
BiCGCR2: A new extension of conjugate residual method for

solving non-Hermitian linear systems

Xian-Ming Gu1,2∗, Ting-Zhu Huang1†, Bruno Carpentieri3‡,

1. School of Mathematical Sciences,

University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China

2. Institute of Mathematics and Computing Science,

University of Groningen, Nijenborgh 9, P.O. Box 407, 9700 AK Groningen, The Netherlands

3. School of Science and Technology,

Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, UK

Abstract

In the present paper, we introduce a new extension of the conjugate residual (CR) for
solving non-Hermitian linear systems with the aim of developing an alternative basic solver
to the established biconjugate gradient (BiCG), biconjugate residual (BiCR) and biconjugate
A-orthogonal residual (BiCOR) methods. The proposed Krylov subspace method, referred
to as the BiCGCR2 method, is based on short-term vector recurrences and is mathematically
equivalent to both BiCR and BiCOR. We demonstrate by extensive numerical experiments
that the proposed iterative solver has often better convergence performance than BiCG, BiCR
and BiCOR. Hence, it may be exploited for the development of new variants of non-optimal
Krylov subspace methods.

Key words: BiCG; BiCR; Krylov subspace methods; Non-Hermitian linear systems;
Bi-Lanczos procedure; Coupled two-term recurrences.

AMS Classification: 65F12; 65L05; 65N22.

1 Introduction

The core of many scientific computing and engineering simulations requires to solve large and
sparse linear systems of the form

Ax = b, A ∈ C
N×N , b ∈ C

N , (1)

where A is a non-Hermitian and possibly indefinite matrix, and b is the right-hand side vector.
Numerical methods for solving system (1) on modern computers fall mainly into two categories:
(sparse) direct and iterative solvers. Sparse direct solvers [1] are generally very accurate, robust
and predictable in terms of both storage and algorithmic cost. Nevertheless, they tend to be too
expensive to use for solving large-scale problems especially in terms of memory. Iterative solvers,
namely the well-known class of Krylov subspace methods, can be an attractive alternative to

∗
E-mail address: guxianming@live.cn, x.m.gu@rug.nl

†Corresponding author. E-mail address: tingzhuhuang@126.com. Tel.: 86-28-61831608.
‡
E-mail address: bcarpentieri@gmail.com

1

direct methods as they only require matrix-vector multiplications; see e.g. [2–5] and references
therein. However, they generally lack robustness. It remains a research question to determine
the classes of problems for which one algorithm is more efficient than others.

The conjugate gradient (CG) method [6] may be considered the Krylov method of choice
in the case of Hermitian positive definite A. If A is complex symmetric (but non-Hermitian),
i.e. A 6= AH but A = AT , this property can be exploited in the design of the Krylov method;
see e.g. our recent work [7] about the SCBiCG class of iterative algorithms. For indefinite A,
the minimum residual (MINRES) method [8] and the conjugate residual (CR) method [9, 10]
both enjoy attractive minimum norm residual property at each iteration step. Generalizations
of the CG, MINRES, and CR methods have been proposed for solving non-Hermitian linear
systems, such as BiCG [11, 12], FOM [2, pp. 165-168], GMRES [2, 13, pp. 172-180], GCR [14],
BiCR [15,16] and BiCOR [17,18].

The choice of the Krylov algorithm is much less clear for non-Hermitian linear systems than
for the Hermitian positive definite case. The GMRES and GCR methods enjoy an attrac-
tive minimum norm residual property that produce their typical smooth convergence behavior.
However, they are based on the Arnoldi procedure [2, pp. 160-165], meaning that their com-
putational and memory costs increase linearly with the number of iterations. The problem of
cost may be overcome by restarting the iterative procedure after each cycle of, say, m iterations.
However, the restarted GMRES and GCR methods, denoted as GMRES(m) [2,13, pp. 179-180]
and GCR(m) [14], respectively, lose any optimality property and they often suffer from slow
convergence on difficult problems. On the other hand, since BiCG is based on the Bi-Lanczos
procedure [2,11,12, pp. 229-233], it has constant computational work and low memory require-
ments per iteration step. Analogously, the BiCR and BiCOR methods can be derived from the
so-called biconjugate A-orthonormalizaion procedure [16, 17], which is similar to the classical
Bi-Lanczos process. Hence they are based on short-term vector recurrences, and require only
O(N) extra storage in addition to the matrix and O(N) operations for solving the system.

Although non-optimal Krylov methods based on short-term vector recurrences tend to exhib-
it irregular convergence behavior, their limited cost has motivated and still motivates a growing
interest in improving their performance. In 1989, Sonneveld [19] established the first successful
variant of BiCG, referred to as the CGS method. Later, van der Vorst [20] derived one of the
most successful variants of BiCG, known as the BiCGSTAB method. Based on the ideas be-
hind the development of BiCGSTAB and CGS, a lot of generalized iterative solvers have been
proposed such as BiCGSTAB2 [21], BiCGSTAB(ℓ) [22,23], GCGS [24] and GPBiCG [25]. The
quasi-minimal residual (QMR) [26] method, that is closely related to BiCG, is an attractive vari-
ant because it displays (quasi)-smoother convergence behavior than BiCG, it can remedy pivot
breakdown and may avoid Bi-Lanczos breakdown by a look-ahead strategy (e.g. refer to [27]).
A transpose-free variant of QMR, called the TFQMR method [28], and a hybrid of TFQMR
and BiCGSTAB, called the QMRCGSTAB method [29], have been also proposed. For further
discussion of this topic, one can refer to an excellent survey paper in this area [4]. Additionally,
the efficient short-recurrence IDR(s) method is proposed recently by Sonneveld and van Gijzen
in [30], which is closely related to the other interesting BiCG-type variant-ML(k)BiCGSTAB
method by Yeung and Chan [31]. Several reported experiments show that these two methods
can be efficient tools for solving non-Hermitian linear systems [30,31].

Along the same lines of development of hybrid BiCG methods, various hybrid BiCR methods,
such as CRS, BiCRSTAB, BiCRSTAB(ℓ) and GPBiCR have been proposed for solving non-
Hermitian linear systems, refer to [16,32] for details. At almost the same time, our research group

2

also developed some efficient hybrid BiCOR variants, including CORS [17, 18], GCORS [33],
BiCORSTAB [17], BiCORSTAB2 [34] and GPBiCOR [35]. Many numerical experiments on
practical applications have illustrated the robustness of the hybrid BiCR and hybrid BiCOR
methods; refer, e.g., to [16–18,32,35,36] for details.

The earlier discussion highlights the important role that the BiCG, BiCR and BiCOR method
play in the developments of hybrid Lanczos-type variants. Furthermore, BiCG is closely related
to the QMR method [37] and, similarly, BiCR and BiCOR are closely related to QMOR [38]. In
this study, we propose a novel basic iterative scheme derived from short-term vector recurrences,
that can be seen as an extension of the CR method to non-Hermitian linear systems, for the
development of non-optimal Krylov subspace methods.

