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Abstract
A benefit of pure functional programming is that it encourages
equational reasoning. However, the Haskell language has lacked
direct tool support for such reasoning. Consequently, reasoning
about Haskell programs is either performed manually, or in another
language that does provide tool support (e.g. Agda or Coq).

HERMIT is a Haskell-specific toolkit designed to support equa-
tional reasoning and user-guided program transformation, and to do
so as part of the GHC compilation pipeline. This paper describes
HERMIT’s recently developed support for equational reasoning,
and presents two case studies of HERMIT usage: checking that
type-class laws hold for specific instance declarations, and mecha-
nising textbook equational reasoning.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Mechanical verification

Keywords HERMIT, Equational Reasoning, Type Class Laws

1. Introduction
Currently, most equational reasoning on Haskell programs is per-
formed manually, using pen-and-paper or text editors, because of
the lack of direct tool support. While some equational-reasoning
tools do exist for Haskell [21, 40], they only target a subset of
Haskell 98, not the full language (and certainly not the GHC-
extended version of Haskell that is widely used in practice). This
is unfortunate, as pen-and-paper reasoning is slow, error prone, and
allows the reasoner to neglect details of the semantics. For exam-
ple, a common mistake is to neglect to consider partial and infinite
values, which are notoriously tricky [8]. This was recently demon-
strated by Jeuring et al. [22], who showed that the standard imple-
mentations of the state monad do not satisfy the monad laws.

An alternative approach is to transliterate a Haskell program
into a language or proof assistant that does provide support for
equational reasoning, such as Agda [26] or Coq [38]. The desired
reasoning can then be performed in that language, and the resultant

program (or program property) transliterated back into Haskell.
However, the semantics of these languages differ from Haskell,
sometimes in subtle ways, so the reasoning steps used may not
carry over to Haskell.

The most prominent example of informal equational reasoning
in Haskell is type-class laws. Type-class laws are properties of type-
class methods that the class author expects any instance of the class
to satisfy. However, these laws are typically written as comments
in the source code, and are not enforced by a compiler; the onus is
on the instance declarer to manually verify that the laws hold.

A similar situation arises regarding GHC’s rewrite rules [27].
GHC applies these rules as optimisations at compile-time, without
any check that they are semantically correct; the onus is again on
the programmer to ensure their validity. This is a fragile situation:
even if the laws (or rules) are correctly verified by pen-and-paper
reasoning, any change to the implementation of the involved func-
tions requires the reasoning steps to be updated accordingly. Such
revisions can easily be neglected, and, furthermore, even if a calcu-
lation is up-to-date, a user cannot be sure of that without manually
examining the individual steps herself. What is needed is a mechan-
ical connection between the source code, the reasoning steps, and
the compiled program.

To address this situation, we have implemented a GHC plugin
called HERMIT [11, 12, 14, 33]. HERMIT is a toolkit that sup-
ports interactive equational reasoning, and provides mechanical as-
surances of the correctness of that reasoning. HERMIT operates
on GHC’s internal core language, part-way through the compila-
tion process. User-specified transformations are applied to the pro-
gram being compiled, and the user’s equational reasoning steps are
checked. By performing equational reasoning during compilation,
HERMIT is able to check that the reasoning steps correspond to
the current implementation of the program, in the context of the
language extensions currently being used.

The initial HERMIT implementation [12] only supported equa-
tional reasoning that was transformational in nature; that is, HER-
MIT allowed the user to apply a sequence of correctness-preserving
transformations to the Haskell program, resulting in an equivalent
but (hopefully) more efficient program. This was sufficient to al-
low some specific instances of known program transformations to
be mechanised [33], as well as for encoding prototypes of new op-
timisation techniques [1, 13]. However, some of the transformation
steps used were only valid in certain contexts, and HERMIT had no
facility for checking the necessary preconditions. Thus these pre-
conditions had to be verified by hand. Furthermore, it was not pos-
sible to state and reason about auxiliary properties of the program
being transformed, or to use inductive techniques to verify their
correctness. This paper describes the addition of these facilities to
HERMIT, and discusses our experiences of using them on two case
studies. Specifically, the contributions of this paper are:
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• We describe the new equational-reasoning infrastructure pro-
vided by HERMIT, discussing the issues that arose as a conse-
quence of our choice to work within GHC and target its internal
language. (Section 2).
• We demonstrate interactive HERMIT usage by mechanically

verifying a GHC rewrite rule, giving a detailed walk-through
of the reasoning steps (Section 3).
• We present a case study of mechanically verifying that type-

class laws hold for specific class instances (Section 4).
• We explain how HERMIT can be integrated with Cabal such

that HERMIT scripts are automatically checked and run when
a package is built (Section 4.3).
• We present a case study of mechanising a chapter from Pearls

of Functional Algorithm Design [2], a textbook dedicated to
deriving Haskell programs by calculation (Section 5).

2. Equational Reasoning using HERMIT
HERMIT is a GHC plugin that allows a user to apply custom trans-
formations to a Haskell program amid GHC’s optimisation passes.
HERMIT operates on the program after it has been translated into
GHC Core, GHC’s internal intermediate language. GHC Core is
an implementation of System F�

C , which is System F [20, 29] ex-
tended with let-binding, constructors, and first-class type equalities
[37]. Type checking is performed during the translation, and GHC
Core retains the typing information as annotations.

The availability of typing information is a significant advantage
of working with GHC Core rather than with Haskell source code.
Another significant advantage is that GHC Core is a syntactically
smaller language, and consequently there are far fewer cases to con-
sider. For example, both if -then-else expressions and the special
seq function are translated into explicit case expressions in GHC
Core, and thus do not need to be considered. Arguably, some of this
second advantage could instead be gained by working with desug-
ared Haskell source code. However, there are limits to what can
be desugared within Haskell source code: for example, while if -
then-else can be desugared to a Haskell case expression, the seq
function cannot. (The semantics of GHC Core case expressions
differ slightly from Haskell case expressions.)

HERMIT provides commands for navigating a GHC Core pro-
gram, applying transformations, version control, pretty printing,
and invoking GHC analyses and optimisation passes. To direct
and combine transformations, HERMIT uses the strategic program-
ming language KURE [34] to provide a rich family of traversal and
strategy combinators. HERMIT offers three main interfaces:

• An interactive read-eval-print loop (REPL). This allows a user
to view and explore the program code, as well as to experiment
with transformations. In Section 3 we present an example of
using the REPL to verify a GHC rewrite rule; examples of using
the REPL to perform program transformations can be found in
Farmer et al. [12] and Sculthorpe et al. [33].
• HERMIT scripts. These are sequences of REPL commands,

which can either be loaded and run from within the REPL, or
automatically applied by GHC during compilation. We present
an example HERMIT script in Section 5.
• A domain-specific language (DSL) for transformation, em-

bedded in Haskell. This allows the user to construct a cus-
tom GHC plugin using all of HERMIT’s capabilities. The user
can run transformations in different stages of GHC’s optimi-
sation pipeline, and add custom transformations to the REPL.
New transformations and program properties can be encoded
by defining Haskell functions directly on the Haskell data type
representing the GHC Core abstract syntax, rather than using

the more limited (but safer) monomorphically typed combina-
tor language available to the REPL and scripts. We present an
example of a user-defined program property in the Appendix.

This paper will describe HERMIT’s new equational-reasoning
infrastructure, but will not otherwise discuss its implementation or
existing commands. Interested readers should consult the previous
HERMIT publications [11, 12, 33], or try out the HERMIT toolkit
[14] for themselves.

