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ABSTRACT 

The selection of most sensitive sensors and signal processing methods is essential process for the design 
of condition monitoring and intelligent fault diagnosis and prognostic systems. Normally, sensory data 
includes high level of noise and irrelevant or redundant information which makes the selection of the 
most sensitive sensor and signal processing method a difficult task. This paper introduces a new 
application of the Automated Sensor and Signal Processing Approach (ASPS), for the design of 
condition monitoring systems for developing an effective monitoring system for gearbox fault diagnosis. 
The approach is based on using Taguchi's orthogonal arrays, combined with automated selection of 
sensory characteristic features, to provide economically effective and optimal selection of sensors and 
signal processing methods with reduced experimental work.  Multi- sensory signals such as acoustic 
emission, vibration, speed and torque are collected from the gearbox test rig under different health and 
operating conditions. Time and frequency domain signal processing methods are utilised to assess the 
suggested approach. The experiments investigate a single stage gearbox system with three level of 
damage in a helical gear to evaluate the proposed approach. Two different classification models are 
employed using neural networks to evaluate the methodology. The results have shown that the suggested 
approach can be applied to the design of condition monitoring systems of gearbox monitoring without 
the need for implementing pattern recognition tools during the design phase; where the pattern 
recognition can be implemented as part of decision making for diagnostics. The suggested system has a 
wide range of applications including industrial machinery as well as wind turbines for renewable energy 
applications. 

 

Keywords: Condition monitoring; Gearbox; ASPS; Taguchi’s method; Acoustic emission; Vibration 
analysis; Wavelet; Wind energy. 

 

1 INTRODUCTION:   

This paper introduces a novel application of the Automated Sensor and Signal Processing Approach 
(ASPS) [1], for the design of condition monitoring systems for developing an effective monitoring 
system for gearbox fault diagnosis. A gearbox system is one of the most significant components in 
rotating machinery and has been widely used in many industrial applications to transfer speed and power 
to other parts of the power train in high efficiency, this includes industrial machinery as well as wind 
turbines for renewable energy applications. A gearbox system is subject to many influencing factors that 
have negative impact on its performance such as improper installation, lack of lubrication, material 
fatigue and damage caused by wear and catastrophic breakage. These negative factors could lead to 
progressive deteriorations of the health condition of rotating machines and increase in energy 
consumption, causing an unexpected machine down time which may lead to substantial economic losses 
[2]. The industrial community aspires to get effective and reliable sensing tools to monitor the health 
conditions of machinery and capture structural defects at their initial stages to provide suitable 
diagnostics and prognostics. Sensors, such as vibration and sound, are usually used to provide the 
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information needed which is directly associated with the operational conditions of the gearbox. 
Vibration and acoustic emission signals based analysis are the most commonly used techniques to 
monitoring the condition of gearbox systems. Even though these signals could offer useful inputs to a 
condition monitoring and diagnostic system, they usually are submerged with large amount of noise. 
Therefore, the raw signals are often inappropriate for monitoring purposes. In order to extract valuable 
information from sensory signals, several stages of signal processing and data analysis are normally 
required to reveal particular patterns from the machining signals, which may be linked to a specific 
physical phenomena or fault condition [3].  

By applying suitable data analysis methods, it could detect abnormal changes in signals generated by 
fault components that may lead to making effective decisions about the gearbox health status. However, 
sensory data sometimes contains high proportion of irrelevant and redundant information which may 
have greatly impact on the performance of fault classification model. Therefore, feature selection (i.e. 
processed information from a sensor(s) using a specific signal processing method(s)) becomes very 
necessary for machine learning tasks when facing high dimensional data. Feature extraction and 
selection techniques can be considered as the most significant step for intelligent fault diagnosis 
systems. Feature extraction is a process of transforming sensory data from the measured signal space to 
the feature space. Representative features associated with the conditions of machinery components 
should be extracted by using appropriate signal processing approaches [4].  

 

Various signal processing techniques including time and frequency domains such as Fast Fourier 
Transform (FFT), envelope spectrum analysis, wavelet analysis, empirical mode decomposition (EMD) 
have been employed in literature to process multi-sensory signals [5]. Normally, based on these signal 
processing techniques, statistic calculation methods such as autoregressive model (AR) [6], S 
transform[7], singular value decomposition (SVD) [8], principal component analysis (PCA) [9] and 
independent component analysis (ICA) [10] are  employed to extract reliable features [11].  