The rest of this paper is organized as follows. In Section 2, we first review the development of
extensions of the CR method for solving complex symmetric and non-Hermitian linear systems.
Then we recall the underlying relations [7,15,16,39] among the COCR [39], BiCGCR [40,41] and
BiCR [15] methods. Based on the above analysis, a new extension of the CR method, named the
BiCGCR2 method, and its preconditioned version, are derived. We also discuss some properties
of the proposed BiCGCR2 method. In Section 3 we prove that the preconditioned BiCGCR2
(PBiCGCR2) is mathematically equivalent to the preconditioned BiCR (PBiCR), and then we
derive a relation between BiCGCR2 and some related Krylov subspace methods. In Section
4, extensive numerical experiments are reported to illustrate the effectiveness of the proposed
method. Finally, the paper closes with some conclusions in Section 5.

Throughout this paper, AH denotes the conjugate transpose of A, (x,y) denotes the dot
product given by xHy, and we use the notation

Kn(A, r0) := span{r0, Ar0, . . . , A
n−1r0}

for the n-dimensional Krylov subspace generated by A and initial residual vector r0.

2 The derivation of the BiCGCR2 method

Sogabe, Sugihara and Zhang have extended the CR method to the COCR method and the
BiCR method; refer to [15, 16, 39] for solving complex symmetric and non-Hermitian linear
systems, respectively. The COCR method is a special case of the BiCR method. Additionally,
since the BiCR method was proposed, this method was also improved (or modified) for various
systems of linear equations involving non-Hermitian coefficient matrices, e.g., refer to [42–44] for
details. In previous work, we have proved that it is mathematically equivalent to the BiCGCR
algorithm proposed by Clemens in [41], the difference lying only in the choice of the scalar factors
αk and βk within the inner iteration loop; refer to [7, 16] for details. The relations between the
BiCR method and the COCR method naturally leads to extend the BiCGCR method to a new
variant named BiCGCR2 for solving non-Hermitian linear systems. The pseudo code of the
BiCGCR2 method is sketched in Algorithm 1.

Note that in Algorithm 1, Apn = Arn + βn−1Apn−1 is newly added to reduce the number
of matrix-vector multiplications at each iteration step. The theoretical results of the complex
BiCG method transfer directly to BiCGCR2. The iterative procedure of BiCGCR2 is governed
by a Petrov-Galerkin condition

rn = b−Axn ⊥ Ln with xn ∈ x0 +Kn. (2)

3

Algorithm 1 Algorithm of the BiCGCR2 method

1: x0 is an initial guess, r0 = b−Ax0.
2: Choose r∗0 (for example, r∗0 = r0),
3: Set p∗

−1 = p−1 = 0, β−1 = 0,
4: for n = 0, 1, . . ., until convergence do

5: pn = rn + βn−1pn−1,
6: p∗

n = r∗n + β̄n−1p
∗
n−1,

7: (Apn = Arn + βn−1Apn−1,)

8: αn = 〈AHp∗
n,rn〉

〈AHp∗
n,Apn〉

,
9: xn+1 = xn + αnpn,

10: rn+1 = rn − αnApn,
11: r∗n+1 = r∗n − ᾱnA

Hp∗
n,

12: βn = − 〈AHp∗
n,Arn+1〉

〈AHp∗
n,Apn〉

.

13: end for

with respect to the search subspace Kn and constraints subspace Ln = Ln(A
H , r∗0), where one

has r∗0 = AHr∗0. In [7,40,41,45], the BiCGCR method is shown to coincide with the CR method
of Stiefel [9] for real symmetric problems, which has a residual minimization property ‖rk‖2.
This may explain the smaller oscillations that are typically observed in the residual norm for
the BiCGCR2 method compared to the BiCG method. We see from Algorithm 1 that the
approximate solution xn can be generated by coupled two-term recurrences. If the coefficient
matrix is Hermitian, then BiCGCR2 reduces to CR.

Next, we can obtain some properties of BiCGCR2 that suggest another derivation. For
simplicity, in the following discussion we assume that the coefficient matrix is real nonsymmetric,
i.e., A 6= AT . Observing Algorithm 1, we see that the four iterates rn,pn, r

∗
n, and p∗

n can be
expressed as

rn = Rn(A)r0, pn = Pn(A)r0, (3)

r∗n = Rn(A
T)r0, p∗

n = Pn(A
T)r∗0 , (4)

where Rn and Pn are polynomials of degree n satisfying

R0(λ) = 1, P0(λ) := 1,
Rn(λ) = Rn−1(λ)− αn−1λPn−1(λ),
Pn(λ) = Rn(λ) + βn−1Pn−1(λ), for n = 1, 2,

As seen from (3)-(4) and from Algorithm 1, the following results are obtained if no breakdown
occurs:

Theorem 1 For i 6= j, the following bi-orthogonality properties hold:

(r∗i , Arj) = 0, (5)

(AHp∗
i , Apj) = 0. (6)

Proof. It follows from (3) and (4) that 〈r∗i , Arj〉 = 〈Ri(A
T)r∗0, ARj(A)r0〉 = 〈Rj(A

T)r∗0 , A
Ri(A)r0〉 = 〈r∗j , Ari〉. Similarly, from (6) we obtain 〈ATp∗

i , Apj〉 = (ATp∗
j , Api). Hence, the

statements of (5) and (6) are equivalent with

〈r∗i , Arj〉 = 0 and 〈ATp∗
i , Apj〉 = 0, for all j < i. (7)

4

Now, we give a proof of (7) by induction. Since the trivial case i = 1 is obvious from Algorithm
1, we assume that property (7) holds for j < i ≤ k. Then, we show that

〈r∗k+1, Arj〉 = 0, (8)

〈ATp∗
k+1, Apj〉 = 0. (9)

First, let us show (8). For the case j < k it follows from the above assumption that

〈r∗k+1, Arj〉 = 〈r∗k, Arj〉 − αk〈A
Tp∗

k, Arj〉

= −αk〈A
Tp∗

k, Arj〉

= −αk〈A
Tpk, Apj〉 − αkβj−1〈A

Tp∗
k, Apj−1〉

= 0.

For the case j = k we obtain

〈r∗k+1, Ark〉 = 〈r∗k, Ark)− αk〈A
Tp∗

k, Ark〉

= 〈r∗k, Ark〉 − αk〈A
Tp∗

k, Apk〉 − αkβk−1〈A
Tp∗

k, Apk−1〉

= 〈r∗k, Ark〉 − αk〈A
Tp∗

k, Apk〉

= 〈p∗
k − βk−1p

∗
k−1, Ark〉 − αk〈A

Tp∗
k, Apk〉

= −βk−1〈p
∗
k−1, A(rk−1 − αk−1Apk−1〉

= −βk−1〈A
Tp∗

k−1, rk−1〉+ βk−1αk−1〈A
Tp∗

k−1, Apk−1〉

= 0

from the computational formulas of αk in line 8 (of Algorithm 1) and βk in line 12 (of Algorithm
1). Next, we show (9). For the case j < k, it follows from the first result of the proof that

〈ATp∗
k+1, Apj〉 = 〈ATr∗k+1, Apj〉+ βk〈A

Tp∗
k, Apj〉 =

1

αj
(AT r∗k+1, rj − rj+1) = 0.