2.1 Program Properties
As discussed in Section 1, the HERMIT toolkit initially only sup-
ported program transformation, and any equational reasoning had
to be structured as a sequence of transformation steps applied to
the original source program [e.g. 33]. This was limiting, as equa-
tional reasoning often involves stating and verifying properties of
the program being transformed, so that they can be used to validate
the transformations being applied.

To address this, we have added support for stating program
properties, which are referred to as lemmas within HERMIT. A
primitive HERMIT lemma takes the form of an equality between
two GHC Core expressions, and may involve universally quantified
variables. For example:

Map Fusion
∀ f g . map f ◦map g ≡ map (f ◦ g)

Composite lemmas can be formed using the logical connectives
implication, conjunction and disjunction, and universal quantifiers
can scope over composite lemmas. For example:

Fold Fusion
∀ f g h a b .

( f undefined ≡ undefined
∧ f a ≡ b
∧ ∀ x y . f (g x y) ≡ h x (f y) )
⇒

f ◦ foldr g a ≡ foldr h b

HERMIT maintains a set of lemmas, and tracks which of them
have been verified by a HERMIT calculation. Once verified, lem-
mas can be mechanically used to validate transformation steps
that have preconditions, and primitive lemmas can be applied as
program transformations (left-to-right or right-to-left). Composite
lemmas can be manipulated by HERMIT commands correspond-
ing to standard introduction and elimination rules for logical con-
nectives, and universally quantified variables can be instantiated. A
primitive lemma can be verified by applying a sequence of transfor-
mation steps to either (or both) sides of the lemma, until HERMIT
is satisfied that both sides are α-equivalent. Such reasoning can ei-
ther be performed interactively, or by loading a HERMIT script.
We will demonstrate interactive reasoning in Section 3.

The most convenient way of introducing primitive lemmas into
HERMIT is by exploiting GHC rewrite-rule pragmas [27]. These
pragmas are intended to allow a user to introduce custom optimi-
sations into the GHC optimisation pipeline. For example, a rewrite
rule corresponding to the Map Fusion lemma above can be added
to a Haskell source file as follows:

{-# RULES “map-fusion”[∼]
forall f g . map f . map g = map (f . g)

#-}

GHC will parse and type check this rule, and translate it into
GHC Core. HERMIT exploits this mechanism by generating a
lemma from the translated rule. The [∼] annotation renders this
rule inactive [16, Section 7.21.1], which allows us to use this
mechanism to introduce lemmas that are not intended to be used
as standalone optimisations.
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There are some restrictions on the form of the left-hand side of
a GHC rewrite rule [27, Section 2.2], so this approach can only
generate a subset of all possible primitive lemmas. However, in
practice, all of the primitive lemmas that we needed for our case
studies fell within this subset.

Currently, we introduce composite lemmas using HERMIT’s
transformation DSL. Primitive lemmas can also be introduced in
this way, but as this requires working with the GHC Core data type
directly, it tends to be less convenient and more error-prone than
rewrite-rule pragmas. We present an example of such a composite-
lemma definition in the Appendix. As future work, we aim to
allow the user to introduce composite lemmas into HERMIT using
(extended) Haskell syntax, which HERMIT would then type check,
parse and convert to GHC Core.

2.2 Explicit Types and Dictionaries
In GHC Core, polymorphic functions have explicit type arguments
(as GHC Core is based on System F), and type-class methods
are implemented as functions that take a class dictionary as an
argument [45]. A class dictionary is essentially a record containing
a definition for each method of the type class, specialised to a
concrete class parameter (or parameters). Thus each class instance
generates a single dictionary (which may, in turn, be abstracted over
other dictionaries).

To allow us to demonstrate the presence of these implicit type
and dictionary arguments, first consider the explicit types of the
following polymorphic functions:

id :: forall a . a → a
fmap :: forall f . Functor f ⇒ forall a b . (a → b)→ f a → f b

In GHC Core, each universally quantified type variable is an ad-
ditional (type) argument to the function, and each class constraint
is an additional dictionary argument to the function. For example,
consider the functor identity law, expressed as a GHC rewrite rule:

{-# RULES “fmap-id”[∼]
fmap id = id

#-}

The rewrite rule is written using Haskell source code, so the type
and dictionary arguments are implicit. However, the representation
of this law as a HERMIT lemma in GHC Core makes these extra
arguments explicit:

fmap-id
∀ f t $dFunctor . fmap f $dFunctor t t (id t) ≡ id (f t)

Here, f and t are type variables, and $dFunctor is a dictionary
variable. When generating names for dictionary variables, GHC
prefixes the class name with “$d”. Also, as we will see shortly, GHC
prefixes the names of dictionary instances with “$f”. A significant
advantage of using GHC rewrite rules to generate lemmas is that
these type and dictionary arguments are inferred and automatically
inserted by GHC.

Returning to the functor identity law, note that this is not a
lemma to be verified. Rather, the law is a specification that the
class author expects any instance of the class to satisfy. To check
that the law holds for a specific instance, we must first instantiate
the type variable f and its corresponding dictionary “$dFunctor”,
thereby generating the lemma that we wish to hold. For example,
instantiating this lemma to the Maybe data type would give the
following:

fmap-id
∀ t . fmap Maybe $fFunctorMaybe t t (id t) ≡ id (Maybe t)

HERMIT provides commands to specialise lemmas by instantiating
variables in this way, whether dictionary variables or otherwise, as
we will demonstrate in Section 4.1.

2.3 Missing Unfoldings
Equational reasoning often involves fold/unfold transformations [5].
One consequence of our choice to work within GHC is that, in or-
der to unfold functions defined in previously compiled modules,
HERMIT relies on the unfolding information present in the inter-
face files generated by GHC. Unfortunately, for recursive functions
that are not marked with an explicit INLINE pragma, GHC does
not normally include their unfoldings in the interface files for their
defining modules. This prevents us from unfolding those functions
in HERMIT. This includes, for example, the ++ and map functions.

We currently have three work-arounds for this issue. The
first option is to recompile the defining packages with GHC’s
-fexpose-all-unfoldings flag. In the case of ++ and map, this
means recompiling the base package. The second option is to re-
define the function with a new name, and use that function in our
programs instead of the library function. For example:

myAppend :: [a ]→ [a ]→ [a ]
myAppend [ ] ys = ys
myAppend (x : xs) ys = x : myAppend xs ys

However, this is not an option if we want to reason about pre-
existing code that uses the library version of that function. A third
option is to define a GHC rewrite rule to convert calls to the library
function into calls to the new function, and then use this rule to
transform the program before beginning to reason about it. For
example:

{-# RULES “my-append”[∼]
(++) = myAppend

#-}
We are not entirely happy with any of these work-arounds, and
finding a cleaner solution remains as future work.

GHC offers a systematic means of compiling Haskell libraries
in multiple ways and installing these builds in parallel. For exam-
ple, the user may desire to install both normal object files and object
files that include extra information for run-time profiling. One pos-
sible solution to our problem would be to extend this mechanism
by adding a new ‘way’ that generates interface files that include
unfolding information for every exported function.

2.4 Structural Induction
Haskell programs usually contain recursive functions defined over
(co)inductive data types. Reasoning about such programs often
requires the use of an induction principle. For example, while
[ ] ++ xs ≡ xs can be established simply by unfolding the defini-
tion of ++, establishing the similar property xs ++ [ ] ≡ xs requires
reasoning inductively about the structure of xs . Inductive reasoning
cannot be expressed as a sequence of transformation steps: both the
source and target expression must be known in advance, and the
validity of rewriting one to the other is established by verifying the
inductive and base cases.

HERMIT provides structural induction over algebraic data
types as a built-in transformation. The remainder of this section
will formalise HERMIT’s induction principle, then in Section 3 we
will give an example of using induction in HERMIT.