Although several techniques have been proposed in literature for feature extraction, not all these feature 
extraction techniques always produce efficient features necessary to detect health conditions of the 
gearbox. In reality, efficiency of features extraction methods is highly dependent on the problem itself. 
Which means, features extracted by one method may conduct extremely well for some problems, but 
may not perform well for others. Faults of rotating machinery, particularly in gearbox systems, are 
complex [12]. Therefore, the designers tend to select the most sensitive features and sensors manually 
and individually. It is still remaining a challenge to implement an automated design process for a 
condition monitoring and fault diagnostic system in industry due to the complexity of rotating 
machinery structures and operating conditions. An automated design system for condition monitoring 
should provide automatically the following tasks [1, 13] : 

1. Selecting the appropriate number and type of sensors in every individual case; 

2. Selecting effective signal processing and feature selection methods; 

3. The design of an effective fusion model (i.e., the combination of sensors and signal processing 
methods which gives an improved performance); 

4. Cutting the cost of condition monitoring of gearbox systems while maintaining the reliability and 
performance of the system; 

5.  Reducing the experimental or the time needed to achieve this. 

This paper attempts to investigate this problem by applying several signal processing and features 
selection techniques to find the most sensitive features (and sensors) for fault diagnosis for the gearbox 
system under consideration. A novel implementation and modification of the ASPS approach ( 
automated sensor and signal processing selection) [1, 13] is investigated to resolve these issues using an 
automated approach to select effective sensors and related signal processing methods for gearbox 
system. The ASPS is also aiming to cut down the number of the practical experiments with rapid 
improvement and economical design of condition monitoring systems for gearbox. This paper 
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investigates whether the ASPS approach, with the required modification, can provide a suitable solution 
to the design of gearbox monitoring. The key question here is if the suggested approach can provide a 
simple, automated, systematic and generalised, methodology to design an adaptive condition monitoring 
system for rotating machinery. This study will provide an extensive assessment of the ASPS approach 
for gearbox fault diagnosis. The progression of a helical gear tooth damage is investigated by testing 
three levels of damage. Raw sensory signals are processed and analysed using various signal processing 
techniques in the time and frequency domains. Combinations of mathematical and statistical features 
extraction techniques are applied. The ASPS approach is investigated in its capability for the selection of 
the most sensitive features and sensors to gearbox faults; and it is used to ignore irrelevant and 
redundant information. The optimal features are examined and evaluated by supervised and 
unsupervised neural networks. 

 

2 THEORETICAL BACKGROUND OF THE ASPS APPROACH AND TAGUCHI'S 
METHOD 

2.1 The ASPS approach 

The purpose of the ASPS algorithm is to design a condition monitoring system using an automated 
simple procedure to identify from simplification of the sensory signals, the most sensitive Sensory 
Characteristic Features (SCFs) which are most sensitive or have high dependency on the abnormal 
condition variable such as the faults in the gearbox system. And at the same time the SCFs should have 
less dependency on other machine parameters such as torque or speed. The SCFs provide essential 
information for classification or detection of machine and process faults.  

The introduced approach applies the “black box'' [1, 13], concept, see Figure 1, where the condition 
monitoring system is constructed based on the input and output parameters of the process instead of its 
mechanics. This concept, has been argued that it can be applied for diversity of condition monitoring 
systems regardless of the physical characteristics. In this way, it is only required to relate some 
information in the signals (i.e., SCFs) to the identified faults or conditions. Figure 1 presents the main 
idea of the ASPS approach and its implementation in gearbox system. The key aspect here is to search 
for sensory characteristic features (SCFs) that are dependent on the health states of the process and less 
dependent on the operating conditions. 