For the case j = k, we obtain

〈ATp∗
k+1, Apk〉 = 〈ATr∗k+1, Apk〉+ βk〈A

Tp∗
k, Apk〉

=
1

αk

〈ATr∗k+1, rk − rk+1〉+ βk〈A
Tp∗

k, Apk〉

= −
1

αk

〈AT r∗k+1, rk+1〉+ βk〈A
Tp∗

k, Apk〉

= −
1

αk

〈r∗k − αkA
Tp∗

k, Ark+1〉+ βk〈A
Tp∗

k, Apk〉

= −
1

αk

〈r∗k, Ark+1〉+ 〈ATp∗
k, Ark+1〉+ βk〈A

Tp∗
k, Apk〉

= 0

from the formulas of αk and βk at lines 8 and 12 of Algorithm 1, respectively. 2

5

Corollary 1 Some further properties of BiCGCR2 are

〈r∗i , Apj〉 = 0 for i > j, (10)

〈r∗i , Ari〉 = 〈r∗i , Api〉, (11)

〈AT r∗i , Api〉 = 〈ATp∗
i , Api〉. (12)

Proof. First, we give a proof of (10). From the recurrence in line 5 (of Algorithm 1) it
follows that 〈r∗i , Apj〉 = 〈r∗i , Arj〉 + βj−1〈r

∗
i , Apj−1〉, and thus from property (5) we obtain

〈r∗i , Apj〉 = βj−1〈r
∗
i , Apj−1〉. Applying this process recursively, we finally obtain 〈r∗i , Apj〉 =

βj−1βj−2 · · · β0〈r
∗
i , Ap0〉. Hence, from p0 = r0 and (5), property (10) is naturally followed.

Second, we give a proof of (11). From the recurrence in line 5 (of Algorithm 1) it follows
that 〈r∗i , Ari〉 = 〈r∗i , Api〉−βi−1〈r

∗
i , Api−1〉. Since the second term is zero by (10), the property

(11) is immediately established.
Finally, we present a proof of (12). According to the recurrence in line 6 (of Algorithm 1)

it follows that 〈ATr∗i , Api〉 = 〈ATp∗
i , Api〉 − βi−1〈A

Tp∗
i−1, Api〉. Since the second term is zero

from (6), property (12) is established. 2

Furthermore, if we employ the same lines of development of the preconditioned CR (PCR)
method, the following preconditioned version of BiCGCR2 can be immediately derived. The
pseudo code of the resulting algorithm is given as follows

Algorithm 2 The preconditioned BiCGCR2 method (K is the preconditioner)

1: x0 is an initial guess, r0 = b−Ax0.
2: Choose r∗0 (for example, r∗0 = r0),
3: Set p∗

−1 = p−1 = 0, β−1 = 0,
4: for n = 0, 1, . . ., until convergence do

5: pn = K−1rn + βn−1pn−1,
6: p∗

n = K−Hr∗n + β̄n−1p
∗
n−1,

7: (Apn = AK−1rn + βn−1Apn−1,)

8: αn = 〈AHp∗
n,K

−1rn〉
〈K−HAHp∗

n,Apn〉
,

9: xn+1 = xn + αnpn,
10: rn+1 = rn − αnApn,
11: (K−Hr∗n+1 = K−Hr∗n − ᾱnK

−HAHp∗
n),

12: βn = − 〈K−HAHp∗
n,AK−1rn+1〉

〈K−HAHp∗
n,Apn〉

.

13: end for

Note that when the coefficient matrix A is Hermitian, Algorithm 2 reduces to PCR with the
choice r∗0 = r0, since in this case r∗n = rn,p

∗
n = pn, ᾱn = αn and β̄n = βn, see [7, 40]. However,

the above version of PBiCGCR is more competitive than the one described in [40, 41] because
it requires only one solution of the generalized residual equations

Kz = r, (13)

involving the preconditioner K, in the initialization procedure. When the coefficient matrix
A is symmetric not Hermitian, i.e. A = AT 6= AH , we can derive a novel version of the
preconditioned BiCGCR (PBiCGCR) method from Algorithm 2 with the choice r∗0 = r̄0, which
results in r∗n = r̄n and p∗

n = p̄n; the pseudo code of PBiCGCR is given in Algorithm 3.

6

Algorithm 3 The preconditioned BiCGCR method (K is the preconditioner)

1: x0 is an initial guess, r0 = b−Ax0, solve z0 = K−1r0,
2: Set p−1 = 0, β−1 = 0, q0 = Ap0, s0 = Az0
3: for n = 0, 1, . . ., until convergence do

4: pn = zn + βn−1pn−1,
5: qn = sn + βn−1qn−1,
6: Solve tn = K−1qn,
7: αn = 〈q̄n,zn〉

〈t̄n,qn〉
,

8: xn+1 = xn + αnpn,
9: rn+1 = rn − αnqn,

10: zn+1 = zn − αntn,
11: Compute sn+1 = Azn+1,

12: βn = − 〈t̄n,sn+1〉
〈t̄n,qn〉

.

13: end for

In Table 1 we analyze the computational cost for the proposed BiCGCR2 algorithm compared
to BiCG, BiCR, BiCOR and QMR for solving linear system (1) using a preconditioner K (if
available). Here “6 or 7” means “6” for the unpreconditioned BiCR/BiCOR/BiCGCR2 and “7”
for their preconditioned versions. The BiCGCR2 method requires almost the same algorithmic
cost per step (expect one more inner product) as other solvers. However, as we will illustrate
by numerical experiments in Section 4, it often converges faster than BiCG, BiCR and BiCOR
requiring slightly less number of iterations and less CPU elapsed time.

Table 1: Summary of algorithmic cost per iteration step

Method 〈x,y〉 y = Ax y = AH
x y = K−1

x y = K−H
x αx+ y

BiCG 2 1 1 1 1 5
BiCR 2 1 1 1 1 6 or 7
BiCOR 2 1 1 1 1 6 or 7
BiCGCR2 3 1 1 1 1 6 or 7
QMR 3 1 1 1 1 7

3 Mathematical equivalence of BiCGCR2 and BiCR

It has been shown by Sogabe and Zhang that the BiCGCR method is mathematically equiv-
alent to the COCR method [39]. The difference lies in the choice of the coefficients αk and βk.
However, they did not give a detailed proof of this relationship. Then, Gu et al. capitalized
on these ideas and gave a proof of the mathematical equivalence between the PBiCGCR and
PCOCR methods (see [7, 41] for details). As mentioned earlier in this article, the PBiCGCR
and PCOCR methods are special cases of the PBiCGCR2 and PBiCR methods, respectively.
Motivated by these considerations, we can also investigate the underlying relations between
the PBiCGCR2 method and the PBiCR method. From the analysis of the following scalar

7

coefficients

αPBiCGCR2
k =

(p∗
k)

TAK−1rk

(p∗
k)

TAK−1Apk

, (14)

αPBiCR
k =

(r∗k)
TK−1AK−1rk

(p∗
k)

TAK−1Apk

(15)

and

βPBiCGCR2
k = −

(p∗
k)

TAK−1AK−1rk+1

(p∗
k)

TAK−1Apk

, (16)

βPBiCR
k =

(r∗k+1)
TK−1AK−1rk+1

(r∗k)
TK−1AK−1rk

, (17)

we can obtain the following conclusions.

Theorem 2 For all n ∈ N
αPBiCGCR2
n = αPBiCR

n .