We first introduce some notation. We write −→vs to denote a
sequence of variables, and ∀ (C −→vs :: A) to quantify over all
constructors C of the algebraic data type A, fully applied to a
sequence −→vs of length matching the arity of C . Let C : A  B
denote that C is an expression context containing one or more
holes of type A, and having an overall type B . For any expression
a :: A, then CJaK denotes the context C with all holes filled with
the expression a .

The structural-induction inference rule provided by HERMIT
is defined in Figure 1. The conclusion of the rule is called the
induction hypothesis. Informally, the premises require that:
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Given contexts C,D :A B , for any algebraic data type A, and any type B , then structural induction provides the following inference rule:

CJundefinedK ≡ DJundefinedK ∀ (C −→vs :: A) . (∀ (v ∈ −→vs , v :: A) . CJvK ≡ DJvK)⇒ (CJC −→vsK ≡ DJC −→vsK)
∀ (a :: A) . CJaK ≡ DJaK

Figure 1: Structural induction.

Given contexts C,D : [A] B , for any types A and B , then:

CJundefinedK ≡ DJundefinedK CJ [ ] K ≡ DJ [ ] K ∀ (a :: A, as :: [A]) . (CJasK ≡ DJasK)⇒ (CJa : asK ≡ DJa : asK)
∀ (xs :: [A]) . CJxsK ≡ DJxsK

Figure 2: Structural induction on lists.

• the induction hypothesis holds for undefined values;
• the induction hypothesis holds for any fully applied constructor,

given that it holds for any argument of that constructor (of
matching type).

As a more concrete example, specialising structural induction to
the list data type gives the inference rule in Figure 2.

This form of structural induction is somewhat limited in that it
only allows the induction hypothesis to be applied to a variable one
constructor deep. We are currently in the process of implementing
a more general induction principle that will allow the inductive
hypothesis to be applied to a variable n constructors deep.

2.5 Correctness and Equivalence
HERMIT provides a large suite of built-in primitive transforma-
tions. Some of these are transformations and optimisation passes
lifted from the internals of GHC, whereas others are taken from
the literature on program transformation (e.g. [5, 9, 19]). Our aim
with HERMIT is to provide tool support for the kind of equa-
tional reasoning that is commonly done on pen-and-paper, and to
that end we seek to support the wide range of transformation and
equational-reasoning techniques that are used in practice. This has
consequences for correctness, as some of the transformations pro-
vided by HERMIT only offer partial correctness: the output pro-
duced by a program before transformation is compatible with the
output after transformation. By compatible we mean that the out-
put can be either more or less defined, but that the defined output
does not differ in value. For example, fold/unfold transformation
can easily introduce non-termination if used carelessly [40], but is
widely used in pen-and-paper reasoning.

HERMIT’s equivalence relation (≡) is based on transformation
steps: two GHC Core expressions are considered to be equal if
one can be transformed into the other, modulo α-equality. Con-
sequently, whether an equivalence is partially or totally correct de-
pends on the correctness of the transformations used. The major-
ity of HERMIT’s transformations are totally correct, and many of
the remaining partially correct transformations are totally correct,
given certain preconditions. These preconditions are encoded in
HERMIT, but by default a user may choose to ignore them when
applying a transformation. This is a pragmatic design decision: it
allows a user to experiment without having to keep detouring to
satisfy pre-conditions. In the next version of HERMIT, we intend
to allow the user the option of disabling the set of partially correct
transformations, and of enforcing that any preconditions are satis-
fied before a transformation can be used. The user can then choose
the desired trade-off between correctness, expressiveness and con-
venience.

Note that there is no built-in semantic model within HERMIT
(or GHC). The primitive transformations are essentially axioms,
and themselves have no mechanical verification of their correctness

beyond a check that they produce a well-typed GHC Core term.
A substantial avenue for future work is to create a mechanical
connection between HERMIT’s primitive transformations and a
semantic model, so that they can be formally verified. There has
been recent work on translating GHC Core to first-order logic so
that properties can be verified by an external automated theorem
prover [44], and it seems plausible that this approach could be
incorporated into HERMIT.

3. Interactive Proof Example
In this section we will demonstrate HERMIT’s interactive mode by
performing a calculation to validate a GHC rewrite rule. We will
use the Haskell source file in Figure 3 for this example. The rule
map-fusion is (a slight reformulation of) the motivating example
of a rewrite rule given by Peyton Jones et al. [27, Section 2]. Note
that we define map explicitly, rather than using the definition in the
standard Prelude, to avoid the issues with unfolding pre-compiled
definitions (as discussed in Section 2.3).

We begin by invoking HERMIT on the source file:

> hermit MapFusion.hs +MapFusion

GHC begins compiling MapFusion.hs, performing parsing, type
checking and desugaring, before pausing compilation and passing
control to the HERMIT interactive shell. The +MapFusion flag
specifies that we wish to invoke HERMIT on the MapFusion
module. (In general, compiling a module with GHC may trigger
the compilation of dependent modules, and we may wish to run
HERMIT on any or all of them.)

module main:MapFusion where
map :: ∀ a b . (a � b) � [a] � [b]

HERMIT presents a summary of the module, which in this case just
contains one function, map. Here we only see the type signature; to
see the definition we tell HERMIT to focus on the binding:
hermit> binding-of ’map

map = λ M M f ds �
case ds of wild N

[] � [] N
(:) a as � (:) N (f a) (map N N f as)

Notice that the top-level pattern matching has been desugared into
explicit lambdas and a case expression, and that the infix cons
operator has been moved into a prefix position. Type arguments
are displayed as triangles by HERMIT’s default pretty printer, but
the full details can displayed if desired. For this example we will
not need to manipulate any type arguments, so we choose to hide
them:
hermit> set-pp-type Omit
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map = λ f ds �
case ds of wild

[] � []
(:) a as � (:) (f a) (map f as)

To begin the calculation, we need to tell HERMIT that we want
to reason about the map-fusion rule. We return to the top of the
module, convert the map-fusion rule to a HERMIT lemma, and tell
HERMIT that we wish to begin proving that lemma:
hermit> top
hermit> rule-to-lemma "map-fusion"
hermit> prove-lemma "map-fusion"

Goal:
∀ f g. (.) (map f) (map g) ≡ map ((.) f g)

Verifying this lemma in HERMIT requires the use of structural
induction on the list data type (as per Figure 2). However, as the
rule is written in a point-free style, there is initially no list argument
to perform induction on. Thus we first apply extensionality to eta-
expand the rule:
proof> extensionality ’xs

Goal:
∀ f g xs.
(.) (map f) (map g) xs ≡ map ((.) f g) xs

We also unfold the composition operator, as this will provide us
with a more convenient induction hypothesis:
proof> any-call (unfold ’.)

Goal:
∀ f g xs.
map f (map g xs) ≡ map (λ x � f (g x)) xs

We now begin the inductive part of the calculation. HERMIT
provides structural induction as a lemma transformation: treating
the current goal as the induction hypothesis, the goal is transformed
into the conjunction of the base and inductive cases. That is, the
inference rule in Figure 1 is instantiated such that its conclusion
matches the current goal, and then the current goal is replaced by
the premise of the rule.
proof> induction ’xs

Goal:
∀ f g.
(map f (map g undefined)
≡
map (λ x � f (g x)) undefined)
∧
((map f (map g []) ≡ map (λ x � f (g x)) [])
∧
(∀ a b.
(map f (map g b) ≡ map (λ x � f (g x)) b)
⇒
(map f (map g ((:) a b))
≡
map (λ x � f (g x)) ((:) a b))))

Here, the three clauses in the premise are the two base cases (for
undefined and []), and one inductive case (for (:)), as per
Figure 2.