Figure 2 presents a simplified block diagram of the ASPS approach using Taguchi method for gear 
monitoring. It has been argued by [1, 13] that the ASPS approach in general should have the capability 
to transfer the design of condition monitoring problem from being a specific problem for a specific 
application to a more general problem that can be described in generic terms and the solution might be 
provided for different groups of processes that have specific criteria in common. This theory will be put 
to the test in this research work for gear monitoring. If the sensitivity of each SCF can be calculated 
using an appropriate method, a sensitivity matrix, named the Association Matrix (ASM), can be used to 
indicate the sensitivity of each SCF (i.e. each sensor and signal processing method) to the fault under 
consideration. One of the methods to calculate the sensitivity of SCFs and reduce the required 
experimental work is Taguchi’s method. The ASPS approach starts by extracting SCFs from a wide 
range of sensors using a wide range of signal processing methods. The SCFs are then arranged in a 3D 
matrix, namely SFM (Sensory Feature Matrix). Then Taguchi’s method can be used to extract the 
dependency of each feature on the health conditions of the gearbox. SCFs are arranged based on their 
dependency (i.e. sensitivity) and high dependency features are then selected to design the condition 
monitoring system. The less significant SCFs are discarded from the designed condition monitoring 
system, keeping the sensitive SCFs to the fault under consideration. Then, cost reduction phase could be 
implemented to exclude the sensors that are less utilised in order to reduce the cost of the monitoring 
system whereas maintaining the system's performance within its reasonable range. As shown in Figure 
2, neural networks will then be used to test the hypothesis that high dependency indicates high 
sensitivity to health conditions based on the performance of the neural network. 
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For years, Taguchi's method of Orthogonal Arrays (OAs) has been applied to design a short test for 
quality control applications. This has been done, either on or off-line, to reduce the number of 
experimental work required. Similar to quality variables, the ASPS approach uses the SCFs as variables 
and their dependency value of Taguchi's OAs are used as measurement for sensitivity of the SCFs to 
detect process or machine faults.  This is in order to discover the most sensitive SCFs to the faults under 
investigation. The condition monitoring system is designed based on a number of SCFs in order to select 
the most sensitive group of SCFs, which represent high dependency on the observed faults. For example, 
as will be discussed later, this research work has shown that the damage on helical gear tooth will result 
in a steady increase in the root mean square (RMS) values of the vibration signal. Therefore, RMS of the 
vibration signal can be used a Sensory Characteristic Feature (SCF) for the design of the condition 
monitoring system. 

 

 

 

Figure 1: “The block box” concept  and the method it can be applied to diagnose the fault in gearbox system 

 

Figure 2: A simlified block diagram of the ASPS appraoch using Taguchi method for gear monitoring. 

2.2 Taguchi's OAs 

Taguchi's theory based on OAs is usually applied to reduce the number of experiments in order to 
optimise the quality of the process [14]. The main concept behind Taguchi's method is to utilise the least 
possible number of experiments rather than the whole full factorial technique to calculate the individual 
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contribution of each dependent variable in the experiment reference to the impendent variables or 
parameters. In Taguchi’s method the dependency means that the proportion of contribution values 
gained by analysing the variance. The dependency of a dependent variable on a factor (i.e. an 
independent variable) reflects the portion of the total variation observed in an experiment attributed to 
that factor. Taguchi's method using the ASPS approach based on the SCFs obtained from the sensory 
data captured from gearbox system to calculate their dependencies (sensitivities) on the investigated 
machine faults. SCFs with high dependency on the machinery faults, rather than the machinery 
parameters, are potential candidates for use in the monitoring system. 

The percentage contribution (P) of a factor (F) can be expressed as follows [13]: 
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Ve  is the variance due to the error and is given by 
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where: 

y : observation  (i.e. sensory characteristic feature (SCF) value) 

T: sum of all observations (i.e. sum of all sensory characteristic feature (SCF) values) 

F:  factor  (i.e. gears health conditions, gear box shaft speed, and shaft torque) 

KF : number of levels for factor F (i.e. KF =3 in this research) 

M : total number of observations (i.e.  M=9 in this research) 

vF : is number of degrees of freedom associated with factor F; vF = KF -1 

Fi : sum of observations under the ith level of factor F. 

nFi : number of observations y under level I of factor F. 
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In order for the approach to be useful for gear monitoring, two main assumptions need to be tested, i.e.: 

1. Partial number of runs using Taguchi’s method is sufficient to design the monitoring system for the 
gearbox running with full factorial parameters. 

2. SCFs with high dependency values to a gear fault have high sensitivity to that fault. 

 