Proof. The identity of the denominators in αPBiCGCR2
n and αPBiCR

n requires to show the
identity

(p∗
n)

TAK−1rn = (r∗n)
TK−1AK−1rn (18)

for all n = 0, 1, 2, By rewriting

(p∗
n)

TAK−1rn = (K−Tr∗n + βn−1p
∗
n−1)

TAK−1rn

= (r∗n)
TK−1AK−1rn + βn−1(p

∗
n−1)

TAK−1rn,
(19)

the identity (19) holds for βn−1 6= 0, iff

(p∗
n−1)

TAK−1rn ≡ 0 (20)

for all n = 1, 2, The bi-orthogonality conditions of the preconditioned BiCR residuals hold
in the case n = 1 from

(p∗
0)

TAK−1r1 = (K−Tr∗0)
TAK−1r1 = (r∗0)

TK−1AK−1r1 = 0. (21)

The identity (20) for the case n+ 1 is results from

(p∗
n)

TAK−1rn+1 = (K−Tr∗n + βn−1p
∗
n−1)

TAK−1rn+1

= (r∗n)
TK−1AK−1rn+1 + βn−1(p

∗
n−1)

TAK−1rn+1

= βn−1(p
∗
n−1)

TAK−1rn+1

= βn−1(p
∗
n−1)

TAK−1(rn − αnApn)

= βn−1(p
∗
n−1)

TAK−1rn − βn−1αn(K
−TATp∗

n−1)
TApn

= 0,

by induction from the case n and the bi-orthogonality relation of the PBiCRmethod 〈K−TATp∗
n−1,

Apn〉 = 0, which proves the theorem. 2

8

Theorem 3 For all n ∈ N
βPBiCGCR2
n = βPBiCR

n .

Proof. The bi-orthogonality of the search vectors pn and the pseudo search direction vectors
p̂∗
n = K−TATp∗

n defined in the inner iteration loop of the PBiCR method yields

0 = 〈K−TATp∗
n, Apn+1〉 = (p∗

n)
TAK−1Apn+1

= (p∗
n)

TAK−1A(K−1rn+1 + βPBiCR
n pn)

= (K−TATp∗
n)

TAK−1rn+1 + βPBiCR
n (K−TATp∗

n)
TApn

⇔ βPBiCR
n = −

〈K−TATp∗
n, AK

−1rn+1〉

〈K−TATp∗
n, Apn〉

= βPBiCGCR2
n

for all n = 0, 1, 2, . . ., which proves the theorem. 2

At this stage, we can establish a general framework for deriving new Lanczos-type iterative
solvers: given an initial guess x0 of the solution of the linear system Ax = b, many methods
such as CG, CR, BiCG, BiCOR and BiCR can be unified into the following coupled two–term
recurrences by imposing certain conditions [16,17,39]:

r0 = b−Ax0, p0 = r0, (22)

xj+1 = xj + αjpj, (23)

rj+1 = rj − αjApj, (24)

pj+1 = rj+1 + βjpj, for j = 0, 1, . . . (25)

where rj = b − Axj is the j-th residual vector and pj is the j-th search direction vector.
Various formulae used for the parameters αj, βj (j = 0, 1, . . .) in the recurrences (24–25) lead
to different algorithms. Denoting by Ln the underlying constraints subspace, these parameters
can be determined by imposing the following orthogonality conditions:

rj+1 ⊥ Ln and Apj+1 ⊥ Ln. (26)

For example, Ln = Kn(A, r0) and Ln = AKn(A, r0) lead respectively to the CG method [11] and
the CR method [2, 9] when A is Hermitian positive definite. For non-Hermitian A, the choice
Ln = Kn(A

H , r∗0) andLn = Kn(A
H , AHr∗0) lead to the BiCG method [12] and the BiCGCR2

method, respectively, while Ln = AHKn(A
H , r∗0) leads to the BiCR method [16, 39] and the

BiCOR method [17,18]. Moreover, we have the following condition by the definition of Kn

LBiCGCR2
n = Kn(A

H , AHr∗0)
= span{AHr∗0 , A

H(AHr∗0), . . . , (A
H)n−1(AHr∗0)}

= AH · span{r∗0 , A
Hr∗0 , . . . , (A

H)n−1r∗0}
= AHKn(A

H , r∗0) = LBiCR
n .

(27)

To sum up, the BiCGCR2 and BiCR methods indeed possess the same constraints subspace
Ln and mathematical properties (5)-(6), and even their iterative procedures are mostly similar.
Taking the preconditioner M = I, it is proved that the coefficients αk and βk of the BiCGCR2
method and of the BiCR method are mathematically equivalent. In general, the BiCGCR2

9

method often provides the slightly smoother convergence behavior than the BiCR method.
The BiCR method, however, appears to be more efficient as it requires one less dot product
evaluation at each iteration step and thus saves CPU time. The numerical examples reported
in the next section compare the convergence behaviors of both PBiCGCR2 and PBiCR. In
addition, Jing et al. [17] had indicated that the BiCOR method is mathematically equivalent
to the BiCR method except for a different initial shadow residual. This statement just implies
that the BiCOR method is also mathematically equivalent to the BiCGCR2 method except for
a different initial shadow residual.

4 Examples and numerical experiments

In this section we demonstrate the potential of the proposed BiCGCR2 method to solve
efficiently sparse linear systems, both real and complex. The performance of BiCGCR2 are
assessed against the BiCG, BiCR and BiCOR methods, and also against other methods that
involve the calculations of the conjugate transpose AH , such as the popular QMR method. The
experiments have been carried out in double precision floating point arithmetic with machine
precision 10−16 in MATLAB R2014a with a Windows 7 (64 bit) PC-Intel(R) Core(TM) i5-3740
CPU 3.20 GHz, 8 GB of RAM. We measure performance in four aspects: number of iterations
(this parameter is referred to as Iters), CPU elapsed time in seconds (referred to as CPU), log10
of the updated and final true relative residual 2-norms defined respectively as log10 ‖rn‖2/‖r0‖2
and log10 ‖b−Axn‖2/‖r0‖2 (referred to as Relres and TRR). Numerical experiments are illus-
trated by tables of results, but we also plot convergence histories of our runs. The stopping
criterion used here is that the 2-norm of the residual must be reduced by a factor (referred to
as TOL) of the 2-norm of the initial residual, i.e., ‖rn‖2/‖r0‖2 < tol = 10−8, or when Iters
exceeded the maximal iteration number (referred to as MAXIT). In all our experiments we take
MAXIT = 6000.

Example 1 We consider a large set of publicly available linear systems arising from differ-
ent application areas, and having increasing levels of difficulty, both real nonsymmetric and
complex non-Hermitian. We summarize in Table 2 the characteristics of our test matrix prob-
lems. The problem denoted as orsirr 2 is extracted from the Harwell-Boeing collection [46].
The problem denoted as vdvorst3 arises from solving 2D-problems and is modified from our
GitHub source [47]. The problem denoted as M4D2 arises in computational chemistry is proposed
by Sherry Li from NERSC in [48]. The other linear systems are extracted from Tim Davis’s
matrix collection at the University of Florida [49]. Whenever the physical right-hand side is not
available, we use b = Ae, where e denotes a random vector with entries from −1 to 1. The
results of our experiments without preconditioning are reported in Table 3.

We see that the BiCGCR2 method outperforms all of the iterative solvers in terms of number
of iterations and CPU time, except the QMR method for memplus. However, it is considerably
cheaper than the QMR method on this problem and additionally it shows a smaller residual at
convergence. On the epb1 problem, the BiCGCR2 method required about 78% of the iteration
steps and computational time of the BiCR method. On the hcircuit problem, the BiCGCR2
method converges to the targeted accuracy, whereas the BiCG, BiCOR and QMR methods
cannot. It generates more accurate solutions than BiCR on the pde2961, ex36, vdvorst3,
coupled and zhao2 problems, and than all other iterative solvers on vdvorst3. The experiment

10

Table 2: Set and characteristics of test matrices in Example 1 (listed in increasing matrix size).