In each of the cases, two of the three occurrences of map are
now applied to either undefined or an explicit list constructor. We
need to unfold the definition of map and reduce the resultant ex-
pression in each of those two occurrences. Rather than doing this
step by step, we build a strategy to perform these reductions in one
step. We use the strategy combinators any-bu (anywhere, travers-
ing bottom-up), >>> (sequencing) and <+ (choice). These combi-
nators are lifted from the strategic programming language KURE

module MapFusion where

import Prelude hiding (map)

{-# RULES “map-fusion”[∼]
forall f g . map f . map g = map (f . g)

#-}
map :: (a → b)→ [a ]→ [b ]

map f [ ] = [ ]
map f (a : as) = f a : map f as

Figure 3: Haskell source file MapFusion.hs.

[34], which underlies HERMIT. Note that the sequencing strategy
requires that both its component strategies succeed, which in this
case ensures that occurrences of map are only unfolded if they can
subsequently be reduced by undefined-case or case-reduce.
proof> any-bu (unfold ’map

>>> (undefined-case <+ case-reduce))

Goal:
∀ f g.
(undefined ≡ undefined)
∧
(([] ≡ [])
∧
(∀ a b.
(map f (map g b) ≡ map (λ x � f (g x)) b)
⇒
((:) (f (g a)) (map f (map g b))
≡
(:) ((λ x � f (g x)) a) (map (λ x � f (g x)) b))))

Observe that both base cases have been reduced to evident equiv-
alences. They can be eliminated altogether using HERMIT’s
simplify-lemma strategy. This strategy checks all equalities for
α-equivalence, and reduces any it finds to a primitive truth clause.
The strategy then attempts to apply a set of standard logical simpli-
fications to eliminate connectives wherever possible (in this case,
the unit law of conjunction is applied twice).
proof> simplify-lemma

Goal:
∀ f g a b.
(map f (map g b) ≡ map (λ x � f (g x)) b)
⇒
((:) (f (g a)) (map f (map g b))
≡
(:) ((λ x � f (g x)) a) (map (λ x � f (g x)) b))

Now all that remains is the inductive case. In HERMIT, when
we navigate to the consequent of an implication, the antecedent
becomes available as an assumed lemma. The HERMIT REPL
displays all such in-scope antecedents to facilitate their use.
proof> forall-body ; consequent

Assumed lemmas:
ind-hyp-0 (Built In)

map f (map g b) ≡ map (λ x � f (g x)) b
Goal:

(:) (f (g a)) (map f (map g b))
≡
(:) ((λ x � f (g x)) a) (map (λ x � f (g x)) b)

We now need to apply the induction hypothesis, which HER-
MIT has named ind-hyp-0. We could apply it in either direction,
so we arbitrarily choose to apply it in a backwards direction:
proof> one-td (lemma-backward ind-hyp-0)
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Assumed lemmas:
ind-hyp-0 (Built In)

map f (map g b) ≡ map (λ x � f (g x)) b
Goal:

(:) (f (g a)) (map f (map g b))
≡
(:) ((λ x � f (g x)) a) (map f (map g b))

All that remains is to perform a β-reduction. HERMIT’s prim-
itive beta-reduce transformation transforms a β-redex to a non-
recursive let-binding, which can then be eliminated by inlining
the binding. Rather than navigating to the redex and invoking
these two transformations, we instead make use of HERMIT’s
general-purpose simplify strategy. This strategy repeatedly tra-
verses a term, applying a set of basic simplification transformations
until no more are applicable. Amongst others, this set includes
beta-reduce, the elimination and inlining of let-bindings where
the binding is used at most once, and the inlining of the definitions
of several basic function combinators such as id , const and (◦).
proof> simplify

Assumed lemmas:
ind-hyp-0 (Built In)

map f (map g b) ≡ map (λ x � f (g x)) b
Goal:

(:) (f (g a)) (map f (map g b))
≡
(:) (f (g a)) (map f (map g b))

The two sides are now equivalent, so the calculation is complete.
proof> end-proof

Successfully proven: map-fusion

The lemma is now available for use in further calculations. The
sequence of reasoning steps that we performed can also be saved
as a script, and thence re-run in future HERMIT sessions. This was
a toy example, but we will now present two more realistic case
studies, each of which contains a multitude of lemmas.

4. Case Study: Type-Class Laws
In this case study we use equational reasoning to verify that a num-
ber of type-class instances for common Haskell data types satisfy
the expected type-class laws. We consider the laws in Figure 4.
The data types we consider are lists, Maybe , and Map from the
containers package, as well as Identity and Reader from the
transformers package. Our approach was to state each law as a
GHC rewrite rule, and load it into HERMIT as a lemma (as we did
for the example in Section 3). We instantiated the laws for each
data type, and then transformed the instantiated laws until HER-
MIT was satisfied that they held. Note that we used the actual data
types and class instances defined in the base, containers, and
transformers packages.

We present the case study as follows. Section 4.1 demonstrates
the full details of verifying a single law. Section 4.2 then discusses
some practical issues that arose as a consequence of using GHC
Core as the object language. Section 4.3 describes how to mod-
ify the containers Cabal file to cause pre-written reasoning to
be automatically loaded, checked and applied during compilation.
Finally, Section 4.4 reflects on the overall success of the case study.

4.1 Example: return-left Monad Law for Lists
To give a flavour of the work involved in checking that a type-
class law holds for a specific instance, we present the calculation
for the return-left monad law for lists. The reasoning steps in this
calculation involve more complex transformations than our Map
Fusion example, which allows us to demonstrate the advantages of
using KURE’s strategy combinators for directing transformations.

Monoid

mempty-left ∀ x . mempty � x ≡ x
mempty-right ∀ x . x � mempty ≡ x

mappend-assoc ∀ x y z . (x � y) � z ≡ x � (y � z )

Functor

fmap-id fmap id ≡ id

fmap-distrib ∀ g h . fmap (g ◦ h) ≡ fmap g ◦ fmap h

Applicative
identity ∀ v . pure id ~ v ≡ v

homomorphism ∀ f x . pure f ~ pure x ≡ pure (f x)

interchange ∀ u y . u ~ pure y ≡ pure (λf → f y) ~ u
composition ∀ u v w . u ~ (v ~ w) ≡ pure (◦) ~ u ~ v ~ w

fmap-pure ∀ g x . pure g ~ x ≡ fmap g x

Monad

return-left ∀ k x . return x >>= k ≡ k x

return-right ∀ k . k >>= return ≡ k
bind-assoc ∀ j k l . (j >>= k)>>= l ≡ j >>= (λx → k x >>= l)

fmap-liftm ∀ f x . liftM f x ≡ fmap f x

Figure 4: Laws used in the ‘Type-Class Laws’ case study.

In order to observe the effect of instantiation on the types of
the lemma quantifiers, we begin by instructing HERMIT’s pretty
printer to display detailed type information. We then copy the
general law, which has already been loaded from a rewrite-rule
pragma, in preparation for instantiation.
hermit> set-pp-type Detailed
hermit> copy-lemma return-left return-left-list

return-left-list (Not Proven)
∀ (m :: * � *)

(a :: *)
(b :: *)
($dMonad :: Monad m)
(k :: a � m b)
(x :: a).

(>>=) m $dMonad a b (return m $dMonad a x) k ≡ k x

Next, we instantiate the type variablem to the list type constructor:
hermit> inst-lemma return-left-list ’m [| [] |]

return-left-list (Not Proven)
∀ (a :: *)

(b :: *)
($dMonad :: Monad [])
(k :: a � [b])
(x :: a).

