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Abstract

Network science provides an invaluable set of tools and techniques for improving

our understanding of many important biological processes at the systems level. A

network description provides a simplified view of such a system, focusing upon the

interactions between a usually large number of similar biological units. At the

cellular level, these units are usually interacting genes, proteins or small molecules,

resulting in various types of biological networks. Metabolic networks, in particular,

play a fundamental role, since they provide the building blocks essential for cellular

function, and thus, have recently received a lot of attention. In particular, recent

studies have revealed a number of universal topological characteristics, such as a

small average path-length, large clustering coefficient and a hierarchical modular

structure. Relations between structure, function and evolution, however, for even

the simplest of organisms is far from understood.

In this thesis, we employ network analysis in order to determine important links

between an organism’s metabolic network structure and the environment under

which it evolved. We address this task from two different perspectives: (i) a network

classification approach; and (ii) a more physiologically realistic modelling approach,

namely hypernetwork models. One of the major contributions of this thesis is the

development of a novel graph embedding approach, based on low-order network mo-

tifs, that compares the structural properties of large numbers of biological networks

simultaneously. This method was prototyped on a cohort of 383 bacterial networks,
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and provides powerful evidence for the role that both environmental variability, and

oxygen requirements, play in the forming of these important networked structures.

In addition to this, we consider a hypernetwork formalism of metabolism, in an

attempt to extend complex network reasoning to this more complicated, yet phys-

iologically more realistic setting. In particular, we extend the concept of network

reciprocity to hypernetworks, and again evidence a significant relationship between

bacterial hypernetwork structure and the environment in which these organisms

evolved. Moreover, we extend the concept of network percolation to undirected hy-

pernetworks, as a technique for quantifying robustness and fragility within metabolic

hypernetworks, and in the process find yet further evidence of increased topological

complexity within organisms inhabiting more uncertain environments. Importantly,

many of these relationships are not apparent when considering the standard ap-

proach, thus suggesting that a hypernetwork formalism has the potential to reveal

biologically relevant information that is beyond the standard network approach.
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Chapter I

Introduction

In the last decade, the area of complex networks has developed significantly, due

primarily to the availability of genome scale data and to advances in computational

techniques. The field is inter-disciplinary by nature and joins together such diverse

areas as physics, mathematics, biology, social sciences and many more. The Internet,

social and biochemical networks provide just a few examples of networks that have

been widely studied to date [1, 2, 3]. Remarkably, despite the differences that exist

between these networked systems, important overarching rules have emerged: scale-

free [4] and small-world [5] phenomena (the definitions of which are given in Chapter

2), for example. Moreover, the topology of real-world networks has been shown to

deviate significantly from random graphs, such as those studied by Erdős and Rényi,

rather, real-world network organisation tends to lie somewhere between completely

random and regular lattice-like structures.

1.1 A Brief Historical Background

Although the emerging field of complex networks witnessed its major developments

in the last 15 years, its origin actually dates back to as early as the 18th century. In-

deed, the study of networks traditionally belongs to a branch of discrete mathematics

called graph theory. The story began when Leonhard Euler, a Swiss mathematician,

published his solution to the famous Königsberg bridge problem in 1736. It was this

4



1.1 A Brief Historical Background 5

paper that motivated the analysis of real problems using graph structures, leading

to substantial developments in graph theory [6, 7, 8].

Since Euler many other mathematicians have contributed to graph theory, how-

ever their main focus was in determining the properties of small, structured graphs,

such as k-regular graphs, trees or lattice graphs. It was not until the 1950s that

Paul Erdős and Albert Rényi, two Hungarian mathematicians, diverted the atten-

tion towards random graphs. In their seminal 1959 paper [9] they set about studying

large (possibly infinite) irregular graphs. Importantly, this work led to the now fa-

mous Erdős-Rényi (ER) random graph model (cf. §2.3) that is still widely used to

this very day as a null model for comparative purposes when studying real-world

networks.

In the 1950s, 60s and 70s graph theory gained further prominence through its

use in a number of different social experiments, perhaps the most famous of which

were those by the social psychologist Stanley Milgram, that led to the introduction

of the small-world (SW) concept [10]. Other notable work in this area includes that

of Katz [11], Freeman [12] and Zachary [13]. The work of Milgram, in particular,

has led to a number of references in popular culture to the small-world phenomena,

such as The Oracle of Bacon (http://oracleofbacon.org/), six-degrees of separation,

and even to the saying of ‘it’s a small world’.

In the late 1990s the study of complex networks took a major step towards its

current status. The area received an explosion of renewed interest and research, and

scientists from a wide variety of disciplines started using network models to describe

a range of diverse systems. Notably, it was the pioneering work described in two

seminal papers that triggered this renewed interest. The first was that of Watts

and Strogatz (WS) [5], who, motivated by the SW property, proposed a simple, yet

remarkable model that interpolated between a regular ring lattice and a classical

random graph. Using the clustering coefficient and characteristic path-length (the

definitions of which are given in Chapter 2) to quantify ‘small-worldness’, they were

able to show that not only did this new model exhibit the SW property, but it was

comparable to a number of real-world networks that have a small average path length

and high clustering coefficient (e.g. neural network of C. elegans, the US power grid

and a network of Hollywood film collaborations), in contrast to the traditionally

http://oracleofbacon.org/
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used random graph models.

The next big-step forward came just a year later. Physicists Albert Barabási and

Réka Albert (BA) noticed what they deemed to be a universal property amongst

complex systems, and that was that many of these systems exhibited a decentralised

structure, which deviates significantly from the structure of both the random ER

graph model and the new model of Watts and Strogatz. Instead, these networks

were found to consist of a few highly connected vertices which they labelled hubs,

along with many vertices with very few connections. Such a structure is something

of a recurring theme in physics and so Barabási and Albert immediately recognised

that the degree structure of such networks must follow a power-law distribution.

Immediately, they set about constructing a model capable of reproducing this struc-

ture, and the result was the now famous preferential attachment model (a.k.a. the

BA model) [4].

Motivated by these unexpected discoveries, a plethora of new network measures

and models have been proposed [14, 15], of which, a few key concepts stand out due

to the dominant role they have played in the field. Centrality measures, for exam-

ple, that provide a means of ranking network nodes according to their ‘importance’

within the network, have revealed a number of interesting results concerning net-

work resilience, stability and functionality [16, 17]. For example, many real-world

networks have been found to be resilient against random failures, yet are vulnerable

to targeted ‘attacks’ on the ‘important’ vertices [18, 19, 20], and thus these networks

display a surprising level of robustness. An additional feature of many real-world

systems is that they exhibit a so-called modular structure, that is, the network is

organised into groups of densely interconnected vertices with sparse connections be-

tween them [21, 22, 23]. A number of algorithms exist for estimating the modularity

of a network, the most common of which is the Newman-Girvan algorithm [24, 25].

Modularity is particularly important to biological networks, since it is considered

to be one of the major underlying principles of these systems. Another important

concept, especially for biological networks, is that of network motifs, that is, small

recurring patterns of interconnected vertices across a network. Importantly, network

motifs are often considered to be the “building blocks” of real complex networks,

and a number of studies have evidenced significant relationships between network
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motifs and functional and evolutionary properties of cellular networks [26, 27, 28].

Despite the many advances made over the last 15 years or so, the area of network

science is still in its infancy. Many open questions remain and a number of contro-

versies need readdressing, for example, previous results suggest that the universality

of the scale-free phenomena may actually be a result of network misrepresentation,

either due to inappropriate models or due to a lack of confidence and coverage in

network data – particularly in the biological sciences, due to genome databases con-

taining missing and erroneous annotations [29, 30, 31, 32]. Thus, an important focus

of future research in network science is in the development of more ‘realistic’ network

models, e.g. hyper-graphs [33], temporal networks [34], multiplex networks [35], etc.

Also, despite the vast array of network measures that have been proposed to date,

a strict framework for characterising a network via its structural properties remains

out of reach. Clearly, network classification has considerable applications in biology

and beyond, and thus presents an important future challenge for researchers working

in network science. Future progress in these areas promises to provide greater un-

derstanding and insight into the behaviour of a number of diverse complex systems,

which are currently far from being fully understood.

1.2 Networks in Biology

The focus of this piece of work is biological networks, which can range from cel-

lular networks, the most important of which are protein-protein interaction (PPI)

networks, gene regulatory networks and metabolic networks, to neuronal networks

(across varying scales), disease networks and many more. Typically, a network de-

scription provides a greatly simplified view of the system at hand, focusing upon

interaction patterns between a usually very large number of similar ‘units’, e.g. in

a PPI network the units are proteins and we say that two proteins interact if they

can physically bind to each other. Thus, in this section we briefly describe some of

the most common networks arising in biology.

Cellular networks: Recent developments in high throughput techniques have re-

sulted in a large amount of cellular data becoming available for a variety of organ-
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isms [36, 37, 38, 39]. This cellular data describes molecular interactions between

genes, proteins and small molecules that take place within the cell. There are three

cellular networks that have been of particular interest in the literature: transcrip-

tional regulatory networks which describe the regulations occurring between genes

[40], metabolic networks which describe the entire set of biochemical reactions oc-

curring within the cell in order to transform one compound into another [41], and

protein-protein interaction networks which describe the physical interactions be-

tween proteins that bind together [42]. In such networks vertices represent the

biological entities, that is the genes, metabolites, proteins, etc., and edges represent

the functional, chemical or physical interactions between these molecules.

Neuronal networks: Graphical representations of neuronal networks provide a

new framework for analysing the anatomical and functional structure of the brain

[43]. At the cellular scale the network is formed via inter-neuronal connectivity,

that is, the vertices denote individual neurons and edges denote synapses. The

topology of the neuronal network of the roundworm C. elegans has been studied

at the microscopic level (see for example [44]). However, when considering more

complex species, the number of neurons and connections becomes unmanageable,

and coupled with a lack of available data at this level, means that most neuronal

networks are studied at a larger scale, e.g. inter-regional connectivity. In that

case the vertices denote brain regions and edges denote axonal (either individual or

bundles) projections.

Disease networks: Disease networks [45, 46, 47] provide a framework for analysing

associations between certain (disease) genes and a range of different medical disor-

ders, and can therefore help to unravel the genetic evolution for a range of complex

diseases. More specifically, the disease network is a bipartite graph (see §2.1), where

one set of vertices denotes the known genetic disorders and the other set denotes the

known disease genes. A gene and disorder are connected by an edge if the disorder

is implicated by a mutation of that gene.

Food webs: Another well studied example of a biological network is the food web

[20, 48, 49, 50]. These networks describe the feeding relationships between species

in a particular habitat. That is, the species in a habitat are either eaten by or eat
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another specie, and thus form a large complex network of predator-prey interactions.

A directed graph is often used to represent the predator-prey interactions, where

the vertices denote species and the edges are directed from the prey to the predator.

1.3 Overview of Thesis

In this thesis, we employ novel network techniques to investigate relations between

metabolic network structure and environmental variability for a large class of bac-

terial species. We propose a new form of graph embedding that uses so-called mo-

tif feature vectors alongside data-mining techniques to provide a low-dimensional

representation of the data, thus greatly improving our ability to analyse large num-

bers of networks of possibly differing order. In particular, we find strong evidence

for increased complexities within those metabolic networks that have evolved in

more variable environments. We then move on to consider hypernetwork models

of metabolism, and introduce a number of new concepts including an extension of

network reciprocity and site percolation to this more complicated setting. Again we

find strong correlations between environmental variability and metabolic network

structure, and perhaps more importantly, we find that many of these results are not

supported when a standard network analysis is performed.

We start in Chapter 2 by providing an overview of some of the fundamental

definitions and theories within the area of network science. This includes different

network representations, as well as a look at some of the most important network

measures, and a number of different network models. These tools and techniques

have been used to characterise a large variety of different real-world networks and

will prove invaluable in what follows. Additionally, we provide background on two

specific areas of network science that will be used in our work: network motifs and

percolation theory.

In Chapter 3 we provide an overview of metabolic modelling, focussing on metabolic

networks. We begin by discussing the metabolic process from a biological point-of-

view before discussing metabolic modelling in general. We then focus on metabolic

networks and discuss the pros and cons of the different network approaches avail-

able. We then go on to describe the process of constructing metabolic network
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models from the raw biological data. We then conclude the Chapter with a discus-

sion on the classification of different bacterial species according to environmental

variability, a concept of key importance to the investigations of this thesis.

In Chapter 4 we present a new network classification technique. This new ap-

proach is based on the concept of graph embedding, and uses so-called motif feature

vectors in order to embed a large number of networks into a low-dimensional space.

We illustrate the new technique on a number of synthetic networks including small-

world, scale-free and random graphs, as well as a large cohort of bacterial species.

Importantly we are able to show that the network motif structure of the bacte-

rial metabolic networks correlates with both environmental variability and changing

growth conditions. Moreover, we are able to determine exactly which motifs are

driving the results and can then attempt to explain the underlying biology behind

the structural differences observed. Further evidence of the added value of the new

approach follows from the observation that the aforementioned correlations disap-

pear when other, more standard network measures are considered.

In Chapter 5 we leave behind the standard network approach and instead con-

sider so-called hypernetwork models of metabolism. To begin we provide an overview

of the current state of the art in hypernetwork modelling of real-world systems, and

define a number of complex hypernetwork analogues (e.g. degree, clustering coef-

ficient, etc.) of the standard network measures. Importantly, a number of results

fail to hold in this more general setting and we shall illustrate this using a num-

ber of examples. Next, we consider an extension of the reciprocity measure to the

case of hypernetworks and demonstrate its usefulness on a cohort of 115 metabolic

hypernetworks. Finally, we introduce a percolation strategy, adapted to the hy-

pernetwork framework, and use this in order to determine the relationship between

environmental variability and metabolic hypernetwork robustness.

We conclude in Chapter 6 by summarising the work presented in this thesis and

by discussing possible avenues for future work.
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1.4 Publications and Presentations

The material presented in Chapter 4 as well as some of the material discussed in

Chapter 3 has been written as an article:

Network motif frequency vectors reveal evolving metabolic network organisa-

tion, N Pearcy, J J Crofts and N Chuzhanova, Molecular BioSystems, 2015,

11(1), 77–85.

This work was chosen to feature on the front cover of the January 2015 issue of the

journal Molecular BioSystems (see Figure 1.1).

The material presented in Chapter 5 has been written as two separate articles:

a conference proceedings

Hypergraph models of metabolism, N Pearcy, J J Crofts and N Chuzhanova,

International Journal of Biological, Veterinary, Agricultural and Food Engi-

neering, 2014, 8(8), 732–736;

and a journal paper

Complexity and robustness in hypernetwork models of metabolism, N Pearcy,

N Chuzhanova and J J Crofts, in preparation (2015).

In addition, the material in Chapter 4 as well as some of the work discussed in

Chapter 3 was first given as a presentation entitled “Classification of biological net-

works using graph theoretical techniques” at Nottingham Trent University, School

of Science and Technology, 7th Annual Research Conference in May 2013, and then

was given as a poster presentation at ICSB (International Conference on Systems

Biology), Copenhagen, Denmark, September 2013.

The material presented in Chapter 5 and again some of the work discussed in

Chapter 3 was given as a presentation entitled “Hypergraph models of metabolism”

at ICBCSB (International Conference of Bioinformatics, Computational and Sys-

tems Biology), London, UK, August 2014.
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Figure 1.1: Front cover of the January 2015 issue of Molecular BioSystems featuring
work from this thesis.



Chapter II

Preliminaries in Network

Science

2.1 An Introduction to Graph Theory and Com-

plex Networks

This thesis is concerned with the mathematical modelling of complex biological

systems through the use of graphs, or networks. In what follows we shall present

both an empirical and mathematical overview of networks. We start by describing

the variety of graph models that are used to represent complex networks, followed

by an overview of the most common network measures that are used to characterise

network topology. We then review the main network prototypes developed within

the last decade or so in order to provide insight into the mechanisms underlying these

intricate and complex systems. Finally, we discuss two topics in network theory that

will be of great importance to our studies: network motifs and percolation theory.

2.1.1 Types of Networks

In the language of graph theory, a network is represented by a pair G = (V,E),

where V = {v1, v2, ..., vn} is a finite set of nodes and E = {e1, e2, ...em} the set of

13
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(a) Simple undirected graph
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(b) Simple digraph

Figure 2.1: Illustration of undirected and directed network models.

edges representing connections between the nodes. Each ei is made up of subsets

of V , i.e. ei ⊆ V for i = 1, 2, ...m. In the case of a simple graph, i.e. one free

of loops and multiple edges, |ei| = 2, where |x| denotes the cardinality of x. Such

simple representations are common place in biology, where nodes are used to de-

scribe biological units of interest (e.g. genes, proteins or metabolites) and edges

represent the different types of interaction that can occur amongst these units (e.g.

regulation, binding and reactions). However, many biological systems are more nat-

urally described using more complicated mathematical objects, e.g. directed and/or

weighted networks, hypernetworks, multiplex networks, etc., the most important of

which we describe below.

Undirected Vs Directed Networks

Simple, undirected graphs are widely used to represent real world networks. This

type of graph model, however, is only suitable when relationships between elements

in a network are mutual (i.e. bi-directional, A → B and A ← B), which is often

not the case for many real-world networks. Take for example, a reaction network

[51]. Here we have the possibility of reversible and irreversible reactions, and so

using an undirected graph would ignore the information regarding the directionality

of the reaction. A few more examples where non-mutual relationships exist include

the world wide web, food webs, and economic networks. These networks are more

suitably represented by directed graphs, also referred to as digraphs. Vertices in

directed graphs are connected by directed edges, or arcs. In Figure 2.1 we provide

toy examples of both a simple undirected graph and a digraph.
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Figure 2.2: Illustration of a weighted graph model.

Weighted Networks

Not only do some real world networks have non-mutual relationships but they can

also have varying intensities, weights or strengths. To encapsulate this additional

structure one can define a weighted network by considering a graph G = (V,E) along

with an associated weight function w : E 7→ R, where R denotes the real number

line (see for example Figure 2.2). Almost all data emerging from the life sciences

is weighted in some sense; however, it is worth noting that the majority of network

studies tend to threshold the weights to obtain a standard binary description, as

network measures for non-weighted graphs are simpler and more readily interpreted.

Bipartite Networks

A bipartite (more generally multi-partite) graph can be either directed or undirected,

and is a special instance of a simple graph in which the vertex set V admits a

partition into two sets V1, V2, such that (u, v) ∈ E implies that either u ∈ V1, v ∈ V2
or v ∈ V1, u ∈ V2. Applications of this type of graph have been used to represent

both metabolic and disease networks, as discussed in [46] and [52].

2

A B C

1 2 3 54

(a) Bipartite graph

2

1

2

3
5

4
A

B C

1. 2.

(b) Bipartite graph projections

Figure 2.3: Illustration of a bipartite graph and two possible graph projections.

To apply standard network techniques to these graphs it is common to first

project these bipartite models onto some simple, unipartite representation. Note
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Figure 2.4: Illustration of undirected and directed hypergraph models.

however, that the projection of a bipartite graph is not unique, and that a variety of

unipartite graph representations exist. Figure 2.3 shows an example of a bipartite

graph together with two possible unipartite projections. This has led to a number of

controversies in the literature. Universal topological features such as the small-world

and scale-free phenomena, are now being questioned. In fact, a number of recent

studies now argue that many of these properties are a consequence of inappropriate

graph projections [53, 54, 55].

Hypernetworks

In some real-world networks links can join more than two nodes at a time. For

example, we might want to consider a metabolic network representing chemical

reactions in the cell. Chemical reactions often involve more than one substrate

and/or product and thus standard network models can prove inadequate in some

instances, e.g. path analysis. Hypergraphs provide a solution to this problem by

allowing edges to consist of two or more nodes, forming a hyperedge, and thus

preserving the additional information (see Figure 2.4a for an illustration). More

formally, a hypergraph consists of two elements: a vertex set, V , and a hyperedge

set, E = {E1, E2, . . . , Em}. Each Ei is made up of subsets of V , i.e. Ei ⊆ V for

i = 1, 2, ...,m. Note that 2 ≤ |Ei| ≤ n. If in addition, one considers directed

hypergraphs then each hyperarc is further subdivided into two sets - the tail set T

and the head set H, allowing us to take into account directionality, as is the case in

Figure 2.4b.

