security feature in the proposed
protocol can withstand replay attack due to the use of
freshness property. This is guaranteed by applying timestamps
and random numbers for each authentication session. To
validate the authenticity of messages exchanged between C
and S, the freshness of timestamps is constantly checked. For
example, the verification request will fail if T –̀ TC > ∆T. This
will cause the session to be terminated. Moreover, a new
session key is constructed in every authentication cycle. It is
worth to mentioning that, the adversary cannot compromise
the old session key because it is never been transmitted in the
protocol execution between the client and the server. One of
the new protocol merits is that each entity computes the
correct session key based on the information exchanged
between them.

Forgery Attack. The adversary A cannot create a valid
login from scratch without knowing the secret value and the
private key of the client. Thus, the adversary cannot act as a
legal client so the attack is not feasible.

Figure 6. Modelling parallel session attack

Client	 Adversary Server	

VI. CONCLUSION AND FUTURE WORK
This paper presents a formal approach for enumerating the

vulnerabilities and flaws in our protocol and determining
suitable countermeasures to fix them. First, PN is used to
model the client-server trust model. Then, an adversary entity
is added to trust model to analyse various attacks and
understand possible behaviours of the adversary. Each attack
scenario has been simulated using PN to exploits
vulnerabilities in case if the symmetric encryption was not
applied to our new protocol.

Adding an adversary to the model encourages discovering
and discussing scenarios where the system was under
malicious attack. The range of attacks tested the behaviour of
the protocol and helped to understand possible behaviours of
the adversary during attacks. Each attack scenario has been
simulated using PN to exploits vulnerabilities in case if the
symmetric encryption was not applied to our new protocol.

It is evident that the most viable countermeasure to defend
authentication attacks is to encrypt the message exchange
between the client and server. Since the traffic is encrypted
between the client and server, this proves that our new
protocol is resistant to man-in-the-middle attack, reflection
attack, parallel session attack, and impersonation attack. Also,
this paper shows that replay attack and forgery attack are not
effective because of the freshness property and the difficulty
of creating a login request without learning any prior
credentials. This analysis shows that our protocol is efficient
and provides secure communication over insecure channels.

Future work will include examining ciphertext attack where
the adversary can eavesdrop and intercept encrypted
messages. PN will be used for modelling and simulating the
attack. Once the security analysis is completed, any
modification will be considered to enhance our protocol, such
as including server ID in the protocol. Consequently a
complex client-server trust model will be simulated and
validated via PN.

ACKNOWLEDGMENT
This research has been funded by Saudi Arabian Cultural

Bureau in London and King Abdul Aziz University in Saudi
Arabia.

REFERENCES

[1] Ryan, P. and Schneider, S.A., 2001. The modelling and analysis of
security protocols: the csp approach. Addison-Wesley Professional

[2] Nieh, B.B. and Tavares, S.E., 1993. Modelling and analyzing
cryptographic protocols using Petri Nets, Advances in Cryptology—
AUSCRYPT'92 1993, Springer, pp. 275-295.

[3] Al-Azzoni, I., Down, D.G. and Khedri, R., 2005. Modeling and
verification of cryptographic protocols using coloured petri nets and
design/CPN. Nordic Journal of Computing, 12(3), pp. 201.

[4] Dresp, W., 2005. Security analysis of the secure authentication protocol
by means of coloured petri nets, Communications and Multimedia
Security 2005, Springer, pp. 230-239.

[5] Permpoontanalarp, Y. and Sornkhom, P., 2009. A new Coloured Petri
net methodology for the security analysis of cryptographic
protocols, Proceedings of the 10th Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark 2009.

[6] Xu, Y. and Xie, X., 2011. Modeling and analysis of security protocols
using colored petri nets. Journal of Computers, 6(1), pp. 19-27

[7] Petri, C.A., 1962. Kommunikation mit Automaten. Ph. D. Thesis,
University of Bonn.

[8] Silva, Manuel. "50 years after the PhD thesis of Carl Adam Petri: A
perspective." In Discrete Event Systems, vol. 11, no. 1, pp. 13-20. 2012

[9] Peterson, J.L., 1981. Petri Net Theory and the Modeling of Systems.
Prentice-Hall.

[10] Murata, T., 1989. Petri nets: properties, analysis and applications.
Proceedings

[11] Bobbio, A., 1990. System modelling with Petri nets. Systems reliability
assessment. Springer, pp. 103-143.

[12] Aljeaid, D., Ma, X. and Langensiepen, C., 2014. Biometric identity-
based cryptography for e-Government environment, Science and
Information Conference (SAI), 2014 2014, IEEE, pp. 581-588.

[13] Shamir, A., 1985. Identity-based cryptosystems and signature schemes,
Advances in cryptology 1985, Springer, pp. 47-53.

[14] Aljeaid, D., Ma, X. and Langensiepen, C., Modelling and Simulation of
a Biometric Identity-Based Cryptography. International Journal of
Advanced Research in Artificial Intelligence (IJARAI), 3(10),.

[15] TAPAAL 2.4.3 Petri nets simulation and verfication of timed-arc Petri
nets. Available ar: www.tapaal.net.

[16] Mills, D.L., 1991. Internet time synchronization: the network time
protocol. Communications, IEEE Transactions on, 39(10), pp. 1482-
1493

[17] Giridhar, A. and Kumar, P., 2006. Distributed clock synchronization
over wireless networks: Algorithms and analysis, Decision and Control,
2006 45th IEEE Conference on 2006, IEEE, pp. 4915-4920.

[18] Han, J. and Jeong, D., 2010. A practical implementation of IEEE 1588-
2008 transparent clock for distributed measurement and control
systems. Instrumentation and Measurement, IEEE Transactions
on, 59(2), pp. 433-439.