(>>=) [] $dMonad a b (return [] $dMonad a x) k ≡ k x

(The [| |] syntax are delimiters enclosing manually written Core
expressions, which HERMIT then parses and resolves.) The type
of the dictionary binder has now been fully determined, so we
instantiate it as well:
hermit> prove-lemma return-left-list
proof> inst-dictionaries

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a).
(>>=) [] $fMonad[] a b (return [] $fMonad[] a x) k
≡
k x

Next we note that the application of return can be simplified to
a singleton list. We achieve this by unfolding return, which will
expose a case expression that scrutinises the $fMonad[] dictionary.
This can be simplified away by using HERMIT’s smash strategy,
which is a more aggressive version of the simplify strategy. This
will leave the actual instance method defining return for lists,
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which can also be unfolded. Rather than doing this step by step,
we direct HERMIT to focus on the application of return and
repeatedly unfold and smash the expression. (The { } brackets
limit the scope of the focus change.)
proof> { application-of ’return ; repeat (unfold <+ smash) }

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a).
(>>=) [] $fMonad[] a b ((:) a x ([] a)) k ≡ k x

Now we need to simplify away the >>= application. Unfolding
>>= directly results in a locally defined recursive worker named go,
in terms of which the list instance of >>= is defined. Reasoning in
the context of this recursive worker is tedious and brittle. We find it
cleaner to state and verify the following pair of lemmas separately,
then apply them as necessary during this proof:

bind-left-nil ∀ k . [ ]>>= k ≡ [ ]
bind-left-cons ∀ x xs k . (x : xs)>>= k ≡ k x ++ (xs >>= k)

proof> one-td (lemma-forward bind-left-cons)

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a).
(++) b (k x) ((>>=) [] $fMonad[] a b ([] a) k) ≡ k x

proof> one-td (lemma-forward bind-left-nil)

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a).
(++) b (k x) ([] b) ≡ k x

To eliminate the list append we appeal to another auxiliary lemma,
which can itself be verified by straightforward induction.

append-right ∀ xs . xs ++ [ ] ≡ xs

We apply append-right to complete the calculation:
proof> one-td (lemma-forward append-right)

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a). k x ≡ k x

proof> end-proof

4.2 Reasoning in GHC
Equational reasoning in HERMIT is performed in the context of
GHC Core. While this is a small, relatively stable, typed interme-
diate language, it was designed for compilation and optimisation,
not equational reasoning. Consequently, there are a few practical
concerns and limitations regarding reasoning with this language.

4.2.1 Implications
The Monoid instance for Maybe a requires a Monoid instance to
exist for the type a:

instance Monoid a ⇒ Monoid (Maybe a) where . . .

Correspondingly, the calculation to verify that the monoid associa-
tivity lemma holds for Maybe a relies on the monoid associativity
lemma for a . Thus, we used the following lemma for Maybe:

mappend-assoc-impl
∀ m . (∀ (x :: m) y z . (x � y) � z ≡ x � (y � z ))

⇒
(∀ (i :: Maybe m) j k . (i � j ) � k ≡ i � (j � k))

HERMIT cannot generate such an implication lemma from the
original mappend-assoc lemma automatically. Although it can
spot the superclass constraint, the associated laws are not part of the
Haskell language, and thus are not available within GHC. Instead,
we constructed the implication lemma ourselves using HERMIT’s
transformation DSL.

Test-suite hermit-proofs
hs-source-dirs: laws, .
main-is: Laws.hs
type: exitcode-stdio-1.0

build-depends: base >= 4.2 && < 5, array,
deepseq >= 1.2 && < 1.4, ghc-prim,
hermit == 1.0.*

ghc-options:
-fexpose-all-unfoldings
-fplugin=HERMIT
-fplugin-opt=HERMIT:Main:laws/Functor.hec
-fplugin-opt=HERMIT:Main:laws/Monoid.hec
-fplugin-opt=HERMIT:Main:resume

Figure 5: Additions to the Cabal configure file for containers in
order to automatically re-run the HERMIT scripts.

4.2.2 Newtypes
GHC’s newtype declaration offers the benefits of type abstraction
with no runtime overhead [4, 43]. This is accomplished by imple-
menting newtype constructors in GHC Core as type casts around
the enclosed expression, rather than as algebraic data constructors.
These casts are erased before code generation.

Reasoning in the presence of newtypes must deal with these
casts explicitly. HERMIT’s smash strategy attempts to float-out
and eliminate type casts where possible, and was effective at do-
ing so in the majority of our examples. In the few cases where the
smash strategy did not eliminate all the casts, the resultant expres-
sions were still α-equivalent and thus this did not pose a problem.

4.3 Configuring Cabal
As a GHC plugin, HERMIT integrates with GHC’s existing ecosys-
tem, including the Cabal packaging system. Cabal packages feature
a single (per-package) configuration file. This file describes how
Cabal should build the package, including how to build test cases.

We co-opt this ability to direct HERMIT to run and check our
scripts whenever the package is rebuilt. As an example, we added
a laws/ directory to the containers package, containing three
files. The first is Laws.hs, which provides the RULES pragmas
representing the type-class laws. The other two files are the HER-
MIT scripts: one for the functor-law calculations, the other for the
monoid-law calculations.

We then added a Test-suite section, seen in Figure 5, to the
Cabal configuration file for containers. This defines the target
code for the test, which is Laws.hs, along with build dependen-
cies. The build dependencies shown are those of the containers
library, plus an additional dependency on hermit. Note that this
additional dependency does not change the dependencies of the
containers library itself.

Cabal runs the HERMIT scripts by providing GHC with the
required series of flags. The -fexpose-all-unfoldings flag
was described in Section 2.3. The -fplugin=HERMIT flag invokes
HERMIT, and the remaining three flags direct HERMIT to target
the Main module (found in Laws.hs) with two scripts, resuming
compilation on successful completion.

The HERMIT scripts should also be added to the configuration
file’s extra-source-files section, so that they are included in
source distributions. In order to run the scripts, we use the normal
Cabal testing work-flow:
> cabal configure --enable-tests
> cabal build

Note that we do not actually have to run the generated test, as the
HERMIT scripts are run at compile time.
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Table 1: Script lengths in the ‘Type-Class Laws’ case study.

Law (see Fig. 4) Data Type
List Maybe Map Identity Reader

mempty-left 7 5 7
N/Amempty-right 6 5 7

mappend-assoc 15 15 -
fmap-id 9 7 12 5 10
fmap-distrib 10 8 16 5 10
identity 7 8

N/A

5 15
homomorphism 8 5 5 15
interchange 18 5 5 15
composition 23 5 5 15
fmap-pure 20 5 5 15
return-left 9 5 5 12
return-right 18 5 5 12
bind-assoc 14 5 5 12

4.4 Reflections
Results for the case study are listed in Table 1, and the complete set
of HERMIT scripts are available online [15]. The numbers in the
table represent number of lines in the HERMIT script, including
instantiation steps. Overall, verifying type-class laws in GHC Core
appears to be viable with the simple reasoning techniques offered
by HERMIT.

In general, we found that reasoning about type classes and dic-
tionaries proceeded in much the same way as the example in Sec-
tion 4.1. Handling class methods requires many unfolding and sim-
plification steps. Once this is done, any required inductive reason-
ing tends to be short and straightforward.

The one law we did not verify was mappend-assoc for the
Map data type. This was not because of any technical limitation
of HERMIT, but rather because the required reasoning steps were
not obvious to us. The mappend operation for Map is an efficient
left-biased hedged union whose implementation relies on several
functions that maintain invariants of the underlying data structure.
We expect that this law could be verified by a user with a better
understanding of these functions and the invariants they maintain.