The importance of hypergraphs to biology, where quite often the functional rela-

tionships are extremely complicated and naturally multi-dimensional, has recently
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been highlighted by a number of authors - see for example [33]; however, so far

the network community has largely resisted, mainly due to the lack of available

techniques for the analysis of these more complicated objects.

2.1.2 Adjacency Relations in Networks

The most common way to represent a complex network is in matrix form. Given a

simple graph G then we may define the n× n adjacency matrix A as follows

Aij =


1, if i ∼ j,

0, otherwise.

(2.1)

Here i ∼ j denotes that nodes i and j are adjacent to each other. Two vertices are

said to be adjacent (or neighbours) to one another if they are connected by an edge.

Note that if the network is undirected then its adjacency matrix is symmetric since

aij = aji. In the case that the network is weighted we may simply set aij = wij,

where wij is the result of the weight function acting on the edge between nodes i

and j.

Examples and matrix representations describing the aforementioned network

models are given in Figure 2.5. Notice that the diagonal entries are zero in all

cases since we do not allow self-loops.

From this representation it is easy to see that a number of important network

measures can be obtained directly from the adjacency matrix. For example, it is

easy to see that for the undirected network the vector of degrees k is given by

k =
(
eTA

)T
= ATe = Ae, (2.2)

where e is the n×1 vector of all ones. Recall that the ith term of the vector k counts

the number of edges incident to node i, that is, the number of non-zeros in the ith

column, or row, of A. Of course, in the case of a directed network
(
eTA

)T 6= Ae, in

general. Instead we have two different types of node degrees: the in-degree, which

counts the number of links pointing towards a node, and the out-degree, which counts
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(a) Undirected graph
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(b) Directed graph
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0.9 0 0 0 0


(c) Weighted graph
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A =


0 1 1 0 0
0 0 0 2 1
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0


(d) Directed hypergraph

Figure 2.5: Illustration of the adjacency matrices associated with the different graph
models.

the number of links leaving a node.

kin =
(
eTA

)T
and kout = Ae. (2.3)

An important result, closely related to Euler’s famous handshaking lemma [56],

is the following formula for the mean degree:

〈k〉 =
2|E|
n

.

This formula can be easily derived from the adjacency matrix by noting the following

identity

eTAe =
n∑
i=1

ki = 2|E|.

The above formula states that the sum of all entries of A is equal to twice the number
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of edges in the network.

Perhaps the most useful property concerning adjacency matrices is their ability

to count walks on a graph. A walk of length k starting at node i and ending at node

j is any traversal through the network that follows k, not necessarily distinct edges.

A useful observation is that the ijth element of the adjacency matrix raised to the

kth power, i.e.

(
Ak
)
ij

=
n∑

r1=1

n∑
r2=1

. . .
n∑

rk−1=1

ai,r1ar1,r2ar2,r3 . . . ark−2,rk−1
ark−1,j, (2.4)

counts the number of walks of length k that start at node i and finish at node j –

this result is easily proved by induction [57]. Importantly, as well as providing an

efficient means for computing graph invariants, e.g. the clustering coefficient (see

§2.2), the idea of ranking nodes according to the number of walks passing through

them has generated a whole new class of centrality measures [17, 58, 59].

2.2 Network Measures

The literature is awash with various network measures (see [14] for a review); how-

ever, three concepts in particular have played a leading role in the development of

the field to date.

Average Path-Length

A path is defined as a walk between two vertices, such that the vertices and edges

within the sequence are all unique. The path between two vertices that has the

shortest number of steps, or minimum weight as is the case in weighted graphs, is

referred to as the shortest path. The total weight of the shortest path is then defined

as the distance dij between the vertices i and j. To compute the average path-length

` one then simply takes the average distance over all pairs of vertices in the network,

such that

` = 〈dij〉 =
1

n(n− 1)

∑
i 6=j

dij. (2.5)

The above concept, however, is somewhat troublesome when applied to real world



2.2 Network Measures 20

2

1

2

3

4

5


− 1 1 1 1
1 − 1 2 2
1 1 − 2 2
1 2 2 − 2
1 2 2 2 −


(a)

1

2

3

4

5


− 1 1 ∞ 1
2 − 1 ∞ 3
1 2 − ∞ 2
1 2 2 − 2
∞ ∞ ∞ ∞ −


(b)

Figure 2.6: The average path-length and corresponding distance matrix for (a) an
undirected graph (` = 〈D〉 = 1.5 or ε = 0.75); and (b) a directed graph (` = 〈D〉 =
∞ and ε = 0.47).

networks. Real world networks, for instance, often contain isolated components

which result in non-existent paths between pairs of vertices in the network. A

common approach to avoid this problem is to restrict the analysis using this measure

to the giant connected component only. In addition to this, directed networks also

result in the same problem, since it is possible that a path only exists in one direction.

In this situation, one may wish to use an alternative but related distance measure

referred to as the efficiency of a network

ε =
1

n(n− 1)

∑
i 6=j

1

dij
. (2.6)

Note that here dij = ∞ if no path exists between the vertices i and j. Figure 2.6a

provides an example of an undirected graph alongside its corresponding distance

matrix containing the shortest path-lengths. The average path-length is obtained

by taking the average of the matrix D, ` = 〈D〉 = 1.5. Figure 2.6b provides

an example of a directed graph alongside its corresponding distance matrix. The

average path-length cannot be obtained for this directed graph, since some pairs

of vertices are not connected by a path, therefore resulting in an infinite distance

between them. In this case, we can only compute the efficiency of the network,

ε = 0.47.
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Clustering Coefficient

Clustering describes the interconnectedness of a node’s nearest neighbours. Con-

sider, for example, a friendship network. Typically, lots of close ties tend to be

formed in such networks, as, after all, you are more likely to know a friend of a

friend than a randomly selected person from the network. Thus, friendship net-

works tend to exhibit high levels of clustering.

In their seminal work on ‘small-world’ networks [5], Watts and Strogatz intro-

duced the local clustering coefficient to quantify the extent of a node’s clustering.

For a given node, i say, they considered the following ratio

C(i) =
2C3(i)

ki(ki − 1)
. (2.7)

Here, C3(i) counts the number of triangles connected to node i, and the quantity

ki(ki−1)/2 counts the number of connected triples centred on node i (ki is the degree

of node i). Informally, C(i) is the ratio between existing edges connecting the nearest

neighbours of node i and all possible edges between these nearest neighbours. Note

that C3(i) can be easily computed using the adjacency matrix as follows

C3(i) =
1

2
A3
ii.

The average value of the clustering coefficient is then given by

〈C〉 =
1

n

n∑
i=1

C(i). (2.8)

This quantity has been widely used, along with the characteristic (or average) path-

length, in order to quantify the extent to which a network is considered as being

‘small-world’.

More generally, the clustering coefficient defined in Equation (2.7) measures the

extent to which a single vertex forms cliques within a network, i.e. a fully connected

subgraph on ki + 1 nodes. The value of C(i) is bounded between 0 and 1 (as is

〈C〉), with a value of one implying that all the vertex’s nearest neighbours are also

nearest neighbours, whilst a score of zero means that none of a vertex’s neighbours
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are neighbours.

An alternative to the global clustering coefficient of Equation (2.8), which has

often been applied to social networks, is the transitivity coefficient [60]. The tran-

sitivity coefficient measures the proportion of triangles present within the network,

such that

T =
3C3

P2

, (2.9)

where C3 counts the number of triangles and P2 the number of 2-paths (or, connected

triples) present within the network. The factor of three accounts for the fact that

each triangle contains three different connected triples.

In terms of the adjacency matrix, the number of triangles in a network is com-

puted as

6C3 = Tr(A3),

where the trace of an n× n matrix B is given by

Tr(B) =
n∑
i=1

bii.

To compute the number of connected triples we recall that the quantity (A2)ij counts

all walks of length 2 starting from node i and terminating at node j, and also, that a

connected triple is nothing other than a 2-path, i.e. a walk of length 2 starting and

ending at distinct nodes. It follows that the number of connected triples is given by

2P2 = eTA2e− Tr(A2).

The second term here discounts those walks that are not 2-paths (i.e. walks by

which the start and end nodes are not distinct).

There are important differences between the two global clustering coefficients,

〈C〉 and T . For example, the latter measure gives equal weight to each vertex,

whereas the former gives equal weight to each triangle. Network transitivity is

arguably the more intuitive measure since it gives equal weighting to low- and high-

degree vertices. The average 〈C〉, on the other hand, weights low-degree vertices

more highly, since these vertices will have a small denominator in Equation (2.8).
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Figure 2.7: Local and global clustering as defined in Equations (2.7–2.8): (left)
C = {0, 0, 0, 0} and 〈C〉 = 0, (middle) C = {1, 1, 1, 1} and 〈C〉 = 1, (right) C =
{1, 1/3, 0, 1} and 〈C〉 = 7/12.
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Figure 2.8: The degree distribution for the metabolic network of the bacteria E.coli :
(a) histogram of P (k) versus k, and (b) a log-log plot of P (k) versus k.

Consider Figure 2.7, for example, here T = {0, 1, 3/5} whereas 〈C〉 = {0, 1, 7/12}.
In this example, the two measures coincide for the two extreme cases (left and

middle) yet are different for the graph on the right.

We finish by noting that several authors have proposed generalisations of the

above clustering coefficient to take into account directed or weighted networks for

example, and the interested reader is directed to the following two examples [61, 62].

Degree Distribution

The node degree vector, k, provides a useful means for quantifying certain struc-

tural properties of networks. For example, one of the salient features of real-world

networks are the broad differences seen in their degree distributions in comparison

say, to popular random network models (cf. §2.3).

The degree distribution may naturally be considered as a probability distribution
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as follows. Let nk denote the number of nodes having degree k. Then the probability

that a randomly chosen node has degree k is given by

P (k) =
nk
n
, (2.10)

where n is the size/order of the network. A plot of P (k) versus k represents the

degree distribution of the network. Figure 2.8 provides an illustration of the degree

distribution for a simple undirected network representation of metabolism in the

bacterial species Escherichia coli.

Note that for directed networks we compute two such distributions: the in- and

out-degree distributions as described in Equation (2.3).

2.3 Random Graph Models

A variety of simple network models have been proposed in the literature, the purpose

of which is twofold. Firstly, they act as reference models, enabling us to investigate

whether observed characteristics in real-world networks are significant, or if they

could have arisen by chance in some simple random graph model. Secondly, net-

work models can provide a mechanism to explain how certain characteristics have

developed, and provide insights into a range of complex real-world systems. Here we

provide a basic introduction into the common network models (for a more detailed

review see, for example [15, 63, 64, 65, 66]).

Classical Random Graphs

In their seminal work in the 1950’s and 60’s, Paul Erdős and Alfréd Rényi established

the field of random graph theory, an area devoted to studying the properties of

certain large, random graphs [9, 67]. The Erdős-Rényi random graph is a statistical

ensemble whose members are all possible labelled graphs on n nodes and M edges,

and is typically denoted Gn,M . Each member has an equal probability of occurring.

At around about the same time, Edgar Gilbert an American mathematician was

studying a related statistical ensemble of graphs [68]. Denoted by Gn,p, this new

ensemble consisted of networks of order n, such that any two nodes are connected
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with equal probability p (see Figure 2.9 for a small example). Remarkably, these

two different random networks may be regarded as being equivalent for sufficiently

large sparse networks [69].

Indeed, in practice, it is often the case that the two representations are considered

equivalent, both being referred to as Erdős-Rényi (ER) random graphs. Typically, it

is the Gilbert modelGn,p that is used since it is easier to analyse in general. Consider,

as an example, the degree distribution of the Gilbert model. The probability that a

node has degree k is given by

P (k) = Cn−1
k pk(1− p)n−1−k. (2.11)

Here pk is the probability that the node connects to k neighbours, (1−p)n−1−k is the

probability that the remaining n−1−k edges are not present, and Cn
k = n!/(n−k)!k!

is the binomial coefficient. It follows immediately that the mean degree of a classical

random graph is given by 〈k〉 = p(n − 1). Furthermore, as n → ∞ the degree

distributions, for both the Gilbert and ER models, tend towards that of a Poisson

one:

P (k) = e−〈k〉〈k〉k 1

k!
. (2.12)

Note, that we require 〈k〉 to remain bounded in the above limit. As a result of

the above, we see that classical random graph models are highly homogeneous, in

the sense that most vertices have a ‘similar’ degree, being symmetrically distributed

about 〈k〉.
Another important feature of classical random graphs is that they exhibit a small

characteristic path-length. To see why this property arises, consider the following

heuristic. For a classical random graph with mean degree 〈k〉, we have that each

vertex within the network has approximately 〈k〉 nearest neighbours. Now, extend-

ing to non-nearest neighbours, each vertex has 〈k〉2 second neighbours, 〈k〉3 third

neighbours, and so on. Using this idea we can compute the number of edges, say `,

required to reach every vertex in the network. That is, we want to find ` for which

〈k〉` is approximately equal to the total number of vertices. Thus, by equating 〈k〉`

to n, and solving for `, we find that the average number of edges required to reach
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p = 0 p = 0.2 p = 0.4

Figure 2.9: Classical random graph, Gn,p, with 12 vertices and varying probabilities
(p) for connecting pairs of vertices together.

any vertex in the network is approximately

〈k〉` ∼ n =⇒ ` ∼ log n

log 〈k〉 .

The clustering coefficient provides yet another example of why it is preferable

to work with the Gn,p network model. In that case the probability that a node’s

neighbours are connected is always p, and thus

C = p ≈ 〈k〉
n
, (2.13)

where the latter equation holds in the large n limit – recall that in this case we have

that 〈k〉 = p(n− 1) ≈ pn. In particular, the clustering coefficient for a large sparse

random graph approaches zero. If we contrast this against reported measurements

for many real-world networks, we see a difference of several orders of magnitude.

It is worth noting at this point that when studying real-world networks, we

often need to quantify the relative importance of our observations by undertaking

a comparative analysis against an appropriate null model – typically some form of

random network model. As we shall see later on, classical random graphs are usually

a poor choice of null model, and we should instead consider a statistical ensemble

that conserves certain network properties, e.g. degree, density, etc. For example, the

so-called configuration model [70] is a generalisation of the classical random graph

model, which generates a random graph by selecting uniformly at random from an
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ensemble of graphs with a prescribed in- and out-degree. We shall discuss such

extensions at greater lengths in Chapter 4.

Watts-Strogatz Model

In 1967 Stanley Milgram, a famous social psychologist, conducted an experiment

that provided the first evidence of the so-called small-world phenomenon [10]. In

this famous experiment, the motivation of which was to measure distances within

acquaintance networks in the United States, Milgram posed the following question:

how many intermediate links separate two randomly selected individuals? To answer

this question, Milgram selected at random a large number of individuals living in

Omaha, and sent them each a letter instructing them to forward it to a randomly

selected individual in Nebraska, Boston, subject to the following rules:

1. if you know the target person by name then forward it immediately;

2. else mail the letter plus instructions to a person whom you know by first name

and who is more likely to know the target person.

Surprisingly, it was found that of those letters that reached the target, the aver-

age number of links was l = 5.5. This result is well-known as the ‘six degrees of

separation’.

The importance of this result follows from its ubiquity throughout a large number

of networked systems across a range of disciplines, all of which exhibit a remarkably

small characteristic path-length relative to system size, n (see for example [66, 71,

72, 73]). Table 2.1 provides a few examples whereby the characteristic path-length

is small compared to the system’s size. Theoretically one considers a network to be

‘small-world’ if its path-length is proportional to the log of network size [74], that is

` ∝ log n. (2.14)

Real-world networks, however, tend to display increased levels of clustering as well

(see Table 2.1), and for this reason, it is common practice to classify a network as

being small-world if it exhibits both a small characteristic path-length and a large

amount of clustering, as compared to a ‘random’ network.
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Network n 〈k〉 ` `rand 〈C〉 〈C〉rand
Metabolic network [41] 766 9.62 2.56 3.04 0.67 0.02
Protein interaction [19] 1879 2.40 6.8 7.85 0.1 0.05
Neural network [5, 75] 297 14.46 2.45 2.42 0.29 0.05
Coauthors (network science) [76] 1461 3.75 5.77 5.39 0.69 0.002
Power grid [5] 13188 2.67 18.99 8.22 0.8 0.00006
Karate club [13] 34 4.6 2.34 2.32 0.57 0.11
Word adjacencies [76] 112 7.67 2.51 2.47 0.17 0.06

Table 2.1: The average path-length and clustering coefficient of several real-world
networks. For each network we provide the number of vertices (n), the average
degree (〈k〉), the average path-length (`) and the average clustering coefficient (〈C〉).
We also provide the average path-length (`rand) and average clustering coefficient
(〈C〉rand) for the corresponding random graphs. Note that these random graphs
have the same number of vertices and average degree as the real network.

The above discussion leads naturally to a certain group of real-world networks

that are classified by the presence of two important structural properties: (i) small

average path-length and (ii) a large clustering coefficient. Classical random graphs

display a very small average path-length, however, they exhibit extremely low levels

of clustering, making them poor models of such systems. At the other extreme are

regular, lattice like graphs, which display very high levels of clustering but relatively

large average path-lengths, e.g. the average path-length of a nd dimensional lattice

goes as

l ∼ n1/nd . (2.15)

In their seminal work, Watts and Strogatz [5] had the ingenious idea to construct

a random network model that interpolates between a regular and random structure,

thus leading to a model that attains both required properties simultaneously. Start-

ing with a k-regular lattice on n vertices (e.g. a ring in 1-d), each edge is rewired

with probability p, such that each end vertex is reconnected with a different ran-

domly chosen vertex – see Figure 2.10 for an illustration. For small values of p this

process has very little effect on network clustering (recall we start off with a lattice

(p = 0)), however, the addition of these random ‘short-cuts’ has a non-linear effect

on ` since it affects not only the nearest neighbour structure, but also the second

neighbours, third neighbours and so on. The result is a random graph model with

both the SW property and a high clustering coefficient. For large values of p ≈ 1
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Regular Small-world Random

p = 0 −−−−−−−−−−−−−−−−−−−−→
Increasing randomness

p = 1

Figure 2.10: The Watts-Strogatz model. Here we start with a regular graph with 12
vertices and 24 edges, such that each vertex is connected to its nearest neighbours,
leading to a maximum clustering coefficient (C = 1). Each edge is randomly rewired
by some probability p. As p → 1 the initial regular graph is transformed into an
ER random graph (right). For intermediate values of p, such that 0 < p < 1, a
small-world network arises - highly clustered like a regular graph, yet with a small
average path-length like a random graph.

we obtain a classical random graph.

It is worth noting here that Newman and Watts [77] proposed a slight variation

to the WS model, in which new edges were added at random, rather than the usual

rewiring of edges. This model has the advantage that it remains connected at all

times, which greatly simplifies the resulting analysis – an extensive review of both

models is provided in [78].

Barabási-Albert Model

A limitation of classical random graph models and WS model is that unlike real-

world networks the vertices are highly homogeneous in terms of their connectivity

(or degree). Instead, many real-world networks have been found to have highly

heterogeneous vertices, whereby a few vertices are highly connected, referred to as

the hubs in the network, whilst many vertices have just a few connections [41, 63,

79, 80]. This heterogeneous set up results in a degree distribution with no scale, and

thus networks found to be organised in this manner are characterised as scale-free

networks [81]. More importantly, the degree distribution of scale free networks are
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Figure 2.11: Degree distributions of two graph models: (a) a classical random graph
(top) together with its degree distribution (bottom); and (b) a scale-free graph (top)
together with its degree distribution (bottom).

found to follow a power law (for large k) such that

P (k) ∼ k−γ, (2.16)

where γ is the scaling parameter – note that such a power law is termed scale free

since f(αx) = αnxn ∼ xn, i.e. all such power laws are equivalent up to constant

factor1. Figure 2.11 shows an example of a scale-free network together with its

degree distribution. Notice that the hubs are highlighted in red.