3 THE EXPERIMENTAL DETAILS 

3.1 The experimental set-up 

The gearbox test rig, shown in Figures 3 and 4, is utilised to collect the sensory signals namely vibration 
(VIB1, VIB2, VIB3),  acoustic emission (AE1, AE2), speed and torque (SP1, SP2, TORQ1, TORQ2). 
The signals are collected under different gear health conditions for an attempt to develop a reliable 
condition monitoring system for gearbox conditions. The gearbox test rig includes a three phase AC 
drive motor which is used to drive the gearbox which in turn is used to lead the DC motor generator to 
create the necessary load. The load is applied through the DC motor generator. Two speed and torque 
transducers are attached between the input/output shafts of the gearbox and the AC-motor/DC-generator 
shafts. The gearbox system contains bearing, shaft and two types of gears, bevel gear and helical gear 
but the research will focus on the helical gear. The axes of the shaft and gears are supported by two ball 
bearings. All components are placed in an oil basin in order to ensure proper lubrication. The vibration 
signals are recorded by three accelerometers (Kistler 8704B500) which are mounted at three different 
locations on the housing of the gearbox system which are connected to 4-channel-couplers (Kistler 
5134). AE sensor (Kistler 8152A) is installed on the case shell of the gearbox which is connected to 
the AE-Piezotron coupler type (Kistler 5125). The AE sensor produces two signals: a raw signal and 
an RMS signal. The speed and torque sensors are type M420 rotary torque transducer from Datum 
Electronics  and each sensor produces speed and torque signals. Therefore, the total number of physical 
sensors are 6, producing 9 sensory signals (3 vibration, 2 acoustic emission, 2 speed and 2 torque 
signals). Output signals of the sensors are sent to a data acquisition card (National Instrument USB 
DAQ6259) which is connected to a computer. This device can capture both analogue and digital signals. 
It has 32 analogue inputs (16-bit) with maximum sampling rate of 1.25 MS/s. The gearbox is made and 
provided by Chemineer Ltd. 

 

Figure 3: A schematic diagram of the mechanical system and the condition monitoring system. 
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Figure 4:  An image of the complete mechanical system and data acquisition system 

 

3.2 The experimental methodology and conditions 

The gear damage is made on the helical gear tooth surface at different breakage levels, namely: semi-
damage with 25% breakage, moderate damage with 50% breakage and the severe damage with complete 
breakage of the gear tooth (100% breakage), see Figure 5. These faults are applied to evaluate the 
performance of the proposed method in order to recognise different fault categories. 
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Figure 5:  Helical gear with different levels of damage. 

 

Figure 6 shows the summary of the complete study. Signals have been collected from all the sensors 
with a sampling frequency up to 500 KHz. The work done with three speed conditions of the driving 
motor (i.e. 200, 500 and 750 RPM) and adjusting load conditions with three levels applied by the load 
motor as displayed by the torque sensor. The applied load at the output shaft of the gearboxes is 2, 6 and 
8 Nm. A full factorial test of the parameters requires 27 runs for every gearbox condition. However, the 
proposed application of Taguchi's method can reduce the number of runs to 9 runs using the L9 table 
[15]. For the three conditions of the helical gear, the experimental programme involved 9 runs based on 
OAs (L9) and a further 27 full factorial runs to the test the theory, see Appendix 1. The experimental 9 
test is used for the design process as well as training the neural networks. The full factorial test is used to 
test the capability of two neural networks to recognise the gear conditions. Fours different sets of data 
are tested to check for consistency.  

In other previous studies, see for example  [16], various crack propagation scenarios  in gears were 
investigated  using vibration signal analysis.  In this study, the authors take into consideration such 
studies by examining three levels of damage to simplify the design to select the most suitable sensors. In 
real industrial environment, gears with different levels of faults could be rapidly tested to evaluate the 
most sensitive sensor and signal processing methods and design the condition monitoring system for 
long term performance.  
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Figure 6 Summary of the complete experimental work. 

 

4 SENSORY SIGNAL AND SIGNAL PROCESSING/FEATURES EXTRACTION 
METHODS 

   In literature, researchers have done great efforts to identify diagnostic parameters with interesting 
behaviour and high sensitivity to the faults during gear fault monitoring [17]. However, it is still difficult 
to find which are the sensitive parameters to the abnormal event in gearbox system; this is because the 
sensitive features (SCFs) and the related sensors could be case dependent and subject to the mechanical 
system and operational conditions. In this work, various features are extracted from each sensor (three 
vibration signals, two AE signals, two speed signals and two torque signals). To extract the SCFs; the 
sensory signals are analysed using several signal processing methods and transformed into time and 
frequency domains. In order to obtain a better representation with perfect resolution of the signals, 
feature extraction techniques are employed to extract 25 SCFs from every sensory signal as shown in 
Table 1. The SCFs supposed to be real numbers in order to use Taguchi's method to compute the 
dependency values (i.e. sensitivity). The signal processing and feature extraction methods are selected 
based on previous research in gear monitoring. However, any other methods of signal processing and 
features extraction can be applied provided that they produce real numbers. The key objective of these 
processes is to simplify the forms of the complex signal for analysis. The feature extraction methods 
used in the time domain are the average, standard deviations (STD), absolute maximum, root mean 
square (RMS), power, kurtosis, (Kur), and skew value. In Frequency domain (FFT); envelope spectrum 
is applied first then the same features methods are used as in time domain.  