Unsurprisingly, stating smaller auxiliary lemmas for (re-)use in
the larger calculations helped to manage complexity. In contrast,
our initial attempts to perform the larger calculations directly re-
quired working at a lower level, and led to a substantial amount of
duplicated effort. This was especially true of the Applicative laws,
as the Applicative instances were often defined in terms of their
Monad counterparts. In the case of lists, naively unfolding >>= re-
sults in a local recursive worker function. Reasoning in the presence
of such workers requires many tedious unfolding and let-floating
transformations. Using auxiliary lemmas about >>= allowed us to
avoid this tedium.

We did not attempt to quantify the robustness of the HERMIT
scripts with respect to changes in the underlying source code. The
types and instances that we considered are standard and relatively
stable over time. However, as most of the calculations were fairly
heavy on unfolding and simplification, we expect they would be
sensitive to changes. To lower the burden of amending existing
scripts, HERMIT’s interactive mode allows a user to pause a script
midway, and to step backwards and forwards.

Configuring a Cabal package to re-run scripts on recompilation
is straightforward, requiring a single additional section to a pack-
age’s Cabal configuration file. End users of the package can still
build and install the package as before, but the HERMIT scripts
can be checked by enabling the package tests.

5. Case Study: Making a Century
To assess how well HERMIT supports general-purpose equational
reasoning, we decided to mechanise some existing textbook reason-
ing as a case study. We selected the chapter Making a Century from
the textbook Pearls of Functional Algorithm Design [2, Chapter 6].
The book is dedicated to reasoning about Haskell programs, with
each chapter calculating an efficient program from an inefficient
specification program. The program in Making a Century computes
the list of all the ways that the addition and multiplication operators
can be inserted into the list of digits [1 . . 9], such that the resultant
expression evaluates to 100. For example, one solution is:

12 + 34 + 5× 6 + 7 + 8 + 9 = 100

The details of the program are not overly important to the pre-
sentation of our case study, and we refer the interested reader to
the textbook for details [2, Chapter 6]. What is important, is that
the derivation of an efficient program involves a substantial amount
of equational reasoning, and the use of a variety of reasoning tech-
niques, including fold/unfold transformation [5], structural induc-
tion (Section 2.4), and fold fusion [25].

We will not present the entire case study in this paper. Instead,
we will give a representative extract, and then discuss the aspects
of the mechanisation that proved challenging. The HERMIT scripts
for the complete case study are available online [15].

5.1 HERMIT Scripts
After creating a Haskell file containing the definitions from the
textbook, our next task was to introduce the lemmas used in the
equational reasoning. The main lemmas (specifically, those that are
named in the textbook) are displayed in Figure 6, which should give
an impression of their complexity. The majority of these lemmas
are equivalences between expressions, so we were able to introduce
them via rewrite rules in the Haskell source file (see Section 2.1).
The one exception was Fold Fusion, which we introduced using
HERMIT’s transformation DSL. Lemma 6.5 is also a composite
lemma, but we found it more convenient to introduce a pair of
lemmas rather than constructing an explicit conjunction.

Throughout this case study, we took a consistent approach to
mechanising the equational reasoning in the textbook. For each
lemma, we first worked step-by-step in HERMIT’s interactive
mode, and then, when the calculation was complete, saved it as
a script that could be invoked thereafter. We took the same ap-
proach to the main program transformation (solutions), invoking
the lemmas as necessary. Roughly half of the HERMIT equational
reasoning in this case study was transliterated from the textbook
equational reasoning, and the remaining half was calculations that
we developed for ourselves (see Section 5.3). Both halves pro-
ceeded in a similar manner, but with more experimentation and
backtracking during the interactive phases for the latter.

As an example, compare the calculations to verify Lemma 6.8.
Figure 7a presents the calculation extracted verbatim from the
textbook [2, Page 36], and Figure 7b presents the corresponding
HERMIT script. Note that lines beginning “--” in a HERMIT script
are comments, and for readability we have typeset them differently
to the monospace HERMIT code. These comments represent the
current expression between transformation steps, and correspond
to the output of the HERMIT REPL when working interactively.
When generating a script after an interactive session, HERMIT
can insert these comments if desired. The content of the comments
can be configured by various pretty-printer modes — in this case
we have opted to have HERMIT omit the type arguments (as in
Section 3) to improve the correspondence with the textbook extract.

The main difference between the two calculations is that in
HERMIT we must specify where in the term we are working, and in
which direction lemmas are applied. In contrast, in the textbook the
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Fold Fusion ∀ f g h a b . (f undefined ≡ undefined ∧ f a ≡ b ∧ ∀ x y . f (g x y) ≡ h x (f y)) ⇒ f ◦ foldr g a ≡ foldr h b

Lemma 6.2 filter (good ◦ value) ≡ filter (good ◦ value) ◦ filter (ok ◦ value)
Lemma 6.3 ∀ x . filter (ok ◦ value) ◦ extend x ≡ filter (ok ◦ value) ◦ extend x ◦ filter (ok ◦ value)

Lemma 6.4 ∀ x . map value ◦ extend x ≡ modify ◦map value

Lemma 6.5 ∀ f g . fst ◦ fork (f , g) ≡ f ∧ snd ◦ fork (f , g) ≡ g
Lemma 6.6 ∀ f g h . fork (f , g) ◦ h ≡ fork (f ◦ h, g ◦ h)

Lemma 6.7 ∀ f g h k . fork (f ◦ h, g ◦ k) ≡ cross (f , g) ◦ fork (h, k)

Lemma 6.8 ∀ f g . fork (map f ,map g) ≡ unzip ◦map (fork (f , g))
Lemma 6.9 ∀ f g . map (fork (f , g)) ≡ zip ◦ fork (map f ,map g)

Lemma 6.10 ∀ f g p . map (fork (f , g)) ◦ filter (p ◦ g) ≡ filter (p ◦ snd) ◦map (fork (f , g))

Figure 6: Main lemmas in the ‘Making a Century’ case study.

unzip ·map (fork (f , g))

= { definition of unzip }
fork (map fst ,map snd) ·map (fork (f , g))

= { (6.6) and map (f · g) = map f ·map g }
fork (map (fst · fork (f , g)),map (snd · fork (f , g)))

= { (6.5) }
fork (map f ,map g)

(a) Textbook extract.

-- forall f g . fork ((,) (map f ) (map g)) = (.) unzip (map (fork ((,) f g)))

forall-body ; eq-rhs

-- (.) unzip (map (fork ((,) f g)))

one-td (unfold ’unzip)

-- (.) (fork ((,) (map fst) (map snd))) (map (fork ((,) f g)))

lemma-forward "6.6" ; any-td (lemma-forward "map-fusion")

-- fork ((,) (map ((.) fst (fork ((,) f g)))) (map ((.) snd (fork ((,) f g)))))

one-td (lemma-forward "6.5a") ; one-td (lemma-forward "6.5b")

-- fork ((,) (map f ) (map g))

(b) HERMIT script.

Figure 7: Comparison of the textbook calculation with the HERMIT script for Lemma 6.8.

lemmas to be used or functions to be unfolded are merely named,
relying on the reader to be able to deduce how it was applied. Here,
forall-body and eq-rhs are navigation commands that direct
HERMIT to descend into the body of the universal quantifier, and
then into the right-hand side of the equivalence. one-td (once,
traversing top-down) and any-td (anywhere, traversing top-down)
are strategy combinators lifted from KURE [34].

In this calculation, and most others in the case study, we think
that the HERMIT scripts are about as clear, and not much more
verbose, than the textbook calculations. There was one exception
though: manipulating the function-composition operator.

5.2 Associative Operators
On paper, associative binary operators such as function composi-
tion are typically written without parentheses. However, in GHC
Core, operators are represented by nested application nodes in an
abstract syntax tree, with no special representation for associative
operators. Terms that are equivalent semantically because of asso-
ciativity properties can thus be represented by different trees. Con-
sequently, it is sometimes necessary to perform a tedious restruc-
turing of the term before a transformation can be applied.