Barabási and Albert proposed a network model that possesses this scale-free

degree distribution [4]. Their model starts at time t0 with a network consisting of

N0 vertices, and m0 edges between them. At each time step ti+1 a new vertex is

introduced to the network, and becomes connected to m ≤ |N0| vertices present in

the network at time ti. Each vertex already present in the network at time ti has

the following probability p(i) of receiving a connection to the new vertex

p(i) =
ki∑
j kj

.

1Actually power laws are examples of homogeneous functions and thus are naturally scale-free
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Figure 2.12: The Barabasi-Albert growth model. (a) We start with a graph with
N0 = 3 vertices and E0 = 2 edges. (b) A fourth vertex preferentially attaches itself to
2 out of the 3 existing vertices, where the probability that an existing vertex receives
an edge is proportional to its degree (p = [0.5, 0.25, 0.25]). (c) A fifth vertex now
preferentially attaches itself to 2 out of the 4 existing vertices with probabilities
p = [0.375, 0.125, 0.250, 0.250]. (d) Finally, a sixth vertex attaches to 2 out of the
5 existing vertices with probabilities p = [0.333, 0.083, 0.167, 0.250, 0.167]. Notice
here that we have arrived at a network that is highly heterogeneous in terms of the
degrees of the vertices.

In other words, the probability that a vertex (i say) receives a new edge is pro-

portional to its degree. An illustration of the growth process is shown in Figure

2.12. This approach follows the preferential attachment rule, whereby new vertices

introduced to the network prefer to attach to the vertices in the network that are

already highly connected. This idea is commonly referred to as the ‘rich get richer’

phenomenon, where it is easy for the highly connected vertices (rich) to become

even more connected, and very difficult for the weakly connected vertices (poor) to

receive connections. Importantly, the Barabási-Albert (BA) model provides us with

a possible explanation as to why scale-free degree distributions are so ubiquitous

throughout science and technology.

2.4 Further Related Topics in Network Science

To complete our brief primer on Network Science we finish by giving an overview of

two specific topics of particular interest to the work presented in this thesis.

2.4.1 Network Motifs

Network motifs are patterns of interconnected vertices that recur across a network

a significantly greater number of times than they would in an ensemble of random
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(a) (b) (c) (d) (e)

Figure 2.13: Examples of network motifs: (a) three-chain motif, (b) feed-forward
loop motif, (c) bi-parallel motif, (d) bi-fan motif, and (e) single-input motif.

graphs. They are often considered to be the basic building blocks for real-world net-

works, and thus are likely to contain important information regarding the underlying

network architecture.

Mathematically a motif is defined to be a subgraph that appears more frequently

in real-world networks than it does across a suitably defined null model (e.g. Erdős-

Rényi random graph). Figure 2.13 provides an example of several 3- and 4-node

motifs. Null models are typically constructed so as to preserve important network

features. For example, given a network G denote by Ω(G) the family of randomised

(see below) graphs of G, sharing the same number of vertices and the same degree

distribution. Given such an ensemble, it is straightforward to compute a z-statistic

and determine statistical significance, as we can sample repeatedly from the ensemble

and compute an average motif frequency as well as computing its spread (see Chapter

4 for further details).

Biological networks, in particular, have been found to have a number of specific

motifs that have been linked to functionality. The feed forward loop, for example, is

thought to be important in transcriptional regulatory networks, whereby they serve

as either sign-sensitive accelerators (i.e. speeding up the response time of the target

gene expression) or sign-sensitive delays (i.e. delaying the response time) [27, 82].

An over-abundance of a particular motif in a real-world network is thought to be a

consequence of the evolutionary process, and the resultant motif is likely to exhibit

desirable structural and/or functional properties [83, 84, 85, 86, 87]. Indeed, we

shall see further evidence for this hypothesis in later chapters.
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Figure 2.14: Example of the rewiring step of the switching method. The two edges
EA,B and EC,D are reconnected to make A connected to D and C connected to B.

Generating Randomised Null Models in Motif Analysis

As mentioned above, a variety of different random graph models can be used for sta-

tistical testing of network motifs; however, the choice of model can highly influence

the result. All randomised networks should at least preserve some shared structural

property of the real network, such as the number of vertices and the number of edges.

ER random graph models could be used in this instance. However, it is argued that

a more accurate null model should preserve not only the number of vertices and

edges but also the degree distribution of the real network [88]. By doing so we guar-

antee that the significance of the motifs is not just a consequence of this underlying

structure. In addition, it is also argued that the null model should preserve the

number of (q− 1)-node motifs, where q is the size/order of the motif. This is to en-

sure that an over-abundance of a certain motif has not just occurred due to it being

a substructure of a larger highly significant motif [83]. A common randomisation

method used to preserve the aforementioned properties is the so-called switching

method [89]. Here, two edges are randomly selected, let’s say EA,B and EC,D. The

two edges are rewired (or exchanged) to reconnect vertex A to vertex D and vertex

C to vertex B. However, the exchange only takes place if the reconnection does not

alter the required properties (see Figure 2.14). This process is repeated until the

network is randomised. Note that rigorous methods for determining the point by

which the network becomes fully randomised do not exist. In general, however, the

process is repeated Q ·M times, where M is the number of edges and Q is chosen

to ensure that the number of exchanges that actually take place is large [89].
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2.4.2 Percolation and Network Robustness

One of the earliest and simplest processes studied in complex networks is percolation

- the process by which a fraction of nodes together with their adjacent edges are

removed (or added) from a network [90]. This process has been used to model a

number of real world phenomena [16, 18, 91, 92, 93]. Consider, as an example,

a social network used to analyse the spread of a disease [94]. Here, the disease

is assumed to spread across a population due to connections between individuals.

The vaccination of an individual would prevent further spreading of the disease

through this individual, and thus has a “knock on” effect. By carefully targeting

particular individuals for vaccination, this knock on effect could result in eradicating

the disease from the population. In this example, we can think of the individuals

receiving vaccination as the nodes that are removed from the network. In other

networks, one may want to investigate a slightly different percolation process, which

investigates the effect of removing edges, rather than nodes [16]. When considering

the internet, for example, whereby connections (edges) are between routers, a fault

in a connection would disrupt the communication regardless of whether the routers

are functioning correctly.

Network Robustness

The percolation transition can be used to analyse the behaviour of a system [18,

95, 96]. A network that breaks down into small isolated components that can no

longer communicate with each other, is unlikely to be able to carry out its function.

A network that maintains a giant connected component (GCC) (i.e. a group of

connected nodes that span a large proportion of the entire network) after the removal

of nodes, on the other hand, has a higher chance of carrying out (at least partially)

its function. For this reason, the size of the GCC, after a fraction of nodes have

been removed, has been widely used as a measure of a network’s ability to function

properly and so is closely related to the concept of network robustness [16, 18, 41, 97].

The rate by which the network function (in this case, the size of the GCC) decreases

after a series of random failures (errors) or targeted attacks, is used to understand

the networks resilience to various perturbations. For targeted attacks, note that it
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is usual to remove nodes according to some centrality measure, such as node degrees

or betweenness centrality [16]. In this case, the nodes are removed from the network

in order of their centrality value from highest to lowest, and so such an approach

targets the nodes with the highest chance of causing a “knock on” effect to the

system.

2.5 Summary

In this Chapter we have given a brief overview of some of the most fundamental

aspects of the theory of complex networks with a focus on those topics of most rele-

vance to the current work. However, our review is not exhaustive. For example, we

have not considered so-called community detection algorithms [24, 98, 99, 100, 101,

102, 103], the aim of which is to divide a network into nearly interdependent modular

units, such that the intra-connections are dense, whereas the inter-connections are

sparse. We have briefly mentioned centrality measures and their use in providing an

‘importance ranking’ of a networks nodes, however, the literature on these methods

is vast (see, for example, [12, 17, 104, 105]), and they have also been used as a tool

for detecting network communities [24], as well as a method for exploring network

robustness [16, 93]. Finally spectral methods provide a powerful approach to study-

ing networks [106]. The graph spectra is the set of eigenvalues of the adjacency

matrix (or related matrix representations) and is related to a number of important

structural properties, such as the diameter, average path-length and betweenness

[106]. The graph spectra can also be used as an efficient method for computing

subgraphs across the network, and has resulted in a number of proposed network

measures, such as subgraph centrality [17] and returnability measures [107]. Note

that the graph spectra of the laplacian matrix can also be used to reveal important

structural information [108, 109, 110].



Chapter III

Metabolic Networks

At the cellular level, networks emerge via interacting proteins, and other macro-

molecules, resulting in various biochemical nets, such as gene regulatory networks,

protein-protein interaction networks and protein residue networks. In this regards,

the metabolic process in particular plays a fundamental role, providing the building

blocks (nucleic acids and amino acids) that enable genes to interact effectively, and

thus for the cell to function properly.

In this thesis we are interested in revealing a number of important features of

metabolic systems using mathematical modelling techniques. In this chapter we

present an overview of metabolic modelling. We start with a brief description of

the metabolic process, followed by a discussion of the three main metabolic network

modelling techniques. We then explain the procedure for reconstructing genome

scale metabolic networks used in this work, and finish with a description of the 383

bacterial metabolic networks that have been reconstructed and used in this thesis.

3.1 The Metabolic Process

Metabolism is the entire set of biochemical reactions that take place within a living

cell, in order for them to extract, convert and store energy from nutrients (molecules)

within the environment. These biochemical reactions are crucial for the survival

and proper functioning of a cell. The metabolites in each biochemical reaction are

36
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Figure 3.1: A schematic showing the relationship between catabolism and anabolism
in a cell.

usually small molecules, such as glucose and amino acids, or macromolecules such

as polysaccharides and glycan. Each biochemical reaction is usually catalysed by a

specific enzyme (protein) that encourages the substrate metabolites to react together

to form the product metabolites. Some reactions can be catalysed by more than one

enzyme, whereas others do not require any. Additionally, it is possible that an

enzyme can catalyse more than one reaction. The set of biochemical reactions can

be divided into two categories.

• Catabolism: the process by which molecules, absorbed from the external envi-

ronment, such as carbohydrates, fats and protein, are broken down into simpler

molecules to produce and store energy.

• Anabolism: the process by which the energy is then used to synthesize molecules

essential for producing the components within a cell, such as essential proteins,

lipids, nucleic acids and polysaccharides. Figure 3.1 shows a schematic of the

relationship between catabolism and anabolism.

A series of biochemical reactions form metabolic pathways, such that the prod-

ucts of one reaction act as the substrates to the subsequent reaction. Glycolysis

is an example of one of the most ancient metabolic pathways, which converts glu-

cose into pyruvate to release energy required for the formation of ATP and NADH
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(high-energy compounds). The end product of a metabolic pathway may be used

instantly, or may be consumed in another pathway. The reactions may be involved

in multiple pathways, and multiple pathways may consume and produce the same

metabolites. The entire set of biochemical reactions, and pathways, form a highly in-

terconnected metabolic network, allowing one to consider the structure and function

of the metabolic system as a whole.

3.2 Mathematical Models of Metabolism

The metabolic process is commonly modelled using a systems biology approach [111,

112, 113, 114], which provides a powerful set of tools and techniques for analysing

the structural and dynamical behaviour that occurs within all living organisms.

Metabolism can be studied from a static or dynamic point of view, the models of

which are distinct in each case and vary in the amount of complexity and metabolic

information they require. In the following we provide a brief description of the

three most popular systems-like approaches to studying metabolism: kinetic models,

constraint based models and topological (or network) models.

3.2.1 Kinetic Models

One of the most widely known methods for analysing metabolic processes replaces

the chemical reaction network by a system of ordinary differential equations (ODEs),

that is the metabolic network is represented as a system of mass balance equations,

such that each equation describes the rate at which the concentration of a metabolite

changes. Mathematically, this is written as

dxi(t)

dt
=

m∑
j=1

si,jνj(x,k),

or, in matrix notation
dx

dt
= Sν(x,k), (3.1)
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where S ∈ Rn×m denotes the stoichiometric matrix, that is, a matrix whose elements

represent the number of metabolites produced (si,j > 0) or consumed (si,j < 0) in a

single reaction step, and ν(x,k) ∈ Rm is a vector of rate equations. Note that each

rate equation is a function of x ∈ Rn, a vector of metabolite concentrations, and a

vector of kinetic parameters k ∈ Rd. Figure 3.2 illustrates the above in the case of

glycolysis [115].

v0 : Gx → G

v1 : G+ 2ATP → 2TP + 2ADP

v2 : TP + 2ADP → P + 2ATP

v3 : P → Px

v4 : TP → GIx

v5 : ATP → ADP

1

(a) Reaction list (b) Reaction system

d(G)

dt
= ν0 − ν1

d(TP )

dt
= 2ν1 − ν2 − ν4

d(P )

dt
= ν2 − ν3

d(ATP )

dt
= −2ν1 + 2ν2 − ν5

d(ADP )

dt
= 2ν1 − 2ν2 + ν5

(c) System of ODEs

d

dt


G
TP
P

ATP
ADP

 =


+1 −1 0 0 0 0

0 +2 −1 0 −1 0
0 0 +1 −1 0 0
0 −2 +2 0 0 −1
0 +2 −2 0 0 +1

 ·


ν0
ν1
ν2
ν3
ν4
ν5



(d) System of ODEs in matrix form

Figure 3.2: A minimal system of glycolysis. Note that here Gx, Px and GIx are
external and so are not considered in the system of ODEs. The abbreviations cor-
respond to the following: G, glucose, P , pyruvate and TP , triosephosphate. (a) A
minimal set of reactions, where one unit of glucose is converted into pyruvate. (b)
A graphical illustration of the reaction system. (c) The set of ordinary differential
equations (ODEs) modelling the change in concentration of each metabolite. (d)
Matrix representation of the system of ODEs.

Kinetic models are an invaluable tool as they allow us to understand and predict

a systems functional behaviour. Using such dynamic models has proved particu-

larly useful in contributing to our understanding of the function and regulation of

metabolic systems to date [111, 116, 117, 118, 119]. There are likely to be a number
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of difficulties, however, when using kinetic models for metabolic modelling. One

of the most challenging problems is determining kinetic parameters. It is highly

likely, for instance, that the activity of many enzymes are dependent on a number

of physiological conditions, such as temperature, pH, etc., and in a complicated and

non-linear manner. For that reason, it is very difficult to obtain reliable estimates

for kinetic parameters. The accuracy when using kinetic models to represent a large

metabolic network consisting of 100’s or 1000’s of reactions, coupled with unreli-

able kinetic parameters, is likely to be scrutinized. For that reason, the application

of dynamical models is currently only applicable to small systems or for studying

individual pathways.

3.2.2 Steady-State Models

Unlike the kinetic models described above, steady-state models require only a small

amount of information regarding the kinetic parameters of the system. This is

achieved by assuming that the system has reached a steady-state, i.e. the rate

by which the metabolites are consumed is equal to the rate by which they are

produced. Let us recall that Equation (3.1) measures the concentration variation of

the metabolites over time, which is proportional to the rate by which the metabolites

are produced and consumed. If we assume that the system is at a steady state then

Equation (3.1) reduces to the following set of linear equations,

Sν = 0,

where as before S ∈ Rn×m is the stoichiometric matrix and ν ∈ Rm is the vector

of unknown fluxes. Note that metabolic networks usually contain fewer metabo-

lites than reactions, thus leading to an under determined system of equations, such

that there are more variables than equations and thus potentially infinitely many

solutions (of which not all will be feasible).

The most widely used steady-state model in the area is flux balance analysis

(FBA), and unlike kinetic models, can be readily applied to large-scale metabolic

networks. In FBA a linear set of constraints and an objective function are formulated
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Figure 3.3: Illustration of constraint based modelling of metabolism. At first the flux
distribution of the metabolic network may lie anywhere in the solution space (left).
The mass balance constraint and the lower and upper capacity bounds are imposed,
reducing the allowable solutions to a convex space (middle). An optimisation of an
objective function allows FBA to identify an optimal solution, which lies on the edge
of the convex space.

to reduce the solution space of the flux distributions. The formation of a FBA model

would be as follows,

maximise Z = wTν

subject to : Sν = 0

and νmin ≤ ν ≤ νmax,

where here Z is the objective function, usually chosen to maximise some growth con-

dition, and the lower and upper limits of ν are known capacity constraints. Common

objective functions include maximising the yield of biomass and maximising produc-

tion of ATP for energy. In Figure 3.3 we provide an illustration to show how this

constraint-based approach identifies optimal solutions. FBA has been used in many

applications of bioengineering, where the technique is used to identify modifications

to pathways in micro-organisms that would lead to optimal yield of industrial chem-

icals, such as biofuels [120, 121, 122]. It has also played a role in identifying suitable

drug targets for treatments of cancer and pathogens [123, 124, 125].
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3.2.3 Topological Models

Applying topological (network) models has become a popular choice in recent years,

particularly due to the wide set of network measures and tools that can be applied

with a relatively small amount of computational effort. Unlike the aforementioned

models, using network models only requires information regarding the connectiv-

ity of metabolites, and thus can be applied to a large number of organisms with

1000s of nodes. From a topological perspective, metabolic networks are most com-

monly represented by simple graphs, whereby nodes and edges represent metabolites

and biochemical reactions, respectively. There exist a number of ways of charac-

terising metabolism as a simple graph, each of which captures different biological

information. The following provides a brief description of each simple graphical

representation.

• Substrate-Substrate network : edges connect either a pair of substrates or prod-

ucts of the same reaction.

• Substrate-Product network : edges connect substrates and products of the same

reaction.

• Substance network : edges connect all substrates involved in the reaction.

• Reaction network : nodes represent reactions and an edge connects a pair of

reactions if they share a common substance.

(See Figure 3.4 for an illustration of each representation.)

A plethora of network measures and tools exist (see Chapter 2 for a review

of the main concepts in the field) that can be applied to graphical models with

relatively little computational cost. These developments have led to new insights and

understanding into the structure, organisation and behaviour of metabolic networks

[29]. Perhaps the two most important findings to date, are that metabolic networks

exhibit characteristics that are typical of the small world [71] and scale-free [41]

phenomena. These characteristics are a generic feature of many non-biological and

biological networks, and promote robustness of a network to random errors. In terms

of metabolic networks, these characteristics are thought to be design principles that

have evolved to enhance the survival and growth of the organism, particularly to
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Figure 3.4: An illustration of simple graph models available for representing
metabolic networks.

their environmental habitat. For example, a small average path-length is thought

to allow the metabolic system to respond efficiently to either internal mutations or

external fluctuations in an organisms environment.

Modularity has also been shown to be a prevalent feature within metabolic net-

works [21, 126], and has, for example, been related to important biological properties

such as robustness [127, 128] and evolvability [128, 129, 130]. However, metabolic

networks are by no means perfectly modular; their inter-module connectivity is

relatively high, leading some authors to conclude that these networks are better

described as being hierarchically structured [21], that is metabolic networks may be

considered to possess fractal-like properties, such as self-similarity.

Another popular approach for analysing metabolic networks is provided by net-

work motifs, [131], i.e. recurrent, statistically significant subgraphs. Motifs are of

particular interest since they are typically associated with certain biological func-
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tions, and their relative over-abundance is considered to be an evolutionary result

reflecting their “importance” to the organisms involved [86]. Moreover, they consti-

tute the basic structural units from which complex metabolic networks are formed,

and thus provide a simplified framework for probing large-scale topologies.

Importantly, however, the majority of these studies carry out their metabolic

analysis using simple graphical approaches such as those presented in Figure 3.4. In

some circumstances, however, such an approach is likely to provide an inadequate

description of metabolism, since (i) the choice of simple graph accentuates different

aspects of the metabolic process; and (ii) information is inevitably lost when reducing

the full system to a simple graph, and so one risks oversimplifying the system of

interest in a potentially significant way. Zhou and Nakhleh [32], for example, recently

provided evidence countering the reported scaling between network degree and the

local clustering coefficient for the metabolic network of E. coli, arguing that previous

sightings were due to a misrepresentation of the system as a simple graph.