4.1 Discrete Fourier analysis and  envelope spectrum 

Discrete Fourier Transform (DFT) algorithm is used to transform a signal ݔሺݐሻ with length (N) from the 
time domain into a signal in frequency domain. Let ݔሺ݇ሻ be an N-point signal, and let ேܹ be the Nth 
root of unity, then the DFT of ݔሺ݇ሻ is denoted as ܺሺ݅ሻ ൌ  	:ሺ݇ሻሽ and is defined asݔሼܶܨܦ

Xሺiሻ ൌ ෌ xሺkሻ ேܹ
௜௞ேିଵ

௞ୀ଴
   ,  0 ൑ ݅ ൑ ܰ    (5) 

 

Where  

ேܹ ൌ ݁ି௝ଶగ/ே    and ݆ ൌ √െ1 
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Envelope spectrum is defined as a curve which envelopes the frequency-amplitude plane, obtained from 
Fourier magnitude spectrum. This curve could carry useful information about faults. Envelope spectrum 
analysis can be used for diagnostics and investigation of machinery where faults have an  amplitude 
modulating effect on the characteristic frequencies of the machinery such faults in gearboxes [18][19]. 
In order to automate the selection process of the sensitive frequencies to the fault under investigation, 
the envelope spectrum is used as sensory feature for the system. The values of the envelop spectrum are 
normalised with respect to frequency amplitude. These features calculated using statistical methods as 
shown in Table 1.  

4.2 Wavelet analysis 

Wavelets are functions used to localise waves, which instead of oscillating forever similar to harmonic 
waves, they drop to zero rather quickly. Fourier analysis splits a signal into sine and cosine signals to 
many frequency components; while wavelet concept is to divide the main signal into number of versions 
by shifting and scaling the mother signal or wavelet. There are two types of wavelet transform which is 
discrete wavelet transform (DWT) and continuous wavelet transform (CWT) [20, 21]. In this research, 
the standard deviations of 4 level decomposition of wavelets are used as SCFs for the proposed 
monitoring system.  For each level, the number of wavelet signals used to construct the signal equals to 
2୧ where i is the level number. The dilation equation is used to define the basic scaling function 	φሺxሻ 
from which the D4 discrete wavelet original signal is calculated as following: 

  

             ߮ሺݔሻ ൌ ∑ ܿሺ݆ሻ߮ሺ2ݔ െ ݆ሻଷ
௝ୀ଴                                                                       (6) 

Where c(j) represents the wavelet coefficient  and j the index. The primary wavelet signal is computed 
from the scaling function which is expressed as following:  

   

      
ሻݔሺߖ								 ൌ ∑ ሺെ1ሻ௜ଷ

௜ୀ଴ 	ܿሺ݅ ൅ 1	ሻ߮ሺ2ݔ െ ݅ሻ                                                                (7) 

 

       The four coefficients for D4 wavelets are as follows: 

     ܿሺ0ሻ ൌ
ଵ

ସ
ሺ1 ൅ √3ሻ                            ܿሺ1ሻ ൌ

ଵ

ସ
ሺ3 ൅ √3ሻ   

     ܿሺ2ሻ ൌ
ଵ

ସ
ሺ3 െ √3ሻ                           ܿሺ3ሻ ൌ െ

ଵ

ସ
ሺ√3 ൅ 1ሻ                                      (8) 

For discrete D4 wavelets transformation the original function can be reconstructed form the equation:  

     ሺݔሻ ൌ ∑ ܿఝ߮௡ሺݔ െ 1ሻ ൅ஶ
௟ୀିஶ ∑ ∑ ܿ௛,௟ߖሺ

ஶ
௛ୀିஶ

ஶ
௜ୀ଴ 2௛ െ 1ሻ																																																										ሺ9ሻ	 

 

The standard deviations (STD) are calculated from the wavelet levels (D4) and used as Features (SCFs) 
for the proposed monitoring system. The 4 wavelet SCFs are denoted as WD1–WD4.        
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Table 1: The implemented signal processing techniques. 
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WD1, WD2, WD3 and WD4 are calculated from the standard deviation of the wavelet levels (see 
equations 6 to 9)  

Note: ࢏࢞ is a signal series for i=1,2,..,N; N is the number of signal samples; s(k) is the windowed Fourier 
transform for k=1,2,..,K; K is the number of spectrum lines; and  ௞݂ is the frequency value of the kth 
spectrum line. 
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4.3 The verification of  the ASPS approach for gear monitoring 

Figure 7 presents the block diagram of the proposed method for diagnosing gear tooth surface damage 
using the ASPS approach. Firstly, information in the sensory signals are captured using 25 features 
(SCFs) described in Table 1 for the nine sensory signals. Secondly, the SCFs from all the sensors are 
combined, making the total number of features to be 225 (i.e. 25 × 9) for each gear condition. Thirdly, 
feature selection is conducted using the feature selection method described above using Taguchi’s 
method dependency values. Finally, the selected features are divided into subgroups (monitoring 
systems) and tested using neural networks for the relationship between average dependency and the 
diagnostic error from the neural networks. 

