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Abstract

Occupancy monitoring and prediction as an influential factor in the extraction of occupants'  

behavioural patterns for the realisation of ambient intelligent environments is addressed in this 

research. The proposed occupancy monitoring technique uses occupancy detection sensors with 

unobtrusive features to monitor occupancy in the environment. Initially the occupancy detection 

is conducted for a purely single-occupant environment. Then, it is extended to the multiple-

occupant  environment  and associated  problems are  investigated.  Along with  the  occupancy 

monitoring, it is aimed to supply prediction techniques with a suitable occupancy signal as the 

input which can enhance efforts in developing ambient intelligent environments. By predicting 

the occupancy pattern of monitored occupants, safety, security, the convenience of occupants, 

and energy saving can be improved. Elderly care and supporting people with health problems  

like dementia and Alzheimer disease are amongst the applications of such an environment.

In the research, environments are considered in different scenarios based on the complexity of 

the problem including single-occupant and multiple-occupant scenarios. Using simple sensory 

devices instead of visual equipment without any impact on privacy and her/his normal daily 

activity, an occupant is monitored in a living or working environment in the single-occupant 

scenario. ZigBee wireless communication technology is used to collect signals from sensory 

devices  such  as  motion  detection  sensors  and  door  contact  sensors.  All  these  technologies 

together including sensors, wireless communication, and tagging are integrated as a wireless  

sensory agent.  The  occupancy data  is  then  collected  from different  areas  in  the  monitored 

environment by installing a wireless sensory agent in each area. In a multiple-occupant scenario, 

monitored occupants are tagged to support sensory signals in distinguishing them from non-

monitored occupants or visitors. Upon enabling the wireless sensory agents to measure the radio 

signal strength of received data from tags associated with occupants, wireless localising sensory 

agents are formed and used for occupancy data collection in the multiple-occupant scenario. 

After the data collection, suitable occupancy time-series are generated from the collected raw  

data by applying analysis and suitable occupancy signal representation methods, which make it  

possible  to  apply time-series  predictors  for  the  prediction of  reshaped occupancy signal.  In 

addition,  an occupancy signal  generator is  proposed and implemented to generate sufficient 

occupancy signal data for choosing the best amongst the prediction techniques. 

After converting the occupancy of different areas in an environment to an occupancy time-

series,  the  occupancy  prediction  problem  is  solved  by  time-series  analysis  and  prediction 

techniques for the single-occupant scenario. The proposed technique has made it possible to 
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predict the occupancy signal for 530 seconds in a real environment and up to 900 seconds for a 

virtual environment. The occupancy signal generator created based on the proposed statistical  

model  is  proved  to  be  able  to  generate  different  occupancy signals  for  different  occupant  

profiles incorporating different environmental layouts. This can give a good understanding of 

the occupancy pattern in indoor spaces and the effect of the uncertainty factors in the occupancy 

time-series.  In  the  multiple-occupant  scenario,  the  tagging  technology integrated  with  data  

acquisition system has made it possible to distinguish monitored occupants and separate their 

occupancy signals. Separated signals can then be treated as individual time-series for prediction.  

All  the  proposed  techniques  and  models  are  tested  and  validated  by  real  occupancy data  

collected from different environments.
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Chapter 1Chapter 1

11

IINTRODUCTIONNTRODUCTION

1.1 Predictive Ambient Intelligent Environment

The creation of an intelligent environment is defined as the intention of turning ordinary 

living or working spaces into an environment which can enhance the convenience of its 

occupants.  In  such  an  environment,  safety,  security,  and  energy  saving  are  also 

considered  as  the  main  objectives  [1],  [2].  For  instance,  a  contemporary intelligent 

home is expected to automate some of the actions in the environment to provide its 

occupants with their preferences e.g. adjusting the air-conditioner to maintain a desired 

temperature. It is also expected to consider the safety of its occupants e.g. monitoring 

actions and health factors to assess their health status. In addition, it should make the 

intelligent  environment  a  secure  place  in  which  occupants  and  their  properties  are 

protected  against  threat  and  theft.  Moreover,  the  utilisation  of  electrical  appliances 

should be under control to reduce energy consumption in an intelligent environment. 



Introduction

Intelligent environments are categorised into three generations. In the first generation, 

despite the lack of sensory devices some of the above objectives such as security are 

satisfied. A bank equipped with a conventional security system in which employees can 

press a button to call the police in a bank robbery, is an example of the first generation 

intelligent  environments.  In  the  second  generation,  intelligent  environments  are 

equipped  with  individual  or  a  network  of  sensors.  This  generation  of  intelligent 

environments is called automatic environment. A smart building with automatic lights 

and heater control is an example of the second generation. An intelligent environment 

equipped with sensors is also called Ambient Intelligent (AmI) environment, which is 

aimed to support people in carrying out their Activities of Daily Living (ADL) in easier 

ways [3]. 

With growing interests in the use of intelligent environments, a new generation of such 

environments  has  drawn the  attention  of  many researchers.  The  Predictive  ambient 

Intelligent  Environment  (PaIE)  as  the  third  generation  in  intelligent  environments 

provides more intelligence capabilities in comparison with former generations  [4]. An 

Ambient Intelligent environment  [5],  [6] can be defined as a digital environment that 

proactively, but sensibly, supports people in their daily lives  [7]-[10]. Predictive AmI 

incorporates the predictive features in an AmI environment. It contains both manual and 

automatic  control  features  from  the  former  generations  of  intelligent  environment; 

moreover, it can learn from the past situations and predict the future situation. PaIE can 

learn from environmental changes, and interactions among occupants and devices, as 

well as behavioural patterns of the occupants [11], [12]. 

In such an environment, a data acquisition mechanism is used in which sensory devices 

observe situations and alterations. The data acquisition mechanism is also a mean of 

communication by which the observed data is transmitted to a base station for further 

analysis. Hence, a sensor network as the data acquisition system and a base station for 

data  logging,  analysis  and  prediction  would  be  a  reasonable  solution  in  the  third 

generation of intelligent environments  [13]. Some PaIEs employ intelligent agents for 

creating  such  an  environment  in  which  the  agents  are  responsible  for  observation, 

communication, and even data analysis and prediction [14]-[17], [130].

The data collected by the data acquisition system include a variety of attributes such as 
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environmental changes and occupants' interactions with the environment. These data are 

used  in  a  learning approach to  make a  predictive  environment  that  can  predict  the 

occupancy  of  different  areas,  utilisation  of  objects  and  resources,  as  well  as  the 

requirements  and preferences  of  occupants  at  different  times.  In  PaIE,  the  focus  of 

prediction techniques is mostly on the pattern recognition by which the sequence of 

actions  in  the  intelligent  environment  can  be  recognised,  learnt  and  predicted.  The 

behavioural pattern of any residents in the environment contains a series of actions and 

reactions. For example, the action of going to the kitchen, turning the light on, and 

turning a kettle on as a pattern can be summarised as making coffee or tea. In a PaIE, 

such a pattern should be recognised, learnt and predicted [18].

The  predictive  feature  in  PaIE can  increase  the  number  of  objectives  in  intelligent 

environments [2]. Safety of occupants and their health have always been a concern in 

living and working environments. In an intelligent environment, the health parameters 

of occupants, specially elderly people and those who are living alone with care needs, 

can be monitored and learnt to help them live safely and in control [2], [19]-[21], [135], 

[136]. Safety and convenience are the factors of a good life style which can also be a 

duty for  predictive  control  mechanisms  in  an  intelligent  environment.  Moreover,  to 

increase the efficiency of energy consumption in living and working spaces has been 

considered and is becoming more important nowadays. Therefore, the responsibility can 

be given again to intelligent control mechanisms rather than having occupants managing 

directly. These issues all can be improved if in an intelligent environment, intelligent 

mechanisms first of all can learn the behavioural pattern and then act accordingly. 

Before it can be claimed whether an environment is a PaIE, it is important to establish 

answers to the following questions:

1. What location is occupied by the monitored occupant at different times?

2. What actions are made by the monitored occupant in the occupied area when  

he/she is present there?

Either of the above questions sometimes can be answered by the other one e.g. turning a 

kettle  on  can  identify  the  action  of  visiting  kitchen  by  the  monitored  occupant. 

However, to know what an occupant is doing should primarily be identified by where 

he/she is located e.g. it is not possible to guarantee that the occupant is in the kitchen 
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even  if  the  kettle  is  still  on.  In  addition,  sometimes,  it  is  not  possible  to  track  an 

occupant if he/she is not using any appliances which can assist to find his/her location. 

Therefore, having the first question answered is vital and fundamental in the discovery 

of residents' actions and behaviours in their living/working environments.  

In  this  thesis,  terminologies,  namely  Predictive  Ambient  Intelligent  Environment 

(PaIE),  Intelligent  Environment  (IE),  ambient  intelligent  environment,  and  smart 

environment  are  used  interchangeably  and  should  be  interpreted  as  an  ambient 

intelligent environment with predictive features. 

In addition, terminologies such as person, resident, living object, and occupant are used 

interchangeably  too  and  should  be  interpreted  as  a  monitored  person  living  in  a 

predictive ambient intelligent environment.

Furthermore,  terminologies,  namely  occupancy  detection,  tracking,  and  movement 

detection  are  used  interchangeably  and  should  be  interpreted  as  the  detection  of 

occupancy in different areas of a predictive ambient intelligent environment.

1.2 PaIEs Elements and Current Issues towards Realising 

them

In a PaIE, a number of elements for sensation and communication, intelligence, and 

control  are  involved.  Figure  1.1 illustrates  these  as  data  collection  which  include 

sensation and communication, predictive control or intelligence, and actuation. 

As the PaIE is  designed for  the real  world i.e.  physical  environments,  the physical 

attributes of the environment should be initially sensed  [7]. For example, to provide 

occupants  with  desired  temperature,  a  PaIE  should  have  a   perception  of  current 

temperature. For the sensation or in other words, perception, sensory devices such as 

Passive  Infra-Red  (PIR)  sensors,  door  contact  sensors,  light  intensity  sensors, 

temperature  sensors,  and  other  type  of  sensors  can  be  employed  [22],  [23].  These 

sensors are typically small and thus can be integrated into almost any AmI applications 

[7]. For more information about sensors technology, readers are referred to the Chapter 

3. The data collection mechanism should also make the communication between devices 
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and a base-station possible.

The  predictive  control  consists  of  a  control  mechanism  which  uses  intelligent 

techniques including Artificial Neural Network (ANN) control, Bayesian control, Fuzzy 

(logic)  control,  Neuro-Fuzzy control  [134],  Expert  systems,  Genetic  algorithms,  and 

Intelligent  Agents  [24].  Generally,  predictive controllers act in  two phases including 

training and predictive control as explained below:

1. Training Phase: In this phase, the intelligent technique is trained to create a 

model of a real system by using a training data samples of a real system. For 

example, in ANN control, a neural network model of a real system is created in 

training  phase.  In  the  training  phase,  derivative  optimisers  such  as  Back-

propagation are used in order to adjust the ANN parameters for minimising the 

difference between model and the real system [25],

2. Predictive  Control  Phase: The  predictive  control  usually  includes  the 

predictive  model  created  in  training  phase  and  an  optimiser.  The  optimiser 

generates values and apply them to the model, the model output is then used by 

the optimiser to find the minimum error between the output of the model and a 

reference output. The determined value by the optimiser is then applied to the 

real system to result in an output similar to the desired reference output.

For  more  information  in  the  field  of  predictive  control,  readers  are  referred  to  the 

literatures in Chapter 3 and Section 4.5 in Chapter 4.

After that the sensory devices provided the intelligent control with the inputs and the 
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decision made by intelligent control, this should come to action in the real environment. 

Actuators are the responsible for applying inputs to the system for creating a desired 

output. For instance, a resistive actuator like dimmer can adjust a desired light intensity, 

a simple switch can turn the air-condition on or off, an indicator can alert for an altered 

health status, or an alarm can notify for fire. 

Although the elements  in  PaIE explained in  this  section are currently available  and 

employed based on the objectives in intelligent environments, the requirements can alter 

for different environments with different objectives. For example, in a PaIE only energy 

saving  could  be  considered  whereas  in  another  PaIE  both  energy  saving  in  the 

environment and safety or health status of occupants could be considered. However, in a 

predictive  ambient  intelligent  environment,  its  essential  elements  explained  above 

including data collection, predictive control, and actuation are the challenging issues 

towards realising it. 

The realisation of a comprehensive data collection mechanism is one of the outstanding 

issues in creating such an environment which should be addressed appropriately. Some 

intelligent  environments  employ a  simple  sensor  and  communication  mechanism to 

address the data collection issue whereas in some intelligent environments advanced 

sensor network technologies and computer devices or intelligent agents are employed 

[26]. 

The  second  most  important  issue  in  creating  a  predictive  ambient  intelligent 

environment is the prediction system. PaIE should be able to predict the next state of 

consecutive interactions with the use of the knowledge it has learnt from previously 

observed interactions. For instance, it can predict normal ADLs for an occupant with 

mental impairments such as dementia or Alzheimer disease and report abnormalities in 

the occupant's behaviour. The challenge of prediction consists of first pattern extraction 

to identify sequences of actions, and then sequence matching to predict the next action 

in one of these sequences [27]. 

The final issue in realising a PaIE is the actuation in which the decision made by the 

predictive  control  should  turn  into  action  by  actuations  or  interactions  amongst 

residents, environments and devices. The first and third challenges explained above are 

mostly technological  problems whereas  the  second issue  i.e.  predictive  control  is  a 
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problem  which  should  be  dealt  with  mainly  using  computational  intelligence 

techniques.

1.3 Problem Justification – Addressed Issues in this 

Research 

The behavioural pattern of an occupant living in an ambient intelligent environment 

includes a pattern of his/her interactions and a pattern of his/her movements through 

different locations or areas. The pattern of  interactions represents how regular a set of 

interactions with surrounding equipments is taking place while the occupant's pattern of 

movements is to track the location of the monitored resident in his/her living/working 

environment in daily, weekly, monthly, or annual basis.

The  extraction  of  any  of  these  patterns  can  be  a  significant  achievement  in  the 

realisation of a predictive ambient intelligent environment because the extracted pattern 

enables the intelligent system to predict an occupant's behaviour in future or discover 

any  abnormality  in  his/her  behaviour.  For  example,  in  an  elderly-living  ambient 

intelligent environment if the monitored elderly person is not behaving according to 

his/her  extracted (expected)  daily behavioural  pattern,  then a  health  warning can be 

raised to inform a carer or the health services of the elderly person's new situations.

As a contribution in realisation of predictive ambient intelligent environments, the focus 

of this  research is  mainly on the movements pattern of residents (occupants) in  the 

environment by proposing ideas and solutions for data collection, data representation 

and analysis in simple scenarios and expanding the scenarios to the solutions in more 

complicated situations. 

Object  tracking  in  various  environments  has  been  considered  using  different 

technologies  and  techniques  [28],  [29].  Most  of  the  approaches  employ  visual 

equipments such as cameras [30], thermal cameras, or a fusion of sensory devices [31] 

and  cameras  [32] to  carry  out  people  tracking  in  the  environment.  Along with  the 

technology there has always been the issue of extracting identifying information from 

the imagery data collected by cameras; hence, intelligent techniques, face recognition 

techniques, image and signal processing techniques have been applied to reduce the 
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problem [33].    

Despite the interests for occupants' tracking in an environment using visual equipments, 

using cameras for tracking occupants has always had its corresponding issues. These 

issues include the costs i.e. the value of equipments, imagery data transfer efficiency 

and  the vulnerability of the monitored occupants' privacy [34], [35]. 

The cost of camera equipments varies based on their type, resolution, and features like 

zoom, motorised tilt  and rotation. However, the flexibility and expandability of data 

acquisition system using visual equipments can be affected by the high cost of these 

equipments.  For  example,  covering  all  areas  of  an  environment  by cameras  can  be 

extremely costly. 

Some  currently  available  techniques  have  reduced  the  cost  of  communication  for 

imagery data. Some of these techniques suggest data compression for compressing the 

video  or  image  stream  before  they  transferred  for  further  analysis  through  the 

communication mechanisms. Some other techniques suggest image processing built in 

cameras which can make camera equipments more expensive. These techniques aim to 

reduce the data transmission overhead of imagery data. 

Furthermore, and most importantly, using visual equipment is not convenient for people 

because  it  degrades  their  privacy.  Although the  application  of  visual  equipments  in 

surveillance has made the use of these devices reasonable in several situations such as 

some medical or sensitive industry,  it does not seem to be a reasonable method in many 

other applications. For example, tracking people with normal activities who are living in 

their  premises  by using  cameras  can  be  a  real  threat  to  their  privacy;  hence,  their 

convenience.  Therefore,  an  inexpensive  unobtrusive  movements  monitoring  and 

movements pattern extraction using simple sensory devices does worth investigations 

which is addressed in this research.  

1.4 Research Objectives

To  realise  a  predictive  ambient  intelligent  environment,  some  of  the  technical  and 

theoretical issues are investigated in this thesis. A number of new and innovative ideas 

are  proposed  and  experimented  to  assist  with  the  collection,  representation,  and 
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prediction of the occupants' movements. 

In this research, the following objectives are addressed:

1. A  data  acquisition  system  is  proposed  and  implemented  which  collects 

occupants' movements data in an inexpensive and unobtrusive manner. The data 

acquisition  mechanism should  be  easy to  install  and have  expandability  and 

flexibility to work in both single-occupant and multiple-occupant situation. This 

data acquisition is created by integrating different elements for shaping up an 

efficient sensor network for data collection purposes,

2. A  new  form  of  movements  signal  is  proposed  which  should  be  a  good 

representation  of  the  raw  occupancy  data  collected  by  the  data  acquisition 

mechanism. This representation of the occupancy data should provide prediction 

techniques with a suitable signal for prediction and pattern extraction,

3. Along with data acquisition and signal representation, a model of occupancy is 

created  to  simulate  the  movement  pattern  of  different  occupants  in  different 

environments.  The  model  should  create  a  simulator  that  is  able  to  generate 

movements signal to test prediction techniques for different form of activities,

4. Finally, real occupancy signals are applied to prediction techniques along with 

simulated  occupancy  signal  to  choose  the  best  amongst  the  prediction 

techniques. 

In spite of challenges ahead of accurate object tracking in indoor environments, this 

research is an attempt to reduce the problem and contribute to approaches for achieving 

better solutions in the field.  

Further to the above research objectives, the application objectives of this research is to 

assist  the  health  and  well-being  control  of  elderly  people  and  people  with  mental 

impairments  such  as  dementia  and  Alzheimer  disease;  it  is  aimed  to  improve  their 

independence, safety,  and convenience in their  life-style.  This is carried out through 

processes in which it is attempted to:

1. Collect the ADLs data from an elderly-living apartment using a proposed data 

acquisition  mechanism,  representing  occupant's  data  with  the  proposed 
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occupancy  data  representation  and  using  a  number  of  techniques  to  predict 

her/his occupancy signal,

2. Modelling occupant's movements as an occupancy signal for the flexibility of 

generating  the  signal  in  different  environments  with  different  occupant 

behavioural profiles,

3. Approaching to separate her/his occupancy pattern in the presence of uncertainty 

and  noise  signals  e.g.  when  the  occupant  is  visited  by  a  carer,  member  of 

families, and friends.  

1.5 Methodology (Overall Picture)

One of the major challenges in this project is to identify the position of occupants (or 

inhabitants)  at  any point  of  time.  Global  Positioning System (GPS) is  a  reasonably 

reliable system for outdoor tracking but not applicable for indoor spaces as not only the 

GPS signal is not precise enough for smaller scales but also a line of sight is required 

between GPS satellites and the tracker. Therefore, alternative mechanisms are needed 

for indoor tracking. However, the final goal in the investigation of indoor tracking is to 

invent solutions as efficient as the Global Positioning System. 

For indoor tracking to simplify the problem, in this  research,  occupancy of areas is 

proposed instead of accurate tracking and localising the occupants. So, the occupancy of 

different areas by the occupants are detected and identified instead of finding precise 

coordinates  of  an  object  in  the  environment.  The  research  has  started  with  simple 

scenario  of  the  occupancy  where  only  a  single  occupant  lives  or  works  in  the 

environment which is called a single-occupant PaIE in this research. Simple sensory 

devices including motion detection or Passive Infra-Red (PIR) sensors ,  temperature 

sensors, door contact sensors, and light intensity sensors are employed in the absolute 

single-occupant  environment  along  with  a  wireless  network  (ZigBee)  to  collect  the 

occupancy  data  and  environmental  attributes  in  the  scenario.  An  occupancy  signal 

which incorporates both the occupied location (area) and the time of occupancy (with 

spatio-temporal characteristics) is then shaped and passed to the prediction techniques 

to predict the further occupancy of different areas in the environment. To extend the 

10



Introduction

single-occupant  scenario  to  a  multiple-occupant  scenario,  tagging  mechanisms  are 

experimented and occupancy signal of each occupant is separated by tagging him/her in 

the environment. In this research, Received Signal Strength Indicator (RSSI) is used to 

locate  and  identify  occupants  in  different  areas  in  the  multiple-occupant  scenario. 

Furthermore, a statistical model of occupancy in the ambient intelligent environment is 

proposed and implemented to generate occupancy signal for different occupant's profile 

as  well  as  different  environmental  layouts  which  can  help  to  train  and  find  best 

prediction techniques for occupancy detection.

In this research, a number of real data sets collected by data acquisition systems are 

used to prove the performance of the proposed data acquisition system. These sets of 

data are also used to validate the proposed signal representation, incorporated tagging 

technologies, and occupancy signal modelling in the research.

Figure 1.2 shows a diagram representing different phases of the research as explained 

above including phase1: Single-Occupant Scenario, phase2: Occupancy Modelling, and 

phase3: Multiple-Occupant Scenario.

1.6 Thesis Contributions

The  overall  contribution  of  this  thesis  to  knowledge  is  to  propose,  formulate,  and 
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evaluate a new approach to represent occupancy data so that:

• The problem of occupancy prediction in PaIEs is addressed by applying time-

series prediction techniques.

• Different  occupancy situations  in  terms  of  complexity  of  the  problem in  an 

unobtrusive, simple, and inexpensive manner is considered. 

• Modelling the occupancy in order to approximate the uncertainties involved in 

occupants' movements is addressed.

This  hypothesis  is  supported  and  evaluated  by  number  of  techniques  presented  in 

Chapters 4, 5, and 6.

1.7 Thesis Organisation

Context of the thesis is organised in six chapters as follow:

Chapter 2 is a review of similar works in the field of intelligent environment where a 

number of approaches for creating a smart environment are explained and compared. 

These techniques are taken from a variety of literature with the same objectives in the 

field of soft computing, data mining, and statistical data analysis and modelling. Most 

of the techniques reviewed in the chapter are using sensor network or a network of 

intelligent agents to collect and process data in the smart environments. Moreover, a 

number of realised intelligent environments are mentioned mostly used for academic 

researches  in  worldwide  research  institutions  in  which  the  reviewed  intelligent 

techniques  are  applied.  Due to  the  main focus  of  this  research which  is  occupancy 

detection and data representation for occupancy prediction in intelligent environments, 

some  approaches  for  occupancy  detection  and  tracking  occupants  in  intelligent 

environments are also explained in the chapter.

In the third chapter, technologies available for sensation, communication, and tagging 

are  briefly  introduced.  In  this  chapter,  other  mechanisms  applicable  in  ambient 

intelligent environments such as agents and middleware are also introduced. Moreover, 

current available technologies for occupancy monitoring and tracking occupants in the 

environment are introduced.
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In  Chapter  4,  occupancy  detection  and  prediction  in  a  single-occupant  scenario  is 

addressed. A data acquisition system is proposed consisting of a number of wireless 

sensory agents and a monitoring portal. The wireless sensory agents are developed by 

integrating sensory devices and ZigBee wireless technology in a single circuit board. 

These wireless sensory agents collect sensory data and transmit them to a base station in 

the  PaIE.  In  addition,  a  mechanism  for  the  occupancy  data  representation  (data 

reshaping) in the single-occupant scenario is proposed to create an occupancy signal as 

a  time-series.  A  number  of  time-series  prediction  techniques  are  explained  and 

examined. Finally, the proposed data acquisition system and the data representation are 

tested  and  verified  by  collecting  real  occupancy  data  from  a  single-occupant 

environment  and  applying  some prediction  techniques  to  a  virtual  data  set  and  the 

collected real occupancy data.

A model of occupant's movements in an indoor environment is created in Chapter 5. 

The implemented simulator accepts a variety of occupant's profiles in different layouts 

of the simulated environment. Using a statistical modelling approach, the occupancy of 

different  areas in  the environment  is  simulated.  In the simulator,  the profiles of the 

occupants are presented with a number of parameters such as movement and duration 

uncertainties. The simulator is validated using a real dataset by applying optimisation 

techniques for minimising the difference between the model generated by the simulator 

and  the  real  occupant's  movement  in  the  environment.  The  simulator  can  provide 

sufficient occupancy data based on different environmental and behavioural settings. 

This has proven to be very useful to test prediction techniques.

In Chapter 6, single-occupancy solution is expanded for multiple-occupancy problem. 

Exploring and employing tagging technologies have enabled the data acquisition system 

to  distinguish  amongst  different  occupants.  The  wireless  sensory  agents  are 

programmed to measure the distance of every tagged occupants from the agent creating 

localising wireless sensory agents. In this chapter, some intelligent techniques such as 

clustering techniques are used to determine the area which is occupied by the tagged 

occupant. In addition, a set of experiments are carried out to evaluate the approaches 

proposed in this chapter.

Concluding remarks and future works are drawn in the final chapter (Chapter 7) where 
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the idea of the thesis is summarised and discussed in details and remaining issues for 

future works are explained.

Appendix A in this thesis represents the implementation of the data acquisition system 

used in Chapters 4 and 6. Appendix B is the graphical user interface in the occupancy 

signal  generator  which  is  created  based  on  a  model  described  in  Chapter  5  and 

Appendix C describes the ZigBee technology, its architecture, and protocols.
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2.1 Chapter Overview

In  the  research  literature,  variety  of  issues  are  addressed  in  ambient  intelligent 

environment.  Applied  technologies  for  monitoring,  learning,  intelligence,  prediction, 

and adaptation are amongst challenges addressed by researchers. However, the subject 

of intelligent environment has been attractive for researchers and sufficiently potential 

for further investigations and researches.  

This chapter represents a review of issues addressed in the literature in three sections. 

The first  section is  a review of  learning,  and prediction (intelligence)  techniques  in 

predictive  ambient  intelligent  environments  where  they  use  data  acquisition 
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mechanisms such as network of sensory devices and intelligent agents. In the second 

section, some of the realised intelligent environments are reviewed. They are mostly 

available  for  research  purposes  in  the  subject  of  intelligent  environment  or  multi-

disciplinary purposes.  In  the  final  section,  due  to  the  focus  of  this  research  on the 

occupancy detection, simulation, and prediction in PaIEs, some of the techniques which 

address or employ such features in the literature are reviewed.

2.2 Prediction Techniques in PaIE

In PaIEs, various prediction or pattern extraction techniques coming from the area of 

statistical  modelling,  soft  computing,  or  data  mining  are  employed  to  make  the 

environment  intelligent.  In  this  section  some  of  these  techniques  are  reviewed  and 

compared  in  various  aspects  and  the  intelligent  environments  employed  them  are 

compared based on the data collection mechanisms in following criteria of:

• Distributed versus centralised techniques i.e. the data analysis is performed on 

the sensory agents or in a base station,

• Utilisation of the computational power of sensory devices or agents,

• Data storage used for keeping the data collected for training.