An alternative approach is provided by bipartite graphs, whereby the graph con-

sists of two types of nodes - metabolites and reactions, say. Indeed, several authors

have recently considered such models of metabolism [99, 132, 133]. This approach

though, can prove problematic. For example, bipartite networks do not exhibit clus-

tering, and hence it makes no sense to talk about, say, the small-worldness of the

network – in the Watts-Strogatz sense, anyway. Worse still, the majority of studies

tend to project back onto some simple, unipartite representation before applying the

standard tools of network science; again, the choice of projection is likely to heavily

bias any results [53].

Hypernetworks, on the other hand, provide an attractive alternative since they

allow for the description of more general interactions consisting of more than two

nodes. Metabolic networks are particularly amenable to such an approach, with

nodes representing different metabolites and hyperedges, that is sets of nodes, rep-

resenting chemical reactions [33]. Note that we shall consider such models at length

in Chapter 5.
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3.3 Metabolic Network Construction Used in This

Study

The availability and improved accuracy of genome scale data for a variety of different

species, from bacteria to humans, has enabled the reconstruction and analysis of

large-scale metabolic networks for organisms at a systems level. Metabolic data

is now available from a number of online resources, some of the most widely used

include: Kyoto Encyclopedia of Genes and Genomes (KEGG) [134], EcoCyc [135],

BioCyc [136] and MetaCyc [137]. These databases offer a platform for researchers to

easily reconstruct organism specific metabolic networks. In this section we describe

the construction process for the metabolic networks used in our work.

3.3.1 The KEGG Database

The KEGG database is an integrated platform, consisting of genomic, chemical and

network information for multiple species. The database has four main sections in-

cluding: systems information, chemical information, genome information and health

information [138]. To reconstruct metabolic networks, we are interested in the chem-

ical information, which is more commonly known as KEGG LIGAND. The two files

‘reaction name.lst’ and ‘reaction.lst’ can be downloaded from the KEGG ftp site

(available at: ftp://ftp.bioinformatics.jp/kegg/ligand/reaction/ to subscribed users

only). The file ‘reaction name.lst’ contains all reactions that are within the EN-

ZYME section and KEGG/PATHWAY database, whereby each reaction is identified

by an R number. An example of a reaction within ‘reaction name.lst’ is:

R00259: Acetyl - CoA + L - Glutamate ←→ CoA + N - Acetyle - L - glutamate.

In the file ‘reaction.lst’ the compounds are converted to C numbers, such that the

reaction above would be converted to

R00259: C00024 + C00025 ←→ C00010 + C00624.

ftp://ftp.bioinformatics.jp/kegg/ligand/reaction/
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The reactions within these files include the full chemical equations (i.e. with sto-

ichiometric coefficients and currency metabolites). To generate organism specific

reaction lists, XML files can be downloaded from the KEGG ftp website, which

contain R numbers (e.g. R00010), and indicate which metabolic reactions should be

extracted from ‘reaction.lst’ to derive the organism specific reaction list.

Exclusion of Currency Metabolites

When constructing metabolic networks, the inclusion or exclusion of currency metabo-

lites should be considered. Currency metabolites, such as H2O, ATP, NADH, etc.,

are metabolites that are mainly used for transferring electrons and specific func-

tional groups (i.e. phosphate groups, carbon atoms, amino group, etc.). Consider,

as an example, the reaction Glucose + ATP → G6P + ADP. Here, the metabolites

ATP and ADP transfer phosphate to glucose. Importantly, the connections between

currency metabolites can sometimes result in biologically meaningless results. The

shortest distance between a pair of nodes, for instance, is drastically reduced due to

meaningless short-cuts across the network that are created by currency metabolites.

To derive reaction lists that exclude currency metabolites, the file ‘reaction mapfor

mula.lst’ can be used, which like ‘reaction.lst’, is obtained from the KEGG ftp site.

In this file, only the main reactant pairs in the metabolic reactions are considered,

as is shown in the KEGG pathway diagrams, and thus the currency metabolites are

excluded. The XML files for each organism are then used to extract R numbers to in-

dicate which metabolic reactions should be extracted from ‘reaction mapformula.lst’,

in order to derive the organism specific reaction list.

Removing Mistakes and Inconsistencies from the Reaction Lists

A number of mistakes and inconsistencies exist within the reactions of the KEGG

database, and therefore care must be taken when reconstructing metabolic networks

from the original reaction lists. In the following we describe our efforts to correct

such mistakes in the data used in this thesis.

First of all, the KEGG database derives reaction lists by curating several chemical

pathway maps from the KEGG database. Thus, since a reaction may be present
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within multiple metabolic maps there exist some reactions that are repeated within

the list. Any repeat reactions with the same reaction ID need to be removed from

the reaction list. However, due to errors within the KEGG database some of these

repeats are not identical. This is due to the fact that chemical equations in different

chemical pathway maps are catalysed by the same enzyme and thus have the same

reaction ID, yet sometimes the reactions differ. These non-trivial cases, where we

have differences between either the metabolites involved or the directionality of the

reaction, were treated by taking the most comprehensive equation. In the following

we provide 3 examples of the difficulties we faced, and describe the action that was

taken.

Example 1: include the most comprehensive reaction

Reaction ID Map ID Chemical equation

R00212 00620 C00058 + C00024 ←→ C00022

R00212 00650 C00022 −→ C00024

In this scenario the two equations have the same reaction ID but differ by the

directionality and number of metabolites included. Thus in our work we would

include the reaction corresponding to map 00620.

Example 2: merging of substrates and products

Reaction ID Map ID Chemical equation

R00114 00250 C00026 −→ C00025

R00114 00910 C00064 −→ C00025

In this example we have two equations that have the same reaction ID, how-

ever, they contain different substrates. In this situation we merge the sub-

strates together to form:

R00114: C00026 + C00064 −→ C00025.
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Note that the same approach is taken for a scenario where we have two chemical

equations with equivalent substrates but different products (i.e. the products

would be merged together).

Example 3: merging multiple reactions

Finally, in this example we show the most complicated case, such that multiple

reactions exist and the substrates and products of each reaction sometimes

overlap.

Reaction ID Map ID Chemical equation

R02869 00270 C01137 −→ C00170

R02869 00330 C00315 + C01137 −→ C00750

R02869 00410 C00750 −→ C00315

R02869 00480 C00315 −→ C00750

Here, the equations for the maps 00330, 00410 and 00480 all include the in-

formation that either C00315 −→ C00750 or C00750 −→ C00315, and so the

three equations can be merged to form:

R02869: C00315 + C01137 ←→ C00750

The substrate C01137 is a substrate in the maps 00330 and 00270, and there-

fore we can form the final reaction as

R02869: C00315 + C01137 ←→ C00170 + C00750

It is worth noting here that the reactions requiring manual edits as described

above make up a relatively small proportion of the total number of chemical reactions

considered, and so the choice by which we form the final reaction is not expected to

have too significant an effect on our results.

Another problem arises due to condensation and polymerization reactions. These

type of reactions often involve compounds occurring as both a substrate and product
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in the reaction, which can be problematic when representing a reaction system in

matrix form. The incidence matrix C(H), for example, uses a −1 to represent the

substrates and 1 to represent the products of a reaction in order to distinguish

between the different sides of a reaction. Obviously, reactions involving overlapping

substrates and products cannot be represented in this manner. For that reason,

we exclude such reactions. Several other studies, such as those using flux based

analysis [139, 140], have also excluded these reactions due to the fact that they are

imbalanced.

Restricting to the Giant Connected Component

Despite the inter-connectivity between the biochemical reactions, metabolic net-

works are far from fully connected [141]. Instead, the connectivity structure of

metabolic networks can be divided into several sub-networks called components.

Components are clusters of nodes, such that a path exists between all pairs of nodes

within the cluster. Recall from Chapter 2 that the largest component of a net-

work is called the giant connected component (GCC). In directed graphs, the giant

connected component commonly refers to the giant strongly connected component

(GSCC), which is defined as the largest subset of nodes, such that a path exists in

both directions between all possible node pairs. The giant weakly connected compo-

nent (GWCC), on the other hand, relaxes the condition on the direction, such that

a path only has to exist in one direction between each node pair.

It is common in the literature to restrict the analysis of metabolic networks, to

consider the GCC (or GWCC if one is considering directed graphs) of the network

only [129, 130, 142], since many global network measures are not amenable to dis-

connected components. The average path-length, for example, cannot be computed

between pairs of nodes lying on distinct components (typically we set l =∞). Ad-

ditionally, a number of issues can arise when constructing randomised networks due

to the rewiring of disconnected components.

In our work we consider the GWCC of all of our metabolic networks (or hyper-

networks) as this avoids the issues touched upon above, but also allows for a fair

comparison to previous studies. In total we have data for 383 bacterial organisms.

We found that the size of the GWCC relative to the entire network was on aver-
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age 0.7497, and the majority of components only contained between 2 and 4 nodes.

The size of the GWCC of the metabolic networks compared with all other compo-

nents, therefore indicates that this is the most complex and core component of the

metabolic networks that we wish to investigate, and so it is reasonable to restrict

our analysis to this component.

3.4 Bacterial Metabolic Data Used in This Study

In total we have constructed metabolic networks for some 383 bacterial species.

In addition to the reaction data, we also have information pertaining to biological

features such as habitat lifestyle and growth conditions, both of which we describe

in more detail below.

3.4.1 Habitat Lifestyle

For 115 of the metabolic networks we have detailed information regarding the vari-

ability of the environments in which they evolved. According to the National Centre

of Biotechnology Information (NCBI) these bacteria can be classified according to

the following six categories:

1. Obligate bacteria: species that obligately associate with a host, either intracel-

lular or extracellular, and have no (or very little) contact with the environment

outside the host.

2. Specialised bacteria: species that live in specialised conditions, such as marine

thermal vents.

3. Aquatic bacteria: species that live in fresh water and never live within a host.

4. Facultative bacteria: free-living bacteria, that can associate with a host. An

example, is E.coli, a bacteria that can live in a number of different conditions,

including a host environment.

5. Multiple bacteria: species that can live in a wide range of environments, and

can associate with a variety of different hosts.



3.4 Bacterial Metabolic Data Used in This Study 51

6. Terrestrial bacteria: species that live in soil, where the conditions are highly

heterogeneous.

In [129], these categories were ranked according to the heterogeneity in their envi-

ronment based on a number of physiological conditions, such as temperature, pH,

oxygen availability, etc. It was found that the obligate class were the bacteria that

lived in the most isolated environments, being surrounded by very few if any other

species, thus resulting in less competition for nutrients. For that reason, they were

ranked as the most specialised. The ordering between the specialised and aquatic

classes is somewhat ambiguous and are often considered to have equivalent levels

of heterogeneity in their environments. These bacteria have adapted to specialised

ecological conditions (marine thermal vents and fresh water), however, the amount

of competition from other species is higher than the obligate class. Both the faculta-

tive and multiple classes can live both inside a host and in the outside environment,

however, the multiple class, can span a wider range of hosts and environments.

The terrestrial class is then considered the most varied environment, since soil is

considered to have the most heterogeneous ecological conditions.

3.4.2 Oxygen Requirements

In addition, we also have data concerning oxygen requirements for all 383 species.

More specifically, we can group the bacteria into three groups based upon their

oxygen dependence:

1. Aerobic bacteria: species that can only survive in the presence of oxygen.

2. Facultative aerobic bacteria: species that can survive both in the presence and

absence of oxygen in the environment.

3. Anaerobic bacteria: species that live in the absence of oxygen in the environ-

ment.

A number of recent studies [143, 144, 130] have highlighted the effect of oxygen

on metabolic performance and so we would hypothesise that metabolic networks

evolving under aerobic conditions will be structurally different to those evolving

under anaerobic conditions.
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3.5 Summary

The main benefit of a topological approach above the other methods discussed in

this chapter is that it allows for large-scale studies of metabolism both within and

across different species. Whilst such models undoubtedly represent a very abstract

view of metabolism, lacking in detail and complexity, recent evidence suggests that

these complex interaction patterns may reflect the evolutionary origins of important

functional changes within cellular metabolism [129, 142, 144]. Thus, understanding

their topology promises to unravel important features of biological organisation at

the systems level. To finish, it is worth mentioning at this point, that reconstructing

metabolic networks using the procedure described above, is by no means perfect.

Despite the KEGG database being one of the most well established databases, the

data still remains incomplete, and could therefore result in false positives (or false

negatives) when carrying out the analysis on the networks. Indeed, this provides an

additional motivation for restricting our analysis to the giant connected component

of the global network, since this component has been shown to contain the most

accurate data [145].



Chapter IV

A Novel Approach to Network

Classification Based on

Network Motifs

In this Chapter we begin by giving a brief overview of the network classification

problem before describing a number of recent works in the area. We then go on to

introduce a new graph embedding approach that uses low-order network motifs to

map a network into Euclidean space, thus allowing us to use data-mining tools to

determine network clusters. We finish by illustrating the new method on a large

ensemble of bacterial metabolic networks as well as a number of synthetic tests on

model networks.

4.1 Current State-of-the-Art

Classifying networks based upon global features such as clustering coefficients, de-

gree distributions, average path lengths, etc., has proved popular in network science.

For example, networks are commonly classified as being small-world or scale-free

[2, 41, 146, 147]; in fact some authors have taken this a step further and introduced

a number of additional classes based upon, for example, the type of power law being

53
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followed [148, 149]. However, such approaches have received heavy criticism of late.

Indeed, in a recent study by Li et al. [30], it was shown to be relatively easy to

construct two large networks with identical global properties, yet considerably dif-

ferent structure. These findings are particularly pertinent in the case of biological

networks, where the incompleteness of the large, noisy data sets under consideration

can be misleading. Thus, network classification is becoming an increasingly impor-

tant problem in the field, the goal of which is to cluster networks according to the

similarities/differences in their topological structures.

To address this problem a suitable approach for the comparison of two (or more)

networks is necessary. However, this is a non-trivial task in general. Obtaining the

exact structural differences between two large networks is in fact infeasible, since

it requires solving the graph isomorphism problem which is NP-complete [150]. In

practice, heuristic approaches are developed that solve a related, ‘simpler’ problem,

resulting in a suitable approximation.

One such approach is to construct a suitable graph metric which can be used to

cluster networks. For example, Sanfeliu and Fu [151] introduced the so-called graph

edit distance as a measure of similarity between two graphs, whereby edit costs are

associated to the relabelling, deletion and addition of vertices and edges, required

to map one graph to another. An additional related approach was put forward

by Kondor and Lafferty [152], who introduced the idea of graph kernels as a way

of computing pairwise similarities, which, in conjunction with statistical machine

learning techniques (e.g. Support Vector Machine), allowed for the determination

of network clusters.

More recently, a class of approaches that represent a graph in a (possibly high-

dimensional) vector space, i.e. graph embeddings, have been proposed. For example,

in [153] graph and vertex attributes (e.g. efficiency, degree, etc.) have been used to

map functional brain networks into a low-dimensional space in which to perform a

clustering analysis. Another related approach was proposed by Ren et al. [154] in

which feature vectors consisting of the so-called Ihara graph coefficients were con-

structed, before applying a PCA analysis to categorise a large number of networks.

Other notable, recent attempts include Guimera et al. [155] who proposed a

technique for classifying networks according to their modular structure. Whilst a
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related approach by Onnela et al. attempts to provide a taxonomy of networks based

upon a scaled measure of community structure [156]. Finally, in a series of papers

by Przulj et al. [157, 158, 159, 160, 161, 162] the idea of graphlet distributions has

been introduced and used as a technique for network classification.

4.2 A New Graph Embedding Approach

Motivated by the prominent role that network motifs have played to date in the

analysis of biological networks (see Chapter 2), we propose a new, lossy graph em-

bedding technique based on low-order motifs. The proposed technique is lossy in the

sense that the original network cannot be recovered from the corresponding vector-

space representation. Importantly, such an approach takes a difficult and unwieldy

problem, i.e. the analysis of many large, complex biological networks of differing

order, and replaces it by one which is ‘easier’ to manipulate - a plethora of tools

and techniques from statistical machine learning already exist for the analysis of the

resultant embedded data.

4.2.1 Motif Frequency Vectors

Motif frequencies can be used to directly compare different metabolic networks as

they provide a ‘unique’ network signature [74]. Alternatively, networks can be com-

pared by calculating a feature vector of z-scores, computed in the usual way, i.e.

zi,j =
N i
j −

〈
N randi
j

〉
σrandi
j

,

where here, N i
j denotes the rate of recurrence of the jth motif within the ith network

whilst 〈N randi
j 〉, and σrandi

j denotes the mean and standard deviation of the rate of

recurrence of the jth motif in an ensemble of randomised networks [83]. Using z-

scores in this way assumes that motif frequencies are normally distributed across a

network and that each motif is independent, and whilst this is not always guarenteed,

such an approach is standard throughout the literature [85, 86, 93, 163].

In this way, we can compute, for each network of interest, a feature vector zi,
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whose elements are the z-scores of each network motif. For example, if we consider

all 3- and 4-node motifs then the result is a vector zi ∈ R212 representing the ith

network.

Note that it is typically the case that the networks we wish to compare are of

varying order and as such we need to take care that network size does not bias any

results. To handle this issue one can consider instead of the z-scores defined above,

a so-called significance profile [85] defined by

si,j =
zi,j√∑
m z

2
i,m

. (4.1)

The motif significance profile for the ith network, si, is simply the normalised vector

of z-scores. The motif significance profile allows for direct comparisons between

networks of different sizes. This is important due to the fact that motifs in larger

networks tend to exhibit larger z-scores than they do in smaller networks [85]. Note

also, that the motif significance profile lies in the interval [−1, 1].

In the work presented in this thesis we threshold the network significance profiles

such that any entries si,j < 0 are set to zero as we are only interested in those

motifs that are over represented. Motifs that are under-represented are known as

anti-significant motifs, or anti-motifs, and although we do not consider them in this

study, the approach forwarded here can easily be extended to that case. This results

in a matrix

S = [s1, . . . , sm]T ≥ 0,

i.e. a non-negative matrix, whose rows consist of the significance profiles (thresh-

olded) for the m networks under investigation.

To analyse the matrix S we use a matrix decomposition to compute a low-rank

approximation of the data [164]. Since our data is non-negative it is natural to

decompose it using a non-negative matrix factorisation (for the actual algorithmic

details of the method see Appendix A). Such an approach is akin to a principal

component analysis, that reduces the dimension of the problem, thus allowing us to
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Figure 4.1: Illustration of our algorithmic approach.

detect important network features. Mathematically, we approximate S as follows

S ≈ WH, (4.2)

where W ∈ Rm×k and H ∈ Rk×212 are non-negative matrices. Here, k is the rank of

the approximation and m the number of networks being considered. Importantly,

both the columns and rows of W and H can be used to reveal important network

features [165, 166].

The approach can be concisely summarised into the following three basic steps

(see Figure 4.1 for a schematic description):

Step 1: For each metabolic network compute the significance profile, si ∈
R212, consisting of the normalised significance scores for each of the 212 three-

and four-node motifs.

Step 2: Compute a low-dimensional (k << 212) representation of the thresh-

olded matrix of significance scores, S = [s1, . . . , sm]T , using a non-negative

matrix factorisation.

Step 3: Use the columns/rows of W/H to determine network features.
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4.2.2 Global and Local Motif Significance Scores

In order to determine the relative importance of the jth motif in the ith network

we construct the following local motif significance score:

P (i, j) = si,j · h1,j. (4.3)

Note that this results in a matrix P ∈ Rm×212 (recall that m denotes the number of

networks under investigation), whose rows encapsulate the network motif structure

for each metabolic network, and whose columns provide information pertaining to

the relative importance of specific motifs across the network ensemble.

In the experiments in the next section, we derive a global significance score for

each network by summing the rows of P as follows

Pglobal(i) =
∑
j

P (i, j) =
∑
j

si,j · h1,j

= si · h1,

(4.4)

As alluded by the second row in Equation (4.4), this is equivalent to projecting

the significance vector si onto h1, the first row of H. Note that when computing

the factors W and H, MATLAB normalises the rows of H to be of unit length,

and orders the columns of W in decreasing order of their magnitude. In practice,

the magnitude of the columns of W provide a measure of the role that each of the

k factors play in describing the objects under consideration (metabolic networks

in our case). For that reason, the first row of H is likely to provide the optimal

single-variable projection of the data [164].