 

Figure 7:  The relationship between sensitivity value of SCFs and the classification error of the neural 
networks. 

 

5 THE EXPERIMENTAL RESULTS 

Sampled signals in time domain are difficult to be used directly as inputs to the condition monitoring 
system due to the complexity of the signals and the inclusion of significant noise levels. Therefore, SCFs 
have to be extracted before classification.  Figures 8 and 9 present examples of the raw and FFT signals 
of the three conditions on helical gear for one of the vibration sensors. Notice the complexity of the raw 
signals and the need for a suitable signal processing method to improve and clarify its dependency on 
gear conditions. 
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Figure 8: Examples of the raw signals of vibration data for the four conditions of the gear. 

 

 

Figure 9:  Examples of FFT of vibration signals for the three conditions of the damaged gear 
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5.1 The ASPS analysis of the experimental work 

The calculated Sensory Feature Matrix (SFM) for this test has dimensions of (9 x 25 x 9) thus presenting 
9 sensory signals, signal processing methods and 9 runs of experiments is the L9 OA, see Appendix 1. 
For every feature located in the SFM matrix, the dependency on helical gear damage conditions is 
calculated and placed in the association matrix (ASM). Consequently, the ASM matrix for helical gear 
damage conditions has a size of 9 x 25, making a total of 225 SCFs. The dependency coefficients of the 
ASM are used as an indicator of the sensitivity of the features to gear conditions. The 225 SCFs are 
divided into 7 different groups/systems where each system contains 30 features. The features are 
arranged in a descending order so that system number 1 contains the SCFs of maximum dependencies 
while system number 7 groups contains the features of minimum dependency. The suggested number of 
30 SCFs in every system is based empirically on the authors’ previous experience with condition 
monitoring and neural networks. Normally, such a range of inputs provides good identification and 
relatively fast training time. However, other values might also be used depending on the application and 
the neural networks topology. The monitoring systems with each consisting of 30 SCFs, includes SCFs 
from different sensors using different signal processing methods.  

Figure 10 presents the Association Matrix (ASM) of the conducted analysis, which represents all SCFs 
obtained from the implemented sensors and signal processing methods. The colour map indicates clearly 
the dependency (i.e. sensitivity) of each individual SCF where the light colour indicates high sensitivity 
and dark colour represent low sensitivity. Each column is associated with a sensory signal and each row 
is associated with a signal processing method. The colour-map of the ASM can provide a clear 
indication of the most appropriate sensors and signal processing methods to monitor the fault under 
consideration.  

A SCF can be presented as SCF(s, sp) where s is the sensor and sp is the signal processing method. It 
can be observed that among the SCFs, as shown in Figure 10, some are more sensitive than others.  For 
example, from the general visual observation the SCF with high sensitivity to the gear damage is 
SCF(SP2, TD10); while SCF(VIB2, TD4) is not considered sensitive to the fault. Therefore, it can be 
assumed that ASPS based Taguchi method could help in finding the sensitivity of the sensory features  
for developing a reliable condition monitoring system with low cost and reduced time.  
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Figure 10: The Association Matrix (ASM) of the ASPS approach which indicates  the sensitive sensors and 
signal processing methods in detecting gear faults using Taguchi’s dependency value as a sensitivity measure. 

 

Each row and column of the ASM of Figure 10, could also indicate the average sensitivity of each 
implemented sensor and signal processing method. Figure 11 presents the SCFs arranged based on their 
dependency to 7 systems (groups of SCFs) of 30 features each, see Figure 12. Figures 13 and 14 
represent the average sensitivity (dependency) values for the implemented sensors and signal processing 
methods respectively. The results show that, on average,   sensors vibration 1 (VIB1), vibration 3 
(VIB3), acoustic emission1 (AE1) and speed 2 (SP2) are the most reliable dominant sensors while 
TD10, TD5, FD9 and FD10 are the most dominant signal processing methods. 
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Figure 11: Based on the Association Matrix (ASM) of the ASPS, the features are ranked based on 
their dependency (sensitivity). 