2.2.1 CASE Based Reasoning

CASE Base Reasoning (CBR) is a classification method in intelligent environments that 

uses previous experiences to find a solution for current problem. CBR has two basic 

operations including case-generation and case-selection [27].

As a method of prediction,  context-aware based CASE based reasoning proposed in 

[36] is used as a method of pattern extraction of occupant’s behaviour in a predictive 

environment.  In  this  method,  the  context  in  a  smart  home  is  classified  into  three 

dimensions, namely time, environment and person [37] and each case is represented as 

follows:           

                         Case=(case_ID, person_ID, habit_ID, environment_ID, active_ID, time)
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System framework proposed for implementing this method is shown in Figure 2.1.  

As  an  example  to  show how this  method  works,  assume a  person  with  a  specific 

person_ID goes  to  the  lounge  in  a  predictive  building  at  8:00 pm and  sets  his/her 

favourite light intensity and temperature. In this case, system generates a new case in its  

cases database for the situation. If in the other day the same person goes back to the 

same place at the same time, then the system sets his/her favourite light intensity and 

temperature automatically as an existent case in the database matches this situation. 

Similarity calculation is used to overcome the case-selection problem in CBR.

Context-aware based CBR is a centralised prediction technique. It stores all cases in a 

central  database,  but  the case adaptation phase in  its  system framework reduces the 

number of cases should be kept in the data base. 

2.2.2 Lazy Learners

Lazy  learners  or  instance-based  learners  in  ambient  intelligent  environments  are 

learning  techniques  in  which  an  instance  is  classified  based  on  minimum distance 

classification.  Lazy  learners  store  all  the  training  data  samples.  This  may  present 

difficulties  when the  learning is  from very large  data  sets.  Modular  approach is  an 

example  of  lazy  learners  in  a  sensor  network.  Modular  organisation  of  the  sensor 

network proposed in [38] addresses two main issues in mining sensor network data:

1. Minimisation of communication effort with compression of aggregated data of 
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each cluster,

2. Extraction of high-level information from a massive data set.

In  modular  approach shown in  Figure  2.2,  sensory devices  are  clustered  in  sensing 

units. Then a data compression technique such as Principal Component Analysis (PCA) 

[38] is applied to the data received by aggregating nodes. Finally, the collected data set 

is used by a lazy learning algorithm to produce a model of the mapping and then the 

data set is discarded and only the model is kept. Despite the utilisation of computational 

power  in  aggregating  nodes,  modular  approach  is  categorized  as  a  less  distributed 

technique.

Modular approach minimises the data should be kept in the data miner by applying 

compression and modelling techniques. On the other hand, it could be problematic in 

terms of robustness as the system may lose some data by applying these techniques.

2.2.3 Distributed Voting Approach

Due to the distributed nature of sensor networks in ambient intelligence environments, 

implementing distributed algorithms for learning approaches becomes possible. Most of 

these algorithms use small  computational power of individual sensors to construct a 

powerful  learning  approach  in  the  whole  network.  Distributed  voting  algorithm 
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proposed in [39] is one of these algorithms. In this algorithm a tree structure of sensors 

as small computing devices and a powerful computing device in the root of this tree is 

constructed to solve a classification problem. This tree structure is shown in Figure 2.3. 

Each sensor as a leaf of the tree uses neural network or decision tree approaches for 

local prediction. Due to the shortage of memory in sensory devices, all training data for 

different classes are stored in the root. 

During the learning process, each sensor receives a training data from the root. After 

training phase, each node can measure and classify one or more attributes in a local 

policy. Eventually, in a global prediction, the root receives local classification decisions 

from sensors and performs a global classification by applying a voting strategy.

Distributed voting approach is  categorized as a distributed approach. In spite  of the 

distributed nature of this technique, a huge training data is stored in the root. Utilisation 

of sensor’s computational power is the most significant advantage of distributed voting 

approach in realising an ambient intelligent environment.

2.2.4 Reinforcement Learning

Reinforcement learning is a method of learning that learns the relation between input 

and output with trial and error. In this method, a function called reinforcement signal 

must be maximised  [27].  Any significant  difference between input signal and target 

signal  is  considered  as  a  punishment;  therefore,  the  value  of  reinforcement  signal 

decreases. On the other hand, a slight difference between input signal and target signal 

is considered as a reward; hence, the value of reinforcement signal increases. 
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As an example of reinforcement learning technique, [40] proposes an intelligent lighting 

control in which a multi-agent system controls lights. This technique concerns varying 

lighting preferences of different users for different tasks.  Figure 2.4 shows a physical 

space  equipped  with  identification  sensors,  photo  sensors  and  actuators.  In  [40], 

reinforcement  learning  technique  is  used  to  train  the  agents.  An  agent  uses  user’s 

location and light readings as the state space for the reinforcement learner and attempts 

to  take  actions  that  lead  to  appropriate  light  settings.  For  example,  the  absolute 

difference between the light intensity sensed by an agent before and after the user action 

is used as a negative reinforcement or punishment. Also, if an agent turns a light on and 

the user turns it off then the agent receives a negative reinforcement. In contrast, if a 

person  does  not  change  anything  the  agent  receives  a  positive  reinforcement  as  a 

reward. Due to the multi-agent nature of this technique, it is categorized as a distributed 

approach, but it does not utilise the computational power of sensory devices.

2.2.5 Fuzzy Rule-Based Learning

Multi-agent  framework proposed in  [41] can  be  deployed in  an intelligent  building 

equipped with sensors and effectors. In this approach, each agent controls and learns 

about a  small  sub-region of the entire  environment.  In this  technique,  knowledge is 

represented by fuzzy rules and learning process is an unsupervised algorithm. In the 

learning process, inputs from sensors are sampled and transformed to fuzzy sets in a 

fuzzification phase. Then, the learning process compares the fuzzy inputs with stored 
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Figure 2.4 - Intelligent lighting control using Reinforcement Learning.[40]
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fuzzy rules. Any significant difference between fuzzy inputs and stored fuzzy rules is 

considered as a punishment. On the other hand, slight difference between fuzzy inputs 

and fuzzy rule is a reward to the fuzzy rule. This technique is illustrated in Figure 2.5.

2.2.6 Adaptive Online Fuzzy Inference System

In  [14], Adaptive Online Fuzzy Inference System (AOFIS) as a learning and control 

system  is  proposed.  The  authors  have  performed  their  experiments  in  the  Essex 

intelligent dormitory as a test-bed. AOFIS prediction approach contains three phases for 

learning and two phases for control and adaptation:

1. Monitoring  the  user’s  interactions  and capturing  input/output  data  associated 

with their actions,

2. Extraction of the fuzzy membership functions from the collected data,

3. Extraction of the fuzzy rules from the recorded data,

4. The agent controller,

5. Life-long learning and adaptation mechanism.

In the first phase, sensors take a snapshot from user’s action, as well as sensors readings 

before the user’s action. For instance, assume that the temperature of a space is 30 and 

user sets the air conditioner to 25. The system takes a snapshot from the both current 

temperature and user’s temperature preference.
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Figure 2.5 - Fuzzy rule-based learning.
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In the second phase, different techniques of clustering such as Fuzzy C-Means, Double 

Clustering,  Agglomerative  Hierarchical  Clustering  Approach  and  Quantification  of 

Fuzzy Membership Functions are used to extract fuzzy Memberships Function (MF). 

With these techniques the accumulated user input/output data is categorized into a set of 

fuzzy  MFs  which  quantify  the  raw  crisp  values  of  the  sensors  and  actuators  into 

linguistic labels,  such as normal,  cold,  or hot. In the third phase,  the defined set of 

membership functions are combined with the existing user input/output data to extract 

the rules defining the user’s behaviours. The fuzzy rule extraction approach used by 

AOFIS is based on an enhanced version of Mendel Wang method that is a one-pass 

technique  for  extracting  fuzzy  rules  from  the  sampled  data.  With  extraction  of 

membership  functions  and  set  of  rules,  the  agent’s  Fuzzy  Logic  Controller  (FLC) 

becomes capable to capture human behaviours. Therefore, in the fourth phase, the agent 

monitors the state of the environment and affects actuators based on its learnt FLC that 

approximates the preferences of the user. Finally, in the fifth phase, the agent adapts its 

existing rules or adds new rules based on the new preferences of the user. For example, 

if the user changes the settings of the environment, then the agent would adapt itself 

with new preferences. Five phases of AOFIS are illustrated in Figure 2.6.

Due to the use of fuzzy MFs, the amount of data should be kept in AOFIS technique is 

reduced. This technique can be categorised either as a centralized or as a multi-agent 

approach due to the flexibility of the technique.

2.2.7 Mixture-Model

In  [42] data  collected  from motion  detectors  are  used  to  determine  four  attributes 

including the location of occupant, the start time of being in the location, the length of 
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Figure 2.6 - Five phases of AOFIS.[14]
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the time spent in it, and the activity level of the occupant in the location. In the training 

phase, a mixture-model makes a cluster of each activity. 

In this method an activity is recognised based on the time spent in a specific location 

and activated sensors during this activity. For instance, the activity of putting a book in 

the library needs less time rather than checking email in the same room. In addition, a 

different set of sensors will be activated during the activity of putting a book in the 

library  rather  than  checking  email  in  the  same  room.  The  mixture-model  is  a 

combination of different methods including event estimation, self organizing maps, and 

fuzzy K-Means clustering. The power of the mixture-model is due to its capability to 

distinguish different mixed activities. For instance, the activities of putting a book and 

checking email can occur simultaneously. Simultaneous activities make it more difficult 

to identify them. 

For example, it would be difficult to recognise which activity has fired a sensor. The 

mixture-model concerns the time spent in a location and fired sensors in it to calculate 

the probability of each trained activity. Finally, the more probable activities are expected 

ones. Figure 2.7 is an illustration of clustering with mixture-model.

2.2.8 Statistical Modelling Prediction Techniques

Statistical approaches such as Markov Model and Hidden Markov Model (HMM) are 
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Figure 2.7 - Clustering in a Mixture-model.[42]
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also considered in ambient intelligent environment. A brief description of these models 

are presented below:

2.2.8.1 Markov Model

Markov model is a statistical method of modelling that uses Markov chain to define a 

process. In a Markov chain next state of the system only depends on the present state. 

Transition  probability  between  two  states  in  a  Markov  chain  is  represented  by  a 

transition matrix.  Figure 2.8 is  a  simple example of a Markov chain,  as well  as its 

transition probability matrix. Markov chain is used in  [43] to model daily activity of 

elderly people living alone in a predictive home. In this approach, first of all, a profile  

transition  probability  matrix  from observed  sensory data  for  each  elderly  person is 

generated  and  stored  in  a  database.  Then,  during  a  daily  activity,  a  test  transition 

probability matrix is generated. 

Minor differences between profile and test matrices with an acceptable tolerance shows 

that the health status of the elderly person is not changed. In contrast, any significant 

statistical  difference  between  these  two matrices  can  be  considered  as  an  abnormal 

health status of the elderly person.

2.2.8.2 Hidden Markov Model

Hidden Markov Model (HMM) is also a statistical model in which the data is generated 

by a stochastic process but the process is not observable (hidden). These processes are 
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Figure 2.8 - Markov chain and transition probability matrix.[43]
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assumed to be Markovian and can be known through another set of stochastic processes 

that produce the sequence of observed features.  HMMs perform well  in behavioural 

pattern recognition. For example, in [44], HMM is used for the pattern recognition in a 

smart  environment  which  aims  to  discover  activities  in  CASAS  project  which  is 

explained in Section 2.3.

The significance  of  a  statistical  model  such as  Markov chain in  modelling ambient 

intelligent environments is due to its simplicity and capability of representing systems 

with multiple transitions. For example, occupancy detection as an important application 

in an ambient intelligent environment is multiple transition and can be modelled as a 

Markov chain.

2.2.8.3 Bayesian Classifiers

Bayesian classifier is a method of classification based on probability distribution. In this 

approach, the classifier calculates the probability of being a member of different classes 

for each sample and predicts the class of the sample. A belief network is a collection of 

conditional probability distributions associated with a directed graph [45]. 

In the probability model, each variable X is associated with a node of same name in the 

graph. The parents of the variable X  are the variables which appear on the right-hand 

side of the vertical  bar  in  a  conditional  probability.  For  example,  if  the conditional 

probability is P X∣Y ,Z  , then Y  and Z  are the parents of X . The graph has an 

arrow leading from each parent into X , which is called the child. The power of such a 

probabilistic  approach  is  that  several  important  and  interesting  operations  can  be 

defined as the calculation of probability distribution [46]. Thus, one can define a single 
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Figure 2.9 - Bayesian belief - Parents and Child.[46]
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probabilistic model and examine it in different ways to perform prediction, revision of 

hypotheses, carry out ‘‘what if?’’ reasoning, and ‘‘ruling out’’ hypotheses as such the 

prediction of effects can be formulated as P effects∣causes . For example, ‘‘What are 

typical sensor readings when the lounge is occupied but the bedroom is not?’’ or, ‘‘How 

many people  are  expected  in  the  building  today?’’ can  be  formulated  and analysed 

through a set of calculations in belief network. The occupancy prediction proposed in 

[45] employs the Bayesian classifier which will be explained in Section 2.4 with more 

details.

2.3 Realised Ambient Intelligent Environments

The  ideas  of  intelligent  environment  have  been  implemented  by  various  research 

institutions as laboratory or test-bed mostly for their research purposes. These realised 

ambient intelligent environments include:

1. Neural Network house [47],

2. Intelligent Home (IHome) [48],

3. House_n [49],

4. Aware home [50],

5. Artificial Intelligence Lab (AI Lab) [51],

6. MavHome [53], and

7. Intelligent Dormitory (iDorm or iSpace) [54].

In  the  Neural  Network  house  [47] at  the  university  of  Colorado,  researchers  have 

implemented a system named Adaptive Control of Home Environment (ACHE) as one 

of the first attempts to tackle the programming challenges associated with intelligent 

environments.  ACHE  monitors  the  environment,  observes  the  actions  taken  by 

occupants, and attempts to infer patterns in the environment that predict these actions 

[47]. The predictors in ACHE are implemented as feed-forward neural networks trained 

with back-propagation, or as a combination of neural network and a look up table. After 

the prediction e.g. expected hot water usage, the decision making process for the control 
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takes place in two stages of set-point generation and the device regulation. The 2-stage 

decision making allows the adaptability of the system which needs the set-points to be 

learnt in the case if the preferences of the occupants changed. 

The intelligent home test-bed is investigated at the computer science department of the 

university  of  Massachusetts  at  Amherst.  In  IHome,  researchers  have  designed  and 

implemented a set of distributed autonomous home control agents and deployed them in 

a simulated home environment [48]. The main goal of the IHome is to test the idea of 

multi-agent  systems  in  intelligent  environments.  The  idea  of  adaptability  and 

responsiveness of agents to control the IHome has been investigated in this project. In 

IHome, each agent is associated with an appliance e.g. water heater, dishwasher, etc. 

These  agents  try  to  complete  allocated  tasks  based  on  the  task  priority  by sharing 

required resources.

House_n  project  in  Massachusetts  Institute  of  Technology  [49] is  a  broad  research 

approach which incorporates the technology and services for challenges of the future. 

PlaceLab as a part of House_n project is a real environment which is used to study 

technology and design strategies in the context. PlaceLab has facilitated the study of 

human  interaction  with  new  technologies  and  home  environments.  In  PlaceLab, 

hundreds of sensing components are installed in nearly every part of the home. These 

sensors are used to develop innovative user interface applications which help people 

control the environment, save resources, and remain mentally and physically active, and 

stay healthy. The sensors are also used to monitor interactions in the environment so 

that researchers can study people reactions to new technology, devices, systems, and 

design strategies in the complex context of home. One of the advantages of  PlaceLab is 

the multi-disciplinarian focus of the lab which can be used by researchers of computer 

science, architecture, social sciences, etc. 

Aware home  [50] of Georgia Institute of Technology is another example of realised 

intelligent environments. In the aware home project, a sensor network of simple sensors 

and  high  precision  detectors  such  as  thermal  cameras  and  microphones  collect  the 

information  which  makes  the  home  aware  of  the  occupants  situation  and  their 

interactions with devices and their living environment. Monitoring the elderly people in 

their living premises is amongst one of the objectives of the aware home.
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Artificial Intelligence Lab at the Washington State University has also been one of the 

test-beds  for  the  ideas  of  intelligent  environments.  AI Lab has  been used to  realise 

different  approaches  such  as  Centre  for  Advanced  Studies  on  Adaptive  Systems 

(CASAS) smart home project [51] as the test-bed for learning and adaptation techniques 

such as pattern recognition techniques described in [52]. 

MavHome  smart  home  project  [53] is  a  multi-disciplinary  research  project  at 

Washington State University and the University of Texas at Arlington. This project is an 

approach to smart home which perceives the environment through the use of sensory 

devices and can act accordingly through the use of actuators. This smart home goals are 

to  minimise  the  cost  of  maintaining  the  home  and  maximising  the  comfort  of  the 

residents  by reasoning and adapting  to  the  perceptions  through the  data  acquisition 

system. 

Intelligent Dormitory (iSpace) in University of Essex [16], [54] has been a test-bed for a 

number  of  prediction  and  adaptation  techniques  such  as  Adaptive  Online  Fuzzy 

Inference System  [14] and type-2 fuzzy embedded agent  [55] explained in previous 

section. The iSpace is a single bedroom student accommodation equipped with sensors, 

agents, and gadgets which learn from occupant's behaviour and adapt to their needs to 

improve the quality of live for them. The university of Essex has also developed a 2-

bedroom apartment (iSpace2) as a test-bed for the research in intelligent environment. 

The iSpace2 is equipped with ubiquitous networked sensors and actuators and offers the 

deployment of agents and user interfaces in the context of intelligent environment.

2.4 Occupancy Detection, Prediction, and Modelling in 

Ambient Intelligent Environments

Due  to  the  main  focus  of  this  research  i.e.  occupancy  detection,  prediction,  and 

simulation,  some  of  the  localising  techniques  or  location-aware  systems  applied  in 

ambient  intelligent  environment  are  reviewed in this  section.  The mechanisms must 

have  the  unobtrusive  feature;  hence,  the  mechanisms  with  visual  equipments  are 

excluded in this review. The occupancy detection techniques are compared based on the 

following criteria: 
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• The type of the environment including single-occupant and multiple-occupant,

• The intelligent techniques incorporated in the occupancy detection or prediction,

• The technologies used for the occupancy detection or tagging occupants.

The belief network proposed in [45] is an attempt towards the occupancy detection and 

prediction which is constructed using three Passive Infra Red (PIR) occupancy detectors 

and a telephone off-hook sensor for data acquisition in each office based on following 

rules:

1. The total number of occupants in all rooms is the sum of the numbers in each 

room (Figure 2.10-A),

29

Figure 2.10 - Separate relations for constructing a belief network.[45]
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2. The number of occupants persists over time (Figure 2.10-B),

3. Sensor measurement depends on the number of occupants (Figure 2.10-C),

4. Each sensor may respond to occupancy in different ways depending on its status 

(Figure 2.10-D).

The  combination  of  all  dependencies  is  illustrated  in  Figure  2.11.  The  number  of 

occupants  and their  location  in  a  building  is  determined  by analysing  the  acquired 

occupancy data in a belief network analysis framework. As the occupancy control plays 

an important role in behavioural patterns extraction, the belief network was considered 

as a technique in this area. Belief network is based on a probability distribution. It is 

categorized as a centralized approach and it does not utilise the computational power of 

sensory devices in the employed sensor network. This technique is able to diagnose the 

sensor network because the status of each sensor is concerned in the belief network.

The  occupancy  detection  mechanism  in  [56],  proposes  algorithms  for  finding  the 

number of occupants  by analysing the data  captured from networks  of six  different 

types of sensors. The sensor network consists of sensors capable of measuring CO2, 

temperature, lighting, relative humidity, motion, and acoustics. The data collected from 

the  fusion  of  sensors  are  applied  to  prediction  techniques  for  learning  the  relation 

between  the  number  of  occupants  and  the  sensory  data  in  the  environment.  Three 

prediction techniques including Support Vector Machine (SVM), Neural Network (NN), 

and Hidden Markov Model (HMM) are used for the occupancy prediction in [56]. 

Developed by Michigan State University and Hong Kong University of Science and 

Technology, LANDMARC uses Radio Frequency Identification (RFID) technology for 

indoor localisation [57],  [58]. In this approach some of the tags are fixed and used as 

reference points (see  Figure 2.12). LANDMARC finds the tracking tag by measuring 

the signal  strength  of  the tracking tag  and comparing it  with the  signal  strength of 

reference  tags  at  the  readers  installed  in  specific  locations  of  the  environment. 

Therefore, the location of the moving tag can be estimated to be close to the reference 

tags which have minimum difference between their signal strength with the tag's signal 

strength at readers. 
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Using  RSSI  of  wireless  mobile  devices,  [59] has  proposed  a  method  of  indoor 

localisation named fingerprinting localisation. This approach operates in two phases of 

offline and online monitoring. The signal strength of the beacon received from a mobile 

tag by every readers installed in the environment is labelled in the offline mode. This 

labelled data is then used for finding the estimated location of the mobile node in online 

monitoring. For example, in Figure 2.13 all three readers read the signal strength of the 

mobile node in position (x0,y0) and keep it as a labelled location (x0,y0,S1,S2,S3). If the 

signal strengths labelled in the readers match a new reading, then the mobile node is 

localised to be in position (x0,y0). Variety of learning and classification techniques can 

be used for training based on the labelled data in fingerprinting localisation including 
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Figure 2.12 - LANDMARC Localisation.[58]
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Fuzzy  C-Means  (FCM)  [60] and  Support  Vector  Machines  (SVM).  Despite  the 

advantages of fingerprinting localisation, the training phase is still a challenge because 

of the huge data should be saved for an efficient training of this technique. Some of the 

techniques have addressed  to find alternative training scheme.

The research reported in [61] is an attempt to model occupancy in single person offices. 

In this work, motion detection sensors are used to recognise the occupancy of an office 

aiming to model  the vacant  and occupied daily times for  energy saving in  working 

spaces. In the approach, an exponential trend is fitted to vacant and occupied situations. 

As the result of the work, a simulator is created which can simulate working days in a 

single person office. The motion detection sensors employed in this research are shown 

not capable of recognising complicated situation e.g. when someone else is present in 

the office. In such a case if the monitored person leaves the office i.e. vacant office, then 

the motion detection sensor sense it as occupied. This has made modelling the occupied 

situation more challenging.

In [67], authors suggest a Hidden Markov Model for identifying occupants by using the 

data  collected  from passive  sensors  such as  motion  and door  contact  sensors  in  an 

unobtrusive manner.  In this approach, the data was collected from Washington State 

University's  CASAS test-beds  which  provides  the  system with  spatial  and temporal 

information. The algorithms are then able to detect the unique behaviours of the various 

residents. To do this, their test-bed is equipped with a vast number of motion detection 

sensors which are able to monitor every 1.5 by 1.5 squared meter in the environment. In 

the HMM used in this work (Figure 2.14):  

• The hidden states represent the possible residents in the data set collected from 

the monitored environment,

• The observations from sensors are combined with the sensor value i.e. on and 

off for motion detectors,

• The transition probabilities are the likelihood that the event is from the same or 

different person in the environment,

• The emission probabilities are the likelihood that the person cause a sensor to 

detect a change. 
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The HMM was shown to be able to distinguish between two residents with about 90% 

success.

In [139], authors suggest a distributed mechanism for observing walking patterns in an 

intelligent environment. In this approach a floor based ZigBee sensor network (Smart 

Floor  [140])  is  deployed  in  a  Gator  Tech  Smart  House  (GTSH)  as  a  pervasive 

computing environment located at Oak Hammock retirement community in Florida. The 

sensory devices are actual floor tiles with force sensors attached beneath them. By using 

this  technology,  the  detection  of  the  foot  steps  without  a  need for  wearing  sensory 

devices  or  using  cameras  on  any  location  of  the  house  is  possible.  The  approach 

suggests the hypothesis of the phenomenon cloud in sensor networks where a number of 

sensors within a region are activated to represent an action. The phenomenon cloud in 

[139] is  the  representation  of  foot  pressure  on  the  tracking  tile  as  well  as  the 

neighbouring tiles which is contiguously changing when the occupant is moving. 

2.5 Summary and Discussions

Prediction techniques as the key feature of an ambient intelligent environment were 

reviewed  in  this  chapter.  It  was  shown  that  the  prediction  problem in  an  ambient 

intelligent environment is mostly the pattern extraction problem in a distributed sensor 

network  or  via  intelligent  agents.  Reviewed  prediction  techniques  were  from three 

research areas namely, statistical modelling, data mining, and soft computing. Also, a 

number of realised ambient intelligent environments as test-beds were reviewed in the 
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Figure 2.14 - HMM for Occupancy Identification.[67]
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chapter. This chapter was also a review of available occupancy detection, localisation , 

and occupancy prediction techniques in the literature.  

It  was  mentioned that  due  to  the  distributed  nature  of  sensor  networks,  it  becomes 

possible  to  apply  distributed  prediction  approaches  to  sensor  networks.  Distributed 

voting approach shown as a prediction technique in data mining area is one of them. In 

contrast, small computational power of individual sensors makes it difficult to execute 

complicated prediction techniques with their huge training datasets. Therefore, the push 

is to less distributed techniques or multi-agent techniques. However, the enhances in the 

technology  is  addressing  the  problem  with  more  powerful  intelligent  agents.  Lazy 

learning, reinforcement learning and fuzzy rule-based learning reviewed in this chapter 

are  multi-agent  techniques.  Case-based  reasoning,  Bayesian  classifier,  and  mixture-

model are centralized techniques in which patterns and training datasets are stored in a 

database.  AOFIS  can  be  used  either  as  a  centralized  approach  or  as  a  multi-agent 

approach.  Collected  data  from  sensory  devices  in  a  sensor  network  can  become 

extremely huge and problematic.  It  was  shown in  this  chapter  that  some prediction 

techniques apply compression, regression or fuzzy methods to overcome this challenge. 

On the other hand, it could be problematic in terms of robustness as the system may 

loose some data by applying these techniques.  It  was also shown that lazy learning 

approach  applies  PCA compression  in  aggregating  nodes  as  well  as  a  modelling 

technique in data miner to reduce the amount of data should be kept in its database. 

Moreover, prediction techniques based on fuzzy approaches such as fuzzy rule-based 

learning  and  AOFIS  keep  smaller  amount  of  data  as  they  store  fuzzy membership 

functions based on linguistic labels instead of raw data in their databases. It is unlikely 

that a prediction technique contains all features discussed above. However, the most 

effective  prediction  technique  for  an  environment  is  strongly  depended  on  the 

characteristics  of  the  environment  it  should  be  applied  to.  For  example,  occupancy 

control as an application in a predictive environment does not need fuzzy approaches as 

the  collected  data  from sensory devices  in  this  case  are  not  continuous.  Therefore, 

applications  like  occupancy  control  can  be  done  by  simpler  approaches  such  as 

Bayesian classifiers. On the other hand, in temperature or light intensity detection and 

control, fuzzy approaches could become useful as they reduce the amount of data should 

be kept by applying fuzzification. 
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The complexity of  the application should be concerned for  choosing an appropriate 

method of prediction. In this case, applying a fusion of different techniques is useful. 