Importantly, we consider the global significance score in Equation (4.4) to be a

proxy for network complexity, in the sense that a large value indicates the presence of

a relatively large number of network motifs, whereas a low value indicates a simpler,

more tree-like structure.
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Figure 4.2: A biplot representation of the data matrix for an ensemble of 235 net-
works consisting of 115 bacterial networks (black), 40 Erdős-Rényi networks (blue),
40 small-world networks (green), and 40 scale-free networks (red). The axis represent
the three dimensions obtained via non-negative matrix factorisation transformation.

4.2.3 Detection of Network Motifs and Choice of Null Model

Network motif frequencies were computed using the open-source software mfinder,

available at http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html.

This software uses a semi dynamic programming algorithm in order to reduce the

computational running time, and thus provides an efficient way of computing low

order motifs in relatively large networks. Note here that algorithm complexity in-

creases with the size of the network under analysis. In general, the number of

motifs tends to be higher in larger networks, and therefore increases the computa-

tional runtime. In addition, the number of motifs of size q grows exponentially, and

thus reaches enormous quantities for relatively low-order motifs. The number of

motifs of order 3, 4, 5 and 6 is equal to 13, 199, 9364 and 1530843 respectively. For

these reasons we restrict the work presented here to include 3- and 4-node motifs

only.

To determine significance, motif frequencies were computed against frequency

distributions for some 1000 random graphs, chosen so as to preserve both the in-

and out-degree, as well as (q − 1)-node motifs (see Chapter 2 for details on the

algorithmic procedure). Note that the latter condition ensures that the enrichment

of q-node motifs is not simply due to the presence of highly significant subgraphs.

http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html
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4.3 Test on Synthetic Data

In this section we present a ‘proof of principle’ of our new algorithm by attempting

to correctly classify a large ensemble of networks consisting of both model and real-

world networks. More specifically, we consider 115 metabolic networks (see Chapter

3 and the next section for a detailed description) as well as some 120 model networks.

The model networks used are the standard ones described in Chapter 2: (i) Erdős-

Rényi (ER) random graphs; (ii) small-world (SW) networks and (iii) scale-free (SF)

networks. For each model type we construct 40 instances, each having n = 200

nodes and approximately m ≈ 500 edges, giving a density of about 0.01; note that

such a density is typical of that found in the corresponding metabolic networks. The

bacterial networks are highly variable, with the number of nodes ranging between

65 and 892, and the corresponding densities in the range [0.05, 0.001].

We have applied the new algorithm (i.e. steps 1 - 3 above) to the above ensemble

of networks thus obtaining feature vectors consisting of the 212 motif significance

scores for each of the 235 networks, resulting in a 235 × 212 data matrix. Using

a non-negative matrix factorisation each data point is mapped to a 3-dimensional

space (see Figure 4.2). Here, the results are presented using a biplot, which allows

us to visualise the data from two points of view - the transformed observations (i.e.

networks) are displayed as points, and the corresponding variables (i.e. network

motifs) as vectors [167]. The points in the biplot can be interpreted in the same

way as a standard scatterplot in that data points that are located close together

(far apart) can be considered as being similar (dissimilar), with respect to their

motif structure. The corresponding vectors are aligned in the direction that is most

strongly related to a particular variable, or motif in our case, and the length of

each vector conveys the strength of the relationship [168]. Note that each vector is

labeled with it’s corresponding motif ID.

As can be clearly seen, the approach successfully determines distinguishable clus-

ters for the bacterial networks (black), the SW networks (green) and the SF networks

(red). The ER networks, on the other hand, appear more dispersed across the graph,

which, is perhaps not too surprising since these graphs contain the most random

structure, thus the likelihood of two graphs from this group having the same signif-
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Figure 4.3: 2-dimensional projections of the biplot in Figure 4.2 on to (a) columns 1
and 2; (b) columns 1 and 3; and (c) columns 2 and 3. As before, bacterial networks
are shown in black, Erdős-Rényi networks in blue, small-world networks in green,
and scale-free networks in red.

icant motifs is small. Importantly, we can use the biplot to determine which motifs

are driving the observed differences. Illustrations of the motifs obtained in the bi-

plots are displayed in Table 4.1. In Figure 4.3 we present 2-dimensional projections,
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Network motifs

motif 1 motif 3 motif 4 motif 5 motif 6

motif 7 motif 9 motif 10 motif 11 motif 12

motif 14 motif 23 motif 49 motif 62

Table 4.1: Network motifs obtained for the 120 network models and 115 metabolic
networks using the new algorithm.

in order to obtain a clearer visualisation of the role of each column. Firstly, we

observe that motif 9 is consistent within all 3 columns (Figure 4.3a – 4.3c), thus

suggesting that motif 9 is generic to all the networks considered here. In addition,

motifs 5 and 6 are found to be a common feature in both the metabolic networks

and small-world networks, motif 6, however, appears slightly more significant in the

latter class.

In terms of each of the clusters, we find that the metabolic networks are mainly

explained by column 1, since the biplot in Figure 4.3c, more or less, shows the cluster

of metabolic networks lying very close to the origin. The motifs 14, 23, 49 and 62

all appear to be specific to the class of metabolic networks. Small world networks,

on the other hand, are almost completely explained by column 3, since this class of

networks lie extremely close to origin in Figure 4.3a. The motifs 11 and 12 appear

to be specific to the class of SW networks. Motif 10 also appears to be a prominent

feature of SW networks, however, the biplots suggest that this motif is also featured

in ER networks and/or SF networks but to a lesser extent. Furthermore, the SF

networks appear to be most explained by column 2, however, some information

appears to be contained within column 1 and 3, since the SF networks do not lie

near the origin in Figure 4.3b. This result suggests that SF networks have a slightly

more randomised structure, in terms of network motifs, than either the metabolic

or SW networks, but exhibit a considerably higher amount of ordering than ER

networks. In particular, the motifs 1, 3, 4 and 7 appear to be specific to the class

of SF networks.
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Environment Nodes Edges
min median max min median max

Obligate (34) 78 273 620 91 340 840
Specialised (5) 442 480 541 566 641 692

Aquatic (4) 541 580 647 700 751 868
Facultative (41) 90 652 809 101 890 1160

Multiple (28) 430 615 800 560 821 1119
Terrestrial (3) 557 689 693 779 944 966

Total (115) 78 541 809 91 730 1160

Table 4.2: Network statistics for the reaction graphs of the 115 bacterial species
studied in this work classified according to environmental variability. According
to the NCBI, obligate bacteria have the most constant environment, followed by
specialised and aquatic, and then facultative, multiple and terrestrial bacteria in
that order.

4.4 Tests on Directed Metabolic Networks

Next we go on to consider metabolic networks in more detail. The metabolic data

in this study was derived from the KEGG database on May 20th, 2011. In total we

studied 383 bacterial species (see Tables 4.2 and 4.3 for an overview of some basic

network properties), each being characterised by a number of shared biological fea-

tures (e.g. environmental variability, oxygen requirements and genome size), using

graph theoretical techniques. For this study we represent the metabolic networks as

substrate-product graphs whereby nodes and edges correspond to metabolites and

reactions, respectively. Note that a potential caveat of such an approach is that it

can lead to the detection of erroneous pathways. However, since we are not consid-

ering a path analysis here and for the ease of comparability with previous studies,

we consider the substrate-product representation in all our experiments. Moreover,

the currency metabolites, such as H2O, ATP and NADH were removed from the

analysis as they tend not to be involved in higher order functions, and if included,

typically lead to physiologically meaningless pathways. Finally, to further simplify

the analysis, we consider only the largest connected component for each network.

For more details of the network construction please refer back to Chapter 3.

As an illustration of the new approach we carried out two experiments with

the aim of testing the hypothesis that organism adaptability is manifested via the

network motif structure of the corresponding metabolic networks.
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Environment Nodes Edges
min median max min median max

Aerobic (154) 65 605 892 74 809 1210
Facultative (180) 78 602 816 91 825 1168
Anaerobic (49) 307 488 681 381 645 969

Total (383) 65 581 892 74 789 1210

Table 4.3: Network statistics for the reaction graphs of the 383 bacterials species
studied in this work classified according to species’ oxygen requirements. The degree
of oxygen required increases in the order anaerobic, facultative and aerobic.

4.4.1 Environmental Variability Promotes Network Com-

plexity

The first experiment undertaken considered 115 metabolic networks, each being cat-

egorised according to their environmental habitat (see Table 4.2). The organisms

can be found in a variety of conditions, ranging from highly specialised (e.g. sym-

biotic bacteria living within a host), to extremely heterogeneous conditions such as

soil, and thus have evolved under very different selective pressures. For more details

on the environmental habitats please refer to Chapter 3.

Figure 4.4 shows a plot of the mean global motif score, Pglobal, versus environ-

mental variability for the 115 different bacterial networks. Note that the average

here is taken over each of the 6 environmental classes: obligate, specialised, aquatic,

facultative, multiple and terrestrial. Importantly, we found that motif frequency,

and thus network complexity, increased significantly with environmental variability.

The lowest motif frequency is found for the bacteria within the obligate class, fol-

lowed by a relatively steep increase to the specialised and aquatic classes, then higher

again for the facultative and multiple classes, and then highest for the terrestrial

class. The group differences shown in Figure 4.4 are significant by the Kruskal-

Wallis (KW) test (p-value: p < 10−9). Note, that for the result presented here, the

non-negative matrix factorisation was carried out using k = 3. For more details of

the choice of k see Appendix A.

This result relates to a number of previous studies that have found a relationship

between environmental variability and network complexity [129, 142, 169, 170]. Bi-

ologically, this increase in network complexity manifests via an increase in genome
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Figure 4.4: Relationship between environmental variability and the mean global sig-
nificance score 〈Pglobal〉 for the six bacterial habitats: Obligate, Specialised, Aquatic,
Facultative, Multiple and Terrestrial. Vertical bars represent standard errors.

complexity, as has been evidenced in a number of recent studies. For example, Zhou

et al. [171] recently found that microbes that inhabit heterogeneous environments

display a larger metabolome, as compared against those leading a more specialised

lifestyle. The obligate symbiont Buchnera aphidicola provides such an example. In-

deed, in a recent study by Párez-Brocal et al. [172] a significant reduction in genome

length was discovered in a comparative analysis of previously sequenced strains. We

further investigated the relationship between environmental variability and genome

size by considering the total number of genes in the 115 metabolic networks. As

expected, we find a significant relationship between the six environmental classes

and the total number of genes using the Kruskal-Wallis test (p-value: p < 10−8,

see appendix 2). As a control for the effect of genome size on Pglobal, we computed

the Spearman’s partial correlation between Pglobal, environment variability and the

total number of genes, and find that the results in Figure 4.4 remain significant

(c = 0.4239, p = 10−5, see Appendix B).
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The results presented above provide further evidence that environmental vari-

ability promotes metabolic network complexity. From a biological point-of-view this

result may naturally be considered a product of the evolutionary process: due to the

existence of the steady supply of metabolites that a constant environment provides,

certain pathways become redundant and are removed over time. Whilst, contrary to

this, the uncertainty faced by those species inhabiting varied environments, means

that the additional costs, associated with more complex metabolic structures, are a

necessary requirement for survival.

4.4.2 The Effect of Oxygen Requirement on Network Struc-

ture

Next, we considered the effects of oxygen requirements on metabolic network struc-

ture. We studied some 383 bacterial species which were categorised into 154 aerobes,

180 facultatative aerobes and 49 anaerobes.

Figure 4.5 shows a plot of the mean global motif score versus growth conditions

for the 383 different bacterial species. Interestingly, we find that networks that

have evolved in the presence of oxygen, that is, aerobes and facultative aerobes,

have a significantly larger number of network motifs. The group differences shown

in Figure 4.5 were found to be significant using the Kruskal-Wallis (KW) test (p-

value: p < 10−4). Note, as before, k = 3 was chosen in the non-negative matrix

factorisation.

Importantly, this result suggests that bacterial networks that are exposed to

oxygen are able to form additional pathways and motifs, compared to those that are

oxygen deprived. Thus enabling them to evolve more complex network architectures,

a result that is in agreement with a number of recent studies (see for example, the

paper by Raymond and Segré [143]). Indeed, Raymond and Segré found that the

number of reactions and metabolites was approximately 1.5 fold higher in aerobic

bacteria compared to anaerobic bacteria, and thus supports the view that oxygen

availability induced network complexity. As with the habitat data, we investigated

the relationship between growth conditions and genome size. We find a significant

relationship between the availability of oxygen and the total number of genes using
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Figure 4.5: Relationship between growth requirements, more specifically oxygen
requirements, and the mean global significance score 〈Pglobal〉. Vertical bars represent
standard errors.

the Kruskal-Wallis test (p-value: p < 10−2, see appendix 2). As a control for the

effect of genome size on Pglobal, we computed Spearman’s partial correlation between

Pglobal, oxygen requirements and the total number of genes, and find that the result

in Figure 4.5 is still significant (c = −0.1020, p = 0.0464, see Appendix B).

4.4.3 Motifs Responsible for the Observed Differences

To determine the specific motifs driving the observations of the previous section, we

considered the quantity
∑

i P (i, j), that is, the column sum of the matrix P defined

in Equation (4.3) – recall that the columns of P contain information specific to

individual motifs. Moreover, by restricting the sum above to a particular subgroup

of interest (specialised, obligate, multiple, etc.), it is possible to detail the extent to

which any particular motif featured within that group. In the following we consider

a motif to be significant within a particular group, if the mean local significance score
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Environment Significant motifs

Specialised (43)
motif 5 motif 9

Varied (72) motif 5 motif 9 motif 14 motif 26

motif 15 motif 62

Table 4.4: Motifs significantly overrepresented in networks pertaining to a specialised
and varied environment.

of that motif (restricted to the group of interest) is at least 2 standard deviations

greater than the mean score across the entire network ensemble.

It is important to note that due to the nature of the algorithms used to compute

the non-negative matrix factorisation (see Appendix A for details), the significant

motifs discovered by the above approach may vary as we repeat the experiment. For

this reason, we perform the matrix factorisation a total of 1000 times and use the

frequency with which a particular motif occurs as a measure of significance. More

specifically, motifs reported in this chapter must have been found to be significant

in at least 75% of the 1000 factorisations performed (additional details can be found

in Appendix A).

Habitat Variability

In order to simplify the analysis we considered two groups: specialised (consisting

of the obligate, specialised and aquatic classes) and varied (consisting of facultative,

multiple and terrestrial classes). The significant motifs are displayed in Table 4.4.

The first thing to note is that motifs 5 and 9, a feed forward loop and closed cycle,

respectively, are prominent throughout the entire ensemble of networks, regardless

of environmental factors. This is perhaps not too surprising as both of these pat-

terns are considered to play important functional roles in many biological networks.

The addition of a feed forward loop to a linear cascade of biochemical reactions, for

example, has been hypothesised to accelerate the metabolic process [173]. Impor-

tantly, we found the number of significant motifs to be greatest in those metabolic



4.4 Tests on Directed Metabolic Networks 69

0 00 000 000 000 000
0

0200

0204

0206

0208

020

0200

0204

0206

sssssssssss

y
s

yy
s
sss

s
y

yy
ys

y
y

s
y

y
y

ssss5y0

y

y

ddsyssssssy

dsyssy

Figure 4.6: Mean normalised frequency for the 263 metabolites obtained within
motif 5 for the 115 metabolic networks. Blue bars represent the specialised class
and red bars represent the varied class. Here, the metabolites are in descending
order of the metabolite frequencies for the varied class.

networks exposed to more variable environments: 2/212 for specialised and 6/212

for varied (see Table 4.4). Clearly, this represents only a very small percentage of

available 3- and 4-node motifs (≈ 1-3%), and so the differences observed in Figure

4.4 can be attributed to a small set of motifs more or less specific to the different

kinds of bacteria.

The increased numbers of network motifs present within the varied class indi-

cates a potentially significant growth in network redundancy within those organisms

inhabiting fluctuating environments, and can be considered as further evidence of

so-called functional redundancy mediated robustness [174], that is, the observed per-

severance of systems level redundancies prevalent in metabolic, as well as more gen-

eral, cellular networks. More specifically, of the 4 additional significant motifs found

in the varied class, motifs 14 and 15 may be considered variants of the single-input

motif, motif 62 a bi-parallel fan, and motif 26 a multi-input motif, all of which have
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Figure 4.7: Mean normalised frequency for the significant metabolites obtained
within motif 5 with p < 0.01 (Fisher’s Exact test). Vertical bars are standard
errors. Asterisks indicate large significant differences between metabolic networks
from a specialised and varied environment, where *,**,and *** correspond to
p < 0.001, p < 0.0001 and p < 0.00001. Metabolite names are provided for the
most significant metabolites.

been implicated as potential indicators of network redundancy. For example, in the

context of metabolism the single-input motif consists of a substrate X that is con-

sumed in multiple reactions, the result of which are the products Y, Z, . . .; whilst the

bi-parallel fan implies the presence of multiple, or compensatory, pathways whose

efficiencies may vary according to alterations in environmental conditions. Indeed,

these findings are in agreement with a number of recent studies relating genetic

robustness and organism adaptability [174, 175], and suggest that bacteria that live

in more variable environments typically display a greater abundance of redundant

metabolic reactions.

In addition to the topological differences observed between varied and specialised

bacteria, we found that the distribution of those metabolites occurring within motif
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Figure 4.8: Mean normalised frequency for the 54 metabolites obtained within motif
9 for the 115 metabolic networks. Blue bars represent the specialised class and the
red bars represent the varied class. Here, the metabolites are in descending order of
the metabolite frequencies for the varied class.

structures present across the entire network ensemble, i.e. motifs 5 and 9, also

differed significantly. Figures 4.6 and 4.7 show the mean frequency for metabolites

occurring within motif 5 for the 115 metabolic networks, again grouped into the

specialised (blue bars) and varied classes (red bars). Note that the frequencies

plotted in Figures 4.6 and 4.7 have been normalised to remove any bias due to

network size (the normalisation procedure is described in more detail towards the

end of this section), and metabolites are displayed in decreasing order according

to the varied class. Figure 4.6 displays the distribution for those 263 metabolites

that occurred at least once within motif 5 across the two classes under consideration.

Interestingly, we see that the distribution for the varied class is relatively broad, with

a large number of metabolites occurring with a relatively low frequency, whereas

the distribution for the specialised class is more akin to a scale-free or power-law

distribution, consisting of a small set of relatively high frequency metabolites.
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Figure 4.9: Mean normalised frequency for the 54 metabolites obtained within motif
9 for the 115 metabolic networks. Vertical bars are standard errors. Asterisks
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Next we used a Chi-square test (Fisher’s exact test, p < 0.01) to explore the dif-

ferences in proportions of the individual metabolites between the two groups. Figure

4.7 shows the 47/263 metabolites for which a significant difference in proportions

was found in motif 5, again displayed according to decreasing frequency of the varied

class. Metabolites displaying the most significant differences (Fisher’s Exact test,

p < 10−5) included (2R)-2-Hydroxy-3-(phosphonooxy)-propanal, Tetrahydrofolate

and Isopentenyl diphosphate, all of which were overrepresented in the specialised

group compared to the varied group. Note that the aforementioned overrepresented

metabolites are required for biosynthesis of various amino acids, folates and ter-

penoids and are also responsible for the regulation of carbohydrate metabolism in

many bacterial species.

Note that similar results were found for motif 9. Figure 4.8 shows the mean

frequency for metabolites occurring within motif 9 for the 115 metabolic networks,

grouped into the specialised (blue bars) and varied (red bars) classes. Here metabo-
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Environment Significant motifs

Aerobic & Facultative (334)

motif 5 motif 9 motif 14 motif 15 motif 26

Anaerobic (49)

motif 5 motif 9 motif 14 motif 26

Table 4.5: Motifs significant to networks with differing oxygen requirements.

lites are displayed in decreasing order according to the varied class. Figure 4.8 shows

the 54 metabolites that were found at least once across the 115 metabolic networks.

We find that the distribution of metabolites is slightly broader for the varied class,

similar, but less prominent, to the results obtained for motif 5. Using Chi-square

tests (Fisher’s Exact test) we explored group differences for the individual metabo-

lites. Figure 4.9 identifies only one metabolite, RNA, for which significant differences

were found (Fisher’s Exact test, p < 0.001).