 

 

Figure 12: The average dependency of each system.  
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Figure 13: The average dependency of the implemented sensors. 

 

 

Figure 14: The average dependency of the signal processing methods. 

 

5.2 Neural networks classification 

Two types of neural networks models are utilised to prove if the SCFs with high dependency can 
actually offer a greater sensitivity that should consequently result in better identification of abnormal 
patterns (see Figure 7). The implemented neural networks are two supervised neural networks, Back 
propagation [23] and  radial basis (RB) [24], see Table 2 for details. Other neural networks such as 
competitive neural network (ELM) [25] and learning vector quantisation (LVQ) [26, 27] could also be 
used if necessary.   
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Table 2:  The implemented neural networks 

Neural networks Type Key parameters 
 
Back Propagation Neural Network (BP) 

Supervised Learning rate =0.001; momentum 
=0.9; target error =0.01; transfer 
functions: Log-sigmoid  (hidden 
layer) and linear (output layer). 

 
Radial Basis (RB) 

Supervised Target error =0.01; maximum number 
of Neurons =500 spread of radial 
basis Function = 10. 

Since the 7 proposed monitoring systems (selected group of SCFs) have 30 SCFs each, the implemented 
neural networks here are designed to have 30 inputs. A normalising process is performed using Eq. (10) 
below so that every sensory characteristic feature will have a value between 0.1 and 0.9 thus making it 
possible to fuse and compare the calculated sensory features relative to each other: 

መ݂
௜௝ ൌ 0.1 ൅

଴.଼

୫ୟ୶ି௠௜௡
	ሺ ௜݂௝	 െ minሻ                                                                (10) 

Where max is the maximum value of the feature ௜݂௝	, min the minimum value of the feature	 ௜݂௝	, A መ݂௜௝	the 
normalised values of the feature ௜݂௝	. 

The neural network parameters are chosen from experience in order to give a reasonable response; 
however, it is important to point out that neural networks are not optimised for this application since the 
objective here is to compare systems in order to select the most appropriate sensors and signal 
processing methods. The L9 runs are used to train the neural networks while the full factorial tests are 
used to test them. Although the 27 runs contain different machining parameters, this should not pose a 
problem for the neural networks since the SCFs which show high dependency on the helical gear 
conditions, in theory, should show low dependency (sensitivity) to the other machining parameters. 
Three independent training and testing processes are performed for each tested system. The average 
classification errors of the BP and RB neural networks for four separate data sets  are shown in Figures 
15 and 16 respectively. As shown, there is a clear trend that systems with high average dependency 
values produce less classification error (i.e. better identification). Moreover, for systems with 
dependency greater than 45% have steadier results and have lower average variation relative to each 
other. Therefore, it can be concluded that the higher the average dependency of the system is, the better 
and more stable is the classification of the pattern recognition system. The ASPS approach is observed 
to be very useful in predicting the behaviour of condition monitoring systems without the need to use 
any iterative methods.  The average classification error of the four neural networks has proved that high 
dependency means better information for the neural networks, see Figure. 7. 
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Figure 15: The relation between the average dependency and the average classification error of the Back 
Propagation neural networks (BP) 

 

 

Figure 16: The relation between the average dependency and the average classification error of the 
Radial Basis neural networks (RB). 

 

5.3   Gear damage classification based on the  most sensitive monitoring system 

    Figure 17 presents a comparison between the 7 monitoring systems (i.e. group of SCFs) for 
monitoring three levels of helical gear damage.  In this case, the difference in level between the three 
bars of each system indicates the capability of the system in detecting the three levels of faults. 

0 10 20 30 40 50 60 70 80 90
15

20

25

30

35

40

45

50

55

60

% Average dependency of the monitoring system

%
 A

ve
ra

ge
 c

la
ss

ifi
ca

tio
n 

er
ro

r

 

 

dataset 1

dataset 2
dataset 3

dataset 4

System 1
System 7

0 10 20 30 40 50 60 70 80 90
20

25

30

35

40

45

50

55

60

%
 A

ve
ra

ge
 c

la
ss

ifi
ca

tio
n 

er
ro

r

 

 

% Average depenadency of the monitoring system 

dataset 1

dataset 2
dataset 3

dataset 4

System 1

System 7



20 

 