For example, a predictive environment with occupancy, temperature, and light intensity 

control might need a fusion of techniques for prediction purposes.

• In the occupancy detection and prediction approaches reviewed in this chapter, 

regardless of the technology applied for monitoring occupants, yet they suffer 

from intrinsic  uncertainty for  distinguishing among  occupants  or  finding the 

accurate location of tagged occupants. For instance, techniques in which motion 

detection sensors are employed ([45], [56], and [61]) are not able to distinguish 

occupants in multiple-occupant PaIEs. Bayesian Belief network reviewed in this 

chapter is not able to distinguish amongst different occupants. It also contains a 

degree of uncertainty for determining the occupancy of the environment. Despite 

the performance of the work suggested in  [67] in distinguishing between two 

occupants,  due  to  the  complexity  of  HMM  for  multiple  occupants  this 

performance cannot be guaranteed for more than two residents. Moreover, the 

number of sensors used in the CASAS test-bed are not yet available for many 

environments.  The  smart  floor  used  in  [139] and  [140] can  track  a  single 

occupant in the environment. However, it needs to be supported by additional 

techniques  to  distinguish between occupants.  Sensing tiles  used in  the smart 

floor  is  not  applicable  for  many situations.  The  single  occupancy modelling 

approach in  [61] also suffers from uncertainties involved in the recognition of 

occupied situation in presence of other occupants. On the other hand, occupancy 

detection mechanisms that use tagging technologies for localising the occupants 

bring radio signal uncertainties such as signal  fading to  locate  living objects 

precisely.  Hence,  a  more  comprehensive  occupancy detection  and  prediction 

technique that covers both single-occupant and multiple-occupant situations in 

this research is investigated. In this research, maintaining an acceptable level of 

uncertainties  will  address  the  problem  of  uncertainty  level  in  the  reviewed 

literature.

• The focus of some reviewed techniques such as  [56] and  [61] is in working 

spaces like office occupancy. None of these techniques has considered to support 
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elderly people lives as an application which is getting increasingly important 

these days [141]. Therefore, the conducted research here is to address the issues 

related  to  occupancy detection  and  prediction  in  elderly  persons  lives  more 

specifically. 

• The occupancy detection and prediction techniques reported in this chapter use 

statistical or intelligent approaches for the occupancy prediction. However, the 

power  of  time-series  prediction  techniques  cannot  be  underestimated  or 

neglected  in  the  prediction  and  forecasting.  Hence,  to  find  the  solutions  for 

incorporating time-series prediction techniques does worth investigations.

• Modelling the occupancy in PaIE can play an important role in understanding 

and analysis of the occupancy situation in the environment. Unfortunately, this 

issue has not been considered widely in the literature. The occupancy modelling 

reported in [61] also lacks the requirements for occupancy modelling in different 

environments with a number of areas for different occupants. Therefore, a proper 

model  of  occupancy  in  which  the  flexibility  of  the  model  can  incorporate 

different  environments  as  well  as  different  people  with  various  behavioural 

parameters is a good contribution to the field.

• The techniques involving visual equipments which are excluded in the literature 

review still remain as the threat to privacy of the occupants. This fact leads to 

the techniques which are able to detect occupancy by excluding cameras. 

In summary, it is aimed to perform occupancy detection and prediction with solutions 

for the raised issues above. This can be done by creating the situations in which these 

solutions  are  taken into  account  as  a  real  PaIE.  Therefore,  in  the  next  chapter,  the 

required technology infrastructure for creating an appropriate data acquisition system in 

the PaIE is reviewed in which the occupancy detection in both single and multiple-

occupant scenarios should be considered.
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3.1 Chapter Overview

In a predictive ambient intelligent environment,  a data acquisition system should be 

used to collect required information from the environment and the interactions between 

the residents  and objects.  The technology infrastructure required for creating a  data 

acquisition  system is  a  mean  for  sensation  or  data  collection,  communication,  and 

actuation. The sensory data can be collected using different types of sensors. The data 

acquisition system should also provide a mechanism for data transmission by which the 

data collected by sensory devices can be transmitted to a base station for analysis and 

making subsequent decisions. This can also make the communication amongst sensory 

agents possible if the PaIE is equipped with agents. The other requirements in terms of 

technology is dependent on particular applications in ambient intelligent environment. 

For example, if the identification of occupants is an important factor in an environment, 
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then devices for identifying occupants and distinguishing amongst them such as tagging 

technologies should also be employed. 

To create an appropriate data acquisition system for occupancy detection in PaIE as one 

of the main focuses of this research, the elements for sensation an communication in 

single-occupant environments are introduced in this chapter. Furthermore, the elements 

for tagging monitored occupants in multiple-occupant environments are also explained. 

In  Section  3.2,  data  acquisition  technologies  in  ambient  intelligent  environment  is 

introduced.  In  this  section  technologies  for  sensation  and  communication  in  data 

acquisition systems are reviewed. In Section 3.3, agents technology as a method in data 

acquisition systems is described. Section 3.4 considers middleware technology in data 

acquisition systems. In addition, due to the focus of the thesis on tagging technologies, a 

number of these technologies for identifications in the environment are also introduced 

in Section 3.5. Finally, the content of this chapter is summarised in Section 3.6.

3.2 Data Acquisition Technologies in Predictive Ambient 

Intelligent Environment

Data acquisition is the first phase in the realisation of a PaIE. The data acquired can 

include  the  occupancy  of  different  areas,  environmental  attributes,  the  state  of  the 

intelligent devices, and interactions between occupants and devices. This data is then 

used by intelligent approaches for training, predictive control, and adaptation in a PaIE. 

A basic  data  acquisition  system  should  perform  two  major  tasks  -  sensation  and 

transmission which are explained below:

• Sensation:  Employing  appropriate  sensor  technologies  to  the  applications  in 

ambient intelligent environments, the behaviour of the occupants and the status 

of the environment can be monitored for further intelligent control, adaptation, 

and actions. Available sensors and their  applications are explained in Section 

3.2.1.

• Transmission:  Sensory information  produced  by sensory elements  should  be 

transmitted to the base station which can be either a database or a processing 
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unit  for  further  analysis  or  subsequent  actions.  The  responsibility  of  data 

transmission goes to a wired or wireless interconnection amongst sensors called 

sensor network. The specifications of wired sensor networks and wireless sensor 

networks are explained in Section 3.2.2.

3.2.1 Sensors Technology

Sensory devices are responsible for sensation in a data acquisition system. Nowadays, 

variety of sensors can be used to perform this task. Typical sensors are as follow:

• Passive  Infra-red  Sensor  (PIR): PIR  or  motion  detector  is  sensitive  to  the 

movements of living objects. This sort of sensors is normally used to control the 

occupancy of  different  areas  for  different  applications  e.g.  buildings'  energy 

saving  and  security.  In  energy  saving  application,  PIRs  function  as  a  timer 

sending a signal to the lights control to turn of the lights after a specific period. 

In addition, in security application, an armed system initiates an alarm as soon as 

a signal is received from PIRs,

• Door Contact Sensor: Door contact sensor is a type of magnetic switch which 

can detect the open and closed states of a door. These sensors have a widespread 

application e.g. buildings' security,

• Temperature Sensor: A temperature sensor is basically a type of resistive sensor 

which is sensitive to the environmental temperature. These sensors also have a 

variety of applications including buildings' automation and industrial control and 

automation,

• Light Intensity Sensor: Light intensity sensor is also a type of resistive sensor 

which is sensitive to the light intensity of the environment. Energy saving and 

automation is amongst the applications of such sensors,

• Electrical Current Sensor: A type of sensor that can monitor the activity of 

electrical  devices  by  measuring  their  electrical  current  consumption.  In  an 

electrical current sensor a magnetic ring around the electrical appliance wire that
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Table 3.1 - Sensor Types Commonly used in Smart Environments.

PIR Door 
Contact Temperature Light 

Intensity
Electrical  
Current Pressure

Type infra-red magnetic 
switch resistive resistive resistive or 

magnetic resistive

Data Type digital digital analogue analogue analogue analogue

Application motion 
detection

door open, 
close

temperature 
changes

light 
changes

electrical 
current change

pressure 
changes

Image

converts  the  AC  current  to  a  measurable  voltage.  Maintenance  in  power 

electronics  and  industrial  automation  are  amongst  the  applications  of  these 

sensors, and

• Pressure Sensor: A type of resistive sensor which is sensitive to the weight of 

the objects such as mat sensor. Mat pressure sensors can convert the load of the 

objects to a measurable voltage. 

There are other type of sensors available in the market including humidity, vibration, 

gravity, and ultrasound sensors with their particular applications. However, choosing a 

proper  sensor  is  not  only  dependent  on  the  application  but  also  the  size  and  the 

perception resolution of that sensor. The size of the sensor is important because large 

sensors  can  reduce  the  pervasiveness  in  on  hand and small  sensors  can  reduce  the 

resolution or the accuracy of the readings on the other hand. A summary of the sensory 

devices commonly used in intelligent environments are shown in Table 3.1.

3.2.2 Sensor Network Technology

A wired or wireless interconnection among sensory devices or sensory agents in a PaIE 

is  called  a  sensor  network.  Sensor  networks  have  been  employed  in  various 

applications.  The  applications  of  sensor  networks  vary  from  home  applications 

including home automation, home security systems [62], and smart homes to industrial 

automation and control [63], [64]. 
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Table 3.2 - Samples of X10 commands.

Code Function Description 

0 0 0 0 All Units Off Switch off all devices with the house code indicated in the message

0 0 0 1 All Lights On Switches on all lighting devices (with the ability to control brightness)

0 0 1 0 On Switches on a device

0 0 1 1 Off Switches off a device

0 1 0 0 Dim Reduces the light intensity

0 1 0 1 Bright Increases the light intensity

In  the  following  two  sections,  a  number  of  sensor  networks  with  different 

infrastructures  namely,  wired  and  wireless  are  explained  and  the  advantages  and 

disadvantages of these two types of sensor network are compared in details.  

3.2.2.1 Wired Sensor Networks

In a wired sensor network, wired connections makes communication between sensory 

devices  and the base station possible.  Two common wired sensor  networks  used in 

smart environments namely, X10 and C-Bus are explained below:

• X10: X10 is an example of wired sensor network standard for communication 

amongst electronic devices in an intelligent environment. X10 uses power line 

wiring for signalling and control. As X10 does not need any infrastructure by 

sharing power line wiring which is already available in any working or living 

environment, it has been very popular and successful since it was introduced in 

1975. In X10, the digital data transmitted through the power line is a 120 KHz 

carrier which is transmitted as bursts. Carried digital data contains an address 

and  a  command  sent  from  X10  controller  to  the  controlled  device.  More 

advanced controllers  can query advanced controlled devices  for  their  current 

status i.e.  on/off or current dimming level.  Devices can be easily plugged in 

normal  power  outlets.  In  X10  protocol,  each  device  can  react  either  to  a 

command specifically addressed to it or any broadcasting commands. A four bit 

command code produces sixteen commands used by X10 controller to control 

X10 devices in an intelligent environment (see Table 3.2),
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• C-Bus:  Clipsal-Bus  (C-Bus)  is  another  example  of  wired  sensor  network 

standard  which  is  used  in  home  automation.  C-Bus  uses  its  dedicated  low-

voltage cabling instead of AC power line to carry command and control signals. 

A C-Bus  system  can  be  used  in  control  of  electrical  devices  and  lighting; 

moreover, it can be interfaced to a building security system. A Cat-5 UTP wiring 

(i.e. Ethernet) connects all C-Bus units including inputs (e.g. switches, PIR, light 

intensity and temperature sensors, etc.), outputs (e.g. relays, dimmers, sockets, 

thermostats,  etc.),  controller,  and  power  units  (Figure  3.1).  So,  the 

communication between C-Bus units and the controller allows a full control on 

the devices connected to this bus. The wireless version of C-Bus units are also 

available, in which C-Bus wireless units are connected via a WLAN.

• LonWorks: LonWorks is designed to address control applications which is built 

on a protocol for networking devices over media including twisted pair, power 

lines, fibre optics, and Radio Frequency (RF). Devices in a LonWorks network 

communicate through a control network specific protocol originally created by 

Echelon  [138].  The  protocol  can  optionally  provide  end-to-end 

acknowledgement of messages, authentication of messages, and priority delivery 

to provide bounded transaction times. Support for network management services 

allows  remote  network  management  tools  interact  with  devices  over  the 

network, so they can configure network addresses and parameters and download 
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Figure 3.1 - C-Bus Schematic.
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application programs. It can also diagnose network problems or start/stop/reset 

device application programs.

Other wired sensor network are also available. For example, Fieldbuses are networks 

that are specifically designed for operation under hard real-time constraints and usually 

with  inbuilt  fault  tolerance  ([65] and  [66]).  They  are  mainly  used  in  industrial 

automation  for  a  networking  amongst  sensors,  actuators,  and  Programmable  Logic 

Controllers (PLC).

3.2.2.2 Wireless Sensor Networks

In a  Wireless Sensor  Network (WSN),  wired infrastructures  are  replaced with radio 

signal  transmission.  Therefore,  sensory  devices  accompanied  with  their  wireless 

modules  can be deployed anywhere in  an ambient  intelligent  environment.  Wireless 

sensor  networks,  in  comparison with wired sensor networks such as  X10,  are  more 

flexible in terms of the deployment and the required infrastructure of the network in the 

environment.  Power  consumption  is  the  most  important  concern  in  wireless  sensor 

networks because sensory devices and their wireless modules are usually powered by 

batteries [63], [68].

IEEE standard (IEEE 802.15.4) in wireless technology for low speed communications 

has opened a new direction in WSN [69], [65]. This standard can support up to 250Kbps 

data  rate  which  is  a  very  good  speed  for  communication  in  the  scale  of  a  sensor 

network. This standard was then applied by the ZigBee Alliance to develop the ZigBee 

protocol as a wireless network suitable for low speed communications in the scale of a 

network  of  sensory devices.  The ZigBee protocol  supports  three  topologies:  star  or 

single hop, cluster tree and mesh to provide a larger range of activity  [65],  [69]. Star 

topology is the simplest form of a ZigBee WSN in which all installed wireless devices 

only communicate with one wireless device that is interfaced with a PC or a base-station 

(see Figure 3.2). This topology is suitable in a short range WSN. On the other hand, for 

long  range  communication  in  bigger  environments  or  in  the  case  of  existence  of 

obstacles in the environment which can decrease the wireless communication range, tree 

or mesh topologies can be used. For example, in a tree topology some devices can act as 
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routers  in  the  wireless  sensor  network  to  resolve  the  problem of  either  long  range 

communication or obstacles in the environment. This is illustrated in  Figure 3.2.  For 

more  information  about  ZigBee  wireless  technology,  readers  are  referred  to  the 

Appendix. 

For creating a data acquisition system in this research, a prototype of wireless modules 

with  ZigBee  communication  protocol  is  chosen  which  is  produced  by  Digi 

International/Maxstream. This product which is named XBee is available with variety of 

features. Taking the advantage of ZigBee protocol, XBee wireless modules can provide 

the following features [70]:

1. An XBee module is able to communicate with digital devices using UART serial 

communication. Therefore, a wide range of micro-controllers can be interfaced 

with XBee modules. The serial communication can also ease the programming 

of the module by connecting it to a PC serial port,
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2. Any XBee module have a flow control of the data received from other modules. 

So, it is not needed to handle the flow control as it is already provided by the 

module,

3. An  XBee  module  can  operate  in  four  different  modes  including  idle, 

transmit/receive, sleep, and command modes. In the idle mode, the module does 

not  anything.  In  the  transmit  mode,  the  module  sends  data  packets  to  other 

modules and in the receive mode, module waits to receive data packets from 

other modules. In the sleep mode, XBee transmitter is powered down waiting for 

incoming packets and as soon as a data packet is addressed to the module it 

switches to transmit/receive mode. In the command mode, the configuration of 

the module can be changed using a number of AT commands, 

4. Any XBee  module  have  the  feature  of  addressing  for  unicast  and broadcast 

communications.  In  unicast  communication,  XBee  module  will  send  data 

packets to another unique XBee module whereas in broadcasting, the module 

can send data packet to all nearby modules, 

5. The sleep mode, can dramatically reduce the power consumption on any XBee 

modules.

XBee modules are available in two revisions XBee and XBee Pro. For long distance 

communication XBee Pro modules are recommended. However, the range and the data 

rate of the normal XBee modules are adequate for data collection in the scale of sensory 

data for indoor spaces.

Some  of  the  PaIEs,  instead  of  a  sensor  network,  employ  agents  with  a  range  of 

capabilities to create a data acquisition system. Agents are the hardware units for this 

kind  of  data  acquisition  system  which  is  explained  in  Section  3.3.  In  this  case  a 

mechanism can also be employed to do the software part named middleware which is 

explained in Section 3.4. 

3.3 Agents in Predictive Ambient Intelligent Environment 

In PaIEs, an agent is a computer system which is capable of autonomous action in the 
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environment  to  meet  the objectives it  is  designed for  [71].  Figure 3.3 illustrates an 

abstract view of an agent. As illustrated in this figure, an agent in abstract view should 

take  a  perception  of  its  environment  and  then  apply  decisions  as  actions  to  that 

environment. In this view an agent is very similar to a computer program which acts 

based on assumptions and conditions. Agents are not always complex and intelligent; 

however, intelligent agents are mostly employed in intelligent environments and PaIEs. 

Russell and Norvig [25] group agents into five classes based on their intelligence and 

complexity. The classes of agents are described as:

1. Simple  Reflex  Agents:  Simple  reflex  agents  act  only  based  on  current 

perceptions. This class of agents stick to condition-action rule where the actions 

are made when a set of condition is satisfied. This is shown in Expression 3.1:

  (3.1)

where f is a function or a program which relates perceptions P*  to actions 

A ,

2. Model-based  Reflex  Agents: Model-based  agents  can  act  in  environments 

which are partially observable. These agents have some kind of structure which 

describes the part  of the environment which cannot be observed. Apart  from 

their modelling feature, model-based agents act as simple agents,

3. Goal-based  Agents:  In  goal-based  agents,  a  set  of  desirable  situations  are 

stored. It allows this class of agents to choose amongst multiple possibilities; 

selecting one which is better to achieve the goal,
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Figure 3.3 - An abstract view of Agent.[71]
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4. Utility-based  Agents:  In  goal-based  agents,  only  two  types  of  states  are 

considered:  goal  states  and  non-goal  states.  But  utility-based  agents  use  a 

measure of how desirable a particular state is. They can obtain this measure by 

using a utility function which maps a state to a measure of the utility of the state,

5. Learning  Agents:  Learning  allows  agents  to  start  operating  in  an  unknown 

environment. These agents then start learning about the environment; so their 

information about the surrounding environment increases helping them to act 

more appropriately. 

In  the  realisation  of  PaIEs,  an  intelligent  agent  may  integrate  sensation,  actuation, 

intelligence  and  even  communication  technologies  which  results  in  an  autonomous 

entity for data acquisition and prediction. In some cases, intelligent agents are able to 

interact with other agents and possibly occupants in order to satisfy their objective goals 

[71].

To  consider  an  agent  to  be  intelligent,  that  agent  is  expected  to  have  features  of 

reactivity, proactiveness, and social ability as explained below [71]:

• Reactivity: Intelligent agents should be able to perceive their environment, and 

respond to changes in an appropriate time to satisfy their design goals,

• Proactiveness:  Intelligent  agents  should  be  able  to  show  a  goal-directed 

behaviour taking the initiative in order to satisfy their objectives,

• Social ability: Intelligent agents should be able to interact with other agents in 

order to satisfy their design objectives.

It is not difficult to create a system with goal-directed behaviour (Proactiveness). Every 

function in computer programs are goal-directed systems. The intention of a procedure 

or function is to achieve a goal if its assumptions are satisfied. Otherwise, the produced 

results of that function will be incorrect. In non-functional systems, the simple model of 

goal-directed programming is not valid as the assumptions do not remain fixed. Such 

functions assume that the environment does not change while the function is executing. 

If the environment does change, in other words if the assumptions turn false while the 

function is running, then the function may crash and the results will be invalid [71]. 
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In many environments, neither of these assumptions are valid. In such environments, 

blindly executing a function will be a poor strategy. In such dynamic environments, the 

agent  must  be  reactive,  that  is  it  must  be  responsive  to  events  that  occur  in  its  

environment whether these events affect either agent's goals or the assumptions. Social 

ability in intelligent agents means that they should communicate with other agents and 

cooperate with other agents to carry out a common objective. 

In this research two types of agents are proposed and implemented. The first type is 

Wireless  Sensory  Agent  (WSA)  which  is  the  integration  of  sensory  devices  for 

sensation,  a  micro-controller  for  computation  and  processing,  and  an  XBee  (with 

ZigBee standard) chip for communications between devices and also a base station. 

WSAs will be explained in Chapter 4 with more details. Wireless Localising Sensory 

Agent (WLSA) is the second type with enhanced capability of localising mobile tags 

which is described in Chapter 6. 

3.4 Middleware in Ambient Intelligent Environment

Middleware  is  a  mechanism  which  relates  together  the  elements  of  an  intelligent 

environment.  Sometimes,  middleware  is  recognised  as  the  software  interface  which 

interconnects communication devices, intelligent system, database, agents, and devices 

in an intelligent  environment.  In other  words,  middleware is  a mean to manage the 

complexity of elements in intelligent environment [72].

For  specific  applications  in  an  ambient  intelligent  environment,  other  technologies 

should also be involved. For example, in the case of this research tagging technology 

should  be  integrated  in  data  acquisition  to  identify  occupants.  Hence,  tagging 

technologies are explained in the next section.

3.5 Tagging Technologies

In  order  to  identify  objects,  a  tagging  mechanism should  be  integrated  to  the  data 

acquisition system. The tagging of mobile nodes has been considered in the literature 

[73], [74], [75]. The tagged node can be a person, asset, or other objects [76]. Currently, 
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with the spread of wireless  technology due to  its  ease of installation,  fewer needed 

resources  and  bringing  more  mobility  for  users,  the  focus  of  tagging  is  on  the 

infrastructure  of  wireless  networks  including  WSNs  inside  ambient  intelligent 

environments.  Localisation  of  the  objects  is  one  of  the  applications  in  tagging 

technologies [77], [78] which is based on a wireless approach named Received Signal 

Strength Indicator (RSSI) explained below:

3.5.1 Received Signal Strength Indicator

In wireless technology, RSSI is defined as the strength or the quality of radio signal  

detected at  the receiver side.  By measuring this quality factor,  the distance between 

transmitter and receiver can be approximated. 

The  distance  between  transmitter  and  receiver  is  in  inverse  relationship  with  the 

transmitted signal’s RSSI as given by: 

  (3.2)

This relation is illustrated in Figure 3.4 . Therefore, the relation has been used in many 

localisation techniques.  Basically, RSSI-based localisation has the advantage of using 

the data communication infrastructure for the localisation of mobile nodes. Despite its 

advantages, RSSI has its limitations due to the physical characteristics of radio signal 

propagation including multi-path propagation and signal fading [75]. 

Some localisation techniques employ hybrid technologies such as ultrasound to reduce 
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these limitations and improve the effectiveness of the RSSI-based localisation [73]. 

RSSI is dependent on the following factors:

• Transmission Power: Transmission power means how far a  radio signal  can 

travel.  The RSSI-distance measuring resolution decreases for higher  powered 

transmitted signals,

• Hindrance: The  signal  strength  received  by  the  receiver  is  affected  by 

environmental hindrances. Metal objects or thick walls can decrease the signal 

quality remarkably,

• Receiver Sensitivity: Receiver sensitivity means how faint a Radio Frequency 

(RF) signal can be detected by the receiver. The lower the power level that the 

receiver  can  successfully  process,  the  better  the  receive  sensitivity.  Higher 

sensitivity  receivers  can  provide  higher  resolution  of  RSSI  distance 

measurements,

• Data rate: The accuracy of the RSSI distance measurement is dependent on the 

baud rate of the wireless communication. Lower baud rates can result in higher 

resolution RSSI-distance measurements,

• Interference:  Interference of the tag radio signal with other radio signals can 

decrease the quality of RSSI-distance measurements.

There are two major technologies for tagging a person inside an environment which use 

radio  signal  strength;  namely,  Radio  Frequency  Identification  (RFID)  [79] and 

Localising Wireless Sensor Network (WSN) or Wireless Local Area Network (WLAN) 

[80], [81]. These two technologies which are based on the RSSI are explained below:

3.5.2 RFID Tagging

Radio Frequency Identification (RFID) is a method of tagging which is commonly used 

in different applications nowadays. Any RFID tag consists of a small microchip and an 

antenna around it. The microchip generates a unique identification number for the tag 
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which can be read by RFID readers. There are two major RFID technologies; namely, 

Passive RFID, and Active RFID. 

In passive RFID technology, tags have no source of energy (e.g. batteries) and their 

range of detection is not more than normally 20-30 centimetres and in some products up 

to one meter. Passive RFID applications has spread very quickly in recent years. Key-

less access, shopping bonus cards, identification cards, and bus and train card tickets are 

amongst these applications. On the other hand, in active RFID technology, active RFID 

tags have a source of energy and the range of detection is up to several meters [57]. The 

technology of active RFID has been employed in a number of applications including 

asset tracking, stock inventory, and shops security.

Any active  RFID tag  broadcasts  a  unique  beacon  periodically.  This  beacon  can  be 

received by nearby active RFID readers. By using the RSSI technique with active RFID 

technology, the distance of the RFID tag from readers can be approximated. 

In this research, active RFID from different companies are investigated and employed 

for tagging in Chapter 6. Syris and WaveTrend active RFID tags including personal 

tags, asset tags, key-fobs, and wristband tags are investigated. 

Various RFID readers made by these companies with different features such as small 

sized,  gain adjustable,  and Ethernet interfacing will  be used for RSSI detection and 

identification. For more information about these products, readers are referred to [70], 

[128] and [129]. 
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3.5.3 Wireless Sensor Network Tagging

For localising a mobile node in wireless sensor networks [82], two different approaches 

are available including range-free localisation [83] and range-based localisation [84]. In 

the  range-free  localization  which  is  used  in  large  scale  WSNs  (normally  in 

environments including indoor and outdoor spaces) the location of the mobile node is 

determined by tracing the nodes hopped by the data packet or beacon transmitted from a 

mobile node. Therefore, the localisation resolution is low for range-free localisation in 

WSNs. Range-based localisation works using the RSSI technique to find the distance of 

a mobile node from a fixed node. This approach is more applicable for small WSNs 

with a small number of nodes.

3.6 Available Occupancy Monitoring and Tracking 

Technologies

Tagging,  occupancy  tracking  and  monitoring  has  been  more  considered  in  the 

technology market in recent years. The applications of these technologies vary from 

security,  energy  saving  to  elderly  care.  Nowadays,  the  applications  in  the  field  of 

security have been of more interest in the market. These technologies are employed by 

some of the companies such as JustChecking [85], Alertme [62], and Ubisense [86].

JustChecking system is an effort to allow people with dementia or memory loss, to live 

independently but still under control. JustChecking system uses a wireless network of 

motion detection sensors to monitor single-occupant environments and provides a chart 

of activity via the internet for elderly person's children or carers [62]. The simplicity of 

JustChecking system and its  unobtrusive  manner  are  the  advantages  of  this  system. 

However,  the JustChecking does  not  address  further  data  analysis  and prediction of 

elderly person's behaviour.