For function composition, one way to avoid this problem is
to unfold all occurrences of the composition operator and work
with the η-expanded terms, as this always produces an abstract
syntax tree consisting of a left-nested sequence of applications.
However, we did not do so for this case study because the textbook
calculations are written in a point-free style, and we wanted to
match them as closely as possible.

More generally, rewriting terms containing associative (and
commutative) operators is a well-studied problem [e.g. 3, 10, 23],
and it remains as future work to provide better support for manipu-
lating such operators in HERMIT.

5.3 Assumed Lemmas in the Textbook
As is common with pen-and-paper reasoning, several properties
that are used in the textbook are assumed without an accompanying
proof being given. This included some of the named lemmas from

Figure 6, as well as several auxiliary properties, some explicit and
some implicit (Figure 8). While performing reasoning beyond that
presented in the textbook was not intended to be part of the case
study, we decided to attempt to verify these properties in HERMIT.

Of the assumed named lemmas, Fold Fusion has a straightfor-
ward inductive proof, which can be encoded fairly directly using
HERMIT’s built-in structural induction. Lemmas 6.5, 6.6, 6.7 and
6.10 are properties of basic function combinators, and verifying
them in HERMIT mostly consisted of unfolding definitions and
simplifying the resultant expressions, with the occasional basic use
of induction. The same was true for the auxiliary lemmas, which
we list in Figure 8. Systematic calculations such as these are ripe
for mechanisation, and HERMIT provides several strategies that
perform a suite of basic simplifications to help with this. Conse-
quently, the HERMIT scripts were short and concise.

Lemmas 6.2, 6.3 and 6.4 were more challenging. For Lemma
6.2 we found it helpful to introduce the filter-split auxiliary
lemma (Figure 8), which we consider to capture the essence of the
key optimisation in the case study. After this, the calculation was
fairly straightforward. However, we found Lemmas 6.3 and 6.4 to
be non-trivial properties, without (to us) obvious proofs, and so we
did not verify them in HERMIT. This did not inhibit the rest of the
case study, as HERMIT allows an unverified lemma to be taken as
an assumption. If such assumed lemmas are used in a calculation,
by default HERMIT will issue a compiler warning. This ability to
assume lemmas can be disabled by a HERMIT option, allowing the
user to ensure that only verified lemmas are used.

Finally, the simplification of the definition of expand is stated
in the textbook without presenting any intermediate transformation
steps [2, Page 40]. It is not obvious to us what those intermediate
transformation steps would be, and thus we did not encode this
simplification in HERMIT.

5.4 Constructive Calculation
There was one proof technique used in the textbook that HERMIT
does not directly support: calculating the definition of a function
from an indirect specification. Specifically, the textbook postulates

31



comp-id-L ∀ f . id ◦ f ≡ f

comp-id-R ∀ f . f ◦ id ≡ f
comp-assoc ∀ f g h . (f ◦ g) ◦ h ≡ f ◦ (g ◦ h)

comp-assoc4 ∀ f g h k l . f ◦ (g ◦ (h ◦ (k ◦ l)))

≡
(f ◦ (g ◦ (h ◦ k))) ◦ l

map-id map id ≡ id

map-fusion ∀ f g . map (f ◦ g) ≡ map f ◦map g
map-strict ∀ f . map f undefined ≡ undefined

zip-unzip zip ◦ unzip ≡ id
filter-strict ∀ f . filter f undefined ≡ undefined

filter-split ∀ p q . (∀ x . q x ≡ False ⇒ p x ≡ False)

⇒
filter p ≡ filter p ◦ filter q

Figure 8: Auxiliary lemmas in the ‘Making a Century’ case study.

the existence of an auxiliary function (expand ), uses that function
in the conclusion of the fold-fusion rule, and then calculates a defi-
nition for that function from the indirect specification given by the
fold-fusion pre-conditions. HERMIT is based around transforming
existing definitions, and does not support this style of reasoning;
so we were unable to replicate this calculation. However, we were
able to verify the calculation by working in reverse: starting from
the definition of expand , we proceeded to validate the use of the
fold-fusion law by checking the corresponding pre-conditions.

5.5 Calculation Sizes
As exemplified by Figure 7, the HERMIT scripts are roughly the
same size as the textbook calculations. It is difficult to give a
precise comparison, as the textbook uses both formal calculation
and natural language. We present some statistics in Table 2, but we
recommend not extrapolating anything from them beyond a rough
approximation of the scale of the calculations. We give the size
of the two main calculations (transforming solutions and deriving
expand ), as well as those for the named lemmas. In the textbook
we measure lines of natural-language reasoning as well as lines
of formal calculation, but not definitions, statement of lemmas, or
surrounding discussion. In the HERMIT scripts, we measure the
number of transformations applied, and the number of navigation
and strategy combinators used to direct the transformations to the
desired location in the term. We do not measure commands for
stating lemmas, loading files, switching between transformation
and proof mode, or similar, as we consider these comparable to the
surrounding discussion in the textbook. To get a feel for the scale
of the numbers given, we recommend that the user compares the
numbers for Lemma 6.8 in Table 2 to the calculation in Figure 7.

5.6 Reflections
Our overall experience was that mechanising the textbook reason-
ing was fairly straightforward, and it was pleasing that we could
translate most steps of the textbook calculations into an equivalent
HERMIT command. The only annoyance was the occasional need
to manually apply lemmas for manipulating operator associativity
(see Section 5.2) so that the structure of the term would match the
transformation we were applying.

While having to specify where in a term each lemma must be
applied does result in scripts that are a little more verbose than
the textbook calculations, we do not necessarily consider that to
be detrimental. Rather, we view a pen-and-paper calculation that
does not specify the location as passing on that work to the reader,
who must determine for herself where, and in which direction,
a lemma is intended to be applied. Furthermore, when desired,
strategy combinators can be used to avoid specifying precisely
which sub-term the lemma should be applied to.

Table 2: Comparison of calculation sizes in ‘Making a Century’.

Calculation Textbook HERMIT Commands
Lines Transformation Navigation

Fold Fusion assumed 19 20
Lemma 6.2 assumed 7 2
Lemma 6.3 assumed assumed
Lemma 6.4 assumed assumed
Lemma 6.5 assumed 6 4
Lemma 6.6 assumed 2 1
Lemma 6.7 assumed 3 1
Lemma 6.8 7 5 6
Lemma 6.9 1 4 4
Lemma 6.10 assumed 12 16
solutions 16 13 12
expand 19 22 21

During the case study we also discovered one error in the text-
book. Specifically, the inferred type of the modify function [2, Page
39] does not match its usage in the program. We believe that its def-
inition should include a concatMap, which would correct the type
mismatch and give the program its intended semantics, so we have
modified the function accordingly in our source code.

6. Related Work
There have been three main approaches taken to verifying prop-
erties of Haskell programs: testing, automated theorem proving,
and equational reasoning. The most prominent testing tool is
QuickCheck [6], which automatically generates large quantities
of test cases in an attempt to find a counterexample. Other test-
ing tools include SmallCheck [31], which exhaustively generates
test values of increasing size so that it can find minimal counter-
examples, and Lazy SmallCheck [28, 31], which also tests partial
values. Jeuring et al. [22] have recently developed infrastructure to
support using QuickCheck to test type-class laws, as well as to test
the individual steps of user-provided equational reasoning.