Monitoring system 1 represents the most sensitive groups of sensory features to conditions in gearbox 
system and monitoring system 7 represents the groups of sensory features with least sensitivity.  From 
Figures 15 and 16, it can be noticed that monitoring system number 1 has the best classification 
capability, while the other monitoring systems (5 to 7) are not able to categorise the three faults levels of 
damage gear. As expected, monitoring system 1 has the best classification compared with all the other 
monitoring systems. It can be noticed that the performance to classify the damage of helical gears is 
decreased gradually based on the decrease in the average sensitivity suggested by the ASPS approach. 
The experimental results show that the proposed method is successful in gearbox fault diagnosis. 
Therefore, it can noticed that the proposed monitoring system has more strong robustness of data 
analysis and better generalisation ability than conventional selection for sensors and feature extraction 
monitoring systems for gearbox fault diagnosis. Cost/performance optimisation can be conducted based 
on selecting the most utilised sensors and removing the sensors with low sensitivity. 

 

               

Figure 17:   The relationship between the sensitivity of the suggested  monitoring systems (groups 
of SCFs) and gear damage classification. 

 

6 CONCLUSION 

This paper has presented a new investigation and application of the ASPS approach for gear condition 
monitoring. The ASPS approach provides a scientific basis of the methodology for selecting the most 
sensitive features and signal processing methods which in turn select reliable sensors to the condition 
monitoring of gearbox systems. In this paper, three levels of faults in helical gear are tested. The new 
investigation using the ASPS approach has shown that the most sensitive sensors and insensitive sensors 
to the gear faults. Also it illustrates which sensor, and in what location, is more useful in monitoring at 
specific type of faults. For example, accelerometer sensors 1, 3 (VIB1, VIB3) are found sensitive to 
monitor gear faults due to its nature and location near the bearing housing. Accelerometer sensor 2 
(VIB2) is found insignificant because it is mounted on the side of the gearbox housing and it is distant 
from the internal components of the gearbox. This has been identified automatically when investigated 
by the ASPS approach. Each gearbox component has its own specific nature and the generated faults 
produce different types of signals and frequencies. Therefore, every sensor extracts different information 
about the fault. The sensor which extracts more information, independently from other operating 
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conditions, is more likely to provide the sensitive SCFs for the monitoring system. The results confirm 
that only a partial number of the experimental tests are required in order to predict the machining 
condition for the full combinations of machining parameters and machining faults, without the need to 
fully investigate the physical phenomena of damage. This new investigation has proven that the ASPS 
approach [1, 13] can be implemented for gear monitoring reducing implementation time and selecting 
the most sensitive sensors and signal processing methods. 

This paper has built on Taguchi’s statistical methods and the ASPS approach [1,13].   The paper does 
not claim to provide  the ‘absolute optimum’  and general solution, but it is used to  find the most 
sensitive features in every specific case based on Taguchi statistical methods and the relationship 
between variables and factors.  Hence if a sensor or mechanical system is changed, the design process 
would need to be repeated.  This approach is simply about finding the most sensitive features based on a 
particular situation with a particular sensors, signal processing methods and sensor locations.  Other 
sensors and signal processing methods and techniques might be more or less sensitive than the selected 
ones in this study. However, such techniques, if there were to be integrated in the ASPS approach, the 
system should detect their sensitivity and rank them as suitable. Hence other signal processing and 
sensors could be integrated and their sensitivities to be tested in different scenarios; providing a rich 
algorithm for researchers.   
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Appendix 1 

Table A1: 27 Full factorial  tests (3 factors and 3 levels) 

Test 
Number 

Gear Conditions 
(Damage Level) 

Speed 
(RPM) 

Torque 
(N.M) 

1 25% 200 2 
2 50% 200 2 
3 100% 200 2 
4 25% 200 6 
5 50% 200 6 
6 100% 200 6 
7 25% 200 8 
8 50% 200 8 
9 100% 200 8 

10 25% 500 2 
11 50% 500 2 
12 100% 500 2 
13 25% 500 6 
14 50% 500 6 
15 100% 500 6 
16 25% 500 8 
17 50% 500 8 
18 100% 500 8 
19 25% 750 2 
20 50% 750 2 
21 100% 750 2 
22 25% 750 6 
23 50% 750 6 
24 100% 750 6 
25 25% 750 8 
26 50% 750 8 
27 100% 750 8 

 

Table A2: Taguchi’s Orthogonal Array L9 (for 3^3) (reproduced from [15]). 

Test Number Gear Conditions 
(Damage Level) 

Speed 
(RPM) 

Torque 
(N.M) 

1 25% 200 2 
2 25% 500 6 
3 25% 750 8 
4 50% 200 6 
5 50% 500 8 
6 50% 750 2 
7 100% 200 8 
8 100% 500 2 
9 100% 750 6 

 

 