Alertme products target the market of home security and energy saving [62]. Similarly, 

Alertme uses network of sensory devices to monitor the activity in home environments. 

Their security package offers a range of sensory devices such as PIRs and door contact 

sensors to inform residents of the strange activities in their premises when they are not 
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present. The energy saving package of Alertme uses electricity current sensors to inform 

the residents of their energy consumption.

UbiSense uses Ultra Wide Band (UWB) Active RFID to localise tagged people in their 

working environments.  The interrogators read the tags from as far as 150 feet away, 

then forward the data to Ubisense Smart Space software platform, integrated into an 

organisation's existing information system. Unlike conventional RFID systems, which 

operate  on  single  bands  of  the  radio  spectrum,  UWB sends  a  signal  over  multiple 

frequency bands simultaneously,  from 3.1 GHz to 10.6 GHz. UWB signals are also 

transmitted for a much shorter duration than those used in conventional RFID  [86]. 

Despite the claimed accuracy of UbiSense system the cost of their tags and installation 

process is still not the interest of smart environment. However, this system has started to 

spread in some demanding markets such as nuclear sites and large plants.

3.7 Summary and Discussion

In this  chapter, some of the technologies employed in intelligent environments were 

briefly reviewed. These technologies can be used to create data acquisition mechanisms 

in  the  environment.  It  was  mentioned  that  simple  agents,  intelligent  agent,  and 

middleware are used in some of the realised approaches. However, the main focus of 

this  chapter  was  on  the  technologies  required  for  occupancy  monitoring, 

communication, and tagging.  

In order to choose appropriate technologies,  it  is  important to consider not only the 

application requirements but also the expandability of the data acquisition mechanism 

and the flexibility for further enhancements. For instance, if in a PaIE the tracking of 

living objects  is required,  then the employed technology for data acquisition in that 

environment  should  be  able  to  address  the  requirement  in  less  expensive  and more 

efficient manner.

In  Chapters  4  and  6  of  this  thesis,  some  of  the  reviewed  technologies  will  be 

experimented,  compared,  justified  to  use,  and  finally  employed  for  creating  a  data 

acquisition mechanism for occupancy detection in PaIEs. 

In summary, the advancements in sensation, actuation, communication, and integration 
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technologies  have been assisting the realisation of ambient  intelligent  environments. 

Future advancements in these technologies will provide the area with new and more 

reliable means and infrastructures.

54



Chapter 4Chapter 4

44

OOCCUPANCYCCUPANCY M MONITORINGONITORING   andand  

PPREDICTIONREDICTION   inin  S SINGLEINGLE-O-OCCUPANTCCUPANT P PaaIEIE

4.1 Chapter Overview

The increasing interests and demands for predictive ambient intelligent environments is 

a motive to investigate their realisation possibility in various perspectives. In connection 

with the behavioural pattern extraction in a PaIE, to make the occupancy detection and 

prediction  possible  in  living/working  environments,  first,  a  data  acquisition  system 

should be employed to collect occupancy information from the environments. The data 

acquired  by the  data  acquisition  system should  then  be presented  in  an  appropriate 

format for further analysis and prediction purposes. Furthermore, for creating a PaIE, 

intelligent  techniques  should  be  integrated  into  the  control  mechanism  of  the 
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environment.

The technologies required to realise a PaIE with occupancy monitoring and prediction 

features can vary based on the situations in that environment. For example, creating a 

data  acquisition  system of  simple  sensory  devices  with  unobtrusive  features  seems 

appropriate  in  one  hand.  However,  using  simple  sensory  devices  can  reduce  the 

practicality of the data acquisition system in the environments with more complicated 

situation on the other hand. 

This chapter is to investigate the realisation of an ambient intelligent environment with 

occupancy  prediction  features  by  proposing  and  employing  required  elements  for 

occupancy monitoring, data representation and prediction in a PaIE. This will enable a 

PaIE to  monitor  the  occupancy of  different  areas  and  predict  the  future  occupancy 

situation in those areas. To achieve an occupancy detection and prediction mechanism in 

real environments, a simpler scenario i.e. single-occupant is considered in this chapter. 

The single-occupant scenario addressed in this chapter denotes environments in which 

absolutely one person is living as a resident. This simplification along with the idea of 

area occupancy detection instead of finding the precise coordinates of the occupant, as 

will be shown in this chapter and next chapters, can lead to the solutions for occupancy 

detection and prediction in more complicated i.e. multiple-occupant situations. 

Single-occupant  environments can be found everywhere nowadays.  For example,  an 

environment where an elderly person lives alone can be considered as a single-occupant 

environment. On the other hand, maintaining pure single-occupancy situation is rather 

unlikely  to  happen  in  reality  i.e.  single  person  living  absolutely  alone  without  any 

visitors. The prime application of the solutions proposed in this chapter is to deliver a 

well-being monitoring and assistive environment to support elderly people or people 

with mental impairments such as dementia or Alzheimer disease to live independently, 

in control and able to care for themselves within the limits of their abilities. 

For the realisation of a single-occupant PaIE, this chapter considers the problem in three 

phases:

1. Proposing  and  implementing  a  data  acquisition  system  for  occupancy 

monitoring  in  a  single-occupant  PaIE  which  incorporates  the  novelties  of 
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simplicity, expandability, unobtrusiveness in inexpensive entities,

2. Representing the occupancy data collected by the data acquisition system in a 

suitable  format  which  represents  the  raw  sensory  data  in  an  understandable 

unique graph called occupancy signal. This representation can also provide the 

time-series prediction techniques with a well-represented occupancy time-series,

3. Predicting the occupancy of the single-occupant PaIE by employing time-series 

prediction  techniques  and  comparing  their  performances  in  virtual  and  real 

situations.

As stated above, this chapter considers the scenario when only one occupant is present 

in  the  environment  at  any  time.  The  problems  associated  with  multiple-occupant 

scenario are addressed in Chapter 6. In this  chapter,  simple sensory devices such as 

motion detection sensors along with a ZigBee wireless sensor network are integrated as 

Wireless Sensory Agents (WSA) in Section 4.2. WSAs are used to implement a data 

acquisition  system for  an  ambient  intelligent  environment.  WSAs  are  designed  and 

implemented in a way to bring simplicity,  expandability,  and unobtrusiveness to the 

proposed data acquisition system in an inexpensive manner. Collected data by the data 

acquisition  system is  recorded in  a  base  station  using  a  monitoring  portal  software 

which enables monitoring and logging all sensed events in the environment. Then the 

raw occupancy data collected is reshaped and presented as a time-series in Section 4.4 

in a way which includes the spatio-temporal characteristics. Representing the occupancy 

data  in  the  proposed  single  time-series  will  make  the  use  of  powerful  prediction 

techniques possible. Time-series prediction techniques are explained in Section 4.5 and 

then applied to the occupancy time-series in Sections 4.6 and 4.7. In this chapter, the 

experiments are conducted on both virtual and real environments. The data collected 

from an elderly-living environment  for a period of couple of weeks is  used for the 

comparison, experiments and evaluation.

4.2 Data Acquisition System

The data acquisition system for the application of occupancy detection should comprise 
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appropriate sensory devices for occupancy detection and also a communication network 

to transmit the collected data to a base station. Hence, to test the hypothesis of a PaIE 

system, a wireless sensor network of motion detection sensors and door contact sensors 

as  the  data  acquisition  system  is  proposed  and  implemented.  Employing  both 

technologies namely, sensors and wireless network was resulted in the development of a 

Wireless Sensory Agent (WSA). Furthermore, a monitoring portal for visualising the 

sensors' activities and readings, and logging the data received for further processes and 

analysis was implemented. The whole system was installed in an elderly person living 

flat for collecting ADL i.e. daily activities and occupancy data. The implementation of 

WSAs and monitoring portal are explained in Appendix A in more details. 

For creating a predictive control mechanism in a PaIE, an intelligent control mechanism 

should  be  able  to  perform  prediction.  Prediction  techniques  are  able  to  extract 

meaningful statistics and other characteristics of the data. They can also forecast future 

events based on known past events: to predict data points before they are measured. 

These events are the same sensory data collected by the data acquisition system. The 

way the  prediction  techniques  work  is  very  dependent  to  the  characteristics  of  the 

sensory data which is described in the next section. 

4.3 Sensory Data Characteristics for Prediction

As it was described in Chapter 3, based on the type of the sensors, their output can be 

either analogue or digital.  Considering the characteristic of the sensor behaviour and 

consequently sensor output is essential for the data representation and analysis. Figure

4.1 illustrates the output of four different type of sensors including temperature, light 

intensity,  motion  detection,  and  door  contact  sensors  connected  to  wireless  sensory 

agents.  The  output  of  the  first  two  sensors  i.e.  temperature  and  light  intensity  has 

analogue characteristics whereas the output from other two i.e. motion detection and 

door contact sensors has digital characteristics.

A class of prediction techniques used for continuous signal prediction can be applied to 

the first  type of signal  generated by analogue output  sensors such as light intensity 

signals  with  analogue  characteristics,  but  the  digital  characteristics  of  signals  from 
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motion detection sensors and door contact sensors makes them a challenge for analogue 

prediction  techniques  in  one hand.  On the  other  hand,  due  to  the  characteristics  of 

digital signals, such signals has always been a challenge for prediction. 

The characteristics of the sensory data explained above shows that these data can be 

interpreted as time-series signals. For example the light intensity varies over the time as 

an analogue time-series signal or the motion activities vary over the time as a digital 

time-series signal. These type of sensory data as time-series are the motives to use time-

series prediction techniques for creating a PaIE.

To deal with the challenge of digital signal prediction, a new technique is proposed in 

the next section to interpret the data generated by motion detection sensors to a new 

form of signal. This signal will be called occupancy signal which is a continuous time-

series and reshaped from the signals from motion detection and door contact sensors. 

The method for reshaping these signals is an approach to make them predictable by 

analogue time-series predictors which are considered in Section 4.5.

4.4 Data Representation - Signal Reshaping

In an example scenario of a PaIE, a virtual single-occupant home environment including 
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Figure 4.1 - Sensory Data characteristics.
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four different areas is proposed. As it is shown in Figure 4.2, this environment consists 

of a bedroom, a lounge, a corridor, and a kitchen. In the virtual single-occupant PaIE, 

the occupancy of different areas for a single occupant is considered. 

To identify the occupancy of different areas in real environments, a data acquisition 

system can collect sensory data from the whole environment. In order to detect if an 

area is occupied,  a PIR motion detection sensor installed in that area can detect the 

movement of living objects. In this scenario, four PIRs can cover the entire proposed 

environment. To support PIR devices in occupancy detection, different types of sensors 

can be used.  For  example,  a light  intensity sensor in  the bedroom, a  light  intensity 

sensor and an electrical current sensor (for a TV) in the lounge, and a light intensity 

sensor, a temperature sensor and a gas flow sensor in the kitchen can be used to support 

PIR activations in such areas.  Although supporting sensors and detectors can help to 

determine the occupancy of an area, the occupancy detection is mostly the responsibility 

of PIR motion detection sensors in that area.

As it was mentioned in Section 4.3 the signal generated by a PIR is intrinsically a digital 

signal.  PIR sensors are  sensitive to the movement of living objects.  Any movement 

within the detection range of a PIR will cause a logical 1 signal until the object stops its 

movement. As soon as the moving object stopped its movement, the signal level returns 

to logical 0 again. The behaviour of a PIR sensor is illustrated in Figure 4.3. A sample of 

ADL detected by PIR sensors over 24 hours in the virtual environment is depicted in 

Figure 4.4. In this figure, the first, second, third, and forth levels show PIR activities in 

different areas: Bedroom, Lounge, Corridor, and Kitchen respectively.
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Figure 4.2 - A Virtual Single-Occupant PaIE.
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The top row in the signal  is  the activities  of  main door contact  sensor.  This  signal 

representation gives a good understanding of the activities in a single-occupant PaIE. 

However, it lacks the benefits of representing ADLs in a single signal because it only 

shows PIR signals in different levels. 

Time-series  prediction  techniques  e.g.  Adaptive  Neural  Fuzzy  Inference  System 

(ANFIS) are interested in continuous single signals rather than discrete separate signals. 

The signals from PIRs and door contact sensors are in discrete digital format which 

should be reshaped to continuous form for being analysed by time-series  predictors 

described in Section 4.5. 

In order to generate a suitable continuous form of signal for prediction, a transformation 

of a crisp signal to a continuous signal is proposed. The proposed occupancy signal 

should  contain  both  spatial  and  temporal  characteristics  [88].  Spatial  characteristic 

refers to the label of area which separates the occupancy of different areas and temporal 

characteristic  refers  to  the  time  that  the  event  or  occupancy  is  detected.  This 

transformation  is  performed  in  two  phases:  Signal  Integration and  Signal  

Conditioning.
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Figure 4.3 - PIR Signal Activity.

Figure 4.4 - Passive Infra-red signals for daily activity in the proposed virtual environment.
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4.4.1 Signal Integration

In signal integration, for each PIR a new level is assumed representing the area in which 

the PIR is  installed and they are represented in  a  time based combined signal.  The 

combined signal representation for passive infra-red signals in  Figure 4.4 is shown in 

Figure 4.5. In this figure, each level represents the occupancy of an area. For instance, 

level B in this graph shows the occupancy of the area B (lounge as shown in Figure 4.2) 

or the firing of the PIR sensor in that area. In this representation, if a PIR in an area 

shows activities then the associated area is considered as the occupied area until the PIR 

activities in other areas of the single-occupant scenario are observed.

In the case of parallel PIR activities e.g. PIR activities in Bedroom and Kitchen at the 

same time, there will be an ambiguity of the activities. This ambiguity can be due to the 

presence of others in the monitored environment which makes the combination into a 

single occupancy signal almost impossible. However, as the proposed environment is a 

single-occupant environment, there will be no parallel activation of PIR sensors; hence 

no activity level conflicts for shaping a combined occupancy signal. Otherwise, the PIR 

activities  cannot  be  identified  to  incorporate  for  creating  the  combined  occupancy 

signal. This situation will be addressed in Chapter 6 of this thesis.  

4.4.2 Signal Conditioning

The combined occupancy signal  integrated  in  Section  4.4.1  is  intrinsically  a  digital 
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Figure 4.5 - The first phase of continuous representation of passive infra-red signals 

in a single graph.
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time-series because the combined occupancy signal is a time based signal and the levels 

in the signal belong to a discrete domain (1, 2, 3, 4, …). The learning and prediction of 

digital signals has been a challenge and addressed in a number of researches. However, 

it is aimed in this thesis to predict the combined occupancy signal using well-known 

time-series prediction techniques such as ANFIS and ARMA which are explained in 

Section 4.5. The issue of using such time-series predictors is that they are designed to 

predict analogue time-series signal with continuous feature. Therefore, applying these 

techniques to a digital signal (e.g. combined occupancy signal) can cause a problem of 

determining a unique value at transition times i.e. edges between levels in the combined 

occupancy signal. For example, the occupancy level changes in the signal take place 

without  any intermediate  values  (e.g.  between 1  and  2).  In  order  to  overcome this 

challenge, the sharp edges in the combined occupancy time-series should be eliminated. 

In  the  second  phase  of  continuous  signal  representation,  it  is  proposed  that  the 

combined occupancy signal shown in Figure 4.5 to be passed through a low pass filter 

to  eliminate  its  sharp  edges.  In  order  to  do  this,  a  Bessel  type  low-pass  filter  as 

described in Equation 4.1 can be applied to the combined occupancy signal. 

  (4.1)

In the Bessel filter equation,  ns is a reverse  Bessel polynomials  from which the 

filter gets its name and w0 is a frequency chosen to give the desired cut-off frequency. 

Figure 4.6 is a softened edge representation of  Figure 4.5 after passing it through a 

Bessel low-pass filter. This representation of the combined occupancy signal is more 
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Figure 4.6 - Softened edge combined occupancy signal.
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suitable for use by analogue time-series prediction techniques.

The  combined  occupancy  signal x t  represents  the  behaviour  of  the  occupant  i.e. 

his/her  movement  in  the  proposed  environment.  As  explained  above,  this  signal  is 

representing  a  continuous  occupancy  signal  which  is  a  continuous  time-series. 

Therefore, the prediction of the behaviour of an occupant is formulated into prediction 

of the occupancy time-series x t  . This series is mainly influenced by life style and the 

behaviour of individual occupant. However, daily temperature, time of the day, day of 

the week, week of the year and public holidays will have a big impact on the occupancy 

time-series. There are other factors that can affect the occupancy time-series which are 

extremely difficult to model. For example, the impact of either noise or uncertainty in 

the behaviour of occupant can make the prediction of the time-series more difficult. On 

the other hand, if there is a pattern of activity in the environment, then the existence of 

this pattern with a small uncertainty can make the activity more predictable. Such a 

pattern  is  more  likely  for  people  with  daily  routines  and  less  uncertainty  in  their 

behaviour e.g. elderly people.

4.5 Time-Series Prediction Techniques

A time-series is defined as a set of quantitative observations arranged in chronological 

order [89]. Hence, a form of data collected time-to-time can represent a time-series. The 

monthly consumption of energy e.g. electricity or gas, or the exchange rate of currencies 

changing over  time  are  some of  the  time-series  examples.  Time-series  analysis  and 

prediction was considered more seriously when the importance of its benefits in terms 

of saving resources, safety, and security became more known [133]. There are two main 

goals  of  time-series  analysis.  Firstly,  identifying  the  nature  of  the  phenomenon 

represented by the sequence of observations,  and secondly,  forecasting or predicting 

future values of the time-series. Both of these goals require that the pattern of observed 

time series data be identified and approximately formally described [90]. 

In  the  literature,  several  techniques  have  addressed  time-series  prediction  [91]. 

Stochastic  models  and  dynamic-based  techniques  are  the  main  classical  techniques 

reported in the literature [92]. However, these techniques are found to under perform in 
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predicting the behaviour in complex systems. Hence, alternative approaches have been 

investigated  by  many  researchers.  These  approaches  use  computational  intelligence 

techniques such as Neural Networks,  Neuro-Fuzzy and Evolutionary Fuzzy Systems 

[93]-[102].  In  recent  years,  more  attention  has  been  paid  to  learning  and  adaptive 

systems  integrated  with  computational  intelligence  techniques.  Evolving  predictive 

systems capable of updating the parameters and structure simultaneously are proposed 

in [103]-[105].

The goal of the prediction task is to use past values of time-series to the time  t to 

predict the values at some point in the future t . Consequently, a mapping from p

points  of  the  time-series  spaced   apart  should  be  created  to  predict  future  value 

x t i.e. 

  (4.2)

The predicted values of the combined occupancy time-series x t  is then translated 

into the occupancy of the environment as described in the preceding section.

Time-series prediction techniques explained in this chapter are categorised as statistical 

modelling techniques and intelligent techniques.  The statistical  modelling techniques 

are described in Section 4.5.1 and the intelligent techniques are considered in Section 

4.5.2.

4.5.1 Statistical Modelling Techniques

In time-series analysis, it is assumed that the data consist of a systematic pattern i.e. a 

set  of identifiable components,  and a random noise (error)  which makes the pattern 

difficult to identify [90].

Most  time-series  patterns  can  be  described by two components  including trend and 

seasonality. Trend is a general linear or non-linear component which changes over time 

but does not repeat or at least does not repeat within the range of time-series data. For 

example, the time-series shown in Figure 4.7 represents the increasing gross profit of a 

company  over  10  years  which  can  be  analysed  as  the  trend.  On  the  other  hand, 

seasonality repeats itself in systematic intervals in the time-series. 

65

[ x t− p−1 ... x t− p− j  ... x t− x t]  x t



Occupancy Monitoring and Prediction in Single-Occupant PaIE

For  example,  gross  profits  in  different  seasons  of  a  year  can  be  considered  as  the 

seasonality in the company's gross profit time-series. If the error in the time-series is not 

considerable then it is possible to fit a linear, logarithmic, or polynomial function as the 

trend for the time-series. 

For finding the seasonality, the similarity in different intervals is of interest. By finding 

the autocorrelations in  the time-series and removing serial  dependencies,  the hidden 

nature of seasonal dependencies in the series can be identified. 

The statistical modelling prediction invokes knowledge about mathematical model of 

the process by which the time-series is produced. However, in the research and practice 

in  reality,  patterns  of  the  time-series  are  unclear,  the  time-series  can  involve 

considerable error,  and it  still  needs  not  only its  hidden pattern uncovered  but  also 

generate forecasts or prediction. The Auto Regressive Moving Average (ARMA) model 

described in the following section allows to do just that. ARMA has gained enormous 

popularity in many areas and research practice confirming its power and flexibility.

Most time-series prediction techniques including ARMA are based on the assumption 

that  the  time-series  can  meet  a  minimum of  the  characteristics  related to  stationary 

features. In a stationary time-series, the statistical properties including mean, variance, 

and covariance remain unchanged over the time.  A time-series may be stationary in 

respect to one characteristic, e.g. the mean, but not stationary in respect to another, e.g. 

the variance. 
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Figure 4.7 - A time-series example: Gross profit of a company in 10 years. 
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4.5.1.1 Auto Regressive Moving Average

ARMA model sometimes called Box-Jenkins model proposed by G. Box and G. M. 

Jenkins  [106],  [107] employs  two types  of  process  with  autoregressive  and moving 

average properties as explained below:

4.5.1.1.1 Autoregressive Process

Most time-series consist of elements that are serially dependent in a sense that you can 

estimate a coefficient or a set of coefficients that describe consecutive elements of the 

series from previous elements [90]. This can be summarized as:

  (4.3)

where  is a constant, i are the autoregressive model parameters and z is the error 

(white noise) component. Note that an autoregressive process will only be stable if the 

parameters are within a certain range; for example, if there is only one autoregressive 

parameter then it must fall within the interval of  −11 . Otherwise, past effects 

would accumulate and the values of successive  x t  's would move towards infinity, 

that is, the series would not be stationary. 

4.5.1.1.2 Moving Average Process

Independent from the autoregressive process, each element in the series can also be 

affected by the past error that cannot be accounted for by the autoregressive component 

[90], that is: 

  (4.4)

where  is a constant, and i are the moving average model parameters.

An  ARMA model  employs  both  autoregressive  and  moving  average  features.  This 

model  is  used  as  a  basis  for  the  analysis  and  it  is  a  well  established  technique  in 

prediction of financial time-series. Any ARMA model has two parameters where the 
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first parameter,  p , is the auto regression parameter and the second parameter,  q , is 

the moving average parameter.  Hence  an ARMA process  x t  can be presented as 

[108]:

  (4.5)

where z t  is the white noise with mean 0 and variance 2 ,   is the coefficient of 

the auto regression part, and  is the coefficient of the moving average part. Equation 

4.5 can be formulated as: 

  (4.6)

with the polynomials   and   which will  be referred to as the autoregressive and 

moving  average  polynomials  respectively.  Applying  the  Innovations  Algorithm 

Proposition as described in [108] to the transformed process x t  , it is obtained: 

(4.7)

where  m=max  p , q .  Equation 4.7 determines the one-step predictor, and also the 

recurrent prediction with more steps i.e. x 2 , x 3 ,...  recursively.

Fitting an ARMA model to a given time-series can be done by minimising squared error 

between  the  desired  output  x t and  the  predicted  output  x t .  So,  the 

parameters are determined such that the squared difference between the model output 

and the observed value, summed over all time steps in the fitting region, is as smallest 

as possible [109]. To find the right order of ARMA model for a given time-series, it is 

advised to use some of the training data and use these to evaluate the performance of 

competing models [109].
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4.5.1.2 Alternative statistical Modelling Techniques

ARMA model has shown a very good performance in modelling and prediction of time-

series. However, this model can break down when there is not sufficient linearity and 

stationary in the time-series. For dealing with such time-series, intelligent techniques 

described in Section 4.5.2 and alternative statistical  approaches such as Multivariate 

Adaptive Regression Splines (MARS) [109],  Hidden Markov Models (HMM) [109], 

[110],  and  Bayesian  methods [111] can  be  used.  MARS uses  recursive  partitioning 

strategy for regression which uses spline fitting in lieu of other simple fitting functions 

and HMM has been extensively used for pattern recognition and classification problems 

because of its proven suitability for modelling dynamic systems.

In many of the prediction problems, there is insufficient historical information available 

at the time the initial prediction is required. Thus, the early prediction must be based on 

subjective  consideration [111].  As  soon  as  the  time-series  information  becomes 

available, the subjective estimates must be modified based on the actual data. As an 

example of this process, a prediction of total sales for a product during a season can be 

made at the start of the season. As the season passes and actual orders are received, the 

original prediction should be modified in some manner. For such statistical inference 

problems Bayesian methods [111] are very useful techniques. 

4.5.2 Intelligent Techniques

Intelligent techniques such as Artificial Neural Networks (ANN) have been typically 

used in pattern recognition and regression  [109]. In both these cases, all the relevant 

information  is  presented  simultaneously  whereas  time-series  prediction  involves 

processing  of  patterns  that  evolve  over  time  i.e.  the  value  of  the  time-series  at  a 

particular time point in future depends not only on the current but also the past value. 

However,  the  ability  of  intelligent  techniques  to  cope  with  non-linearities,  non 

stationary, lack of knowledge about the time-series or its data, and their accuracy has 

made them valuable tools of prediction. 

Intelligent techniques do not require specific assumption about underlying model for 
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time-series. For example, Artificial Neural Network allows the data itself be used to 

support the model estimation. This non-parametric feature of intelligent techniques has 

made them quite flexible in modelling real-world phenomena where observations are 

generally available but the theoretical relationship is not known or testable.

Two of  intelligent  techniques  such as  ANN and ANFIS are  described  in  details  in 

Sections 4.5.2.1 and 4.5.2.2.

4.5.2.1 Artificial Neural Networks

An artificial neural network is an abstract computer model of the human brain  [101] 

which is composed of an input and an output layer along with a number of hidden layers 

between input and output. These layers are made of neurons and are connected to their 

subsequent  layer  by weighted edges (weighted links)  [25].  Neurons are  very simple 

computational units which can map their weighted sum of input vector to an output 

vector by applying an activation function to the weighted sum of input vector. For a 

simple neuron, it can be formulated as:

  (4.8)

where, x is the input, b is the fixed bias, w is the weight on the input edge, f is the 

activation function, and y is the output of the neuron. The activation function can be a 

linear, hard limit, or sigmoid function.

Hence, a neural network is a model of an input vector X= x1, x2,. ... , xni
  to an output 

vector  Y= y1, y2,. ... , y no
  where  x i is the input to neuron i in the input layer,  y i is 

the output of the neuron  i in the output layer,  n i is the number of neurons in input 

layer,  and  no is  the  number  of  neurons  in  the  output  layer.  In  addition, 

W j=w1j , w2j , ... , wni j represents the weights from all the input layer neurons to the 

hidden layer neurons z j and  W ' j=w ' 1j ,w ' 2j , ... ,w ' nh j represents the weights from 

all the hidden layer neurons to the output layer neurons y j where nh is the number of 

neurons in the hidden layer. Hence, the weights of the edges to all neurons in the input 

layer can be defined as a weight matrix:
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  (4.9)

Similarly, a weight matrix for the weights on the edges from hidden layer(s) to output 

layer can be defined as  W ' . ANN can be trained with a set of facts that cover the 

solution space. During the training phase, the weights in the network are adjusted until  

the correct answer is given for all the facts in the training set.