There are several tools that attempt to automatically prove prop-
erties of Haskell programs by interfacing with an automated the-
orem prover. These include Liquid Haskell [41, 42], Zeno [36],
HALO [44], and the Haskell Inductive Prover (Hip) [30]. The gen-
eral approach taken by these tools is to translate the Haskell pro-
gram, via GHC Core, into a first-order logic. User-stated program
properties are then checked by passing them to an external theorem
prover for verification. For inductive proofs, these tools provide
their own automated induction principle(s), which then invoke the
external theorem prover as required. Another similar tool is Hip-
Spec [7], which is built on top of Hip. The main novelty of HipSpec
is that it infers suites of properties about programs from their defi-
nitions in a bottom-up fashion, rather than taking the goal-directed
approach of the aforementioned tools which start from the user-
stated program properties and seek to prove them. Thus user-stated
properties are optional: HipSpec can check user-stated properties
against those it has inferred, but alternatively it can just generate
program properties as documentation.

Equational reasoning is used both to verify properties of Haskell
programs and to validate the correctness of program transforma-
tions. Most equational reasoning about Haskell programs is per-
formed manually with pen-and-paper or text editors, of which there
are numerous examples in the literature [e.g. 2, 8, 17, 19, 25]. Prior
to HERMIT there have been several tools for mechanical equa-
tional reasoning on Haskell programs, including the Haskell Equa-
tional Reasoning Assistant (HERA) [18], the Ulm Transformation
System (Ultra) [21], and the Programming Assistant for Transform-
ing Haskell (PATH) [40].
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HERA was our own preliminary tool, and was a direct prede-
cessor of HERMIT. HERA operated on Haskell source code, via
Template Haskell [35]. However, the lack of typing information
proved an obstacle to many non-syntactic transformations, such as
worker/wrapper [19]. This was the primary reason for our switch to
GHC Core when designing the HERMIT system, although the large
size of the Template Haskell grammar was another consideration.

Ultra has much in common with HERMIT in terms of func-
tionality and available transformations. The main distinction is that
Ultra operates on the source code of its own Haskell-like language.
This language is a sub-language of Haskell 98 (notably excluding
type classes), extended with non-executable descriptive operators
(e.g. “there exists a value such that...”). The idea of the descriptive
operators is to allow a user to express concise high-level specifi-
cations, which can then be transformed into executable programs.
This differs from HERMIT, where our starting point is a valid GHC
Core program. Ultra also comes with built-in support for a vari-
ety of algebraic structures (e.g. monoids), which makes reasoning
about binary operators smoother than in HERMIT.

PATH is also based on transforming a small Haskell-like lan-
guage, called PATH-L. The PATH tool automatically translates
from a sub-language of Haskell 98 (excluding type classes, among
other things) to PATH-L. The user then performs equational reason-
ing on the PATH-L program, and finally PATH automatically con-
verts the resultant program back to Haskell. PATH was designed
with an emphasis on total correctness, and all PATH transforma-
tions are guaranteed not to introduce non-termination, even in the
presence of infinite or partial values.

Another tool similar to HERMIT is the Haskell Refactorer
(HaRe) [24, 39], which supports user-guided refactoring of Haskell
programs. However, the objective of HaRe is slightly different,
as refactoring is concerned with program transformation, whereas
HERMIT supports both transformation of programs and verifi-
cation of program properties. The original version of HaRe tar-
gets Haskell 98 source code, but recently work has begun on a
re-implementation of HaRe that targets GHC-extended Haskell.

7. Conclusions
We have presented two case studies of using HERMIT to perform
equational reasoning on GHC Core programs. The first case study
demonstrated that it is viable to verify type-class laws using HER-
MIT. The HERMIT scripts were uniformly brief, and predomi-
nantly consisted of unfolding definitions and simplification, with
relatively simple reasoning steps. Additionally, we note that while
we focused on type-class laws in that case study, the same approach
can be used to verify GHC rewrite-rule pragmas.

HERMIT now provides structural induction as a built-in trans-
formation, and supports transformations that have preconditions,
such as the fold-fusion law (used in our second case study) and
the worker/wrapper transformation [19, 32]. In a prior publication
[33] we described encoding the worker/wrapper transformation in
HERMIT, and used it to optimise a variety of example programs.
However, at the time HERMIT had no means of verifying the pre-
conditions, so they were not mechanically checked. Using HER-
MIT’s new equational-reasoning infrastructure, we have updated
the worker/wrapper encoding such that user scripts verifying the
preconditions are checked before the transformation can be applied.
All of the preconditions for the examples in that previous publica-
tion have now been verified in HERMIT, and the corresponding
scripts are bundled with the HERMIT package [14].

The case studies did highlight HERMIT’s need for a good parser
for GHC Core expressions and types. GHC once specified an Exter-
nal Core format, including a parser and pretty-printer, but External
Core has recently been removed because it was not being main-
tained. HERMIT already features a strong pretty-printing capabil-

ity, but better parsing facilities would make working interactively
with GHC Core much simpler for the user.

In the past [1, 13] HERMIT has been used to successfully pro-
totype GHC optimisations by encoding them as sequences of trans-
formation steps. Now HERMIT can also be used to reason about
any preconditions those transformation steps have, as well as to
provide mechanical assurances about equational reasoning that is
intended to prove properties of Haskell programs, including type-
class laws for instance declarations, and user optimisations stated
as GHC rewrite rules. By applying and checking the user’s reason-
ing during compilation, HERMIT enforces a connection between
the source code, the reasoning steps, and the compiled program.
GHC plugins developed using HERMIT can then be deployed with
Haskell’s Cabal packaging system, meaning that they integrate with
a developer’s normal work-flow. HERMIT development is ongoing,
and we seek to target ever-larger examples.
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Appendix
To give an idea of the complexity of defining composite lemmas us-
ing HERMIT’s transformation DSL, we present here the encoding
of the filter-split lemma from the ‘Making a Century’ case study.

filter-split
∀ p q . (∀ x . q x ≡ False ⇒ p x ≡ False)

⇒
filter p ≡ filter p ◦ filter q

We construct this lemma by building the corresponding GHC Core
terms. This involves looking up the filter and (◦) functions, gen-
erating the universally quantified variables (of the correct types),
and then constructing the GHC Core expressions and HERMIT
lemma. To assist with this, HERMIT provides an assortment of
smart constructors, including $$ for expression application and =⇒
and === for logical implication and equivalence. Note that impli-
cation lemmas are annotated with a name for the antecedent, so that
it can be referred to when reasoning about the consequent.

filterSplitLemma :: LemmaLibrary
filterSplitLemma = do

filterId ← findIdT "filter"

compId ← findIdT "."

constT $ do
a ← newTyVar "a"

let aTy = mkTyVarTy a

p ← newVar "p" (aTy −→ boolTy)
q ← newVar "q" (aTy −→ boolTy)
x ← newVar "x" aTy

qx ← q $$ x
px ← p $$ x
filterp ← filterId $$ p
filterq ← filterId $$ q
filterpcomp ← compId $$ filterp
filterpq ← filterpcomp $$ filterq

return $ newLemma "filter-split" $
mkForall [a, p, q ] $

("filter-split-antecedent",
mkForall [x ] (("qx-False", qx === falseDataConId)

=⇒ (px === falseDataConId)))
=⇒

filterp === filterpq
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While this is not an ideal way of constructing composite lem-
mas, HERMIT can check that only well-typed GHC Core terms
are produced, which is effective at catching mistakes. Furthermore,
note that a lemma introduced in this way is not treated as an axiom
any more than a lemma introduced via other means: the user must
still verify the lemma using equational reasoning inside HERMIT.

As future work, we aim to provide a parser for an extension
of GHC rewrite-rule syntax, so that composite lemmas can be
written in a familiar Haskell-like syntax, with type and dictionary
arguments being automatically inferred and inserted.
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