Matrix problem Reference Size Field nnz(A)

orsirr 2 Ref. [46] 886 Oil reservoir simulation 5,970
pde2961 Ref. [49] 2,961 2D/3D problem 14,585
ex36 Ref. [49] 3,079 Computational fluid dynamics 53,099
vdvorst3 Ref. [47] 4,096 2D/3D problem 20,224
rajat13 Ref. [49] 7,598 Circuit simulation problem 48,762
M4D2 Ref. [48] 10,000 Quantum mechanics 127,400
coupled Ref. [49] 11,341 Circuit simulation problem 97,193
epb1 Ref. [49] 14,734 Thermal problem 95,053
memplus Ref. [49] 17,758 Circuit simulation problem 99,147
waveguide3D Ref. [49] 21,036 Electromagnetics problem 303,468
zhao2 Ref. [49] 33,861 Electromagnetics problem 166,453
hcircuit Ref. [49] 105,676 Circuit simulation problem 513,072

Table 3: The numerical results of different iterative solvers for Example 2.
Method orsirr 2 pde2961 ex36

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 539 -8.0801 0.0515 230 -8.1259 0.0788 3048 -8.0209 0.6078
BiCR 551 -8.2042 0.0546 248 -8.0477 0.0852 3118 -8.0025 0.6248
BiCG 607 -8.2116 0.0757 246 -8.0956 0.0941 3217 -8.0118 0.8365
BiCOR 626 -8.1493 0.0985 238 -8.2093 0.0792 3416 -8.0370 1.0649
QMR 607 -8.0185 0.0813 251 -8.1104 0.1074 3145 -8.0038 0.9714

Method vdvorst3 rajat13 M4D2

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 4033 -8.0647 0.7613 358 -8.0231 0.1512 2483 -8.0252 2.7336
BiCR 4289 -8.0400 0.8425 378 -8.1465 0.1569 2512 -8.0506 2.7498
BiCG 5227 -8.0026 1.2965 401 -8.0376 0.1942 2639 -8.1094 3.2753
BiCOR 4207 -8.0262 1.2543 431 -8.0631 0.2306 2525 -8.0596 5.1843
QMR 4805 -8.0010 1.5538 382 -8.2845 0.2478 2583 -8.0167 4.9897

Method coupled epb1 memplus

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 923 -8.0807 0.5091 722 -8.2079 0.3713 764 -8.0141 0.4635
BiCR 938 -8.0637 0.5396 923 -8.3901 0.4622 766 -8.0465 0.4806
BiCG 1032 -8.0263 0.6924 - -7.7974 3.6515 784 -8.0622 0.5879
BiCOR 1102 -8.0886 1.0084 921 -8.3643 0.8089 817 -8.0246 0.8737
QMR 994 -8.0029 0.8957 1066 -8.0120 1.0103 751 -8.0095 0.8478

Method waveguide3D zhao2 hcircuit

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 3391 -8.0043 12.5702 1460 -8.0036 1.7671 5875 -8.0015 32.2893
BiCR 3499 -8.0096 13.1258 1495 -8.0004 1.7734 5932 -8.0135 32.4263
BiCG 3651 -8.0280 13.3894 1579 -8.1427 2.2825 - -7.4282 36.5150
BiCOR 3543 -8.0250 21.1472 1485 -8.0533 3.1877 - -7.9912 52.1741
QMR 3459 -8.0015 18.2411 1582 -8.0127 3.6996 - -7.2986 50.0961

11

also indicate that, as expected, application specific preconditioners may be required to achieve
convergence in practice.

0 100 200 300 400 500 600 700
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Problem: orsirr_2

Number of iterations

2−
no

rm
 o

f r
el

at
iv

e
re

si
du

al

BiCGCR2
BiCR
BiCG
BiCOR
QMR

0 50 100 150 200 250 300 350 400 450
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Problem: rajat13

Number of iterations
2−

no
rm

 o
f r

el
at

iv
e

re
si

du
al

BiCGCR2
BiCR
BiCG
BiCOR
QMR

0 200 400 600 800 1000 1200 1400
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Problem: epb1

Number of iterations

2−
no

rm
 o

f r
el

at
iv

e
re

si
du

al

BiCGCR2
BiCR
BiCG
BiCOR
QMR

0 200 400 600 800 1000 1200 1400 1600
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Problem: zhao2

Number of iterations

2−
no

rm
 o

f r
el

at
iv

e
re

si
du

al

BiCGCR2
BiCR
BiCG
BiCOR
QMR

Fig. 1: Convergence histories of different iterative methods for solving different test problems in
Example 1.

In Fig. 1, we plot convergence histories of different iterative solvers for the test problems
(orsirr 2, rajat13, epb1 and zhao2)1. We observe the typical irregular (oscillating) conver-
gence behaviour of the BiCG method, whereas BiCGCR2, BiCR, BiCOR and QMR exhibit
much smoother residual decrease. The convergence curve of the QMR method is the smoothest
one, due to the quasi-minimal residual property. The BiCGCR2 method shows smoother con-
vergence curves than both BiCR and BiCOR methods for the test problems (rajat13, epb1
and zhao2). In conclusion, our method can be regarded as another efficient iterative solver for
dealing with non-Hermitian linear systems.

Example 2 We consider the electromagnetic scattering problem from a large rectangular cavity

1For the sake of clarity, we only plot the convergence curve of BiCG method when the iteration step reaches
1400. Because the BiCG method did not meet the required tol before MAXIT , so the convergence behavior in
the last phase is not interesting for us.

12

represented on the (x, y)-plane. We assume that the medium is y-directional inhomogeneous,
and we consider the transverse magnetic polarization case. The model Helmholtz equation
with positive wave number is discretized by the five-point finite difference scheme with uniform
stepsize h, leading to a nonsymmetric system of linear equations of the following form

Au = b, A =

(

B E
F C

)

,

where the sub-matrices are defined as follows,

B = V ⊗ I + I ⊗ V ∈ R
p×p, C = I − hG ∈ R

q×q, E = I ⊗ eq ∈ R
p×q

and F = −ET , where h = 1
q+1 , p = q2, θ ≥ 0 is a real constant, eq is the q-th unit vector in R

q,

I is the q-by-q identity matrix, V = tridiag(−1+ θh
2 , 2,−1− θh

2) ∈ R
q×q is a tridiagonal matrix,

Ω = h2 · diag(ω2
1 , ω

2
2 , . . . , ω

2
q) ∈ R

q×q is a nonnegative diagonal matrix, G = (gij) ∈ R
q×q, and ⊗

denotes the Kronecker product; we refer the reader to [50] for details. In our computations we
take θ = 1 and gij =

1
(i+j)2 . For simplicity, the linear system is defined via choosing a discrete

solution u consisting of uniformly distributed random numbers in the interval [−1, 1], and the
right-hand side is then computed as b = Au. Numerical results with different iterative solvers
are reported in the following Table 4.