After the training, the network can find outputs for inputs not in the training data as a 

model of the system by which the data was produced. In order to perform a time-series 

prediction using an ANN, the current and past values of the time-series should be used 

as inputs to the input layer of the neural network. The output of the neural network 

should then be considered as a one-step prediction. A schematic diagram of one-step 

time-series prediction using ANN is depicted in  Figure 4.8. For the prediction, firstly, 

the network should be trained by the time-series data. A neural network learns a time-

series pattern by adjusting its weights. A learning task is to adjust the weights so that it 

can output the target value  x t1 for each input pattern. In the training phase the 

predicted output x t1 is compared with the desired output x t1 by creating an 

error function such as square error function E1 as defined below:

  (4.10)
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]

Figure 4.8 - One step time-series prediction using ANN.
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To achieve  a  predicted  value  equal  or  close  enough to  the  desired  value,  the  error 

function  described  in  Expression  4.10  should  be  minimised  using  optimisation 

techniques. Back-propagation technique  [112] is a well-known optimisation technique 

used  in  the  training of  neural  networks.  Back-propagation  improves  W and  W ' to 

minimise the error function by applying steepest descent derivative based method. Its 

algorithm calculates the error in respect to the input weights of an ANN, and tries to 

alter the  weights on the edges so that the error does not increase. 

The steepest descent is  formulated in Equation 4.11,  where the new weight  wnew is 

calculated from the subtraction of the old weight  wold from the derivative of error in 

respect to weight E /w multiplied by a learning rate  . 

  (4.11)

In Equation 4.11, if the error gets more positive in respect to the weight then a new 

weight smaller than the old one is applied to keep the error minimised. 

Similarly, if the error decreases in respect to the weight then a new weight larger than 

the old one is applied to keep the error minimised. As there are more than one layer in  

an ANN, the derivative of the error  in respect  to the input layer  weights should be 

calculated by taking the partial derivatives of each layer, such that:

  (4.12)

To perform a multi-step time-series prediction using neural networks, Recurrent Neural 

Networks (RNN) can be used [113]. In an RNN, the idea of one-step prediction by an 

ANN can be employed in a consecutive manner to provide the prediction for more than 
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Figure 4.9 - A 3-Step Recurrent Neural Network.
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one step. For example, the network illustrated in  Figure 4.9 is a three-layer RNN for 

performing a 3-step time-series prediction. In an RNN, error function can be calculated 

by the summation of the errors in each layer: E=E1E2E3 [113].

4.5.2.2 Adaptive Neuro Fuzzy Inference System

Adaptive Neuro Fuzzy Inference System (ANFIS) is a class of adaptive networks that is 

functionally equivalent to Fuzzy Inference Systems (FIS) [114]. As one of the powerful 

intelligent techniques, ANFIS can also be used for time-series prediction. For example, 

an ANFIS architecture equivalent to a Sugeno type FIS illustrated in Figure 4.10 is used 

for time-series prediction with the inputs of current value and two past values of the 

time-series. A normal  ANFIS architecture consists  of five layers.  Layers  1 and 4 in 

ANFIS  are  adaptive  layers  consisting  of  adaptive  nodes  (neurons)  with  adjustable 

parameters. In the first layer, each node converts its crisp input (e.g. x t− in Figure

4.10)  to  a  fuzzy output  using  a  fuzzy membership  function  through  a  fuzzification 

process. 

The MF of  the  nodes  in  layer  1  can  be  any of  the  standard  MFs including linear,  

sigmoid, and bell-shape. For example, a bell-shape fuzzy MF represented by Equation 

4.13 includes three parameters [a , b , c] which provides enough flexibility to adjust the 

function required for crisp input.
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Figure 4.10 - ANFIS Sugeno-type Architecture for Time-Series Prediction.
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  (4.13)

Any  ANFIS  with  bell-shape  MF  has  3∗N m∗N i input  (layer  1)  parameters  called 

premise  parameters,  where  N i is  the number of  inputs  and  N m is  the  number  of 

membership  functions  for  each  input.  In  layer  4,  adaptive  nodes  multiply  a  linear 

function f i by a firing strength coming from the third layer w i , i.e.

  (4.14)

Any ANFIS network has N i1∗N m
N i output (layer 4) parameters called consequent 

parameters.

Other layers consist of fixed nodes with fixed operations such that:

• Layer 2 multiplies a composition of equivalent fuzzy value of crisp inputs by 

generating w i where:

  (4.15)

• Layer 3 generates firing strengths correspondent to each input i.e. w i  where:

  (4.16)

• Layer 5 generates the output of the ANFIS by contributing all Sugeno linear 

functions f i based on their firing strengths decided by the ANFIS network.

  (4.17)

In  general,  to  predict  the  combined  occupancy  time-series  x t  using  ANFIS,  the 

current and past values of the signal are modelled as rules that represent the non-linear 

relationship between these values. A fuzzy rule of the following form is used as the 

model for prediction of the occupancy time-series:
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  (4.18)

where  Ri is  the  label  of  ith rule,  x t− p− j : j=1,. .. , p is  the  j th input, 

x t is the output, Ai
j i=1,2,. .. , n ∧ j=1,2,... , p  is a fuzzy label, and f i is a 

linear combination of inputs  f i=q0iq1i∗x t ...q pi∗x t− p−1 .  Parameters 

n and p are the numbers of rules and individual inputs respectively. It is assumed that 

the  universe  of  input  variables  is  limited  to  a  specific  domain  interval,  i.e. 

x t ∈[x ­ x┼ ] .

The  decision,  x t for  the  ith  instance,  as  a  function  of  inputs 

x t− p− j : j=1,2,... , p   is given in the following equation:

  (4.19)

where f i is the consequent parameters and w i is the rule firing strength given by: 

  (4.20)

where  Ai
j is the membership function of the fuzzy value Ai

j . If bell-shape MF with 

three  parameters  [a , b , c] is  considered  then  the  parameters  of  a  fuzzy  rule-based 

system are defined as ij=[a i
j , bi

j , ci
j , f i] .

The prediction problem is now in the form of identifying the parameters of the ANFIS, 

ij . Starting from the initial values of the parameters, to update these parameters as 

more data is available, the adaptation technique as described below can be employed. 

To minimise the difference between the predicted occupancy time series x t  and 

actual  occupancy  time  series  x t ,  the  error  generated  from all  data  must  be 

minimised. The following mean square error function is considered for minimisation of 

the prediction error. 

  (4.21)
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where  ek  is the difference between the actual value x t and the predicted value

x t  for the  k th  training data sample. It is assumed that there are a total of  s

samples in the training data set. 

All  parameters of the ANFIS,  ij=[a i
j , bi

j , ci
j , f i ] ,  can be updated using a steepest 

gradient  descent  method  to  minimise  the  error  function  E  given  in  Expression 

4.11. The parameters then will be updated by the following rule:

  (4.22)

where   eij is the gradient of parameters and  is the rate of descent which may be 

chosen arbitrarily. 

  (4.23)

It  is  anticipated  that  when  the  parameters  are  adapted,  the  prediction  error  will  be 

reduced. It should be noted that the gradient descent technique mentioned above suffers 

from various convergence problems. The convergence problem of the steepest descent 

technique in fuzzy inference systems modelling is discussed in [115]. 

It is reasonable to take large steps down the gradient at locations where the gradient is  

small  and  small  steps  where  the  gradient  is  large.  If  both  gradient  and  curvature 

information namely the second derivatives are used then the error will be minimised in a 

shorter time with more accuracy.

4.5.2.3 Alternative Intelligent Techniques

There  are  other  intelligent  techniques  arising  from  the  concept  of  artificial  neural 

networks which can be used for multi-step time-series prediction. 

Time  Delay  Neural  Networks  (TDNN)  which  is  a  well  suited  technique  in  speech 

recognition  is  applied  for  time-series  prediction  [116] too.  This  technique  relies  on 

special  kind of memory known as Tap-Delay-Line where the most recent inputs are 

buffered at different time steps between input layer and the hidden layers of an ANN 

[117]. Echo State Network (ESN) [118] is a special type of RNNs with its major feature 
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in hidden layer (also called reservoir) allowing the echo of the past states which reduces 

the training time remarkably. 

Recursive Self Organising Map (RSOM)  [119] and Support Vector Machines (SVM) 

[120] have been also used for time-series prediction in some applications.

In the next section, some of these statistical and intelligent prediction techniques are 

applied for the occupancy time-series prediction in a number of experiments. 

4.6 Experimental Results and Validations

In  order  to  examine  the  performance  of  the  proposed  techniques  including  data 

acquisition technique explained in Section 4.2 and the occupancy data representation 

explained in Section 4.4, in this section, a number of experiments are conducted. Hence, 

two techniques for time-series prediction such as ARMA and ANFIS are employed to 

predict the single occupancy time-series.

The experiments conducted here will also test the performance of prediction techniques 

on the applied time-series. In the first experiment in this section, an occupancy signal 

generated for a virtual environment explained in preceding section will be used as the 

proof  of  proposed  techniques  whereas  the  second  experiment  will  prove  the 

applicability of these techniques in real situation by conducting experiments based on 

real data collected from a real single-occupant environment. The real environment is an 

elderly-living apartment in which WSAs are installed for data acquisition.

4.6.1 Experiment 1 – Virtual Environment

In this experiment, a prototype single-occupant environment with 4 areas equivalent to 

the proposed environment in Section 4.4 is considered. This environment consists of 

four different areas: A, B, C, and D as depicted in Figure 4.11.  Concentrating on the 

occupancy prediction in the single-occupancy scenario, a time-series representing the 

occupancy of the virtual environment for 15 working days is generated. 

In the generated signal illustrated in Figure 4.12, each level represents the occupancy of 
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an area, 1 for Bedroom (A), 2 for Lounge (B), 3 for Corridor (C), and 4 for Kitchen (D) 

respectively. This signal has the resolution of one minute with an expected occupancy 

pattern  of  ABCDCBAB  for  daily  activity.  The  durations  or  the  time  spent  by  the 

occupant in each area is varied with the variance of 15% of the mean durations in the 

expected pattern. Assuming that only a pattern of usage for working days are included 

in our study, then it is expected that the generated time series would be a stationary 

time-series. Two time-series predictors are applied to the generated virtual time-series 

which are explained below:

ANFIS Model – Virtual Environment

An  ANFIS  model  is  set  to  predict  the  occupancy  signal  generated  for  the  virtual 

environment based on 15 minutes (900 seconds) ahead prediction i.e. =15 .  Only 5 

samples of the time series p=5 and =15 are considered for this predictive model.

78

Figure 4.11 - A virtual single-occupant scenario.

Figure 4.12 - A 15-day combined occupancy signal generated for the proposed environment.
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Therefore, by monitoring the occupancy time series in every quarter of an hour of the 

last hour, the model should be able to predict the location of the occupant in the next 15 

minutes or so which is formulated as:

  (4.17)

An ANFIS model with five inputs and one output was generated. A schematic diagram 

of the ANFIS is shown in Figure 4.13. For all inputs two membership functions in the 

universe of  [1  4] are defined. 
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x t15= f x t  , x t−15 , x t−30 , x t−45 , x t−60

Figure 4.14 - Predicted occupancy signal by ANFIS model.

Figure 4.13 - An ANFIS model for 15-minute prediction.

Figure 4.15 - ANFIS prediction error.
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In this experiment, collected data for 12 days were used for training the ANFIS model. 

The rest  of 3 days data were used for checking the results. The predicted signal by 

ANFIS is depicted in  Figure 4.14.  In the occupancy signal, the minimum difference 

between the occupancy of different areas in the combined occupancy signal is one level. 

Therefore, with differences less than half a level the actual value of predicted signal in 

different times can be recognised properly. Thus, the occupied area by the occupant can 

be recognised without ambiguities. Prediction error for the above experiment is shown 

in Figure 4.16. 

The ANFIS model trained for 100 epochs and reached the minimum learning error of 

0.0574 after 8 epochs. Moreover, the ANFIS prediction error of less than 0.36 shows 

that the technique has been successful in the prediction of generated occupancy time-

series.

ARMA Model – Virtual Environment

The next  applied prediction technique is  an ARMA model to predict  the occupancy 

combined signal. The applied model is an ARMA model of order four (ARMA [4, 4]) 
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Figure 4.17 - ARMA prediction error.

Figure 4.16 - Predicted occupancy signal by ARMA model.
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with four autoregressive and 4 moving average parameters. The prediction step in this 

model is set to 15 which is equal to 15 minutes (900 seconds) in the generated virtual 

occupancy signal. Figure 4.10 illustrates the predicted signal after 20 iterations for the 

estimation  of  coefficients  (parameters)  in  the  proposed ARMA model.  The absolute 

error for ARMA model predicted occupancy signal shown in Figure 4.17 is less than 0.2 

which is smaller than our critical error (half a level). Therefore, the ARMA prediction 

works  very  well  in  the  prediction  of  occupancy  signal  generated  for  the  virtual 

environment.

4.6.2 Experiment 2 – Real Environment

The  second  experiment  is  performed  using  a  real  occupancy data  collected  from a 

single-occupant  elderly-living apartment  in  Nottingham.  The elderly lady is  moving 

around by a walker support. There are daily routines that a carer cooks and cleans for 

the  elderly lady and checks her  health  status.  In  addition,  she  has  some visitors  at 

different times on some of the days. 

The  schematic  along  with  some  pictures  of  the  elderly  lady's  apartment  layout  is 

illustrated in  Figure 4.18.  In order  to monitor  the occupancy in her premise,  a data 

acquisition  system  as  explained  in  Section  4.2  was  installed  in  the  elderly  lady's 

apartment.  The installed data  acquisition  system includes  four  PIR wireless  sensory 

agents  for  detecting  movements  in  four  different  areas  namely,  bedroom,  corridor, 

lounge, and kitchen. In addition, two door contact wireless sensory agents were used to 

monitor the main entrance door and bathroom door. 

A base station consisting of a laptop computer with the monitoring portal installed on it 

and a wireless receiver agent plugged in it was left in a safe place in the apartment.  

Therefore, the data collected by wireless sensory agents were transmitted to the base 

station and logged in a database file through the monitoring portal on the base station.

The data acquisition system installed in the elderly-living apartment collected data for 

couple  of  weeks  (Holidays  and  weekends  are  not  included)  of  activity  in  the 

environment.
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The collected data as expected is not a crisp data for constructing the occupancy time-

series signal due to the uncertainty and abnormalities included in detected motions data. 

As investigated, the uncertainty takes place when parallel activities in different areas are 

detected i.e. motion activities detected by PIRs and door contact sensors in different 

areas  at  the  same  time  which  invalidates  the  single-occupancy  assumption.  This 

uncertainty  is  due  to  the  presence  of  more  than  one  person  in  the  monitored 

environment which happens when the carer or any other visitor is present in the elderly 

lady's apartment. This problem will be addressed in more details in Chapter 6. On the 

other hand, the abnormality is  due to  the uncertainty in  the behaviour,  in this  case, 

movements of the occupant (e.g. going to kitchen for a coffee) which is inevitable in 

normal daily activities. The point here is that the focus of occupancy prediction is based 

on  the  normal  daily  routines  which  takes  place  in  most  of  the  days  which  is  the 

occupancy pattern of the occupant. For elderly people this pattern can be more certain 

because  of  their  daily  routines.  Hence,  the  uncertainty and abnormality  in  the  data 

should be reduced or even eliminated for approaching the occupancy pattern of the 

monitored resident which is done in following steps:

1. Eliminating  uncertainty  in  raw data:  Any parallel  activity  at  a  certain  time 

invalidates the PIR activities. The main door contact sensor can act as a trigger 
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Figure 4.18 - An elderly-living single-occupant apartment.
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Figure 4.19 - A sample of ADL in elderly lady's apartment.
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for  the  PIR parallel  activity  detection.  The  first  firing  of  main  door  contact 

sensor in daily activity means that carer is in the elderly lady's apartment. In this 

case,  the  raw  data  is  not  used  in  occupancy  prediction.  This  can  sound 

problematic in the first look, but the cure to it is that the elderly lady is sitting in 

the lounge most of the time while the carer is in for cooking or cleaning unless 

the elderly lady wants to use the bathroom. It is the same situation while any 

other visitor is in the apartment which happens rarely in this case study. In this 

case, elderly lady is sitting in the lounge with her visitors. Therefore, unknown 

occupied  area  can  be  filled  with  the  occupancy of  lounge in  the  occupancy 

pattern of the elderly lady,

2. Eliminating abnormality in raw data: The abnormalities (uncertainty in elderly 

lady's sudden and rare movements) in the occupancy pattern should not be taken 

into account as they are not important in the routine daily occupancy pattern. To 

do this, simply, any jumping movements with short durations should be taken of 

the raw data,

3. Excluding  the  corridor:  Occupancy  of  the  corridor  is  not  included  in  the 

occupancy pattern as the elderly lady only use the corridor for very short times 

to change her areas including, bedroom, bathroom, and lounge. 

By applying the above mentioned steps, PIRs raw data is refined and an occupancy 

times-series is shaped. Combined occupancy time series is shown in Figure 4.19 where 

PIR sensors are monitored every minute (1440 samples per day). In Figure 4.19, levels 

1, 2, and 3 represent areas Bedroom, Lounge, and Bathroom respectively. It is important 

to emphasis that the origin of collected data is from the normal ADL of the monitored 

elderly lady and she was not asked to act differently.

After creating an occupancy signal from the occupancy data shown in Figure 4.19 and 

passing  the  time-series  through  a  low-pass  filter,  ANFIS and ARMA predictors  are 

applied to the smoothed occupancy signal. 

ANFIS – Real Environment

An ANFIS model with five inputs and one output was created. Every input has two 
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membership functions in the universe of  [1 3]. The model was trained with 10 day of 

occupancy data and checked with a 3-day occupancy data. 

The ANFIS model was able to predict the signal with the absolute error of less than 0.5 

level for up to 510 seconds (see Figure 4.20). For longer prediction i.e. more than 510 

seconds,  the  absolute  error  increases  and  passes  the  0.5  level  threshold  causing 

ambiguity in recognition of the occupied area.

ARMA Model – Real Environment

The next applied prediction technique is an ARMA model for predicting the occupancy 

combined signal. The applied model is an ARMA model of order four (ARMA [4, 4]) 

with four autoregressive and four moving average parameters. The ARMA model was 

able to predict the signal with the absolute error of less than 0.5 level for up to 530 

seconds (Figure 4.21). For the prediction time of more than 530 seconds, the absolute 

error increases and passes the 0.5 level threshold causing uncertainty in recognition of 

the occupied area.
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Figure 4.21 - ARMA Predicted Occupancy Signal.

Figure 4.20 - ANFIS Predicted Occupancy Signal.
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Table 4.1 - Summary of prediction results.

Model order training/estimation 
error

absolute  
error

Training 
time

Predicted
time (sec)

ANFIS
(virtual)

MF=2 
rules=32

0.0574 after 50 
epochs < 0.36 50 epochs 900 sec

ARMA
(virtual)

p=4
q=4 0.03 < 0.2 20 

iterations 900 sec

ANFIS
(real)

MF=2 
rules=32

0.0295 after 50 
epochs < 0.48 50 epochs 510 sec

ARMA
(real)

p=4
q=4 0.03 < 0.46 20

iterations 530 sec

The cause of the more error and smaller prediction time for real data compared with 

virtual data is that the durations in level 3 i.e. bathroom occupancy is quite shorter than 

the  occupancy  of  the  bedroom and  lounge  in  real  the  data.  This  fact  restricts  the 

smoothing  process  for  preventing  lost  data;  hence,  sharper  edges  result  in  bigger 

prediction errors compared with virtual data. A summary of prediction results for both 

virtual and real scenarios are shown in Table 4.1.  

The occupancy data provided by JustChecking company which was collected from a 

single-occupant house monitored by their kit was compared with the data collected from 

elderly lady's apartment. The nature of JustChecking is quite similar to the occupancy 

signal predicted in the second experiment. Hence, equivalent prediction performances 

are expected.

4.7 Summary and Discussions

In this chapter, the problem of occupancy detection and prediction in single-occupant 

environments was addressed. The proposed solutions were motivated to contribute the 

application of well-being monitoring in an assistive environment for elderly people who 

are  living  on  their  own with  an  unobtrusive  feature.  In  this  chapter,  first  of  all,  a 

mechanism for  data  acquisition  was  proposed  and  implemented  in  a  real  situation. 

Secondly, an occupancy data representation was proposed to create an occupancy time-

series signal.  Finally,  two prediction techniques were used to  evaluate  the proposed 

ideas in both virtual and real situations.
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It was proposed to create a network of wireless sensory agents as the data acquisition 

system. The data acquisition system proposed in this chapter is obviously not the only 

approach in the field. However, it brings a number of advantages and disadvantages. 

Using simple sensors such as PIRs and door contact sensors is an inexpensive way of 

occupancy detection. It is also unobtrusive compared with camera surveillance systems. 

Taking the advantage of wireless networking, the data acquisition does not need any 

infrastructure for installation like wiring and is very expandable compared with wired 

technologies. Moreover, most of the sensors employed for the data acquisition can be 

found in the buildings nowadays (e.g. motion detection sensors) and the use of them 

will be spread more in future. Therefore, the mechanism is beneficial in terms of value, 

convenience, expandability, and installation. On the other hand, it lacks the utilisation of 

the agents' processing capability due to the data analysis and prediction centralised in 

the base station. Furthermore, the occupancy cannot rely on the PIR data only when the 

situation is  changed to other than the single-occupancy e.g.  when a visitor is in the 

monitored environment.

To deal  with the signal generated by motion detection and door contact  sensors,  an 

innovative way of data representation for these sensors was proposed which brings the 

following advantages: 

• Representing  the  data  of  all  motion  detection  sensors  in  a  single  occupancy 

signal (graph),

• Representing  the  occupancy  signal  with  spatio-temporal  characteristics  as  a 

time-series,

• Capability of applying powerful time-series prediction techniques for predicting 

the occupancy time-series. 

Although the data representation technique for converting crisp motion detectors' digital 

signal is a potential to information loss after the applying a low-pass filter, the good 

interpretation of filtered signal would prevent any loss in the occupancy data.  Figure

4.22 shows how a filtered signal can be reshaped. This figure illustrates how a smoothed 

signal (right red signal) can be interpreted as an occupancy signal with no ambiguity. 

As  it  was  shown,  prediction  techniques  including  ANFIS and ARMA were  able  to 
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predict the virtual data up to 15 minutes (900 seconds) with the absolute error of less 

than 0.36 level and less than 0.2 level, but in the case of the real data, ANFIS did the 

prediction up to 510 seconds and ARMA did it up to 530 seconds. This has happened 

due  to  the  nature  of  two  signals.  In  virtual  occupancy signal,  durations  are  closer 

together rather than in real occupancy signal where the elderly lady occupies bathroom 

quite  shorter  than  lounge  or  bedroom.  To  perform  a  good  prediction  with  less 

uncertainty and a better fit, it is required to keep the absolute error less than a half level.  

The absolute error for ARMA model prediction based on real data is shown in Figure

4.23. It can be concluded from this graph that the prediction should be restricted to 

time<530 sec.

The uncertainties involved in the collected real data can be reduced by applying type-2 

fuzzy techniques ([142] and [143]). Type-2 fuzzy brings the fuzziness to type-1 fuzzy 

systems; therefore,  it  can model and minimise the effect  of uncertainties  with more 

degree of freedom. Hence,  it  is suggested to incorporate type-2 fuzzy in the ANFIS 

model to create a more suitable model for single occupancy prediction.

88

Figure 4.23 - Absolute error for ARMA prediction.
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5.1 Chapter Overview

The proposed data acquisition system in Chapter 4 can collect the occupancy data from 

single-occupant  environments.  The  elderly-living  apartment  in  the  real  environment 

experiment  of  Chapter  4  is  an  example  of  single  occupancy situation  in  which  the 

proposed data acquisition system was installed. 

Although the occupancy data collection for different durations in different environments 

is not impossible, it is subject to some restrictions. The restrictions in the number of 

required resources e.g. suitable residential apartments with internet connection and the 

restrictions  in  the  number  of  hardware  equipments  such  as  WSAs  can  make  the 

occupancy data collection fairly limited. The resources required for the maintenance of 

equipments should also be considered amongst these restrictions.
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Taking  into  account  the  diversity  of  environmental  designs  as  well  as  occupants’ 

behaviour,  to  choose and adapt  a  suitable  prediction technique,  it  is  essential  to  do 

experiments considering different environmental profiles as well as different occupant 

profiles. Therefore, to reduce the number of experiments and substantially the number 

of resources required for these experiments, it is aimed to create a simulator that can 

generate the data required for more data analysis and subsequently evaluating different 

prediction techniques.  In order to create this simulator, a model of the occupancy is 

required which incorporates the profile of both occupant and environment. Occupant 

profile  describes  the  daily  movements  pattern  and  uncertainties  involved  with  this 

pattern for each occupant and the environmental profile describes the design (layout) of 

the environment. 

The nature of  occupant  profile  in  creating the occupancy signal  which is  related to 

human behaviour makes the modelling more challenging because modelling the human 

behaviour and representing it in a mathematical format is somewhat complicated [121]. 

However, the simplification of the human behaviour to a particular activity can reduce 

the  modelling problem. For instance,  it  should be easier to model how an occupant 

occupies the areas in the environment where he/she is living rather than modelling all of 

her/his daily  activities.  On the other hand, including the environmental profile in the 

model seems to be simpler as the design of environment is assumed to be fixed and the 

layouts or the connections between areas are rather less complicated to be included in 

the model. It is aimed in this chapter to model the occupancy of a single-occupant PaIE 

for creating the above mentioned simulator. 

The occupancy in a single-occupant environment can basically be modelled by using 

statistical  techniques.  This model simulates the occupant's  pattern of occupancy and 

generates an occupancy signal which is ultimately formulated into a time-series. The 

model  incorporates  both  different  occupants'  profiles  and  different  environmental 

profiles. For creating this model, different parameters in occupant and environmental 

profiles are considered which are listed below:

      In occupant profile:

• Expected daily occupancy pattern of the simulated occupant,
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• Mean or average of the times spent by the simulated occupant at different areas 

in his/her ADL,

• Uncertainty  in  occupant  movements  between  areas  of  the  simulated 

environment,

• Uncertainty in the time spent by the occupant in each area.

      In environment profile:

• Number of areas in the simulated environment,

• Layout and connectivity of different areas in the environment.

In this chapter, it is attempted to formulate the above parameters. 

Initially, a modelling scenario is proposed in Section 5.2 where Sections 5.2.1 and 5.2.2 

describe  the  modelling  of  different  parts  in  an  occupancy  signal:  Durations and 

Transitions.  The  model  is  then  formulated  in  Section  5.2.3.  In  Section  5.3,  the 

simulation algorithm is explained. The evaluation scheme for the model is proposed in 

Section 5.4. Generated signal specifications, the model validation results, and the model 

evaluation results are shown in Sections 5.5, 5.6, and 5.7 respectively. The chapter is 

summarised and the results are discussed in the final section.  

5.2 Modelling Scenario

In a single-occupant environment consisting of several areas, the occupancy signal is 

basically a number of movements between different areas i.e.  transition as well as the 
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Figure 5.1 - An occupancy signal for a 4-area environment.
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time spent by the occupant in each area i.e. duration. It was explained in Chapter 4 that 

such an occupancy signal can be created by assuming different levels for each area in 

the environment. For example, an occupancy signal for a 4-area environment is depicted 

in Figure 5.1. 