Oxygen Requirements

Similar to the above, we then investigated which motifs were driving the observed

differences between metabolic networks that evolved in the presence or absence of

oxygen. Again, for simplicity we divided the bacteria into two separate groups:

anaerobic and aerobic (including facultative aerobes). The significant motifs are

displayed in Table 4.5. For aerobic networks 5/212 possible motifs were found to

be significant, whilst for the anaerobic networks 4/212 were found to be significant.

Again, motifs 5 and 9 were significant across the entire cohort, along with motifs

14 and 26 in this instance. The only motif that differed between the two groups

was motif 15, which was specific to the aerobic class. Interestingly, the study by

Raymond and Segré [143] found that the effects of oxygen exposure on metabolic

network structure was most prolific at the periphery of the network, that is, network

alterations were largely due to the addition of new reactions and pathways, rather

than network rewiring. Thus, the enrichment of motif 15 is a natural consequence, as

it acts as a branch point on these newly formed peripheral reactions and pathways.
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Figure 4.10: Mean normalised frequency for the 291 metabolites obtained within
motif 5 for the 383 metabolic networks. Blue bars represent the aerobic-facultative
class and red bars represent the anaerobic class. Metabolites are displayed in de-
scending order of the metabolite frequencies for the aerobic-facultative class.

Figures 4.10 and 4.11 show the distribution of metabolites across motif 5 for

the two groups, ordered according to decreasing metabolite frequency for the aer-

obic class (blue bars). Note, that the aerobic class exhibits a fairly broad distri-

bution, whilst the anaerobic distribution tails off slightly quicker, in a similar but

less pronounced manner to that displayed by the specialised bacteria in Figure 4.6.

Figure 4.11 shows those metabolites that displayed a significant group difference.

Interestingly, the majority of metabolites, some 37/52, were found to be overrep-

resented in the aerobic group compared to the anaerobic group, the most signifi-

cant of which were Isopentenyl diphophosphate, Fatty acid, trans-Farnesyl diphos-

phate, Phosphatidylethanolamine, Phosphatidylserine, L-Threonine, L-2-Amino-3-

oxobutanoate, 2-Acyl-sn-glycero-3 phosphocholine, Phosphatidylcholine, 3’.5’-Cyclic

GMP (Fisher’s Exact test, p < 10−5). These metabolites are known to be involved

in the biosynthesis of a range of amino acids and secondary metabolites.
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Figure 4.11: Mean normalised frequency for the significant metabolites obtained
within motif 5 with p < 0.01 (Fisher’s Exact test). Vertical bars are standard
errors. Asterisks indicate large significant differences between metabolic networks
from the aerobic-facultative and anaerobic class, where *,**,and *** correspond to
p < 0.001, p < 0.0001 and p < 0.00001. Metabolite names are provided for the most
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Figure 4.12: Mean normalised frequency for the 65 metabolites obtained within
motif 9 for the 383 metabolic networks. Blue bars represent the aerobic-facultative
class and the red bars represent the anaerobic class. Here, the metabolites are in
descending order of the metabolite frequencies for the aerobic-facultative class.

Again, similar results where found for motif 9. Figure 4.12 shows the mean

frequency for metabolites occurring within motif 9 for the 383 metabolic networks

that evolved in either the presence or absence of oxygen. Here metabolites are

displayed in decreasing order according to the aerobic-facultative class (blue bars).

Figure 4.12 shows the 65 metabolites that were found at least once across the two

classes. Note that the distribution for the aerobic-facultative class and anaerobic

class for motif 9 are a lot closer than that obtained for motif 5. Figure 4.13 shows that

the metabolites with the most significant differences (Fisher’s Exact test, p < 0.001)

included Glutathione, L-Arginine, L-Citrulline, N-(L-Arginino)succinate, Succinate,

Succinyl-CoA and O-Succinyl-L-homoserine.
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Figure 4.13: Mean normalised frequency for the 65 metabolites obtained within
motif 9 for the 383 metabolic networks. Vertical bars are standard errors. Asterisks
indicate levels of significance, with *, **, and *** corresponding to p < 0.05, p < 0.01
and p < 0.001, respectively. Metabolite names are provided for the most significant
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Determining Significant Metabolites

We conclude this section by providing a few additional details regarding the statis-

tical analysis performed above. Note, that when considering the differences between

the frequency of metabolites occurring in a motif of interest (5 or 9 in our case) care

must be taken to eliminate the influence of network size on the analysis. This bias is

due to the increased number of motifs exhibited by larger networks which naturally

leads to greater frequencies of metabolites. Thus, given a network i and a metabolite

j, we denote by fi,j the frequency with which metabolite j appears within the motif

of interest, motif q say, for the ith network. Now, in order to remove any bias due

to network size we normalise the statistic fi,j by dividing it by the frequency with

which motif q appears in network i, which we denote by fi,motq . This then leads to

the following normalised statistic:

f̂i,j =
fi,j
fi,motq

,

describing the relative importance of metabolites via their participation within spe-

cific motifs. It is the normalised frequency f̂ that is displayed in Figures 4.6–4.13.

4.5 Summary

In this Chapter, we have introduced a new graph embedding approach for studying

large numbers of networks, of possibly differing order, and employed it to investi-

gate the effect of environmental variability on the metabolic network structure of a

large cohort of bacterial species. As a proof of principle, we first applied the new

approach to a large ensemble of networks consisting of both bacterial networks and

a range of standard network models (Erdős-Rényi networks, small-world networks

and scale-free networks), providing evidence that the technique can correctly differ-

entiate between various types of networked structures. Moreover, applying the new

technique to a large cohort of metabolic networks, we found evidence supporting

the view that organisms that evolve in more uncertain environments exhibit more

complex metabolic connectivity structures than those evolving under more stable
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conditions. Note, that the motif based approach forwarded here strongly supports

the view that environmental conditions play a pivotal role in shaping the resultant

metabolic networks, and is robust in the sense that the patterns described in Fig-

ures 4.4 and 4.5 are reproducible in both the latest and older, less complete versions

of the data [176] (data not shown). This is in contrast to recent studies in which

network features that were found to correlate with environmental variability (e.g.

modularity) disappeared when tested on newer versions of the data [130, 171]. Im-

portantly, these findings suggest that alterations in the motif signature provide a

robust indicator of adaptability and evolvability in bacterial metabolic networks.



Chapter V

Hypernetwork Models of

Metabolism

In this Chapter we start by giving a brief overview of some recent works in network

science that use hypernetwork models, with an emphasis on biological applications.

We then provide some preliminaries detailing the extensions of a number of network

definitions and theories to this more complicated setting, including our own exten-

sion of the concept of network reciprocity. Finally, we extend a number of ideas from

percolation theory to hypernetworks in order to quantify metabolic hypernetwork

robustness, and provide a biological interpretation of our results.

5.1 Complex Hypernetworks

Whilst the topological characterisation of complex networks has received consider-

able attention over the past decade [177, 178], the theory of complex hypernetworks

is far less developed, which, coupled with the increased algorithmic complexities

that accompany such an approach, perhaps explains why this more natural frame-

work has not been more widely adopted in the study of biological networks to date.

Recently, however, a number of studies have attempted to extend complex network

reasoning to this more complicated setting. For example, the commonly used clus-

tering coefficient, a measure of the probability that any two neighbours of a given

80
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Reaction 1: A → B + C
Reaction 2: B + C → D
Reaction 3: D + E → F + G
Reaction 4: E → G
Reaction 5: B + C → A
Reaction 6: G → E
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A �1 0 0 0 1 0
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F 0 0 1 0 0 0
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A 0 1 1 0 0 0 0
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D 0 0 0 0 0 1 1
E 0 0 0 0 0 1 2
F 0 0 0 0 0 0 0
G 0 0 0 0 1 0 0
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(d)

Figure 5.1: Hypergraph model of metabolism: (a) an example of a hypothetical
reaction system; (b) the accompanying hypergraph model; (c) its incidence matrix
representation; and (d) its adjacency matrix representation.

node are also neighbours, has been extended to hypernetworks [32, 179]. In [32] in

particular, it was shown that the inverse scaling between network degree and cluster-

ing, typically reported in standard network analyses of metabolism and considered

indicative of a hierarchical network structure [180], may actually be an artefact due

to misrepresentation. Another important topological parameter that has been gen-

eralised to this more complicated setting is the subgraph centrality [179]. Centrality

measures provide a measure of the relative importance of each node within a net-

work, and the generalisation given in [179] provides such a characterisation for the

nodes of a hypernetwork. Other notable works include the extension of random

graph models such as Erdös-Rényi and Barabási-Albert to hypernetworks [181]; the

use of random walks to infer information flow and network architecture [182, 183];

and novel community detection algorithms for determining modular hypernetwork

structure [184, 185].
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5.1.1 Hypernetwork Preliminaries

A complex hypernetwork can be described by a pair of objects H = (V,E), where

V = {v1, v2, ..., vn} is a set of n vertices and E = {E1, E2, ..., Em} the corresponding

hyperedge set. Each hyperedge consists of subsets of V , such that
⋃
iEi = V and

Ei 6= ∅. We say that two vertices vi and vj are adjacent if they are contained within

the same hyperedge, i.e. vi, vj ∈ Ek. For a directed hypernetwork each hyperedge

is further divided into two subsets (the tail set X and the head set Y ) allowing

us to distinguish between bidirectional and unidirectional relationships. Directed

hyperedges are more commonly known as hyperarcs.

A hypernetwork can be represented by a variety of different matrices [186], the

most popular of which is the incidence matrix, an n×m matrix C(H) representing

the relationships between the n nodes and m hyperarcs. The entries of the matrix

C(H) are given by

Cij =


1, if vi ∈ Ej,

0, otherwise,

that is, Cij equals 1 if the node vi belongs to the jth hyperedge. In the case of

directed hypernetworks, the incidence matrix is able to distinguish between nodes

that belong to the tail/head set of a hyperarc, such that the entries are given by

Cij =


−1, if vi ∈ Xj,

1, if vi ∈ Yj,

0, otherwise.

Alternatively, a directed hypernetwork can be represented by two incidence matrices

- the negative (or outer) incidence matrix C−(H) and the positive (or inner) incidence

matrix C+(H), representing the tail sets and head sets of the hyperarcs respectively.

That is, the elements of C−(H) are equal to 1 if vi ∈ Xj and 0 otherwise. The

elements of C+(H), on the other hand, are equal to 1 if vi ∈ Yj and 0 otherwise

[183].

Importantly, given the incidence matrix it is straightforward to compute the
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adjacency matrix of a hypernetwork as follows

A(H) = C(H)C(H)T . (5.1)

More formally, the elements of A(H) are defined as

Aij = |{Ek ∈ E : vi, vj ∈ Ek}|, for vi, vj ∈ V, i 6= j. (5.2)

Note that we can use the outer and inner incidence matrices to generalise the above

to the case of a directed hypernetwork as

A(H) = C−(H)C+(H)T . (5.3)

Again, this can be written more formally as

Aij = |{Ek ∈ E : {vi ∈ Xk, vj ∈ Yk} ⊂ Ek}|, for vi, vj ∈ V, i 6= j,

which, in words, states that the ijth element is given by the cardinality of the set

of hyperarcs, such that vi belongs to the tail set (i.e. vi ∈ Xk) and vj belongs to the

head set (i.e. vj ∈ Yk). It should be noted here that, unlike the incidence matrix, the

adjacency matrix loses information regarding the hypergraph’s structure. That is,

an adjacency matrix cannot be used to determine whether a group of nodes belong

to the same hyperedge. Instead, the adjacency matrix is akin to a multigraph,

such that it allows for multiple links between nodes, since it contains non-negative

integers as its entries.

The next definition that we require is that of the underlying hypernetwork, which

is the hypernetwork U(H) that results after removing the directionality of all hyper-

arcs. The underlying hypernetwork provides an elegant way to normalise directed

hypernetwork measures, and thus allows us to compare across directed hypernet-

works of differing order. Figure 5.2 shows an example of a hypernetwork together

with its corresponding underlying hypernetwork.
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Figure 5.2: Illustration of a directed hypergraph with its corresponding underlying
hypergraph.

5.1.2 Current Complex Hypernetwork Measures

Next we give a brief overview of the complex hypernetwork analogues of some of

the measures introduced in Chapter 2 with a particular focus on the extension of

some of the most familiar network measures, namely the degree distribution and the

clustering coefficient.

Hypernetwork Degree Distributions

Perhaps the simplest measure to extend is that of degree. The degree k(vi) of a

node vi in a hypernetwork is defined as the cardinality of the set of hyperedges, such

that vi ∈ Ek. Note that a vector of hypernetwork node degrees is easily computed

using the incidence matrix as follows,

k(V ) = C(H)eT ,

where e is a 1 × m vector of all ones. In the case of a directed hypernetwork, we

consider two types of node degrees: the in-degree, kin(vi), which is defined as the

cardinality of the set of hyperarcs containing vi in the head set, and the out-degree,

kout(vi), which is defined as the cardinality of the set of hyperarcs containing vi in

the tail set. More formally, we have the following

kout(vi) = |{Ek ∈ E : vi ∈ Xk}|

and

kin(vi) = |{Ek ∈ E : vi ∈ Yk}|.
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Figure 5.3: The in- and out-degree distributions (a) and the in- and out- cumulative
degree distributions (b) for the directed hypergraph of E. coli.

Similar to the undirected case, vectors of in- and out-degrees are easily computed

using the positive and negative incidence matrices, in the following way

kout(V ) = C−(H)eT and kin(V ) = C+(H)eT .

Figure 5.3 illustrates the above in the case of E. coli : 5.3a displays the degree

distribution whilst 5.3b displays the cumulative degree distribution. In this example

it is seen that both the in- and out-degree distributions are very similar, and appear

to follow a power-law distribution.

In addition to the standard degree one can consider the so-called hyperedge

cardinality, and plot its distribution. The hyperedge cardinality counts the number

of nodes contained within each hyperedge, that is

k(Ej) = |{vi ∈ V : vi ∈ Ej}|.
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Figure 5.4: The hyperarc out-degree (red) and in-degree (blue) distributions of
E.coli.

Similar to the node degrees, a vector of hyperedge degrees can be easily computed

from the incidence matrix as,

k(E) = eC(H),

where here e is a 1× n vector of all ones. In the case of directed hypernetworks, we

again consider two types of degrees, the out-degree kout(Ei), corresponding to the

number of substrates in the hyperarc, and the in-degree kin(Ei), corresponding to

the number of products in the hyperarc. Mathematically, we have the following

kout(Ej) = |{vi ∈ V : vi ∈ Xj}|

and

kin(Ej) = |{vi ∈ V : vi ∈ Yj}|.

Again, vectors of out- and in-degrees can easily be computed using the negative and

positive incidence as follows

kout(E) = eC−(H) and kin(E) = eC+(H).

In Figure 5.4 we plot the hyperarc out-degree (red) and in-degree (blue) distri-
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butions for the hypernetwork of E.coli. Again, we find that the out- and in-degree

distributions are very similar, both of which have a mean degree of 3 and a range

from 1 to 5. Unlike the node-degree distributions, the hyperarc cardinality distri-

butions appear to be more akin to a poisson or binomial distribution.

Hypernetwork Clustering Coefficients

As mentioned previously several clustering coefficients have been proposed for hy-

pernetworks. The first attempt was by Estrada and Rodriguez [187] who provided

a generalisation of the network transitivity measure to hypernetworks. Recall that

the transitivity coefficient of a network is defined as

T (G) =
3× the number of triangles

number of paths of length 2
=

3C3(G)

P2(G)
,

where C3 is the number of triangles and P2 the number of paths of length 2.

To generalise the above to hypernetworks, Estrada and Rodriguez defined a

hyper-triangle to be a sequence of three distinct nodes and hyperedges, such that the

nodes are mutually adjacent, i.e. viEpvjEqvkErvi. Similarly, they defined a two-path

to be a sequence of the form viEpvjEqvk; here all hyperedges and nodes are distinct.

It is then tempting (recalling the methods described in Chapter 2) to calculate the

the ratio of triangles to two-paths in a hypernetwork using the adjacency matrix

as before. Unfortunately, proceeding in this manner leads to incorrect results due

to the inclusion of so-called false hyper-triangles. Such false triangles result when

closed walks of length three are formed within one (or two) hyperedges. Thus due to

the construction of the adjacency matrix (see Equation (5.2)) the usual methods of

counting triangles severely over counts and so any sensible definition must account

for this.

To this end Estrada and Rodriguez put forward the following definition of the

hypernetwork transitivity coefficient

T (GH) =
6× the number of hyper-triangles

number of hyper-paths of length 2
=

6C3(GH)− 6t

P2(GH)− 6t
.
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Here t denotes the number of false hyper-triangles which is defined as

t =
m∑
j=1

(−1)j+1aj,

where ak =
∑

αi1,i2,...,ik

 αi1,i2,...,ik

3

 and αi1,i2,...,ik =

∣∣∣∣∣
k⋂
r=1

Eir

∣∣∣∣∣. Note that this is a

consequence of the inclusion-exclusion principle.

More recently, Zhou and Nakhleh [32] have proposed extensions of both the local

and global clustering coefficient to undirected hypernetworks employing the notion

of hyperedge extra overlap.

Given a hypernetwork H the extra overlap for any pair of overlapping hyperedges

is given by

EO(Ei, Ej) =
|N(Dij) ∩Dji|+ |N(Dji) ∩Dij|

|Dij|+ |Dji|
, (5.4)

where Dij = Ei − Ej denotes the set difference, and N(vk) is the neighbourhood of

the node vk, i.e.

N(vk) = {vl|{vl, vk} ⊆ Ej for some Ej ∈ E}.

To extend this definition to sets, one simply takes the union of the neighbourhoods

of all nodes contained within the set. Informally, the extra overlap between a pair

of hyperedges is the fraction of vertices that are connected via a separate hyperedge

(or hyperedges); see Figure 5.5 for an illustration of the extra overlap for a toy

hypernetwork on five nodes.

Given Equation (5.4) we can then define the following local clustering coefficient

HClocal(vk) =


(|M(vk)|

2

)−1 ∑
Ei,Ej

∈M(vk)

EO(Ei, Ej), if k(vk) > 1,

0, if k(vk) = 1.

(5.5)

Here, k(vk) denotes the degree of node vk and M(vk) is the set of hyperedges con-

taining vk. The above definition naturally extends to a global clustering coefficient
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Figure 5.5: Toy hypergraph models to illustrate the local clustering coefficient,
HClocal, for a variety of different scenarios.

as follows

HCglobal(H) =


1
|I|
∑
Ei,Ej

∈I

EO(Ei, Ej), if I 6= ∅,

0, if I = ∅.
(5.6)

Here, I = {{Ei, Ej} ⊂ E : Ei ∩ Ej 6= ∅ and Ei 6= Ej}, is the set of hyperedge pairs

with non-empty intersection. Informally, the local clustering coefficient is simply

the hyperedge extra overlap, averaged over those hyperedges containing the node of

interest; whereas the global clustering coefficient averages the extra overlap over all

hyperedge pairs containing at least one common vertex.

Importantly, Zhou and Nakhleh [32] applied their method to the metabolic hy-

pernetwork of E. coli and found a number of inconsistencies between their work

and previous studies. In particular, they found that the power law scaling between

the clustering coefficient and network degree disappears when applying their new

measure HClocal to metabolic networks represented as hypernetworks. In Figure 5.6
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Figure 5.6: The scaling of the local clustering coefficient for (a) the metabolic hy-
pergraph and (b) the metabolic standard graph of E.coli. Note that the blue crosses
are the averaged local clustering coefficients for each unique degree, whereas the red
circles are the local clustering coefficients.

we repeat the analysis performed by Zhou and Nakhleh on our data (see Chapter 3

and the next section for a detailed description of the data) by plotting the clustering

coefficient versus degree for (a) the standard network and (b) the hypernetwork rep-

resentation of E. coli. Importantly, our results are consistent with those reported in

[32], in that the scaling is far less evident when the hypernetwork clustering measure

is used. However, this result is far from conclusive since (i) only one metabolic net-

work has been used, and (ii) the definition of the hypernetwork clustering coefficient

used here is not necessarily a meaningful one. A local version of the hypernetwork

transitivity coefficient described above, for instance, could provide a more accurate

measure of the hypernetworks structure.
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5.2 Novel Measures of Metabolic Hypernetwork

Robustness

Having discussed some preliminaries in the theory of complex hypernetworks we wish

to now consider hypernetwork models of metabolism. As before, we concentrate

on bacterial species. A hypernetwork model of metabolism consists of n nodes

representing the metabolites and m hyperedges, one for each chemical equation.