Table 4: The numerical results of different iterative solvers for Example 2.
Method (q = 40, ωi = 8π) (q = 50, ωi = 10π) (q = 60, ωi = 12π)

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 749 -8.0600 0.0762 1218 -8.1417 0.1957 2858 -8.0348 0.5303
BiCR 776 -8.2382 0.0837 1276 -8.1101 0.2039 3202 -8.1316 0.5918
BiCG 781 -8.1404 0.1142 1450 -8.0277 0.3008 3846 -8.1754 0.9256
BiCOR 828 -8.1821 0.1518 1308 -8.1896 0.2840 2927 -8.0927 0.8183
QMR 781 -5.0213 0.1323 1358 -8.0085 0.3461 3379 -8.0179 1.0225

Method (q = 70, ωi = 14π) (q = 80, ωi = 16π) (q = 90, ωi = 18π)

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 2418 -8.1644 0.5476 3420 -8.0039 0.8557 3809 -8.0266 1.1268
BiCR 2651 -8.0354 0.5857 3565 -8.0247 0.9105 3974 -8.2344 1.1743
BiCG 2738 -8.0746 0.8096 3916 -8.0013 1.3083 3941 -8.0009 1.5529
BiCOR 2569 -8.0192 0.9024 4603 -8.0398 1.8225 3980 -8.0292 1.9378
QMR 2455 -8.0218 0.9441 3603 -8.0138 1.6294 4065 -8.0044 2.3321

The BiCGCR2 method has the best performance among all of the iterative solvers in terms
of number of iterations and CPU time. The QMR method exhibits smoother convergence due
to its quasi-minimal residual property. However, this method and the BiCOR method are
considerably more expensive than BiCGCR2, BiCR and BiCG methods in terms of CPU time.
The BiCGCR2 method generated better approximate solutions than all other iterative solvers
in the case q = 70, ωi = 14π. By the way, as shown by our experiments, specific preconditioners
may be required for accelerating the convergence on the Helmholtz equation [51].

Convergence histories of different iterative solvers for the case q = 40, ωi = 8π and q =
50, ωi = 10π are plotted in Fig. 2. We see that the BiCG method displays its typically oscillat-
ing convergence behaviour, whereas BiCGCR2, BiCR, BiCOR and QMR have much smoother
convergence. The QMR method is the smoothest one among these five iterative solvers. The

13

0 100 200 300 400 500 600 700 800 900
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of iterations

2−
no

rm
 o

f r
el

at
iv

e
re

si
du

al

Problem: q = 40, ω
i
 = 8π

BiCGCR2
BiCR
BiCG
BiCOR
QMR

0 500 1000 1500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Problem: q = 50, ω
i
 = 10π

Number of iteration

2−
no

rm
 o

f r
el

at
iv

e
re

si
du

al

BiCGCR2
BiCR
BiCG
BiCOR
QMR

Fig. 2: Convergence histories of different iterative methods for solving different test problems in
Example 2.

BiCGCR2 method has smoother convergence than both BiCR and BiCOR methods for the case
q = 50, ωi = 10π. We conclude that the BiCGCR2 method can be considered an efficient alter-
native to other iterative solvers for this test problem.

Example 3 Finally, we test the new proposed Krylov method in combination with precon-
ditioning on a set of publicly available linear systems arising from different application areas;
these systems are extracted from Tim Davis’s matrix collection available at the University of
Florida. We consider both real nonsymmetric and complex non-Hermitian linear systems. We
summarize in Table 5 the characteristics of the linear systems that were solved. When a physical
right-hand side (referred to as RHS) is not available, we use b = Ae, where e is a random vector
with entries from −1 to 12 Here we assess the performance of BiCGCR2 and other iterative
solvers in combination with the ILU(0) preconditioning [2, pp. 307-310]. For stability reasons,
we compute an ILU(0) factorization of A + σI, where σ = 10−12 if all diagonal elements of A
are zero, or σ = 10−12 max{|aii|} if some but not all diagonal elements aii of A zero, or σ = 0
otherwise. This procedure follows recommendations in [52]. The numerical results obtained
from different iterative solvers with ILU(0) preconditioning are shown in Table 6.

The results indicate that the PBiCGCR2 method performs better than the other precon-
ditioned iterative solvers in terms of number of iterations and CPU time. Once again, the
preconditioned QMR method (denoted as PQMR) exhibits smoother convergence because of its
quasi-minimal residual property but is more expensive than BiCGCR2, BiCR and BiCG meth-
ods with ILU(0) preconditioners in terms of CPU time. In addition, the PBiCGCR2 method
achieves the best final accuracy than all of the other preconditioned iterative solvers on the
epb3 problem. We see from the results on the rajat12, epb1, memplus and epb3 problems that
the preconditioned BiCOR (denoted as PBiCOR) method is sometimes expensive to use. The
convergence performance of PBiCR method is greatly similar with the PBiCGCR2 and PBiCOR
methods in aspects of the number of iterations, CPU time and TRR, which is in agreement with

2In order to investigate the different problems, here the RHS used in Example 3 is different from that defined
in Example 1.

14

Table 5: Set and characteristics of test matrices in Example 3 (listed in increasing matrix size).

Matrix problem Reference Size Field nnz(A)

watt 2 Ref. [49] 1,856 Computational fluid dynamics 11,550
rajat12 Ref. [49] 1,879 Circuit simulation problem 12,818
ex31 Ref. [49] 3,909 Computational fluid dynamics 91,223
ex40 Ref. [49] 7,740 Computational fluid dynamics 456,188
Grond1e4 Ref. [47] 10,000 Computational fluid dynamics 49,600
epb1 Ref. [49] 14,734 Thermal problem 95,053
memplus Ref. [49] 17,758 Circuit simulation problem 99,147
Grond4e4 Ref. [47] 40,000 Computational fluid dynamics 199,200
epb3 Ref. [49] 84,617 Thermal problem 463,625

Table 6: Numerical results of different iterative solvers with ILU(0) preconditioning for Example
3.

Method watt 2 rajat12 ex31

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 55 -8.0954 0.0281 78 -8.0021 0.0384 127 -8.0245 0.1941
BiCR 57 -8.2757 0.0299 81 -8.2387 0.0412 133 -8.0648 0.2186
BiCG 57 -8.0014 0.0413 80 -8.0168 0.0495 134 -8.1005 0.2439
BiCOR 57 -8.2898 0.0441 82 -8.1529 0.0571 131 -8.1504 0.2167
QMR 57 -8.6045 0.0521 81 -8.2381 0.0543 135 -8.0074 0.2468

Method ex40 Grond1e4 epb1

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 133 -8.0750 1.4552 193 -8.0096 0.2541 128 -9.1420 0.3261
BiCR 136 -8.3157 1.4868 196 -8.3503 0.2872 130 -8.1316 0.3601
BiCG 152 -8.0137 1.6475 195 -8.0013 0.3229 129 -8.0424 0.3901
BiCOR 137 -8.1947 1.6330 196 -8.1693 0.3700 131 -8.6027 0.4728
QMR 140 -8.1176 1.6241 195 -8.0547 0.3924 129 -8.1306 0.4617

Method memplus Grond4e4 epb3

Iters TRR CPU Iters TRR CPU Iters TRR CPU

BiCGCR2 185 -8.0408 0.5678 411 -8.2541 2.9472 146 -8.6211 3.0328
BiCR 186 -8.0362 0.5765 441 -8.3665 3.1191 187 -8.1432 3.8747
BiCG 202 -8.0906 0.7065 441 -8.3168 3.2796 178 -8.0306 3.8680
BiCOR 193 -8.0437 0.8210 413 -8.0931 3.7033 174 -8.2180 4.2685
QMR 186 -8.0295 0.7832 441 -8.2795 3.8781 180 -8.1139 4.2240

15

the theoretical results.