To model such an occupancy signal,  both parts  of the signal, namely transition and 

duration should be modelled properly. Therefore, an occupancy signal generator can be 

created based on the model explained in the following sections: 

5.2.1 Modelling the Durations

The duration in each state is defined as the time spent by the occupant in each area of 

the simulated environment. For instance, in the daily occupancy signal shown in Figure

5.1, the occupant spends 7 hours in area A e.g. bedroom at the beginning of a new daily 

activity and 10 minutes in area B e.g. lounge after he/she left area A. It is apparent that 

the occupant spends different times in each area (duration in that area). For example, the 

daily occupancy signal  in  Figure 5.1 illustrates  that the occupant spends more time in 

area A e.g. bedroom than area D e.g. bathroom. 

To fit a good model for the durations in occupancy signal, the behaviour of the occupant 

is very influential. For the occupants with a daily occupancy pattern, the average of the 

duration in each area (mean) can be calculated from the previous observations (data 

collection or observation). In addition, if the behaviour of the occupant does not involve 

vast variations or uncertainties, then the time spent by her/him in an area at a certain 

point of her/his expected occupancy pattern should be around the duration mean time in 

that area. The duration part is very similar to the behaviour of a system with normal 

distribution. This can be inferred from the occupancy pattern of the occupant where 

he/she is expected to have similar ADLs without large disorders.  Therefore, to model 

the durations in the occupancy signal, it is proposed to apply a normal distribution for 

the time spent  by the occupant in each area of the proposed environment.  The normal 

distribution is often used to describe a variable or give a good approximation of that 

variable which tends to be around the mean [122]. 

A normal distribution of the duration in area A at the beginning of the daily activity with 
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the mean of  is depicted in Figure 5.2 which has a variance of  steps less or more 

than the mean of duration time.

For generating a model of durations, normal distributions are considered for each areas 

of the proposed environment.  Furthermore,  it  is necessary to consider the pattern of 

occupancy  for  applying  normal  distribution  to  model  duration  for  each  area.  For 

example, the normal distribution of the duration in which the occupant stays in area B 

(e.g.  watching  TV in  the  lounge) should  be  completely different  to  that  where the 

occupant is only passing through area B (e.g. passing lounge to kitchen or bathroom). 

By generating random numbers with normal distributions, it becomes possible to model 

the duration part of the single-occupant occupancy signal. Equation 5.1, which is a very 

good approximation of random numbers with normal distribution [123], [124], [131] is 

used to generate a random number with a normal distribution.

  (5.1) 

Equation  5.1  is  generating  normally  distributed  random  numbers  based  on 

transformation  of  uniform distribution  where  y i is  a  random number  with  normal 

distribution, ∗p/12 is the mean of normal distribution,  ∗p /12 is the variance of 

normal distribution and Ri is a random number with a uniform distribution. Therefore, 

in equation 5.1, by assigning p=12 , y i will be a normally distributed random number 

with mean  and variance  . So, the equation 5.1 will be changed to the following 

equation:

  (5.2) 
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Figure 5.2 - A Normal Distribution for modelling a Duration.

µ

σ         σ

y i= 2∑
i=1

12

Ri−6



Occupancy Signal Modelling

5.2.2 Modelling the Transitions

The  transition  between  different  levels  of  a  occupancy  signal  in  a  single-occupant 

environment,  which  is  the  representation  of  movement  through  the  areas  in  that 

environment, is dependent on the profile of the environment including the number of 

areas and the design of the environment. For instance, in Figure 5.3 as a single-occupant 

environment, a transition between areas A and B is possible but there is not a possible 

transition  between  areas  A and  C,  or  A and  D.  In  order  to  model  these  transition 
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Figure 5.3 - A single-occupant environment with four areas.
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possibilities,  a state diagram is  proposed. The states in the transitions state  diagram 

represent each area and the transition possibilities are shown as the bidirectional links 

between the states.  

For  example,  the  transitions  state  diagram  for  the  layout  shown  in  Figure  5.3 is 

illustrated in Figure 5.5. In this diagram, the weights on the links are the probability of 

the transitions between states where for states with only one transition possibility the 

weight  is  1 (e.g.  states  A,  C,  and  D)  and  for  states  with  more  than  one  transition 

possibility the weights are the probability of that transition (e.g. state  B). In the states 

with more than one transition possibilities, the sum of transition probabilities  to other 

states should be 1 (e.g. for state B). This statement can be summarised as:

  (5.3)

To model  the state  diagram  such as  shown in  Figure 5.5,  it  is  proposed to  apply a 

uniform  distribution  for  any  state  of  the  diagram  with  more  than  one  transition 

possibilities.  For instance,  state  B of  the diagram shown in  Figure 5.5 in which the 

probabilities of transitions from this state to other states are shown in Figure 5.4 can be 

modelled by generating random numbers with uniform distribution which is depicted in 

Figure 5.6. For example, a uniformly distributed random number Ri with the condition 

p1∗100≤Ri p1p2∗100 represents the transition from state B to C.

A snapshot of the occupancy signal in  Figure 5.7 shows the overall  model where a 

movement from area  B to area  C takes place. In the model,   is the expected spent 

mean time in area C. Parameters u and  are uncertainty parameters representing the 

behaviour of the occupant. In Figure 5.7, the current location of the occupant is assumed 
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to be area B. The layout of the environment allows the occupant to move from area B to 

areas  A,  C, and  D. If the occupant complies with her/his movement pattern with the 

uncertainty of u , then the movement equivalent with the expected movement to area C 

will  be  more  likely  with  the  chance  of  1−u .  So,  summation  of  the  chance  of 

movements to other areas will be u . In Figure 5.7, the chance of movement to either 

areas A and D is u /2 . If the occupant moves to area C, the time spent by the occupant 

in this area will be calculated using a normally distributed random variable calculated 

from Equation 5.2. The uncertainty in duration  is representing the flexibility of the 

time that an occupant can spend in this state (area C). 

The  transition  between  different  areas  of  a  single-occupant  environment  is  also 

dependent on the profile of the occupant. If it is assumed that there is a daily pattern of 

occupancy in  the  proposed  environment,  then  the  impact  of  this  pattern  should  be 

considered  in  the  modelling  of  the  occupancy signal.  As  an  example,  in  the  daily 

occupancy pattern of the occupancy signal shown in Figure 5.8, the probability of the 

transition from state B to other states in different points of the pattern is not identical. In 

state B, the first, third, sixth, and ninth transitions are to state D but the second, fourth, 

seventh, and eighth transitions are to state C and a transition from B to A occurs as the 

fifth transition of state B in the daily pattern. Therefore, the probabilities p1, p2, and p3 

should  be  changed  based  on  where  in  the  pattern  they  are.  In  other  words,  three 

transitions probability matrices are needed to model the transitions in the occupancy 

signal of the pattern shown in Figure 5.8. 
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Figure 5.7 - Summary of the Occupancy Model - Transition from B to C.
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A pattern detector [125] is used to choose amongst the transitions probability matrices 

by finding out where in the pattern the occupancy signal is. The expected occupancy 

pattern in the simulator can be set manually. The best way to find out this expected 

pattern of occupancy is to monitor the actual equivalent environment by sensory agents 

for couple of days which was explained in Chapter 4. 

5.2.3 Formulation of the Model

The scenario explained in Sections 5.2.1 and 5.2.2 is a statistical model. Formulation of 

a statistical model is quite complicated. However, following mathematical equations can 

provide an analytical understanding of the occupancy signal modelling. 

As it was mentioned earlier in this chapter, an occupancy signal which is a time-series 

can be represented by a number of transitions T i and durations Di such that:

  (5.4)

Assuming  A as  the  level  in  the  occupancy  signal  (occupied  area)  and  D as  the 

durations (time spent in occupied area), if there is no uncertainty in the movements then 

a signal which follows the expected daily pattern can be generated as follows:

  (5.5)

  (5.6)
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signal t ={T i , Di}

Expected Daily Pattern={A1 , A2 , A3 , A4 ,...}

Expected Durations={D 1 , D 2 , D3 , D4 , ...}

Figure 5.8 - Daily occupancy pattern in a single-occupant environment.
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where  indices  1, 2, 3, ... in  Equations  5.5 and 5.6 represent  the consecutive visited 

areas in the expected daily pattern. In this situation,  Di  is calculated using normal 

distribution modelling with expected duration D i  and variance  which represents 

the uncertainty in the time spent in an area.

Generating  an  occupancy signal  in  presence  of  movement  uncertainty,  u ,  is  more 

complicated and can be formulated as:

  (5.7)

In this model, if an expected transition takes place then the duration of the current level 

(occupied area) will be calculated from the mean duration in the expected pattern and an 

uncertainty factor in the time spent in the area. On the other hand, if an unexpected 

transition takes place then the duration of that unexpected movement will be calculated 

from the unexpected duration time and an uncertainty factor. This is shown as:

  (5.8)

where Ri is a random number. 

Transitions in the model as described before are calculated using a uniform distribution. 

The movement uncertainty parameter,  u , is the chance of the movement to different 

connected areas rather than the expected area. Hence,  1−u , would be the chance of 

that the next movement follows the expected daily pattern.

  (5.9)

Di  is expressed as:

  (5.10)

where Ri is a uniformly distributed random number.
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D={ D i 2Ri−6 if expected transition met
D i  2 Ri−6 if unexpected transition met

Signal t ={
A1 0t≤D 1
A2 D 1t≤D 1D 2
A3 D 1D 2t≤D 1D2D3

...

...

A={Ai  0Ri≤1−u∗100
Ai  1−u ∗100Ri≤100

Di = D i 2∑
i=1

12

R i−6
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5.3 Simulation Algorithm

In order  to  generate  a  software  programming code for  the  occupancy signal  model 

proposed in  Section 5.2,  an algorithm is  designed and implemented to  simulate  the 

behaviour of an occupant in a single-occupant environment. The code of this algorithm 

as  a  signal  generator  for  daily  activity  is  flexible  enough  to  accept  different 

environmental  profiles  as  well  as  variety  of  occupant’s  profiles  of  behaviour.  The 

simulation algorithm is created by considering following criteria:

• Each daily occupancy signal can affect the occupancy signal on next day. For 

instance,  a next day activity cannot start  in bedroom (A)  if  the previous day 

activity is not finished in lounge (B) or bedroom (A),

• Daily  observed  occupancy  pattern  can  become  longer  than  an  expected 

occupancy pattern,

• The design of the environment is represented by transitions possibility matrix as 

well as probably the type of each area (bedroom, kitchen, lounge, bathroom …),

• The occupant’s behaviour profile is represented by his/her expected occupancy 

pattern,  his/her  transitions  probability  matrices,  his/her  expected  duration 

matrices in each area, as well as his/her unexpected duration,

• The first area met on the first day of activity simulation would be the first area 

of the expected occupancy pattern in the occupant’s profile, 

• In the case of unexpected transition, it is proposed that a return to the previous 

state be the most probable action happening next. A return procedure should lead 

to expected state,

• It is possible for the occupant to find another way to follow the pattern instead of 

returning to previous passed states.

In the flowchart of the algorithm depicted in Figure 5.9, there are some parameters that 

should be assigned at the beginning of simulation including environmental parameters 

(e.g. design and number of areas) and behavioural profile of the occupant (e.g. expected 

pattern of occupancy, mean durations for the expected pattern of occupancy, uncertainty 
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in the expected pattern of occupancy, and the mean duration for unexpected transitions).

The  algorithm starts  from the  first  state  of  the  expected  pattern  (solid lines,  white 

boxes). If the expected state is met by the algorithm as it might not met due to the 

uncertainty of the behaviour, then a normal procedure determines the next state of the 
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Figure 5.9 - Simulation Algorithm Flowchart for Generating Occupancy Signal.
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pattern and the duration of the current state will be calculated based on the mean and 

variance defined for the normal distribution of the duration in the state which is met 

(dashed lines,  dark grey boxes). On the other hand, if the state met is an unexpected 

state, then responsibility will be given to unexpected part of the algorithm to generate 

unexpected duration for the state met (dotted lines, light grey boxes).

If unexpected states are met continuously, then the algorithm keeps on in unexpected 

section until an expected state is met and the responsibility is given to the expected 

section in the algorithm. The algorithm ends if the time and pattern conditions (either 

the expected pattern is recognized or time goes beyond the simulation number of days) 

are not satisfied anymore. Finally an occupancy signal will  be constructed from the 

states and durations generated by the algorithm.

5.4 Evaluation of the Model

Creating  a  model  of  a  real  system  is  advantageous  in  terms  of  flexibility  and 

expandability. In the case of occupancy signal modelling, the model can reduce data 

collection efforts significantly. However, whether a model is created well is a question 

should be answered by evaluating that model. To measure the Simulator's degree of the 

validity, it is proposed to create a validation test scheme to evaluate the signal generated 

by the model against a real occupancy signal collected from an elderly-living apartment.

5.4.1 Validation Scheme

A schematic diagram of the simulator validation scheme is shown in Figure 5.10. In this 

scheme,  real  data  as  a  reference  collected  from an  elderly-living  flat  is  used  in  a 

validation scheme. The reference data is compared with the simulator's generated data 

and subsequently parameters of the simulator are adjusted to minimise the error. 

The final parameters found by the optimizer should result in the best fit of the generated 

signal with the reference data.

In the validation scheme, a set of statistical parameters are  found  to 

result in the best match with the reference data. These parameters are explained as:
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•  as  the  mean and   as  the  variance  (uncertainty)  divisor  of  the  expected 

occupancy pattern,

• u as the uncertainty probability in the occupant movements,

• v as the return factor or the force of returning to comply with the expected 

pattern when an unexpected movement takes place, and,

•   as the unexpected movement mean time.

5.4.2 Similarity Factor

In the validation scheme, in order to examine the similarity, a cross correlation of two 

time-series is calculated.  Cross correlation of two signals involves multiplying them 

while one of them is shifting. i.e.

  (5.11)

where  gensig is  the  occupancy signal  generated  by the  simulator  for  an  equivalent 

layout with the real environment, ref sig is the occupancy signal shaped for the real data 

collected  from the  real  environment,  n and  m are  cross-correlation indices.  Cross- 

correlation can provide a very good similarity measure between two time-series [126]. 

To  minimise  the  difference  between  two  signals,  an  error  function  as  an  objective 
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function is suggested which should be minimised by optimisation techniques i.e. 

  (5.12)

The error function explained above can work fine for continuous signals, but in the case 

of discrete signals including digital signals like the occupancy signal, the accuracy of 

the error optimisation can be affected by fake-weight effect.

The fake-weight is the similarity of a high frequency signal with a very low frequency 

signal in which the high frequency signal durations are very narrow in the levels causing 

difference with the low frequency signal (see Figure 5.11). Fake-weight effect can cause 

invalid return of the cross-correlation measures. In order to take into account the fake-

weight effect in error function, it is proposed to add a penalty part in the error function 

which  is  the  difference  between  the  simulated  occupancy  signal  and  test  signal 

derivatives i.e.   der numgensig , der numref sig . Hence, Equation 5.13 is the final error 

function which should be minimised by optimisation techniques as: 

  (5.13)

where C is a coefficient representing the number of days.

5.4.3 Applied Optimisation Techniques

Minimising the error function in simulator evaluation can be performed by optimisation 

techniques.  There are  a  number  of  computational  optimisers  with  different  features. 

Some of these techniques try to optimise functions by taking the derivatives of the error 

function  and  returning  optimising  inputs  or  parameters  [127].  Artificial  Neural 
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Networks (ANN) and Steepest Descent are some of the well-known derivative-based 

optimisers. Although the differential optimising techniques such as steepest descent are 

very efficient in some applications, the calculation of error function derivatives can be 

very  difficult  or  even  impossible  in  complicated  systems  or  statistical  models. 

Alternative derivative-free optimisation techniques are applicable when the derivatives 

of the error function are not easy to calculate. Tabu Search, Simulated Annealing (SA), 

and Genetic Algorithm (GA) are amongst derivative-free optimisers which are basically 

search techniques for finding exact or approximate solution for minimising an error 

function.

Due to the statistical nature of the simulated occupancy signal modelling explained in 

this  chapter  and  impossibility  of  using  derivative-based  optimisers,  derivative-free 

techniques including simulated annealing and genetic algorithm explained below are 

suggested and applied for the evaluation of the simulator model.   

5.4.3.1 Simulated Annealing Optimisation

The task of Simulated Annealing (SA) is to sample the input space effectively to find an 

input  that  minimises  an objective  function [114].  SA algorithm is  derived from the 

energy in thermodynamic systems. The algorithm is performed in the following steps:

• Step 1: A start point x is chosen and the temperature T which is the diversity of 

the choice domain is set to high,

• Step 2: Objective function is evaluated for x,

• Step 3:  Algorithm chooses a new point based on the difference determined by 

the generating function,

• Step 4: The new value of the objective function in new point is calculated,

• Step 5:  Algorithm sets  x  to the new point with probability determined by an 

acceptance function,

• Step 6: The temperature reduces according to the annealing schedule,

• Step 7: The algorithm continues above steps until reaches a stop criterion.
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By reducing the temperature, the set of points in SA get restricted to approach the best 

point with the minimum objective value. 

5.4.3.2 Genetic Algorithm Optimisation

Genetic  Algorithm (GA)  is  based  loosely  to  the  concepts  of  natural  selection  and 

evolutionary process and is known as a population-based optimisation that improves 

performance by upgrading entire  populations rather  than individual  members.  Major 

components  of  GA include  encoding  scheme,  fitness  evaluations,  parent  selection, 

crossover operators, and mutation operators [114].

• Encoding  scheme transform  points  in  parameter  space  into  bit  string  e.g. 

parameter space (10,5,9) to 1010 0101 1001 which is encoded as a gene,

• Fitness  evaluation is  the  first  step  after  creating  a  generation  by which  the 

fitness value of  each member in the population is calculated in the objective 

function,

• Selection takes place after evaluation that determines which parents participate 

in producing offspring for the next generation known as survival of the fittest,

• Crossover is usually applied to selected pairs of parents with a probability equal 

to a given crossover rate. Crossover exploits the potential of the current gene 

pool by crossover operators to generate new chromosomes that will hopefully 

retain good features from the previous generation. Therefore, some children are 

able to outperform their parents if they get “good” genes or genetic traits from 

both parents,

•  Mutation operators can generate new chromosomes if no amount of crossover 

can produce a satisfactory solution.  The most common way of implementing 

mutation is to flip a bit with a probability equal to a very low given mutation 

rate.

Hence, for producing a next generation of parameters with a better fitness compared 

with current generation, three processes of selection, crossover, and mutation should 

take place over the current population. 
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5.5 Generated Signal Specifications

This section illustrates the capability of the signal generator in generating occupancy 

signals with different specifications; in other words, simulator's approach to cope with a 

real occupancy signal.

Four signals with different duration and transition uncertainties are generated. In Figure

5.12, first occupancy signal generated (solid blue) has no uncertainty for both transition 

and duration. Therefore, this signal matches the expected occupancy signal (dashed red) 

completely. In the same illustration, the second occupancy signal generated has 12.5% 

of  duration  uncertainty  which  results  in  different  durations  with  12.5%  variance 

compared with the expected occupancy signal.

In  Figure 5.13, the first occupancy signal generated has no duration uncertainty and 

10% transition  uncertainty.  Hence,  the  generated  signal  (solid  blue)  can  match  the 

expected signal (dashed red) in terms of durations but some unexpected transitions can 

be  observed in  the  generated  signal.  The second occupancy signal  generated  in  the 

illustration is with 12.5% of duration uncertainty and 10% transition uncertainty. So, as 

it is apparent from the illustration, the generated occupancy signal (solid blue) looks like 

a little different signal of the expected signal (dashed red) but still  has an expected 

pattern in its nature.
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5.6 Simulator Validation Results

To  validate  the  occupancy  signal  modelling,  it  is  proposed  to  generate  signals  by 

initialising the simulator with a set of known parameters i.e. .

The  generated  occupancy signal  is  then  used  as  a  reference  data  in  the  validation 

scheme  explained  earlier  in  this  chapter.  If  optimisation  techniques  were  able  to 

converge to the known signal parameters, then it is possible to claim the validity of the 

occupancy simulator. 

To validate the simulator, first of all, a 15-day occupancy signal with the following test 

parameter values is generated:

Using  a  15-day generated  occupancy signal  as  the  reference  data  in  the  validation 

scheme,  the  objective  function  is  minimised  by  optimisation  techniques  including 

Simulated Annealing and Genetic Algorithm. The parameters of these techniques are set 

appropriately to make them converge to the solution effectively. The values of these 

parameter and the justification for them are discussed in the following section:
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Table 5.1 -  Chosen Values for SA Parameters.

Optimiser
Initial  

Temperature  
(T1)

Function
Temperature  

Update 
Function

Re-annealing 
Intervals  
(Epochs)

Stopping 
Criteria

SA 100 Fast 
Annealing

Exponential 
Temperature 

Update
100 200

Iterations

5.6.1 Setting the Parameters for SA and GA

Prior  to  the  optimisations  by  Simulated  Annealing  (SA),  the  parameters  of  SA, 

including Initial Temperature (T1), Annealing Function, Temperature Update Function, 

and  Annealing  Intervals  should  be  set.  These  decisions  may differ  if  problems  are 

different,  that  is,  these  decisions  are  problem  specific  [144].  The  value  of  initial 

temperature is recommended to be set large enough to make the initial probability of 

accepting transitions be closed to 1. On the other hand, too high initial temperature may 

cause a long computation or a bad performance. In simulated annealing, the value of 

temperature  is  updated  by  the  temperature  update  function  which  is  also  called 

proportional cooling function as follows:

  (5.14)

where    is  calculated  by an  exponential,  a  logarithmic,  or  a  linear  function.  For 

instance, the exponential temperature update function is as follows:

  (5.15)

where T 1  is the initial temperature, T M  is the temperature at the final epoch, and M  

is the total number of epochs. The total number of epochs in SA can be set proportional 

to the size of problem instance. In the experiment for finding the uncertainty parameters 

of the simulator, the value of SA parameters are chosen as shown in Table 5.1. These 

values  are  calculated  and  tuned  to  result  in  the  best  performance  by a  number  of 

algorithm runs.    

For the optimisation by Genetic Algorithm (GA), values for the following parameters 

should be set: 

108

T k=T [ k−1 ] where 01

=T M /T 1
[1 /M−1]



Occupancy Signal Modelling

Table 5.2 - Chosen Values for GA Parameters.

Optimiser
Population

Type 
(Encoding)

Population
Size

Crossover
Function

Mutation
Function

Selection
Function

Stopping
Criteria

(Generatio
ns)

GA Double
Vector 20 Scattered

Uniform
Probability 

= 0.01

Stochastic
Uniform

20
Generations

• Population type (Gene type or encoding): Encoding depends on the problem 

and also on the size of instance of the problem.

• Population size: Very big population size usually does not improve performance 

of GA (i.e. the speed of finding solution). Good population size is about 20-30. 

• Crossover function: Crossover rate generally should be high, about 80%-95%. 

• Mutation function:  On the other side, mutation rate should be very low. Best 

rates reported are about 0.5%-1%. 

• Selection  function:  Stochastic  uniform,  uniform,  remainder,  roulette,  or 

tournament can be used.

Decisions on these parameters are problem specific. However, to choose the best set of 

parameters, different sets of them can be applied to the optimisation problem. Therefore, 

the  best  parameter  set  is  the  one  with  the  best  performance.  In  the  experiment  for 

finding the uncertainty parameters  of  the simulator,  the value of  SA parameters  are 

chosen as shown in Table 5.2.

The graphs in Figure 5.14 and Figure 5.15 illustrate the convergence of SA and GA to 

the movement and duration uncertainties respectively.

5.6.2 SA and GA Convergence to Movement Uncertainty

For finding the movement uncertainty by optimising the error function in Equation 5.13, 

a  Simulated Annealing  algorithm was applied.  SA was able  to  converge to  the test 

movement uncertainty (0.125) after 200 iterations (Figure 5.14-A). 
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Figure 5.15 - SA and GA search for duration uncertainty value.
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Figure 5.14 - SA and GA search for movement uncertainty value.
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A Genetic Algorithm optimiser with the population size of 20 for 20 generation was also 

applied for optimising to the movement uncertainty (Figure 5.14-B). The performance 

of SA and GA was examined for 50 runs which is depicted in Figure 5.16. The mean of 

results for both SA and GA was 0.1248 with standard deviation of 0.0015 for SA and 

0.0008 for GA.

5.6.3 SA and GA Convergence to Duration Uncertainty

In order to find the duration uncertainty by optimising the error function in Equation 

5.13, a Simulated Annealing algorithm was applied. SA was able to converge to the test 

duration uncertainty (0.15)  after  30 iterations  (Figure 5.15-A). A Genetic  Algorithm 

optimiser  with  the  population  size  of  20  for  20  generation  was  also  applied  for 

optimising to the duration uncertainty (Figure 5.15-B). The performance of SA and GA 

was examined for 50 runs which is depicted in Figure 5.17. The mean of results for SA 

and GA was 0.1758 and 0.1563 respectively with standard deviation of 0.0084 for SA 

and 0.0074 for GA.

5.7 Simulator Evaluation Results

The applied validation method can give a good understanding of the simulator's degree 
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of validity. However, for the evaluation of occupancy signal modelling, the performance 

of the model should be experimented against a real occupancy signal. Therefore, the 

real occupancy signal collected from the elderly lady's apartment mentioned in Chapter 

4 is used as the reference in the validation scheme. 10 days of this occupancy data is 

used to find the parameters of the model. Parameters found by optimisation techniques 

are then used as the modeller for the real data. In other words an occupancy model is 

created which is expected to be equivalent to how the elderly lady occupies different 

areas in her apartment. Comparing remaining real data (3 days) with the data generated 

by the modeller can give the understanding of how good the model can converge to a 

real single-occupant data. If the model converges well to the real data, then it is possible 

to claim that the model can generate the occupancy signal with a degree of similarity to 

the movements of a monitored occupant. Hence, the simulator can be used to generate a 

signal similar to the profile of the monitored occupant in the monitored environment.

Using the real occupancy signal in the validation scheme, the profile of the occupant 

was found with 4.33% uncertainty in her movements, 8.77% uncertainty in the time she 

spends in different areas, 9.2% uncertainty in following the daily movement pattern, and 

187 second of the average time she spends in the areas not followed by the movement 

pattern i.e.

After the value of parameters were found, a model was created using these values. The 

cross correlation of the test data (3 days) with the occupancy signal generated by the 
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Figure 5.18 - Similarity error of the tuned model compared with other models.
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model was then used as the similarity factor. The results in Figure 5.18 illustrates that 

the model tuned with found parameter values can be a good representation of the real 

data. In  Figure 5.18, the output of the simulator with 8 different set of parameters is 

cross correlated with the real data and compared with cross correlation of the tuned 

model  and  the  real  data.  The  cross  correlation  with  tuned  model  is  the  smallest 

compared with other models which means the tuned model is behaving more similar to 

the real occupancy data.

Although it  was shown that the tuning of the model to the occupancy behaviour of 

residents by using a small data set is not impossible. However, to find a better fit of the 

model  to  the  occupant  behaviour,  using  larger  occupancy data  set  is  essential.  For 

instance,  to  model  an  occupancy  signal  for  long-term  occupancy  i.e.  monthly  or 

annually instead of daily occupancy, the model should be tuned with large data set i.e. 

couple of months or years. 