Note that in the directed case, each hyperedge is further subdivided into tail and

head sets in order to account for the substrates and products of the reactions,

respectively.

To reconstruct metabolic hypernetworks, we used the procedure described in

Chapter 3. The metabolic data for 115 different organisms was downloaded from

the KEGG database on the 12th October 2013. First, the reaction lists for each

organism were imported into MATLAB, and the data was searched for any mistakes

and inconsistencies (e.g. repeated reactions). Using string comparisons, repeated

reactions could be identified using their reaction ID’s, and then the substrates and

products could be checked using their compound ID’s. Modification/removal of the

repeated reactions was carried out using the rules described in Chapter 3.

The data for each organism was then represented by an incidence matrix, which

allows for the easy construction of the adjacency matrix using Equation (5.1). All

self-loops are removed from the adjacency matrix by setting the diagonal elements

to zero. Note that in the case of directed hypernetworks, a pair of incidence matrices

are employed, the negative incidence matrix (C−(H)) and the positive incidence ma-

trix (C+(H), which, as before, can then be used to form the corresponding adjacency

matrix. It is worth noting that in the directed case, reversible reactions need to be

considered separately, that is, a reaction of the form A + B ↔ C + D is treated as

A+B → C+D and C+D → A+B, each of which will have its own corresponding

column in the incidence matrices. The negative incidence matrix contains the infor-

mation regarding the substrates in each reaction (i.e. C−(i, j) = 1 if metabolite i is

a substrate in the jth reaction), whereas the positive incidence matrix contains the

information regarding the products in each reaction (i.e. C+(i, j) = 1 if metabolite

i is a product in the jth reaction).
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Figure 5.7: Spy plots of (a) the incidence matrix and (b) the adjacency matrix of
the directed hypergraph representation of metabolism in E. coli.

Environment Nodes Hyperedges Hyperarcs
min median max min median max min median max

Obligate (34) 224 441 979 143 337 883 197 443 1156
Specialised (5) 643 695 743 554 627 651 707 805 841

Aquatic (4) 754 851 1014 645 747 896 819 944 1146
Facultative (41) 244 947 1308 153 883 1199 204 1155 1510

Multiple (28) 631 900 1226 545 821 1143 712 1078 1468
Terrestrial (3) 890 942 955 832 912 936 1086 1205 1219

Total (115) 224 748 1308 143 695 1199 197 895 1510

Table 5.1: Network statistics for the reaction graphs of the 115 bacterial species
studied in this work, classified according to environmental variability.

Figure 5.7 shows spy plots of the two matrix representations described above for

a directed hypernetwork model of metabolism for E. coli. The hypernetwork of E.

coli has 1097 nodes and 1457 hyperarcs. In Table 5.1 we provide an overview of

the basic network statistics (i.e. number of nodes and edges) for the hypernetworks

of the 115 bacteria that have been reconstructed. Note that the bacteria are the

same as studied in Chapter 4, and so again are grouped according to environmental

variability.
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5.2.1 Hypernetwork Reciprocity as a Measure of Chemical

Equilibrium

In this section we extend the reciprocity measure [188] to the more general case of

hypernetworks and use it to quantify the effect of environmental variability on the

set of available chemical reactions for a large cohort of bacterial species, and, in

particular, the extent to which reversible reactions are present.

Reciprocity in Complex Hypernetworks

Reciprocity in standard networks measures the proportion of mutual relationships

within the network, or, in other words, the probability that an edge from B to A

exists given that an edge from A to B exists. More formally, reciprocity is defined

as

r =
L↔

L
, (5.7)

where L↔ is the number of bidirectional edges and L is the total number of edges

in the graph. Now, in order to extend the above measure of reciprocity to directed

hypernetworks it is useful to recount the following theorem, which can be found, for

example, in [189].

Theorem 1. The number of walks (i 6= j) or closed walks (i = j) of length k in a

directed hypernetwork is equal to the (i, j)th element of the matrix Ak.

Despite the usefulness of the above theorem, using the adjacency matrix A(H)

does not uniquely define a walk in a hypergraph, for the reasons discussed previously

in §5.1.1. However, since reciprocity is not concerned with the individual paths

taken in each walk but rather their count, the above theorem can be used to rewrite

Equation (5.7) in terms of the adjacency matrix, and thus to generalise reciprocity

to the case of directed hypernetworks as follows:

r(H) =
trace(A2)

trace(U2)
. (5.8)

Here A and U are the adjacency matrices of the directed hypernetwork and underly-

ing directed hypernetwork, respectively, and the trace of a matrix is the sum of the
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Figure 5.8: Relationship between average hypernetwork reciprocity, 〈r〉, and envi-
ronmental variability. The six bacterial habitats along the x-axis are in order of
environmental variability according to the NCBI classification scheme: Obligate,
Specialised, Aquatic, Faculative, Multiple and Terrestrial. Here vertical bars de-
note the standard error of the mean.

diagonal elements. Note that in the case of a standard graph, Equations (5.7) and

(5.8) are equivalent. Importantly, unlike the standard reciprocity measure, Equation

(5.8) includes information regarding the number of mutual hyper-connections that

exist between a pair of vertices.

Figure 5.8 shows a plot of the average hypernetwork reciprocity, r(H), versus

environmental variability for the different bacterial networks. Note that the average

here is taken over each of the 6 environmental classes: obligate, specialised, aquatic,

facultative, multiple and terrestrial. Importantly, we found that the hypernetwork

reciprocity increased significantly with environmental variability. The lowest value

of reciprocity is found for the bacteria within the obligate class, followed by a slight

increase for the specialised class, and then again slightly higher for the aquatic class,

there is then a relatively steep increase to the facultative, multiple and terrestrial
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classes with a relatively small increase between each class. The group differences

shown in Figure 5.8 are significant by the Kruskal-Wallis (KW) test (p-value< 10−4).

The results obtained using the new reciprocity measure (Figure 5.8) support the

idea that habitat lifestyle plays an important role in an organism’s hypernetwork

topology. This result is consistent with a number of studies, including the work

carried out in Chapter 4, that have found a relationship between network structure

and variations in the environment, using standard network models [129, 142, 169,

170, 190]. Importantly, the reciprocity measure applied to the standard network

representation does not support this result (see Figure 5.9) suggesting that the

hypernetwork formalism, and our new measure of reciprocity, in particular, adds

significant value beyond the standard approach, as well as providing further evidence

that habitat variability has a significant impact on metabolic network structure.

In the current context, the relationship found in Figure 5.8 can be viewed as an

evolutionary adaptation caused by a larger amount of uncertainty present within a

more varied environment, and thus the ease by which metabolites are reciprocated

is higher to enable greater adaptability to fluctuations within the environment.

5.2.2 Percolation in Complex Metabolic Hypernetworks

In this section we adapt widely studied percolation-based approaches [90, 177] in or-

der to probe complex metabolic hypernetwork topology and quantify the robustness

and fragility of these systems (refer to Chapter 2 for an introduction to percola-

tion and network robustness). Historically, a number of studies have investigated

the resilience of metabolic networks to random mutations (and targeted attacks)

[41, 146, 191], and an important open question is to what extent these results are

a consequence of the oversimplification of the network models employed. This is

particularly the case for metabolic networks since they admit a variety of standard

network representations [54, 55], with each one likely to accentuate a different aspect

of the metabolic process.

One approach to address the effect of random mutations on network function is to

use percolation theory. Here, we consider a site percolation process, in which nodes

are referred to as sites which can be found in one of two states: active or inactive.
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Such a process starts from an initial formation in which all states are inactive, sites

are then turned on at random, and the networks edges added whenever two adjacent

nodes become active, until the system achieves full activation. In this way we can

observe the formation of so-called percolation clusters which form as the proportion,

p, of active network nodes increases. In practice a percolation threshold, p = pc, exists

at which point a phase transition occurs and the system goes from a non-percolating

phase, containing lots of small microscopic clusters, to a percolating phase in which

a single dominant cluster, comparable to system size n, forms. Importantly, the

critical point, p = pc, separating the two different phases can be considered a proxy

for network robustness [95, 192] – at this point the network is seen to disintegrate

into isolated components and ceases to function correctly.

The key difference between our approach and the standard one (described above)

lies in the criteria by which network nodes/edges are added. In the standard ap-

proach nodes are activated at random and edges placed between activated, adjacent

node pairs. In the case of hypernetworks, we impose the more stringent requirement

that all nodes within a hyperedge must be activated before any links are added. Or

in terms of metabolism, all substrates and products of a reaction must be present

before a reaction can occur. Below we provide algorithmic details for site percola-

tion in an undirected hypernetwork; see Figure 5.10 for a graphical illustration of

our approach.

1. Starting from an empty hypernetwork in which all nodes are inactive (i.e.

p = 0), set S, the relative size of the GCC, equal to 0.

2. Activate a randomly chosen node, i say.

3. Loop through all hyperedges containing node i adding those hyperedges for

which all its nodes are active.

4. Compute the relative size of the giant connected component, S.

5. Repeat steps 2 to 4 until all sites are activated (i.e. p = 1, S = 1).

The above steps constitutes one realisation of our algorithm. To generate a statis-

tically reliable estimate of S(p) we repeat the process a large number, M say, of
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times. Importantly, employing a hypernetwork formalism alongside an appropriate

percolation model allows us to quantify metabolic hypernetwork resilience to ran-

dom mutations/errors, and to probe important evolutionary processes behind their

hypernetwork structure.

Note that we use an adaptation of the Newman-Ziff algorithm [193] in all the

computations we perform which is significantly faster than the usual breadth-first

search, and that the GCC can be computed using standard network algorithms

applied to the adjacency matrix of the hypernetwork. To determine the percolation

threshold we employ the network susceptibility function as defined in [194], which is

given by

χ =
〈S2〉 − 〈S〉2
〈S〉 . (5.9)

Note that the above is the variance-to-mean ratio, and is used to measure the dis-

persion of S in the M realisations, for the corresponding p value. The peak χmax is

an indication that the network is undergoing a phase transition, such that the giant

connected component has emerged, and so importantly the corresponding value of

p can be used as an estimate of the percolation threshold pc [192, 194]. In our work

we consider these two values to be equivalent in the sense that we refer to the point

at which the susceptibility is maximised as the percolation threshold.

Metabolic Hypernetwork Robustness

In the following we perform a site percolation analysis in order to investigate hyper-

network topology for the 115 metabolic hypernetworks for which we have habitat

variability data (see Table 5.1), as well as considering in more detail two well-studied

model organisms in E. coli and Buchnera, for which we provide some additional de-

tail below.

(i) E. coli: a facultative bacteria that is free-living within a variety of different

hosts, and thus its environment is relatively varied, requiring the system to

be highly adaptable. The hypernetwork of E. coli consists of 1097 vertices

(metabolites) and 1117 hyperedges (reactions).

(ii) Buchnera: a symbiotic bacteria that associates with one host, and thus lives

within a very controlled environment. The hypernetwork of Buchnera consists
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(a)

(b)

(c)

Figure 5.10: Figures (a)-(c) highlight two iterations of the site percolation process
for a toy hypernetwork with n = 15 and m = 9 starting from a configuration with
p = 8/15. Note that here active nodes are highlighted in black, whilst inactive nodes
are in grey. The nodes and hyperedges that are highlighted red and blue correspond
to those that become activated in the first and second iterations, respectively.
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Figure 5.11: Site percolation for the two bacterial hypernetworks: Buchnera (top
row) and E. coli (bottom row). Here, we compare the percolating properties, S
and χ of the original hypernetworks (red sold lines) against an ensemble of 100
rewired hypernetworks (blue solid lines). Note that the dashed lines indicate the
percolation thresholds of the corresponding hypernetwork: pc = 0.53, for E. coli
(
〈
prandc

〉
= 0.50± 0.0026) and pc = 0.61 for Buchnera (

〈
prandc

〉
= 0.57± 0.0048).

of 444 nodes (metabolites) and 332 hyperedges (reactions).

Note that unlike the analysis performed in the previous section we restrict to

undirected hypergraphs here, as our algorithm doesn’t differentiate between the

substrates and products of a reaction. Of course it is possible to extend the algorithm

to consider directed hypernetworks but this lies outside the scope of the current work

and rather provides an avenue for possible future research.

The results shown in Figures 5.11 and 5.13 were produced by running the site

percolation process, as described in the previous section, 10,000 times for each of

the 115 metabolic hypernetworks. To analyse the percolation properties we plot

the size of the GCC averaged over all realisations, 〈S〉, as a function of p (i.e. the
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proportion of active nodes). In addition we determine the percolation threshold

for each organism by using the susceptibility function defined in Equation (5.9)

to measure fluctuations in 〈S〉. Note that by repeating the percolation process

10,000 times we ensure that the percolation threshold for each network is statistically

significant.

Figure 5.11 compares the results of our percolation analysis for the two model

organisms of E. coli and Buchnera. Additionally, the plots show a comparative anal-

ysis against ‘equivalent’ random graphs for both organisms. Random graphs were

produced using the rewiring algorithm forwarded by Zhou and Nakhleh [32]. In this

algorithm the hyperedges of a metabolic hypernetwork are randomly rewired, whilst

preserving both the size of the hypernetwork (i.e. number of nodes and hyperedges)

and the hyperedge degree distribution. In our work, we construct random hypernet-

works by applying 20,000 edge swaps, and results shown are for ensemble averages

over some 100 realisations. Note that the randomisation procedure described above

can produce networks that are not completely connected, and so in our experiments

we restricted each realisation to the GCC; however, in practice this led to a maxi-

mum of 2-3% difference in network sizes overall, and so is unlikely to have any undue

effects on our analysis.

The first point of note in Figure 5.11 is the difference between the percolation

thresholds of the two organisms: pc = 0.53 for E. coli and pc = 0.61 for Buchnera.

Note that the earlier appearance of the GCC in E. coli as opposed to Buchnera,

is suggestive of a more robust network structure in the sense that E. coli would

seem to be less susceptible to random attacks or errors. This may be considered a

consequence of the greater evolutionary pressures/competition associated with the

more variable habitat that E. coli has evolved in, as compared to Buchnera.

Another interesting outcome of Figure 5.11, is that both organisms would appear

to be less robust than their random counterparts, with the difference being slightly

greater for Buchnera. To check the validity of this result, we compared percola-

tion thresholds for each of the 115 metabolic networks against average percolation

thresholds,
〈
prandc

〉
, for matched random graphs. Importantly, we found the perco-

lation threshold to be significantly larger in 114 of the 115 metabolic hypernetworks

as compared to their random counterparts (see Figure 5.12a). Note that whilst
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Figure 5.12: (a) Plot of the percolation threshold for each of the 115 metabolic
networks versus the mean percolation threshold for matched random graphs. (b)
Plot of the global clustering coefficient for each of the 115 metabolic networks versus
the mean global clustering coefficient for matched random graphs.

this result might sound counter-intuitive, suggesting as it does, that these organ-

isms are less resilient to node failure than matching random graphs, similar results

have been reported for standard networks, where it has been shown that increased

levels of clustering (as compared to random surrogates), coupled with high levels

of heterogeneity, can lead to a so-called core-periphery structure [194]. In such a

structure, the network is organised into a highly connected core, whilst the remain-

der of the nodes form the periphery [195]. A high amount of clustering within the

network leads to a large highly entangled core that is very difficult to break down,

and therefore decreases the percolation threshold (see, for example, [196, 197] and

references therein). High clustering within the periphery of the network, however,

leads to small sparsely interconnected cliques, which are very fragile to random mu-

tations, and thus increases the percolation threshold [194]. Importantly, a number

of recent studies have suggested that metabolic networks are organised into a highly

modular core-periphery type structure, such that the core module connects the cen-

tral metabolites and carries out basic metabolic functions, whilst periphery modules

perform highly specific functions with minimum interactions with other modules

[169, 198, 199].
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Figure 5.13: Relationship between the average percolation threshold, 〈pc〉, and the
environmental variability. Note that the six bacterial habitats along the x-axis are
in order of environmental variability: Obligate, Specialised, Aquatic, Facultative,
Multiple and Terrestrial. The vertical bars represent the standard error of the
mean.

A necessary (but not sufficient) condition for such a core-periphery structure,

therefore, is the presence of an increased level of clustering. To measure the extent

to which these networks are clustered, we compute the global clustering coefficient,

as defined in Equation 5.6, for both the 115 metabolic hypernetworks (HCglobal), and

their matched random graphs (
〈
HCrand

global

〉
). The results are shown in Figure 5.12b

which displays HCglobal versus
〈
HCrand

global

〉
as well as the line HCglobal =

〈
HCrand

global

〉
.

Clearly, data points positioned above/below this line represent networks display-

ing higher/lower levels of clustering than their random surrogates. Importantly,

we find that the data points for all 115 metabolic networks lie high above the line

HCglobal =
〈
HCrand

global

〉
, indicating increased levels of clustering relative to matched

random graphs. Note that whilst this result, coupled with the heterogeneity evi-

denced in §5.1.2, is indicative of a core-periphery structure, additional investigations

would be necessary (e.g. a k-core analysis) before any definitive conclusions can be

made – again, providing additional avenues of possible future research.
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Further evidence supporting the idea that network resilience, as measured us-

ing percolation thresholds, is correlated with the variability within an organisms

environment is provided by Figure 5.13. Here, we have again split the bacterial

species into the 6 different environmental classes (see §3): obligate, specialised,

aquatic, facultative, multiple and terrestrial. We then computed the mean percola-

tion threshold, 〈pc〉, for each class and plotted it against increasing environmental

variability. As can be readily seen, we find that the average percolation threshold

decreases with increased variability, backing up our previous investigations of E. coli

and Buchnera. More specifically, we find that the obligate class has a significantly

larger percolation threshold than the other five classes, providing further evidence to

suggest that host-associated bacteria are more vulnerable to random failures. This

is perhaps a consequence of the symbiotic lifestyle of the obligate bacteria, where a

metabolite-rich environment is provided by the host. Bacteria, which live in such

an environment, are believed to have experienced a genome reduction throughout

evolution, such that only the essential genes necessary for survival within that host

were retained [200, 201]. Any random error within a bacteria that has undergone

such a process is likely to be detrimental to the networks function. The next inter-

esting observation is that the percolation thresholds for the specialised and aquatic

classes are almost identical. This is not too surprising however, since these two

classes are often considered to be equivalent regarding their environment variability

[129]. Therefore, the bacteria from these two classes are likely to have a similar tol-

erance towards random errors, despite these bacteria being exposed to very different

conditions. We then observe a relatively large decrease in the percolation thresh-

old for the facultative and multiple classes, suggesting a higher resilience to random

failures. Again, this comes as no surprise, since the bacteria within these two classes

live in various different environments, and therefore are required to maintain their

function in conditions where metabolite availability is uncertain. Finally, the small-

est percolation threshold is observed for the terrestrial class, as expected, due to

the highly heterogeneous conditions that bacteria living in soil are exposed to. The

group differences shown in Figure 5.13 are significant by the Kruskal-Wallis (KW)

test (p-value < 10−10).



5.3 Summary 105

5.3 Summary

In this Chapter, we have introduced several new network concepts based on a hy-

pernetwork formalism of metabolism, and applied them to investigate whether this

more complicated, yet more physiologically realistic setting can reveal further struc-

tural differences between metabolic networks. In particular, we have extended the

reciprocity measure to hypernetworks, which allows us to characterise a hypernet-

work in terms of its bidirectional relationships, which is a proxy for the extent to

which reactions are reversible within these organisms. Moreover, we have adapted

percolation strategies to undirected hypernetworks as a technique for investigating

the robustness and vulnerability of metabolic networks. Importantly, using our new

percolation-based approach, we found further evidence of the increased network

complexities that greater environmental pressures and challenges induce. Impor-

tantly, many of the above findings fail to hold when a standard network approach

is considered, and so such investigations provide great promise in forwarding our

understanding of a range of complex biological processes.