0 10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2 Problem: watt_2

Number of iterations

2−
no

rm
 o

f r
el

at
iv

e
re

si
du

al

BiCGCR2 + ILU(0)
BiCR + ILU(0)
BiCG + ILU(0)
BiCOR + ILU(0)
QMR + ILU(0)

0 20 40 60 80 100 120 140
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Problem: ex31

Number of iterations

2−
no

rm
 o

f r
el

at
iv

e
re

si
du

al

BiCGCR2 + ILU(0)
BiCR + ILU(0)
BiCG + ILU(0)
BiCOR + ILU(0)
QMR + ILU(0)

0 50 100 150 200 250 300 350 400 450
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Problem: Grond4e4

Number of iterations

2−
no

rm
 o

f r
el

at
iv

e
re

si
du

al

BiCGCR2 + ILU(0)
BiCR + ILU(0)
BiCG + ILU(0)
BiCOR + ILU(0)
QMR + ILU(0)

0 20 40 60 80 100 120 140 160 180 200
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

2−
no

rm
 o

f r
el

at
iv

e
re

si
du

al
Problem: epb3

BiCGCR2 + ILU(0)
BiCR + ILU(0)
BiCG + ILU(0)
BiCOR + ILU(0)
QMR + ILU(0)

Fig. 3: Convergence histories of different iterative methods with ILU(0) preconditioning for
solving different test problems in Example 3.

In Fig. 3 we plot convergence histories of different iterative solvers with the ILU(0) pre-
conditioner for the test problems denoted as (watt 2, ex31, Grond4e4 and epb3). We see that
the convergence behavior with the preconditioned BiCG (PBiCG) was still jagged, whereas
those with the PBiCGCR2, PBiCR, PBiCOR and PQMR methods were smoother. Moreover,
due to the quasi-minimal residual property, the convergence curve of PQMR method is the s-
moothest one among these five preconditioned iterative solvers. The PBiCGCR2, PBiCR and
PBiCOR methods displayed indeed similar convergence behaviors in the start phase, whereas
the PBiCGCR2 method shown considerably attractive convergence behavior in the latter con-
vergence phase, especially for epb3 problem. The PBiCGCR2 method even provided smoother
convergence curves than both PBiCR and PBiCOR methods for the test problems (i.e., watt 2

and epb3). In summary, the PBiCGCR2 method can be considered as efficient as the other
preconditioned iterative solvers for handling the targeted linear systems.

16

5 Conclusions

Starting from the pioneering work on two families of iterative solvers, i.e., the COCR/BiCGCR
and the BiCR/BiCOR methods, in this paper we propose a new extension of CR for solving non-
Hermitian linear systems, which is still based on short-term vector recurrences. The resulting
algorithm, named BiCGCR2, reduces to CR if the coefficient matrix A is Hermitian. We have
described the complete derivation of the BiCGCR2 algorithm (also including PBiCGCR2) for
non-Hermitian linear systems and have investigated the relation among CR, BiCGCR, COCR,
BiCR and BiCOR. Moreover, we also proved that the proposed method (BiCGCR2) is mathe-
matically equivalent to BiCR and BiCOR. Extensive numerical examples are reported to assess
the performance of our proposed method also against other established iterative solvers. The
theoretical findings and the numerical results indicates that the proposed method can be viewed
as an efficient tool for solving non-Hermitian linear systems arising in numerical applications.

The numerical experiments have revealed that BiCGCR2 tends to show smoother conver-
gence behavior and often faster convergence than BiCG, BiCR and BiCOR for some practical
applications. Therefore it can be used as a basic iterative procedure for the development of other
non-optimal Krylov subspace methods, similarly to the BiCG, BiCR and BiCOR algorithm that
have motivated the development of BiCGSTAB(ℓ) (GPBiCG) [23, 25], BiCRSTAB(ℓ) (GPBi-
CR) [16, 32] and BiCORSTAB2 (GPBiCOR) [34, 35, 53]. In future work, we plan to construct
hybrid variants of BiCGCR2, for which rn := Hn(A)r

BiCGCR2
n where Hn is a suitable matrix

polynomial of degree n, along the same lines of the derivations of hybrid BiCG, hybrid BiCR or
hybrid BiCOR.

Acknowledgements

The authors would like to thank Prof. Markus Clemens for his helpful and insightful dis-
cussions. We are also grateful to the anonymous referees and editor Prof. Michael Ng for
their useful suggestions and comments that improved the presentation of this paper. This re-
search is supported by 973 Program (2013CB329404), NSFC (61370147, 61170311, 61402082,
and 11301057), the Fundamental Research Funds for the Central Universities (ZYGX2013J106,
ZYGX2013Z005, and ZYGX2014J084).

References

[1] T.A. Davis, Direct Methods for Sparse Linear Systems, SIAM Series on the Fundamentals
of Algorithms, SIAM, Philadelphia, USA, 2006.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia,
USA, 2003.

[3] V. Simoncini, D.B. Szyld, Recent computational developments in Krylov subspace methods
for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1-59.

[4] M.H. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta
Numer., 6 (1997), pp. 271-397.

17

[5] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, H.A. van der Vorst, Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods (2nd Edition), SIAM, Philadelphia, USA, 1994.

[6] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res.
Nat. Bur. Standards, 49 (1952), pp. 409-436.

[7] X.-M. Gu, M. Clemens, T.-Z. Huang, L. Li, The SCBiCG class of algorithms for complex
symmetric systems with applicationsin several electromagnetic model problems, Comput.
Phys. Commun., 191 (2015), pp. 52-64.

[8] C. Paige, M. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J.
Numer. Anal. 12 (1975), pp. 617-629.

[9] E. Stiefel, Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme,
Comment. Math. Helv., 29 (1955), pp. 157-179.

[10] S.F. Ashby, T.A. Manteuffel, P.E. Saylor, A taxonomy for conjugate gradient methods,
SIAM J. Numer. Anal., 27 (1990), pp. 1542-1568.

[11] C. Lanczos, Solution of systems of linear equations by minized itertions, J. Res. Nat. Bureau
Standards, 49 (1952), pp. 33-53.

[12] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis-
Dundee 1975, Alistair Watson G. (ed.), Lecture Notes in Mathematics, vol. 506, Springer:
Heidelberg, 1976, pp. 73-89.

[13] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.

[14] S.C. Eisenstat, H.C. Elman, M.H. Schultz, Variational iterative methods for nonsymmeric
systems of linear equations, SIAM J. Sci. Numer. Anal., 20 (1983), pp. 345537.

[15] T. Sogabe, M. Sugihara, S.-L. Zhang, An extension of the conjugate residual method to
nonsymmetric linear systems, J. Comput. Appl. Math., 226 (2009), pp. 103-113.

[16] T. Sogabe, Extensions of the conjugate residual method (Ph.D. dissertation), Department
of Applied Physics, University of Tokyo, Tokyo, Japan, 2006. Avaiable online at http:

//www.ist.aichi-pu.ac.jp/person/sogabe/thesis.pdf.

[17] Y.-F. Jing, T.-Z. Huang, Y. Zhang, L. Li, G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe, B.
Carpentieri, Lanczos-type variants of the COCR method for complex nonsymmetric linear
systems, J. Comput. Phys., 228 (2009), pp. 6376-6394.