5.8 Summary and Discussions

Different  factors  in  human  behaviour  have  made  it  very  challenging  to  model  and 

simulate.  It  was  shown in  this  chapter,  it  is  possible  to  approach  modelling  if  the 

problem is simplified with two conditions. The first condition is to focus on a particular 

behaviour  modelling such as  modelling  the movements  of  the  occupant  in  different 

areas instead of modelling every aspect of an occupant's life. The second condition is to 

model  the  behaviour  of  persons  with  less  uncertain  behaviours  like  modelling  the 

behaviour of occupants who follow a daily pattern in their life e.g. elderly people. 

Applying these conditions, a single occupancy model was created by using statistical 

methods. The simulator created based on this model is very useful for generating as 

much as data needed for simulating the pattern of occupancy for different profiles of 

any occupant in any environment with different layouts. The statistical modelling for the 

simulator  has  taken  into  account  a  number  of  uncertainty  factors  related  to  both 

modelled  occupant  as  well  as  modelled  environment  including  the  movement  and 

duration uncertainties.

Using the  validation  scheme proposed  in  the  chapter,  the  simulator  was  tested  and 
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validated  against  a  number  of  data  sets  generated  by the  model.  The  experimental 

results showed that the model can approach uncertainty parameters of the generated data 

successfully.

The simulator was evaluated using a set of real data collected from an elderly-living 

apartment. The evaluation results showed that the simulator can find a set of values for 

the parameters of the model to make the model generating a very similar occupancy 

data to the real data set. In order to find a better fit, the model should be tuned with 

sufficient occupancy data. For example, if the performance of the model for monthly or 

annual outcomes are concerned, then a data set for couple of months or years should be 

applied to the validation scheme. Besides, to understand the trends in the occupancy, 

this  behaviour  should be monitored and its  data  should be collected in a  long-term 

manner. However, the small occupancy data used in this chapter was used to find daily 

occupancy pattern instead of the trends in long-term occupancy situations. 

Although  the  occupancy model  created  in  this  chapter  can  be  a  good  simulator  of 

occupancy signal in a single-occupant environment, it is not claimed that the simulator 

explained in this chapter can be a perfect model for the occupancy behaviour of any 

person with any profile. However, the simulator can give a good understanding of the 

occupancy  and  generate  as  much  as  data  required  to  test  and  verify  time-series 

prediction techniques for the prediction of the occupancy signal explained in Chapter 4.
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6.1 Chapter Overview

In  Chapter  4,  the  occupancy detection  and  consequently  prediction  were  addressed 

when an environment is assumed to be primarily single-occupant. The existence of a 

single-occupant environment is not far from reality nowadays. However, the situation in 

which  an  environment  remains  absolute  single-occupant  permanently  seems  to  be 

unlikely  in  reality.  For  instance,  a  situation  in  which  a  single  person  lives  in  an 

apartment without having visitors for a long time is not very likely to happen in reality.  



Occupancy Monitoring and Prediction in Multiple-Occupant PaIE

The multiple-occupant situation refers to an environment where more than one person is 

living or working. This situation also takes place in single-occupant PaIEs when other 

persons such as visitors are present in the environment which is primarily assumed to be 

single-occupant. 

Monitoring the occupancy of different areas in an absolute single-occupant environment 

was shown feasible by implementing a WSN of PIR and door contact sensors which 

was explained in details in Chapter 4. But, in a multiple-occupant environment, PIR 

signals cannot identify a monitored person in different areas due to the sensitivity of 

PIRs  to  the  motion  of  every  living  objects.  This  situation  is  equivalent  for  both  a 

multiple-occupant environment and a single-occupant environment in the presence of 

visitors. The challenge of dealing with multiple-occupant PaIEs is not only limited to 

the occupancy detection, but also the other issues related to AmI in such environments. 

This is due to the problem of identifying inhabitants involved in actions or movements 

in PaIEs. 

As a solution, it  will be shown in this  chapter that for the occupancy detection and 

prediction, a multiple-occupant PaIE can be considered as a number of single-occupant 

scenarios (see  Figure 6.1). Therefore the solution proposed in Chapter 4 for a single-

occupant environment will be a relevant approach and can be extended towards finding 

a solution for an environment with a more complicated situation. This solution can help 

to  distinguish  the  occupancy  of  for  example  the  elderly  people  with  dementia  or 

Alzheimer disease when he/she is being visited by relatives, carer, or other visitors. 
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Figure 6.1 - A Multiple Occupancy Scenario derived 

from Single-Occupancy Scenarios.
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In this chapter, the challenge of occupancy detection when an environment cannot be 

categorised as a single-occupant is explained in Section 6.2. In Section 6.3, as a solution 

a  tagging  mechanism  is  proposed;  hence,  a  number  of  tagging  technologies  are 

investigated through a series of comprehensive measurements. In this section, it is also 

proposed  to  integrate  a  tagging  mechanism  to  the  previously  reported  occupancy 

detection  of  the  single-occupant  scenario  to  identify  an  occupant  in  his/her 

living/working environment even in the presence of other persons  e.g. visitors. These 

tagging mechanisms are employed to address the occupancy detection in a multiple-

occupant scenario and assist  to properly separate the occupancy signal associated to 

tagged inhabitants  for occupancy prediction purposes.  The problems associated with 

tagging technologies such as uncertainties are explained and the solutions are proposed 

in  Sections  6.4.  Finally,  the  experimental  results  are  presented  with  a  comparative 

discussion at the end.

6.2 Occupancy Signal Representation Challenge in the 

Presence of Visitors

In an absolute single-occupant situation, a data acquisition system of wireless sensory 

agents explained in Chapter 4 can properly monitor the occupancy of different areas in 

the  environment.  For  instance,  for  the  occupancy  detection  of  a  proposed  single-

occupant environment with the layout shown in Figure 6.2, WSAs of four PIRs and a 

door contact sensor can be employed. In this scenario, the sensory data collected in a 
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Figure 6.2 - Proposed single-occupant environment.
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base station can be used to shape an occupancy signal for a single person living/working 

in  the single-occupant  PaIE.  Then,  the occupancy signal  can be used for  prediction 

purposes as described in Chapter 4. 

A snapshot of the data collected from WSAs of this environment in the base station is 

illustrated in Figure 6.3. In this figure, the PIR activities show that due to the presence 

of only one occupant in the monitored environment, no parallel activities in different 

areas are detected. For example, for the duration of 7:00 AM-10:00 AM, the lounge and 

kitchen are not occupied at the same time as extracted from the marked area of the PIRs 

activity signal in Figure 6.3. In an absolute single-occupant environment, as there is no 

parallel  activity  of  PIRs  in  different  areas,  the  activity  in  one  area  can  ensure  the 

occupancy of that area by the monitored occupant. Hence, by using solutions proposed 

in  Chapter  4,  the  occupancy  detection  of  the  monitored  occupant  in  an  absolute 

occupancy scenario becomes possible.

By  assuming  different  levels  for  the  PIR  activities,  P it  ,  in  each  area  or  the 

occupancy of each area expressed as: 

  (6.1)
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P it ={ i PIR activity for area i
0 PIR activity for other areas

Figure 6.3 - Daily data collected by sensory devices.
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A time-series signal can be formulated.

  (6.2)

In Equations 6.1 and 6.2,  i is a label representing each area and N is the number of 

monitored areas in a PaIE. 

A simple occupancy time-series is depicted in Figure 6.4. Such a time-series can then be 

used in prediction techniques for the prediction of occupancy in an ambient intelligent 

environment. This was discussed in details in Chapter 4.

For a single-occupant scenario with visitors or in a multiple-occupant environment, it 

seems almost impossible to shape an occupancy signal like the occupancy signal in an 

absolute single-occupant environment. In other words, in a more realistic situation, the 

occupancy detection mechanism should consider  the presence of other  occupants  or 

visitors in an ambient intelligent environment. In multiple occupancy situation, due to 

119

TS t =∑
i=1

N

P it 

Figure 6.5 - Kitchen and Lounge PIRs’ activity in the presence of a visitor.

Figure 6.4 - Occupancy signal as a time-series.
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the presence of other persons, the occupancy signal shown in  Figure 6.3 will change 

according to the following situations:

1. Parallel  activities  in  different  areas  can  be  detected  by  WSAs  of  motion 

detection sensors,

2. The activity in one area cannot guarantee the presence of only one person in that  
area.

For instance, the marked areas in Figure 6.5 show the parallel PIRs’ activity for lounge 

and kitchen in the presence of a visitor where P2t ≠0 and P3t ≠0 at the same time. 

Therefore, it becomes almost impossible to create an occupancy signal like Figure 6.4 

from PIRs’ activity in a multiple-occupant scenario or a single-occupant scenario in the 

presence of visitors. Some of techniques reviewed in literature ([57] and [59]) suggest 

tagging  technologies  such  as  RFID  to  track  inhabitants.  In  the  next  section,  it  is 

proposed to integrate tagging technology with the data acquisition system proposed in 

Chapter  4  in  order  to  reduce  the  problems  associated  with  multiple-occupant 

monitoring.

6.3 Integration of Tagging Mechanism

As  it  was  introduced  in  Chapter  3,  the  signal  strength  or  RSSI  can  be  used  to 

approximate the distance between radio transmitter and receiver. This feature has been 

used  by different  approaches  such as  LANDMARC  [57] and Fingerprinting  [59] to 

track objects in environments. RSSI distance approximation despite its capabilities in 

perfect conditions is highly potential for uncertainties due to the characteristics of the 

radio  signal  propagation.  These  limitations  were  explained  in  details  in  Chapter  3. 

However,  as  a  solution,  to  reduce  the  problem of  parallel  PIRs’ activity  in  single-

occupant environment in the presence of visitors or a multiple-occupant environment, it 

is  proposed  to  integrate  a  tagging  mechanism  to  switch  from  the  single-occupant 

scenario  to  a  multiple-occupant  scenario.  Therefore,  to  choose  amongst  available 

technologies,  different  tagging  technologies  will  be  experimented  in  a  series  of 

comprehensive measurement in Sections 6.3.1 and 6.3.2. So, two active RFID products 

from two different companies, namely, WaveTrend [128] and Syris  [129] were chosen 
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and compared with the already available ZigBee product (XBee) on the wireless sensory 

agents. To test the RSSI capability and accuracy of XBee, WaveTrend, and Syris tags 

and  readers  in  approximating  the  distance,  they  were  compared  in  two  series  of 

measurements as follow:  

1. Distance-based measurement with no obstacles between tag and reader (Line of 

sight between tag and reader),

2. Distance-based with an obstacle between tag and reader.

6.3.1 Distance-based Measurements without obstacle 

The RSSI measurement was conducted in a basketball pitch located in the Nottingham 

Trent  University  without  any  obstacles  between  the  reader  and  the  tag.  This 

measurement reveals how the RSSI in the experimented products is affected by the tag’s 

distance from the reader. 

In this measurement, for the accuracy of data, fifty readings were taken at every meter 

distance  between the  tag  and the  reader.  The measurement  results  are  illustrated  in 

Figure 6.6. In this figure, the vertical axis shows the radio signal strength in a digital 

universe of  [0 255] detected by the reader when a tag broadcasts a beacon. The data 

points in the graph are the average of the readings, the bars are the standard deviation of 

the readings, and the curve is the trend of the signal drawn for a two degree moving 

average estimator. Depicted in Figure 6.6-A, the WaveTrend product follows the RSSI-

distance equation for the first five meters where the signal strength decreases as the 

distance between tags and RFID reader increases. After five meters the product shows 

unreliable RSSI behaviour and it is not suggested to be used for measuring the distances 

of more than five meters. In Figure 6.6-B, signal strength of the Syris product follows 

the RSSI-distance equation for the first  three meters but further distances cannot be 

measured by this product.  Illustrated in  Figure 6.6-C, the XBee product follows the 

RSSI-distance equation as far as six meters. After six meters the product shows a little 

rise in signal strength and cannot be used for measuring further distances.
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6.3.2 Distance-based Measurements with obstacle 

These measurements were taken in the same location of the first experiment with an 

obstacle between a mobile tag and the reader. The obstacle contained metal, plastic, and 

wood materials with a thickness of  40 centimetres. For accuracy, fifty readings were 
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Figure 6.6 - RSSI-distance graphs with no obstacles between 

reader ad tag for RFID and XBee products.

A- WaveTrend product

B- Syris product

C- Xbee (ZigBee) product
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taken  at  each  reading  point.  The  measurement  results  are  illustrated  in  Figure  6.7. 

Depicted in Figure 6.7-A, the WaveTrend product follows the RSSI-Distance equation 

for the first six metersbut it is not suggested for further distance measurements. Figure

6.7-B shows that the signal strength of the Syris product decreases according to RSSI-

distance equation for the first five meters but it does not follow the equation for longer
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Figure 6.7 - RSSI-distance graphs with obstacle between reader 

and tag for RFID and XBee products.

A- WaveTrend product

B- Syris product

C- Xbee (ZigBee) product
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Table 6.1 - Summary of distance-based measurements. 

Product 

Maximum 
Range 
without 

hindrance 
(m) 

Maximum 
Error 

without 
hindrance 

(unit) 

Maximum Range 
with hindrance (m) 

Maximum 
Error with  
hindrance 

(unit) 

WaveTrend 5 4.24 6 1.79

Syris 3 6.68 3 3.97

XBee 6 2.18 5 3.42

distances. In the final graph (Figure 6.7-C), the signal strength of the XBee product 

decreases according to the RSSI-distance equation for the first five meters.

RSSI measurement results in both conditions i.e. with and without obstacle shows the 

uncertainty  and  non-linearity  involved  with  three  experimented  products  for 

approximating the distance.

A summary of the results for distance-based measurements is given in Table 6.1. It can 

be inferred from the table that the XBee product is a good competitor for RFID tagging. 

In addition, in order to keep using wireless sensory agents and also the infrastructure of 

single-occupant detection, it is proposed to modify WSAs to work for multiple-occupant 

scenario by enabling RSSI measuring for XBee chip which is already integrated to the 

agents.  Hence,  WSAs  were  equipped  with  RSSI  capability,  developing  Wireless 

Localising Sensory Agents (WLSA). RSSI values received by WLSAs from an XBee 

tag  attached  to  monitored  occupant  were  displayed  and  logged  by  the  modified 

monitoring portal (Appendix A – Figure A.3 ). In this approach, the XBee tag acts as a 

transmitter  broadcasting  a  radio  beacon  every  5  seconds  which  is  received  by  all 

WLSAs installed in the environment. At the receiver side, WLSAs receive the beacon 

from the tag, measuring the signal strength of the transmitter (tag), and send the RSSI 

information along with other sensory data to the monitoring portal for further processes. 

RSSI enabled wireless localising sensory agent in each area is primarily proposed to be 

fixed in the centre of the ceiling. In this scenario depicted in Figure 6.8, the tagged 

occupant beacon is received by WLSAs by which the sensory data, tag id, and the RSSI 
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of the received beacon are transmitted to the base station. In the base station all RSSI 

levels detected and transmitted from wireless localising sensory agents are compared 

with one another and sorted accordingly. Hence, the higher level of RSSI in the base 

station should represent the closest localising agent to the mobile node. For example, if 

at a specific time the RSSI received from the bedroom’s localising agent is larger than 

the RSSI received from agents located in other areas, then it is more likely that the 

tagged person is located in bedroom at that time. However, decision for identifying the 

occupied area is highly potential of uncertainty due to the characteristics of the radio 

signal as explained in Chapter 3. This issue will be addressed in the next section.

6.4 Reducing the Uncertainty involved in WLSAs

Despite  the  benefits  of  the  applied  RSSI  technology,  due  to  the  nature  of  wireless 

signals, it brings uncertainty in the occupancy detection mechanism. Therefore, in order 

to reduce the uncertainty, a number of approaches are proposed as follow:

1. To keep the single-occupancy detection in WLSAs and switch between single-

occupant and multiple-occupant scenarios when appropriate,

2. Installation of WLSA readers in a way that covers all the areas and reduces the 

overlap in their coverage (Zoning),

3. Using clustering techniques to classify the signal strength received by WLSAs 

125

Figure 6.8 - Tagging a person in an Ambient 

Intelligent Environment.
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based on the occupied area,

4. Incorporating supporting mechanisms for reducing the uncertainty.

These techniques are explained in subsequent sections.

6.4.1 WLSAs for Single and Multiple-Occupant situations

To reduce the uncertainty arising from RSSI tagging, it is preferred to keep the current 

PIR occupancy detection with its strength for the absolute single-occupant scenario and 

switch to RSSI occupancy detection in the presence of visitors. 

To  shape  an  appropriate  occupancy  signal  for  a  single-occupant  environment  with 

visitors from the integrated occupancy detection system, first of all, the system chooses 

between occupancy signal generated by PIRs and the RSSI-based occupancy signal. To 

do this, the system should be able to distinguish between different situations and switch 

between the following conditions:

1. Tagged  occupant  is  alone  in  the  environment: Occupancy  signal  should  be 

generated based on PIRs’ activity,

2. Tagged occupant is not alone in the environment: Occupancy signal should be 

generated based on RSSI signals’ level.

The first part of the occupancy signal is created based on the PIRs’ activity whereas, due 

to the parallel activity of PIRs, the second part is created based on the signal strength 

(RSSI) of the beacon received from the tagged mobile node (see Figure 6.9). To choose 

between different situations either absolute single-occupant or the presence of visitors 

or other occupants in the environment, the following options are available:

1. Parallel activity of PIRs in different areas due to the presence of other occupants 

or visitors,

2. Increased activity of PIRs due to the presence of other occupants or visitors,

3. Main door contact sensor used to recognise the entry of other persons.

By the integration mechanism explained above, in absolute single-occupant situation the 
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integrated system is enabled to generate the occupancy signal from PIRs’ activity, and in 

a single-occupant  environment with visitors or a multiple-occupant it  can tackle the 

inadequacy of the PIRs by generating the occupancy signal based on RSSIs received 

from wireless localising agents. On the other hand, it can also reduce the uncertainty of 

RSSI localisation by using PIR sensors when the environment is recognised as single-

occupant. However, in multiple-occupancy situation, the RSSI uncertainty would still 

remain problematic.

6.4.2 Zoning Approach for the Coverage Uncertainty 

In the proposed tagging mechanism for occupancy detection, coverage uncertainty in 

RSSI signals can be problematic. This uncertainty is due to the coverage of wireless 

localising agents that can take place in two different forms: 

1. Uncovered Zone: Uncovered zone is a zone in an area which is not covered by 
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Figure 6.9 - Occupancy signal creation from the Integrated System.
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the reader in the area or receives a better coverage from the agents of other areas 

than the agents in its area,

2. Overlapped Zone: Overlapped zone is a zone in an area which receives a good 

coverage not only from the agents in its area but also from the agents in other 

areas. 

The above mentioned zones are illustrated in Figure 6.10

These  uncertainties  can  cause  ambiguities  for  identifying  the  location  of  tagged 

inhabitant.  To overcome this coverage problem, a zoning approach is proposed with 

following steps:

1. Using multiple wireless  localising agents in one area: This will result  in the 

coverage of the whole area without leaving any uncovered zone in each area. So, 

the uncertainty caused by uncovered zones will be reduced,

2. Modifying the sensitivity of wireless localising agents: Decreasing the sensitivity 

of wireless localizing agents from the default sensitivity radius R to a modified 

sensitivity radius  r reduces the coverage of unwanted zones outside the area. 

Therefore, the uncertainty caused by overlapped zones will be reduced.

The zoning approach is depicted in Figure 6.11 for the layout of the environment shown 

in Figure 6.2. In Figure 6.11, two agents are employed for kitchen and bedroom to cover 

the  whole  area.  In  addition,  the  sensitivity  radii  of  the  wireless  localizing  agents 
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Figure 6.10 - Coverage problem with wireless agents.
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employed for bedroom, corridor and kitchen are reduced to prevent overlapped zones.

6.4.3 Regional Clustering

For occupancy detection of the tagged inhabitants in a living/working environment, as 

suggested, an RSSI enabled tag broadcasts a beacon every few seconds. This beacon is 

received by the WLSAs installed in different areas. Therefore, the signal strength of the 

beacon received by a WLSA should represent the distance between tag and WLSA. By 

measuring  this  distance  in  every  WLSAs  the  location  of  tagged  inhabitant  can  be 

approximated. For example, the triangulation technique can be used in three WLSAs to 

localise  the  tagged  inhabitant.  However,  due  to  the  possible  interference  in  the 

monitored  environment  and  the  characteristics  of  the  radio  signal  transmission, 

localising the tagged occupant can still remain potential for uncertainty. 

Suppose that the WLSAs are installed in a prototype environment as shown in Figure

6.12. In order to reduce their error effects and therefore the uncertainty in RSSI signals, 

a regional clustering scheme is proposed as follow:

1. Installation of each WLSA in the  centre of correspondent area for a balanced 

coverage of the whole area,
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Figure 6.11 - Zoning to overcome coverage problem.
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2. Installation  of  WLSAs  based  on  the  regions  instead  of  areas  in  the  case  of 

imbalanced coverage,

3. Clustering monitored areas to reduce the occupancy detection error.

Using regional  clustering  scheme and incorporating  intelligent  clustering  techniques 

such as K-Means and Fuzzy C-Means clustering [60], a number of clusters equivalent to 

the  number  of  monitored  areas  will  be  found.  This  approach  is  called  a  regional 

approach which is explained below:

Suppose that the tagged inhabitant is present or moving in  Area 1 in an environment 

with  the  layout  shown  in  Figure  6.12.  A statistically  reasonable  number  of  RSSI 

readings will be taken when the occupant is moving in Area 1. These readings are then 

taken by the WLSAs installed in all other areas. Readings from WLSA in Area1, Area2, 

Area3, and Area4 are respectively presented as:

  (6.3)

In Expression 6.3, the first index shows the area occupied by the tagged inhabitant and 

the second index is the WLSA index. So, for a four area layout similar to Figure 6.12, 

an RSSI readings matrix can be created as:

  

  (6.4)
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[r11 r12 r13 r 14]

Rij=[r11 r12 r13 r14

r21 r 22 r 23 r 24

r31 r32 r 33 r 34

r 41 r 42 r 43 r 44
]

Figure 6.12 - Readers and a mobile tag in a prototype environment.
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Each element in the reading matrix can contain a number of readings but in different 

locations of the same area. 

In  regional  clustering,  an  intelligent  clustering  technique  such  as  Fuzzy  C-Means 

clustering, K-Means, SOM, PCA, and SVM can be applied to the RSSI readings matrix 

resulting in a number of cluster centres equivalent to the number of monitored areas. In 

the case of prototype environment in Figure 6.12, four clusters will be derived with the 

following centers: 

                                                

  (6.5)

Each of the rows in cluster centres matrix represents a cluster centre vector.

Clustering techniques try to find a distance between a new data with cluster centers. For 

example in Fuzzy C-Means clustering, after finding cluster centers, the distance of a 

new reading which is the degree of belonging to clusters uk  will be found. The sum 

of the elements in degree of belonging matrix should be 1 as shown in Expression 6.6. 

  (6.6)

The cluster centres in Expression 6.5 can be used to identify the presence of the tagged 

inhabitant in one of the areas. This happens by comparing the new readings with cluster 

centres and finding the maximum similarity between them i.e. the maximum element in 

membership matrix Max [uk ] .

6.4.4 Incorporating Supportive Technologies

Tagging technologies in some applications can incorporate other technologies to reduce 

RSSI  uncertainty.  For  example,  the  elderly  lady  living  in  her  apartment  as  a  real 

environment in Chapter 4 uses a walker to move around. The walker itself can be used 

to  be integrated  with other  technologies.  For  instance,  it  is  proposed to  integrate  a 
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passive RFID reader with sensory agents to support RSSI signals. Passive RFID tags 

will be located somewhere in the pathways between two adjacent areas. Installing the 

reader on the walker, when the walker is passing this zone, passive RFID reader will 

activate  passive  RFID  tags.  This  can  be  a  support  for  uncertainty  reduction.  For 

instance, if passive RFID tags are installed on the door frame between bedroom and 

corridor, when the occupant passes between two areas the reader will identify these tags. 

Therefore, the system will know that the occupant is in one of the two areas even in 

presence of visitors. This idea is suggested for future work in the field.

6.5 Experimental Results and Validation

In order to test the capability of WLSAs in  localising tagged occupants, a number of 

experiments  were  conducted.  A  4-area  double-bedroom  apartment  located  in 

Nottingham with  the  layout  of  Figure  6.13 was  chosen  for  these  experiments.  The 

chosen apartment is a multiple-occupant environment with three occupants living in it. 

WLSAs were installed in bedrooms 1 and 2, lounge, and bathroom in the  centre of 

ceilings. One of the occupants was asked to carry the XBee tag as the tagged person in 

this multiple-occupant environment.

Experiment  1: RSSI tagging without uncertainty reduction

In this experiment, the tagged occupant moves amongst four areas with the pattern of 
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Figure 6.13 - Layout of the apartment in the third experiment.
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Bedroom 1, Bedroom 2, Kitchen, and Bathroom (B1, B2, K, BT). Fifty RSSI readings are 

recorded for each area. The graphs of signal strength received by WLSA are illustrated 

in Figure 6.14 in which WLSA 1, 2, 3, and 4 are located in the center of the ceilings in 

areas bedroom 1, 2, kitchen, and bathroom respectively. 

In this experiment, it is assumed that the highest RSSI reported should represent the 

occupied area by the tagged inhabitant. However, due to the uncertainty in the nature of 

radio signals, these readings sometimes cannot represent occupied area successfully. In 

this experiment, 18 out of 50, 14 out of 50, 4 out of 50, and 7 out of 50 reading could 

not  represent  the  occupancy  of  bedroom  1,  bedroom  2,  kitchen,  and  bathroom 

respectively. Therefore, this experiment shows that 43 out of 200 readings could not 

represent  right  occupied  area  causing  21.5% uncertainty  in  the  tagging  technology 

integrated as wireless localising sensory agents.

Experiment  2: RSSI tagging with zoning

In this experiment, the sensitivity of WLSA 1 and WLSA 2 in Bedroom 1 and 2 was  

modified  (zoning)  to  become  less  sensitive  to  the  RSSI  received  when  the  tagged 

occupant is present in other areas and avoid overlapping. In addition, a WLSA 5 was 

installed  in  kitchen  to  support  WLSA 3 preventing  uncovered  zones.  Sensitivity  of 

WLSA 3 and 5 were also decreased to avoid overlapping.

In this experiment, 15 out of 50, 10 out of 50, 6 out of 50, and 8 out of 50 reading could 

not  represent  the  occupancy  of  bedroom  1,  bedroom  2,  kitchen,  and  bathroom 
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Figure 6.14 - WLSAs RSSI readings in different areas. 
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respectively.  Therefore,  this  experiment  shows  39  out  of  200  readings  could  not 

represent  right  occupied  area  causing  19.5% uncertainty  in  the  tagging  technology 

supported by zoning approach.

Experiment  3: RSSI tagging with clustering

In this experiment, after data collection, regional clustering method such as Fuzzy C-

Means are applied to the collected data to group them in four clusters. These clusters 

should represent the presence of tagged inhabitant in each area (Bedroom 1, Bedroom2, 

Bathroom, and Kitchen). 

Fuzzy C-Means

Using Fuzzy C-Means clustering technique, the clusters found for the XBee tag’s RSSI 

readings  are  shown  in  Figure  6.15.  In  this  figure,  a  4-dimensional  data  from four 

WLSAs is represented in 2-dimensional plots. Data points on the plot area show the 

readings and the numbers on the plot are cluster centres in a binary range of  [0 255]. 