Chapter VI

Summary and Outlook

6.1 Summary

In this thesis we have applied complex network theory to analyse biological net-

works, with the aim of revealing important structure, function and evolutionary

relationships. Typically, a network description provides a greatly simplified view of

such a system, focusing on the interaction patterns between a very large number of

similar ‘units’. Our investigations have focussed on metabolic networks, where the

units are metabolites (i.e. small molecules or macromolecules), and we consider two

metabolites to interact if they are involved in the same biochemical reaction. In

this regard, the metabolites are modelled as nodes and the reactions are typically

modelled by edges.

When analysing metabolic networks, the first thing to consider is a suitable

reconstruction procedure. Recently, due to the availability of genome scale data and

advances in computational techniques, a number of online databases have been built

that contain metabolic data for a variety of different organisms. In Chapter 3 we

describe the reconstruction process for the 383 metabolic networks studied in this

work. It is important to note that despite the KEGG database being one of the

most well established online resources, available data still remains incomplete. For

that reason, the KEGG database is constantly being updated, such that missing

(or spurious) reactions and metabolites are added (or removed). Therefore, the
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reaction lists downloaded and used in this work are likely to be out-of-date and/or

incomplete, and so it is possible for false positive (or false negative) errors to arise

when analysing the metabolic data. The metabolic networks used in this work,

however, are restricted to the giant connected component of the global network,

which has been shown to contain the most accurate data and therefore any updates

to the data are unlikely to have a huge effect on our results.

Importantly, the 383 bacterial networks that we consider can be classified ac-

cording to different environmental pressures, such as growth conditions and habitat

lifestyle. Using this data, the aim of the thesis was to determine important links

between metabolic network structure and the environmental conditions to which the

383 organisms have evolved. The approach taken has been twofold:

• improve the current state-of-the-art in network classification; and

• develop new, more physiologically realistic network models and accompanying

measures.

In the following we describe the contribution of this thesis, as well as suggestions

for future directions of each approach.

6.1.1 Classification of Biological Networks

Network classification has recently become an increasingly important problem in

network science, where the aim is to cluster networks according to their structural

similarities/differences. Current approaches have mainly involved comparing net-

work structure based upon global properties, such as the average path length, clus-

tering coefficients and degree distributions, and have led to many diverse networks

being classified as small-world and/or scale-free. Recently, however, such approaches

have received criticism, since it is possible to find two networks with identical global

properties, yet a considerably different structure [30]. Moreover, computing global

properties for the metabolic data, which, as mentioned previously is incomplete and

noisy, may result in misleading findings.

Motivated by this, in Chapter 4 we introduced a novel graph embedding classifi-

cation approach, which involves computing so-called feature vectors that are based
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on low-order network motifs (i.e. small interaction patterns of nodes). A non-

negative matrix factorisation was then used to reduce the size of the problem, and

to improve our ability to find important patterns and features within the data. One

of the main advantages of this approach as compared to other methods, is that it

can be employed to compare the local structure of networks of varying order with a

relatively small amount of computational effort. The approach can therefore be ap-

plied to any cohort of networks, providing they can be represented as simple graphs.

A slight caveat of the approach results from the non-uniqueness of the non-negative

matrix factorisation, due to (a) the ambiguity surrounding the choice of the param-

eter k, and (b) the iterative nature of the non-negative matrix algorithm, which

means that the solution depends on both our choice of k and the initial guess. To

overcome these drawbacks the experiments were repeated 1000 times and for values

of k ranging from 1 to 20, and importantly, we found our results remained consistent.

As a proof of principle, we applied the new approach to a large ensemble of

networks consisting of both bacterial networks and a variety of different network

models (Erdős-Rényi networks, small-world networks and scale-free networks), and

were able to provide evidence that the technique can correctly differentiate between

the various networked structures.

Furthermore, we applied our new approach to an ensemble of 383 bacterial net-

works as described in the previous section. By introducing a new global significance

score, which can be used as a proxy for network complexity, we were able to demon-

strate a number of significant correlations between environmental factors, such as

growth conditions and habitat variability, and network motif structure, providing

evidence that organism adaptability leads to increased complexities in the resultant

metabolic networks. Note, that our new motif based approach is robust in the sense

that results obtained are reproducible in both the latest data set and an older (data

not shown), less complete version of the data.

A direct extension of this work would be to carry out the analysis using larger

order network motifs. In this work we only considered network motifs of order 3

and 4, so it would be interesting to investigate whether higher order network motifs

reveal further differences between the different species. However, since the number of

motifs of size q grows exponentially, and therefore reaches enormous quantities, the
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computational cost will be much greater than the algorithm forwarded in this thesis.

In terms of metabolism, an extension of this approach to directed hypernetworks is

desirable. However, as it stands, a well defined definition for network motifs within

a hypernetwork does not exist, and any consideration of such an extension is likely

to exhibit a much greater amount of complexity than the standard approach.

Other possible network classification techniques using feature vectors could also

be explored. One possible idea is to construct feature vectors based upon algebraic

graph theory [154]. It is well known for instance, that the spectrum of the adjacency

matrix (or the closely related Laplacian matrix) can be used to extract important

structural properties of a network. The coefficients of the characteristic polynomial

of the adjacency matrix, for instance, are associated with cycles (i.e. subgraphs)

of different sizes occurring across a network [57]. Computing the coefficients of the

characteristic equation for large networks, however, still remains a challenging task.

6.1.2 Hypernetwork Models

From a modelling perspective an important open question concerns the determina-

tion of a suitable network model for metabolism. Depending upon the questions

being asked simple graph models may not be appropriate, as information is lost

when moving from the full chemical reaction system to a simple graph. Recently,

several authors have argued that hypernetworks provide the most physiologically

realistic representation of metabolism, since they allow for hyperedges to connect

multiple nodes, thus preserving the information regarding the dependency between

metabolites.

In Chapter 5 we investigated the extent to which hypernetwork models capture

more biologically relevant information compared to the standard models. In partic-

ular, we proposed a generalisation of the reciprocity measure (i.e. the proportion of

bidirectional relationships in the network) to hypernetworks, and evidenced relations

between bacterial metabolic hypernetwork structure and environmental variability.

Moreover, we have adapted a widely used pecolation method (i.e. the process by

which nodes are randomly activated within a network) to a hypergraph formalism,

in order to quantify the robustness and vulnerability of metabolic hypernetworks to
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random failures on the nodes. The key difference in our new approach compared

to the standard approach, lies in the way by which connections between nodes are

activated in the network. In our approach, motivated by biology, a hyperedge only

becomes activated in the network if all nodes (metabolites) involved in the hyper-

edge (reaction), are currently active (available). Using our new percolation-based

approach we were able to find further evidence to suggest that environmental pres-

sures play a pivotal role in metabolic network complexity.

Importantly, many of the relationships found between metabolic network struc-

ture and environmental variability, were not apparent when applied to a simple graph

representation, thus suggesting that a hypernetwork formalism adds significant value

beyond the standard network approach. To date only a handful of complex network

measures have been extended to hypernetworks and so the extension of other net-

work measures could potentially lead to further insights into important structure,

function and evolutionary relationships within biological networks. For example,

based on the results from our new reciprocity measure, it would be interesting to

extend the idea of network returnability [107] (i.e. the proportion of loops within

a network) to directed hypernetworks, in order to determine whether the aforemen-

tioned relationship holds for closed walks of length greater than two, as is the case

for the reciprocity measure. Moreover, an extension of our new hypernetwork per-

colation model incorporating the effects of cascading failures on network structure

promises to provide further insights into the mechanisms underlying metabolism.

6.2 Outlook

For the last century biological research has been dominated by the reductionist ap-

proach, such that individual cellular components have been analysed in great detail.

More recently, however, it has been recognised that cellular functions are unlikely to

be attributed to one component, and instead arise due to the intricate web of interac-

tions between the cellular components, such as proteins, and other macro-molecules,

which result in various biochemical nets. The recent development of network sci-

ence has allowed for biological networks to be analysed at the systems level, which

has allowed for significant advances in the understanding of cellular organisation.
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Many studies, including the work carried out in this thesis, focus their analysis on

a subset of the cellular network, such as gene regulatory networks, protein-protein

interaction networks, and protein residue networks. We have focused our analysis

on metabolic networks, and found strong evidence to suggest that structure and

robustness are interlinked with the functioning of a system and its ability to adapt

to the environment.

These networks, however, do not function in isolation, and are in fact highly

interconnected. The end products of metabolic reactions, for example, provide the

protein molecules that mediate interactions between genes. We then also have that

metabolic reactions are catalysed by enzymes that are end products of gene in-

teraction networks. One of the main directions of network science is therefore to

integrate all biological interactions within the cell, with the aim of providing further

insight into its behaviour. Multiplex, or more generally multilayer, networks provide

a promising network representation for analysing the collection of cellular networks

as a whole, since they allow nodes to be connected via different types of connec-

tions, each of which constitutes to a layer in the multiplex network [202, 203, 204].

In the current context the different layers would consist of the different types of

interaction that exist in the cell, and connections between layers would account for

interactions between these different structures (e.g. a layer describing metabolic

reactions would connect to a layer describing protein-protein interactions via the

synthesis of proteins and amino acids).
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vealing the hidden language of complex networks. Scientific Reports, 4(4547),

2014. 4.1

[163] Conner I Sandefur, Maya Mincheva, and Santiago Schnell. Network represen-

tations and methods for the analysis of chemical and biochemical pathways.

Molecular bioSystems, 9(9):2189–2200, 2013. 4.2.1

[164] David Skillicorn. Understanding Complex Datasets: Data Mining with Matrix

Decompositions. CRC Press, 2007. 4.2.1, 4.2.2

[165] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-

negative matrix factorization. Nature, 401(6755):788–791, 1999. 4.2.1, A

[166] Clare Lee, Desmond Higham, Daniel Crowther, and J Keith Vass. Non-

negative matrix factorisation for network reordering. Monografias de la Real

Academia de Ciencias de Zaragoza, 33:39–53, 2010. 4.2.1

[167] Jan Graffelman. calibrate: A Guide to Scatterplot and Biplot Calibration,

2012. R package version 1.14.4 — For new features, see the ’Changelog’ file

(in the package source). 4.3

[168] Wendy L Martinez, Angel Martinez, and Jeffrey Solka. Exploratory data anal-

ysis with MATLAB. CRC Press, 2004. 4.3

[169] Anat Kreimer, Elhanan Borenstein, Uri Gophna, and Eytan Ruppin. The

evolution of modularity in bacterial metabolic networks. Proceedings of the

National Academy of Sciences, 105(19):6976–6981, 2008. 4.4.1, 5.2.1, 5.2.2

[170] Sarath Chandra Janga and M Madan Babu. Network-based approaches for

linking metabolism with environment. Genome Biology, 9(11):239, 2008. 4.4.1,

5.2.1

[171] Wanding Zhou and Luay Nakhleh. Convergent evolution of modularity in

metabolic networks through different community structures. BMC Evolution-

ary Biology, 12(1):181, 2012. 4.4.1, 4.5



BIBLIOGRAPHY 129
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Appendix A

Non-Negative Matrix

Factorisation

Non-negative matrix factorisation (NMF) is a relatively new dimension reduction

technique, whereby a non-negative matrix A is factorised into two lower rank non-

negative matrices W and H. A more formal definition of NMF of a matrix A is

given by

A ≈ WH, or

Aij ≈ (WH)ij =
k∑
a=1

WiaHaj,

where here A ∈ Rm×n, W ∈ Rm×k and H ∈ Rk×n for some rank k � min(m,n).

From this approximation we have that each data vector of A is approximated by a

linear combination of the columns of W , weighted by the components of H.

In order to find approximations to the matrices W and H one first needs to

define a cost function that measures the accuracy of the approximation. The cost

function regularly used in the literature is the root mean squared residual such that

D = ‖A−WH‖2F , (A.1)

subject to the constraints W ∈ Rm×k
+ and H ∈ Rk×n

+ . There exist several algorith-

mic approaches that can be used to find the approximations of W and H, whilst
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minimising the cost D.

In this study we use the Multiplicative Update rule [205]. This algorithm uses

an iterative method that starts with initial random matrices for H and W and then

the following equations are used to update H and W alternatively,

H i+1 = H i. ∗ W iTA

W iTW iH i + 10−19

W i+1 = W i. ∗ AH iT

W iH iH iT + 10−19

In words, the new approximations of W and H are computed at each iteration by

multiplying the current approximations by some factor that depends on the gradient

of the cost function [205]. Lee and Seung prove in [206] that the accuracy of the

approximation increases monotonically with further iterations. In practice, however,

the solution space in nonlinear and so there is no guarentee that the method will

converge to an optimal matrix factorisaton. For that reason, the experiments of

Chapter 4 were repeated 1000 times to ensure the approximation avoided local

minima, thus improving the reliability of our results.

Determination of a suitable value of k

As a rule of thumb, the rank of k is chosen so that (n + m)k < nm, thus resulting

in a compressed version of the original data [165]. In Figures A.1 and A.2 we plot

the results after carrying out the non-negative matrix factorisation using k = 1 to

k = 20 on the habitat data and oxygen data respectively.

Importantly, we found that the choice of k did not alter the results considerably,

with almost all values, upto and including k = 20, displaying a trend for increased

complexity with habitat/environmental variability. In all the experiments in our

work we chose k = 3, which not only enables much easier visual inspection of any

results, but is also the standard choice in the literature.
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Significant motif frequency tables

Table A.1 and A.2 shows all those motifs that were returned as being significant in

at least one run of our matrix factorisation for the two different data sets studied in

Chapter 4.

Significant motif
motif 5 motif 9 motif 14 motif 15 motif 23 motif 26 motif 49 motif 62

Specialised motif frequencies (43) 1000 900 27 0 683 0 99 591

Varied motif frequencies (72) 1000 899 903 887 221 918 4 854

Table A.1: Frequencies of the significant motifs obtained for the specialised and
varied environmental classes after 1000 approximations of H using non-negative
matrix factorisation.

Significant motif
motif 5 motif 9 motif 14 motif 15 motif 23 motif 26 motif 49 motif 62

Aerobic motif frequencies (334) 1000 996 998 994 24 999 1 20

Anaerobic motif frequencies (49) 1000 994 987 0 35 987 1 316

Table A.2: Frequencies of the significant motifs obtained for the aerobic and anaer-
obic classes after 1000 approximations of H using non-negative matrix factorisation.
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Appendix B

Additional Properties of the

Metabolic Networks

In the following experiments, we have investigated the relationship between growth

conditions and some additional properties of the metabolic networks.

Relationship between growth conditions and basic network

measures

We have considered the relationship between environmental conditions and three ba-

sic network measures (total-degree, clustering coefficient and average path-length),

and then investigated the extent to which they correlate with Pglobal.

Habitat variability

Figure B.1a shows that the trend for the average total degree is to increase with

variability in the environment, although not monotonically. In Figure B.1b we

plot the average total degree against our global significance score Pglobal and find a

significant correlation (r = 0.8983, p < 10−5).
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Figure B.1c shows that the average path length is the smallest for the networks

within the obligate class (i.e. the most specialised) and the largest for the terres-

trial class (i.e. the most varied). The specialised, aquatic, facultative and multiple

class however, all have very similar values. In Figure B.1d we have plotted the av-

erage path length against the global significance score Pglobal and find a significant

correlation (r = 0.8723, p < 10−5).

Figure B.1e shows that the clustering coefficient does not follow any particular

trend as regards environmental habitat. Figure B.1f shows that the average clus-

tering coefficient is only weakly correlated with the global significance score Pglobal

(r = 0.2531, p < 0.01).

Oxygen requirements

Figure B.2a shows that the average total degree does not appear to follow any par-

ticular trend regarding oxygen requirements, despite being correlated to the global

significance score Pglobal (r = 0.7932, p < 10−5) (Figure B.2b).

Figure B.2c shows that the average path length is larger for the metabolic net-

works that evolved in the presence of oxygen, that is, the aerobic and facultative

class. In Figure B.2d we have plotted the average path length against the global

significance score Pglobal for the 383 metabolic networks and find a significant corre-

lation (r = 0.8617, p < 10−5).

Figure B.2e shows a relationship similar to the average total degree (Figure B.2a),

that is, the facultative class has a significantly larger amount of clustering present

than the aerobic and anaerobic classes. Figure B.2f (b) shows that the average

clustering coefficient and the global significance score Pglobal are not correlated (r =

0.0737, p = 0.1489).
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Spearman’s partial correlation between Pglobal and environment condi-

tioned on basic network measures

Spearman’s partial correlation between X and Y conditioned on Z allows one to

compute the correlation between X and Y , discounting the correlations between X

and Z and between Y and Z [207]. We computed the correlation between Pglobal and

variability conditioned on the simpler network metrics considered in the previous

section (degree, path-length and clustering) and found that our results remained sig-

nificant (c = 1, p < 10−5). Note that we use Spearman’s correlation since the data

consists of a mixture of both ordinal and continuous values; correlations were com-

puted using the partialcorr function which is available in the MATLAB Statistics

Toolbox.

Relationship between growth conditions and genome size

We considered an organism’s genome size as a quantitative measure of environmental

variability, and then investigated the extent to which it correlates with Pglobal.

Habitat variability

Figure B.3a shows that the trend for the total number of genes is to increase with

variability in the environment. We find this relationship to be significant using the

Kruskal-Wallis test (KW) (p-value: p < 10−8). In Figure B.3b we plot the total

number of genes against our global significance score Pglobal and find a significant

correlation (r = 0.7757, p < 10−23).

As a control for the effect of genome size, we computed the correlation between

Pglobal and environmental variability, conditioned on the total number of genes using

the Spearman’s partial correlation (as described in the previous section). We find

that our results remain significant (c = 0.4239, p = 10−5).
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Oxygen Requirements

Figure B.4a shows that the trend for the total number of genes decreases mono-

tonically with oxygen availability. We find this trend to be significant using the

Kruskal-Wallis test (KW) (p-value: p < 10−2). In Figure B.4b we plot the to-

tal gene number against our global significance score Pglobal and find a significant

correlation (r = 0.6415, p < 10−45).

As a control for the effect of genome size, we computed the correlation between

Pglobal and oxygen availability, conditioned on the total number of genes using the

Spearman’s partial correlation. We find that our results remain significant (c =

−0.1020, p = 0.0464).
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Figure B.1: In (a), (c) and (e) we plot the relationship between three basic network
measures and environmental variability for the 6 environmental classes. Note that
here we plot the mean value over each environmental class: Obligate, Specialised,
Aquatic, Facultative, Multiple and Terrestrial. In (b), (d) and (f) we show the
three basic network measures plotted against the global significance score Pglobal for
the 115 bacterial networks.
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Figure B.2: In (a), (c) and (e) we plot the relationship between three basic network
measures and growth conditions (oxygen requirements) averaged over the 3 classes:
Aerobic, Facultative and Anaerobic. In (b), (d) and (f) we show the three basic
network measures plotted against the global significance score Pglobal for the 383
bacterial networks.
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(a) Total number of genes and environmen-
tal variability.

(b) Total number of genes versus the global
significance score Pglobal.

Figure B.3: In (a) we plot the relationship between the genome size (total number
of genes) and environmental variability for the 6 environmental classes. Note that
here we plot the mean value over each environmental class: Obligate, Specialised,
Aquatic, Facultative, Multiple and Terrestrial. In (b) we show the total number
of genes plotted against the global significance score Pglobal for the 115 bacterial
networks.

(a) Total number of genes and oxygen re-
quirements.

(b) Total number of genes versus the global
significance score Pglobal.

Figure B.4: In (a) we plot the relationship between the genome size (total number
of genes) and growth conditions (oxygen requirements) averaged over the 3 classes:
Aerobic, Facultative and Anaerobic. In (b) we show the total number of genes
plotted against the global significance score Pglobal for the 383 bacterial networks.
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