[18] B. Carpentieri, Y.-F. Jing, T.-Z. Huang, The BiCOR and CORS iterative algorithms for
solving nonsymmetric linear systems, SIAM J. Sci. Comput., 33 (2011), pp. 3020-3036.

[19] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.
Sci. Stat. Comput., 10 (1989), pp. 36-52.

18

[20] H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp.
631-644.

[21] M.H. Gutknecht, Variants of BiCGSTAB for matrices with complex spectrum, SIAM J.
Sci. Comput, 14 (1993), pp. 1020-1033.

[22] G.L.G. Sleijpen, H.A. van der Vorst, D.R. Fokkema, BiCGstab(ℓ) and other hybrid Bi-CG
methods, Numer. Algorithms, 7 (1994), pp. 75-109.

[23] G.L.G. Sleijpen, D. R. Fokkema, BiCGstab(ℓ) for linear equations involving unsymmetric
matrices with complex spectrum, Electron. Trans. Numer. Anal., 1 (1993), pp. 11-32.

[24] D.R. Fokkema, G.L.G. Sleijpen, H.A. Van der Vorst, Generalized conjugate gradient
squared, J. Comput. Appl. Math., 71 (1996), pp. 125-146.

[25] S.-L. Zhang, GPBi-CG: Generalized product-type methods based on Bi-CG for solving
nonsymmetric linear systems, SIAM J. Sci. Comput., 18 (1997), pp. 537-551.

[26] R.W. Freund, N.M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian
linear systems, Numer. Math., 60 (1991), pp. 315-339.

[27] R.W. Freund, M.H. Gutknecht, N.M. Nachtigal, An implementation of the look-ahead
Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993), pp. 137-
158.

[28] R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems, SIAM J. Sci. Comput., 14 (1993), pp. 470-482.

[29] T.F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, C.H. Tong, A quasi-minimal residual
variant of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comput., 15
(1994), pp. 338-347.

[30] P. Sonneveld, M.B. van Gijzen, IDR(s): A family of simple and fast algorithms for solving
large nonsymmetric linear systems. SIAM J. Sci. Comput., 31 (2008), pp. 1035-1062.

[31] M.-C. Yeung, T.F. Chan, ML(k)BiCGSTAB: A BiCGSTAB variant based on multiple Lanc-
zos starting vectors, SIAM J. Sci. Comput., 21 (1999), pp. 1263-1290.

[32] K. Abe, G.L.G. Sleijpen, BiCR variants of the hybrid BiCG methods for solving linear
systems with nonsymmetric matrices, J. Comput. Appl. Math., 234 (2010), pp. 985-994.

[33] J. Zhang, H. Dai, Generalized conjugate A-orthogonal residual squared method for complex
non-Hermitian linear systems, J. Comput. Math., 32 (2014), pp. 248-265.

[34] L. Zhao, T.-Z. Huang, A hybrid variant of the BiCOR method for a nonsymmetric linear
system with a complex spectrum, Appl. Math. Lett. 26 (2013), pp. 457-462.

[35] L. Zhao, T.-Z. Huan, Y.-F. Jing, L.-J. Deng, A generalized product-type BiCOR method
and its application in signal deconvolution, Comput. Math. Appl., 66 (2013), pp. 1372-1388.

19

[36] Y.-F. Jing, T.-Z. Huang, Y. Duan, B. Carpentieri, A comparative study of iterative solutions
to linear systems arising in quantum mechanics, J. Comput. Phys., 229 (2010), pp. 8511-
8520.

[37] R.W. Freund, T. Szeto, A quasi-minimal residual squared algorithm for non-Hermitian
linear systems, in Proceeding of 2nd Copper Mountain Iterative Methods Conference, April
1992, UCLA-CAM Tech. Rep. 92-19. Avaiable online at ftp://ftp.math.ucla.edu/pub/
camreport/cam92-19.pdf.

[38] J. Zhang, H. Dai, A new quasi-minimal residual method based on a biconjugate A-
orthonormalization procedure and coupled two-term recurrences, Numer. Algorithms, 70
(2015), pp. 875-896.

[39] T. Sogabe, S.-L. Zhang, A COCR method for solving complex symmetric linear systems J.
Comput. Appl. Math., 199 (2007), pp. 297-303.

[40] M. Clemens, T. Weiland, U. van Rienen, Comparison of Krylov-type methods for complex
linear systems applied to high-voltage problems, IEEE Trans. Magn., 34 (5) (1998), pp.
3335-3338.

[41] M. Clemens, U. van Rienen, T. Weiland, Correction to “comparison of Krylov-type methods
for complex linear systems applied to high-voltage problems”, IEEE Trans. Magn., (5) (50),
2014, p. 9700101.

[42] J. Zhang, H. Dai, J. Zhao, A new family of global methods for linear systems with multiple
right-hand sides, J. Comput. Appl. Math., 236 (2011), pp. 1562-1575.

[43] X.-M. Gu, T.-Z. Huang, J. Meng, T. Sogabe, H.-B. Li, L. Li, BiCR-type methods for
families of shifted linear systems, Comput. Math. Appl., 68 (2014), pp. 746-758.

[44] T.-X. Gu, X.-Y. Zuo, L.-T. Zhang, W.-Q. Zhang, Z.-Q. Sheng, An improved bi-conjugate
residual algorithm suitable for distributed parallel computing, Appl. Math. Comput., 186
(2007), pp. 1243-1253.

[45] M. Clemens, T. Weiland, Iterative methods for the solution of very large complex-symmetric
linear systems of equations in electromagnetics, in Eleventh Copper Mountain Conference
on Iterative Methods, Part 2, T.A. Manteuffel, S.F. McCormick (Eds.), 1996, 7 pages.

[46] I.S. Duff, R.G. Grimes, J.G. Lewis, User’s guide for the Harwell-Boeing sparse matrix
collection, Tech. Rep. RAL-92-086, Rutherford Appleton Lab., Chilton, UK, 1992.

[47] X.-M. Gu, GitHub’s repositories: Test matrices, Augest 2015. Available online at https:
//github.com/Hsien-Ming-Ku/Test_matrices/tree/master/Problems.

[48] M. Baertschy, X. Li, Solution of a three-body problem in quantum mechanics using sparse
linear algebra on parallel computers, in Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (Supercomputing ’01), ACM, New York, 2001, p. 47.

[49] T. Davis, Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math.
Softw., 38 (1) (2011), Article 1, 25 pages. Avaiable online at http://www.cise.ufl.edu/
research/sparse/matrices/.

20

[50] Z.-Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two struc-
tures, Math. Comp., 75 (2006), pp. 791-815.

[51] O.G. Ernst, M.J. Gander, Why it is difficult to solve Helmholtz problems with classical
iterative methods, in vol. 83 of Numerical Analysis of Multiscale Problems. Edited by I.
Graham, T. Hou, O. Lakkis and R. Scheichl. Springer-Verlag (2011), pp. 325-361.

[52] E. Chow, Y. Saad, Experimental study of ILU preconditioners for indefinite matrices, J.
Comput. Appl. Math., 86 (1997), pp. 387-414.

[53] X.-M. Gu, T.-Z. Huang, B. Carpentieri, L. Li, C. Wen, A hybridized iterative algorithm
of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems,
Comput. Math. Appl., 70 (2015), pp. 3019-3031.

21