The cluster centres found for the XBee tag’s RSSI readings are shown in Table 6.2. 
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Figure 6.15 - ZigBee readings and cluster centre (x1: bedroom1 reader, x2: 

bedroom2 reader, x3: kitchen reader, and x4: bathroom reader).
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Table 6.2 - Fuzzy C-Means cluster centres.

Clusters 
Reader 1

(Bedroom 1) 

Reader 2

(Bedroom 2)

Reader 3

(Kitchen)

Reader 4

(Bathroom)

1- Tag in 
Bedroom 1 189.71 185.11 184.42 184.34

4- Tag in

Bedroom 2
180.85 186.06 175.04 183.46

3- Tag in 
Kitchen 169.04 174.12 185.85 178.99

4- Tag in

Bathroom
183.18 184.33 180.02 201.11

In a Silhouette diagram like Figure 6.16, the surface of each cluster shows the number 

of data points in that cluster. So, more data points in a cluster, bigger surface the cluster  

will have in the diagram. In a Silhouette diagram a data point's degree of belonging to a 

cluster can be negative or positive. If a data point is more positive, then the data belongs 

to its cluster with more confidence. On the other hand, data points with negative degree 

of belonging would be known as a data  point  with no cluster.  After  finding cluster 

centres, 200 test data points with known areas associated with them collected from four 

areas were classified to the found clusters. 

The  test  data  was  successfully  classified  with  86.5%  of  accuracy  for  finding  the 
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Figure 6.16 - Fuzzy C-Means Cluster Degrees.
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occupied area. Hence, the uncertainty was reduced to 13.5% by applying the regional 

clustering explained in Section 6.4.3. 

6.6 Summary and Discussions

The idea of occupancy detection in the environments with more complicated situation 

compared  with  single-occupant  environment  was  addressed  in  this  chapter.  It  was 

proposed to use RSSI-based tagging technologies such as active RFID and WSN to 

reduce the problem of occupancy detection in multiple-occupancy situation. Hence, a 

number  of  tagging technologies  were tested  in  a  series  of  measurements.  It  can  be 

summarized from the distance-based measurements that the accuracy and reliability of 

the RSSI-distance measuring varies over the distance between tag and reader and is 

affected  by  many  interfering  factors.  It  was  also  suggested  that  by  using  tagging 

technologies and separating the occupancy signal derived for each tagged inhabitant, 

their  occupancy signal  as  time-series  can  be  analysed  and  predicted  by  time-series 

prediction techniques. The tagging technologies using RSSI were shown to be potential 

for uncertainties due to the nature of radio signal strength measures used for tagging. 

So, a number of resolutions to reduce this problem was suggested, their theories were 

explained and experimented and the results were reported. 

The integration of tagging technology with wireless sensory agents for creating wireless 

localising sensory agents reported in this chapter is a simple way of equipping the data 

acquisition system explained in Chapter 4 with the tools required to deal with more 

complicated situation  in  PaIEs.  The importance of  such data  acquisition  system i.e. 

WLSAs is more highlighted when for example the monitored elderly lady's apartment is 

occupied by other people such as visitors where WSAs are not able to separate elderly 

lady's occupancy signal from others' activities.

The  solutions  proposed  in  this  chapter  for  reducing  the  uncertainty  in  tracking  the 

tagged  inhabitant  such  as  zoning  and  regional  clustering  were  able  to  reduce  the 

uncertainty  of  RSSI  occupancy detection  by  WLSAs  from 21.5% down to  13.5%. 

Despite the performance of these solutions the uncertainty remains a problem which 

degrades the accuracy of the data acquisition system. It  is  also proposed to support 
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WLSAs for RSSI occupancy detection with other signals such as passive RFID signals 

which can be explored as a future work in the field.

In the multiple-occupancy monitoring proposed in this chapter is independent of the 

number of occupants or visitors. It can be inferred from the application purpose of this 

thesis, which is to monitor people who live alone,  by tagging the monitored elderly 

his/her occupancy signal can be separated from others.
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7.1 Summary

The research was conducted  to  enhance the  efforts  for  the development  of  ambient 

intelligent environments. It was focused on a particular aspect in smart environments 

which can assist intelligent techniques to discover the pattern of behaviours for residents 

living  or  working  in  the  environment  i.e.  occupancy  monitoring  and  prediction  in 

ambient intelligent environment. It was shown that the occupancy monitoring can play 

an important  role for extracting the behavioural  pattern of occupants.  In addition to 

pattern extraction, the occupancy monitoring and prediction can assist in predicting not 

only  the  occupancy  of  the  environment  but  also  the  behavioural  pattern  of  the 

occupants.  Therefore,  in  this  research,  it  was  aimed to produce a  proper  occupancy 

signal for prediction by investigating data collection mechanism, signal analysis and 

prediction techniques. 
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This  was  achieved  by  initially  proposing  a  data  acquisition  system  for  collecting 

occupancy data from real environments. In the data acquisition system, simple sensory 

devices were interconnected in a wireless sensor network as wireless sensory agents. 

Collected occupancy data from single-occupant environments was represented in binary 

format.  The  digital  characteristics  of  the  collected  data  were  a  challenge  for  the 

prediction, therefore, a new data representation by combining separate sensory readings 

and filtering the combined signal was proposed. It was shown that the final signal is a 

time-series  which  incorporates  both  the  location  and  the  time  in  a  spatio-temporal 

manner. The significance of the technique was shown to be highlighted by the capability 

of applying powerful time-series prediction techniques for the application of occupancy 

prediction.

Secondly, the characteristics of the occupancy signal were considered to create a model 

of  occupancy  using  statistical  modelling.  The  model  was  created  based  on  the 

occupant's movements in the environment and the time spent in each area. The daily 

movement pattern of the occupant, the layout of the environment, and the uncertainties 

in  her/his  movements  pattern  including  movement  and  duration  uncertainties  were 

incorporated in the occupancy model. Hence, a signal generator was created to produce 

sufficient  amount  of occupancy data  needed for  test  and comparison amongst  time-

series prediction techniques.

Thirdly,  the  problem  of  creating  an  occupancy  signal  in  a  multiple-occupant 

environment or in a single-occupant environment in presence of visitors was addressed 

to make the occupancy detection and prediction more generalised. Tagging technologies 

were compared to measure the accuracy of occupants' identification in the environment. 

The  ideas  of  area  occupancy  detection,  zoning,  and  regional  clustering  were 

incorporated  to  tackle  the  uncertainty  in  the  tagging  mechanisms.  Hence,  the  data 

acquisition  system  proposed  for  single-occupant  environments  i.e.  wireless  sensor 

agents  was  modified  to  wireless  localising  sensory  agents  capable  of  identifying 

occupants and distinguishing amongst them. As a result, a separate occupancy signal 

was extracted for each occupant.  
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7.2 Concluding Remarks

The  proposed  solutions  for  occupancy  detection,  prediction,  and  modelling  in  this 

research bring advantages to the field which are explained below:

• Firstly,  the focus of the research was the area occupancy. Instead of tracking 

exact location of living objects, the idea of the occupancy of areas was proposed 

and  investigated.  Although  dealing  with  exact  location  of  objects  is  very 

interesting in the field of PaIEs, it is not required in most of the applications in 

PaIEs.  Therefore,  the  idea  of  area  occupancy proposed  in  this  research  can 

adequately address the requirements of the PaIE in elderly people behavioural 

monitoring  whereas  other  techniques  such  as  LANDMARC  [57],  [58] and 

Fingerprinting [59] try to find the exact location of objects. Moreover, using the 

techniques  suggested  in  this  research,  the  uncertainties  arising  from  the 

techniques dealing purely with the exact location of objects in the environment 

(such as LANDMARC and Fingerprinting) can be reduced remarkably,

• Secondly,  using  simple  sensory  devices  and  communication  mechanism has 

made the data acquisition system proposed and implemented in the research an 

inexpensive, unobtrusive, and expandable data collection system compared with 

other techniques such as those using visual equipment. These sensory devices 

such  as  PIRs  which  currently  exist  in  the  buildings  with  even  a  very  little 

intelligence  have  not  been  used  for  occupancy  detection  except  in  a  few 

researches such as  [45] and  [56]. However, this work represents an alternative 

approach to [45] and it deals with the location of occupant instead of number of 

occupants as in [56].

• Thirdly,  the simple data  analysis  and preprocessing required  for  creating the 

occupancy signal suitable for prediction has made it a quick and less processor 

hungry signal  reshaping technique compared to the techniques which require 

visual data analysis,

• Fourthly, the research was comprehensive in addressing different issues related 

to the occupancy of areas in an ambient intelligent environment. Considering 

single-occupant  and  multiple-occupant  situations,  their  related  issues  were 
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explained and addressed properly in the research. This separation has not been 

considered in the literature whereas considering it can categorise environments 

based  on their  occupancy situation.  It  can  reduce  the  resources  required  for 

occupancy detection  and prediction  in  terms  of  equipment  for  detection  and 

tagging occupants, 

• Fifthly, the multiple-occupancy monitoring proposed in Chapter 6 is independent 

of the number of occupants or visitors. In comparison with [67], which tries to 

identify and distinguish between two occupants, the number of occupants is not 

restricted in the solutions of this chapter,

• Moreover, the approach for the occupancy modelling was developed on the idea 

of occupancy signal representation for which there is not any similar work in the 

literature. This model can play an important role in understanding and analysis 

of  the  occupancy  situation  in  the  environment.  The  occupancy  modelling 

reported in  [61] lacks the requirements for  occupancy modelling in  different 

environments with a number of areas for different occupants. These issues are 

addressed in the occupancy model proposed in this research by which flexibility 

of different environments as well as different people with various behavioural 

parameters  can  be  incorporated  in  the  simulation  which  is  a  significant 

contribution to the field,

• Finally,  the application of the research as a way to improve the life style of 

elderly people and the people with physical and mental impairments who want 

to  live  on  their  own  property  has  always  been  considered.  The  issues  and 

problems related to the application are addressed in this thesis.  

The  data  acquisition  system proposed and implemented  in  Chapter  4  is  one  of  the 

approaches in the field of ambient intelligent environment which brings a number of 

advantages and disadvantages.  Using simple sensory devices such as PIRs and door 

contact sensors with ZigBee wireless communication have made the data acquisition 

system inexpensive, simple, flexible, and expandable for occupancy data collection. The 

data acquisition is also unobtrusive and so does not interfere with occupants' daily life. 

Moreover,  wireless  sensory agents  have  been implemented  in  a  way that  integrates 

141



Conclusions

sensors, communication, and processing unit which makes them easy for further needed 

expansions.  On the other hand, the data acquisition system proposed in Chapter 4 lacks 

the utilisation of the agents' processing capability due to the data analysis and prediction 

centralised more in the base station.

The data representation technique for converting digital motion signals to a continuous 

occupancy time-series has made it possible to apply time-series prediction techniques 

for  occupancy prediction.  One  might  conclude,  the  techniques  to  be  a  potential  to 

information loss; however, a good interpretation of the filtered data has eliminated the 

loss and the wrong interpretation of occupancy signal.

Using the data representation proposed in Chapter 4, the prediction techniques including 

ANFIS and ARMA were shown capable of predicting the occupancy signal in a virtual 

environment for up to 900 second (15 minutes) ahead. The occupancy data collected 

from the elderly-living environment was predicted up to 510 seconds by ANFIS and up 

to 530 seconds by ARMA. Both predictors predicted the virtual data better  than the 

actual collected data due to the nature of two signals. In the virtual occupancy signal,  

the uncertainty of occupant's movement was not considered and the signal durations 

involved more similarity compared with the real situation.

Due to the applications arising from the research, the prediction can be beneficial for 

lonely living occupants and occupants who are in the need of support and monitoring. 

So, duration of prediction even shorter than that achieved in Chapter 4 i.e. 530 seconds 

ahead can be considered vital in some applications. As an example, identification of 

occupancy situation in an elderly lady's apartment and comparing it with expected or 

predicted occupancy situation can change the level of awareness for the health of the 

monitored occupant; therefore, persons in charge for her/his health monitoring can be 

prepared for the situation.  

Although several  influencing factors  in  human behaviour  have made modelling  this 

behaviour very difficult, it was shown in Chapter 5 that the simplification of situations 

can make it feasible to approach. The focus on a particular behaviour such as movement 

pattern of persons with less uncertainty in their daily activity e.g. elderly people made 

the  occupancy modelling  more  possible.  The  signal  generator  created  based on the 

model has proved to be a good means for generating as much as occupancy signal as as 
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required,  incorporating  different  occupant  and  environmental  profiles.  Using  a 

validation scheme proposed in Chapter 5, it was shown that the model can converge to 

the parameters of the generated data successfully. Evaluation of the simulator against 

the occupancy signal created from the data collected from a real environments showed 

that the model can find values for uncertainty parameters. Using these values, it was 

proved that the signal generated by the simulator has more similarity to the real data 

rather than other signals with different values for the uncertainty parameters.  

However,  although  the  model  explained  in  Chapter  5  can  be  a  good  simulator  of 

occupancy  signal  in  a  single-occupant  environment,  it  does  not  bring  sufficient 

confidence to claim that the simulator explained in the chapter can be a perfect model 

for the occupancy behaviour of any person with any profile. However, the simulator can 

generate  sufficient  occupancy data  required  to  test  and verify time-series  prediction 

techniques for the prediction of the occupancy signal explained in Chapter 4.

The  idea  of  occupancy  detection  in  single-occupant  environments  was  extended  to 

multiple-occupant environments in Chapter 6. It was shown that tagging technologies 

can assist to create an occupancy signal for each person in the environment; hence, the 

occupancy  detection  and  prediction  in  multiple-occupant  environments  became 

possible. It can be concluded from the chapter that the tagging mechanisms can bring 

uncertainties relevant to the characteristics of the radio signal. However, the solutions 

proposed and experimented in Chapter 6 have been able to reduce this problem. The 

installation of wireless localising sensor agents in appropriate locations in monitored 

areas and a regional clustering approach could identify the location of the monitored 

occupant with 86.5% accuracy in multiple-occupant situation.  It can also be inferred 

from the application purpose of this thesis, which is to monitor people who live alone, 

by tagging the monitored elderly his/her occupancy signal can be separated from others. 

However,  the  approach  reported  in  [67] can  deal  with  more  than  one  occupant 

simultaneously  which  is  beneficial  in  several  applications.  On  the  other  hand,  the 

approach can be impractical when the number of occupants or visitors increases.
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7.3 Future Works

The  idea  of  occupancy detection  and  prediction  in  ambient  intelligent  environment 

proposed  and  investigated  in  this  research  can  be  expanded  for  future  research 

investigations and technological approaches as follow:

• The  occupancy pattern  extraction  explained  can  be  expanded  to  behavioural 

pattern extraction. For example, monitoring other activities, and to extract the 

daily pattern of the activities such as activities which can be dependent on the 

occupancy pattern,

• It  is  clear  that  the  prediction  works  if  there  is  a  pattern  in  the  behaviour; 

therefore, the prediction of behavioural pattern is not feasible if there is not a 

pattern  in  the  behaviour.  In  the  research,  the  focus  of  the  work  was  on 

monitoring and prediction of occupancy for persons with a good daily pattern 

with  more  certainty  in  their  behaviour.  However,  finding  solutions  and 

expanding the work to  the prediction of  the behaviour  for  persons  with less 

certainty can be a good direction for future work,

• The prediction time achieved in this research is also a potential for expansion 

using alternative prediction techniques or a fusion of data analysis  and time-

series prediction for future works,

• The strength of higher types of fuzzy system such as type-2 fuzzy should be 

considered in future works. Type-2 fuzzy can model and minimise the effect of 

uncertainties with more degree of freedom. Hence, it is suggested to incorporate 

type-2 fuzzy in the ANFIS model to create a more suitable model for single 

occupancy prediction,

• The data collection in the research was distributed in a wireless sensor network 

but  the  data  analysis  and prediction  was  performed in  the  base  station  as  a 

centralised system. The distribution of data analysis using potential precessing 

power of WSAs or WLSAs is also a direction for future works,

• The real  data  used  for  the  evaluation  of  the  hypothesis  in  this  thesis  is  not 
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sufficient  when  the  long-term  behaviour  of  the  occupant  is  concerned. 

Therefore, as a future work, collecting large data sets i.e. for couple of months or 

years can help in understanding seasonality and trend in the occupancy data,

• Expanding the occupancy signal simulator to a model covering other activities in 

an ambient intelligent environment is a potential for further investigations,

• Tagging approaches investigated for tracking objects are not yet accurate and 

efficient enough; hence,  alternative approaches in an inexpensive manner are 

still potential for investigations,

• Due to  the  potential  market  for  elderly care,  health  monitoring,  and  similar 

applications, the data acquisition including the monitoring portal has potential 

for developing a web based portal. In addition, the system can be made to learn 

from daily movements in the environment and predict the occupancy pattern. So, 

the  expected  occupancy  signal  can  be  compared  with  the  actual  occupancy 

signal to find the abnormalities in the behaviour of the monitored occupants. 

Hence, the whole work has feasible potential for a reliable framework to reduce 

the  time  spent  by  carers,  nurses,  and  children  for  monitoring  the  healthy 

conditions of their patients or parents reducing stress and concerns related to 

their duties,

• As a consequence of this  work,  the school  of science and technology in the 

Nottingham Trent University is developing an intelligent office laboratory. This 

laboratory is being equipped with a WSN of different types of sensors such as 

motion  detection,  door  contact,  light  intensity,  temperature,  humidity,  and 

pressure sensors as a test-bed. In addition, other data acquisition systems are 

being installed to equip the test-bed with both wired and wireless technologies 

for  data  collection.  Moreover,  a  number  of  controllable  appliances  such  as 

electric curtains, dimmers, switches, etc. are being employed in the laboratory. 

The idea of automatic control in an intelligent environment by optimising the 

energy  usage  and  occupants'  comfort  will  be  explored  in  the  university's 

intelligent office test-bed. 
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Appendix A: Data Acquisition Prototype

A.1 Wireless Sensory Agent (WSA)

For creating a data acquisition system, due to the features of wireless sensor network 

mentioned  in  Chapter  3,  an  XBee  wireless  network  chip  which  employs  ZigBee 

protocol  was chosen.  Chosen XBee wireless  network module was integrated with a 

micro-controller  to  create  a  Wireless  Sensory Agent  (WSA).  A connection  terminal 

interfaced with micro-controller on the WSA is a mean to connect any type of digital 

and analogue sensors (Figure A.1). The micro-controller on the wireless sensory agent 

can be programmed to read sensory data with a complete control on sample rates and 

the status of the connected sensors. For instance, the micro-controllers on every WSA 

are programmed to trigger on the state change of digital sensory devices such as PIRs 

and door contact sensors. On the other hand, for analogue sensors like temperature and 

light intensity sensors, a sampling method is applied and there is no data transmission if 

there is no reading changes. Therefore, the overhead of the data transmission is reduced. 

The XBee module on WSA is responsible for communication of the data read by the 

sensor. So, any data reported for transmission is sent to the XBee module via its serial 

connection with micro-controller. Then the read data is sent as a packet (using IEEE 

802.11.54 standard) to a destination which can be either the base station or other WSAs. 

The XBee module on WSA has a unique identification address and a unique destination 

Figure A.1 - Wireless Sensory Agent.
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address that enable the communication among XBee devices and consequently among 

WSAs possible. 

In  an  optimum  scenario,  all  wireless  sensory  agents  communicate  with  a  wireless 

receiver agent (Figure A.1) connected to a desktop PC or laptop as the base station (star 

topology, see Figure 3.2). However, in the intelligent environment, some WSAs can act 

as repeaters which receive messages from one agent and passes it to another wireless 

sensory agent (tree topology, see Figure 3.2). The need for repeater is more likely in the 

case of long distances or obstructions in the environment which have negative impacts 

on the communication among WSAs. 

For power saving purposes i.e. battery life in WSAs which is a key issue for keeping the 

intelligent  system  running  without  interruption,  every  XBee  module  has  a  sleep 

operation mode. In the sleep mode, the XBee module's radio transmitter is switched off. 

In this mode, an asserted signal level can alter the mode of the XBee module from sleep 

to ready for communications.

The micro-controllers on WSAs are programmed to keep the XBee module in power 

saver (sleep) mode until a new data is available  [87],  [132]. Hence, the battery life of 

every  wireless  sensory agents  is  saved  if  there  is  nothing  to  transmit.  This  feature 

reduces the energy consumption; hence, the time spent for maintenance purposes. 

A.2 Monitoring Portal

Using Microsoft Visual C# programming language, a monitoring software interface was 

developed. The monitoring portal is designed to visualise and log the raw data from the 

receiver agent on the base station. The raw data is sent to receiver agent by wireless 

sensory agents installed in a target intelligent environment.  The monitoring portal  is 

designed with flexibility for altering number and type of the sensors in any preferred 

configuration in which an XML file as configuration file can apply these changes. 

The monitoring portal has a layout of the monitored environment with different sensors 

located for each area. For example, in a virtual elderly-living flat shown in Figure A.2, 

the  occupancy  of  four  areas  namely,  bedroom,  corridor,  lounge,  and  kitchen  were 

monitored by the installed WSAs of PIR sensors. The entrance door and the bathroom 
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door  were  also  monitored  using  WSAs  of  door  contact  sensors.  In  addition,  a 

temperature and a light intensity sensors were installed in bedroom and lounge.

Any sensory data received from wireless sensory agents contains a sensor id (address) 

and an actual sensor value. In the monitoring portal the location and type of the sensor 

is identified by its address and its data is visualised in the graphic user interface of the  

monitoring portal and logged in a database file with the format of  (Date, Time, Sensor  

Id,  Sensor  Data).  Therefore,  the  logged  data  can  be  used  by  intelligent  control 

mechanism for learning and decision making. A snapshot of the monitoring portal is 

depicted in Figure 2.

The WSAs along with the monitoring portal are used in as a data acquisition system for 

occupancy data collection described in Chapter 4.

A.3  Wireless  Localising  Sensory  Agents  (WLSA)  and 

Monitoring Portal

WSAs  are  modified  to  create  WLSAs  Figure  A.3 for  the  application  of  tagging 

occupants and localising them in their living/working environment. 
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Figure A.2 - A Screen shot of the Monitoring Software Interface.
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The modified monitoring portal Figure A.3 compares received signal strength from the 

tagged occupant received by WLSAs and identifies the area occupied by the tagged 

person after some localising processes such as regional clustering explained in Chapter 

6. 
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Figure A.3 - WLSA and Monitoring Interface. 



Appendix B: Simulator's User Interface

Using the behaviour  modelling algorithm explained  in Section 5.2 of Chapter  5,  an 

occupancy signal generator is implemented. This application generates an occupancy 

signal based on different designs of the environment as well as different behaviours of 

occupants. A snapshot of the occupancy signal generator is shown in  Figure B.1. The 

simulator's  user  interface (SUI) is  a  graphical  interface which allows users to  input 

desired parameters into the model. 

The environment profile section in SUI accepts the number of areas in the environment 

and the connections amongst  these areas.  In  the occupant  profile  section,  users can 

specify expected daily pattern with the expected durations. It also accepts the movement 

and duration uncertainties in the occupant profile section. By setting the parameters and 

specifying  the  number  of  days,  a  blue-coloured occupancy signal  will  be generated 

along with a green-coloured dashed expected occupancy pattern.  The signal generator 

implemented in this section can generate a simulated occupancy data for prediction if 

the  expected  pattern  of  behaviour,  expected  mean durations,  and uncertainty in  the 

pattern is assigned accurately. This is feasible if the simulated data is validated by the 

real data collected from the simulated environment.

Figure B.1 - Simulator's User Interface.
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ZigBee is a wireless network standard which is designed to meet the requirements of 

sensors and control devices. These devices do not need high bandwidth but low latency 

and low energy consumption.  ZigBee technology is  also  suitable  for  other  wireless 

communication applications that require low cost and low energy consumption. More 

importantly, ZigBee as a standard can provide a unique communication standard that 

can realise the interoperability amongst wireless applications. In this manner, ZigBee 

Alliance does not push the technology, but provides a standardised base set of solutions 

for different wireless applications [137].

C.1 ZigBee/IEEE 802.15.4 - General Characteristics

• Dual physical layer frequency (2.4 GHz and 868/915 MHz),

• Data rates of 250 kbps (@ 2.4 GHz), 40 kbps (@ 915 MHz), and 20 kbps (@ 

868 MHz),

• Optimised for low duty-cycle applications (<0.1%),

• CSMA-CA channel access: Yields high throughput and low latency for low duty 

cycle devices like sensors and controls,

• Low power (battery life multi-month to years),

• Multiple topologies: star, peer-to-peer, mesh,

• Addressing space of up to: 18,450,000,000,000,000,000 devices (64 bit IEEE 

address) 65,535 networks,

• Optional guaranteed time slot for applications requiring low latency,

• Fully handshaking protocol for transfer reliability,

• Range: 50m typical (5-500m based on environment).

C.2 ZigBee Supported Network Topologies

In  order  to  allow  producers  to  supply  the  lowest  possible  cost  devices,  the  IEEE 

standard  defines  two  types  of  devices  namely,  Full  Function  Devices  (FFD)  and 

Reduced Function Devices (RFD) for three network topologies including star, peer-to-

peer and cluster tree.(Figure C.1)
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Full function device (FFD)

• Can function in any topology,

• Capable of being the Network coordinator, 

• Capable of being a coordinator,

• Can talk to any other device.

Reduced function device (RFD)

• Limited to star topology,

• Cannot become a network coordinator,

• Talks only to a network coordinator,

• Very simple implementation. 

C.3 ZigBee Addressing Modes

• Star: Network + Device Identifier (for PAN coordinator),

• Peer to peer: Source/Destination Identifier.
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Figure C.1 - ZigBee network topologies.[137]
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C.4 Frame Structure

The IEEE 802.15.4 Media Access Control (MAC) defines four frame structures:

• A beacon frame, used by a coordinator to transmit beacons,

• A data frame, used for all transfers of data,

• An acknowledgement frame, used for confirming successful frame reception,

• A MAC  command  frame,  used  for  handling  all  MAC  peer  entity  control 

transfers.

C.5 Super Frame Structure

For low latency applications or applications requiring specific data bandwidth, the PAN 

coordinator may dedicate portions of the active superframe to that application. These 

portions are called guaranteed time slots (GTS).  

C.6 ZigBee Network Model

A general architecture of ZigBee wireless network is illustrated in Figure C.4.
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Figure C.3 - ZigBee superframe structure.[137]
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The ZigBee Network Coordinator

• Sets up a network,

• Transmits network beacons,

• Manages network nodes,

• Stores network node information,

• Routes messages between paired nodes,

• Typically operates in the receive state.

The ZigBee Network Node

• Designed for battery powered or high energy savings, 

• Searches for available networks,

• Transfers data from its application as necessary,

• Determines whether data is pending,

• Requests data from the network coordinator,

• Can sleep for extended periods.

C.7 Mac Data Service Diagram

The non-beacon communication flow is shown in Figure C.5.
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Figure C.4 - ZigBee network model.[137]
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The beacon communication flow is depicted in Figure C.6.

B.8 ZigBee Stack

The ZigBee network stack consists of physical, medium access control, network, and 

application layers. This layer stack is illustrated in Figure C.7.

ZigBee Communication Security

In its MAC layer, ZigBee uses a security mechanism to secure MAC command, beacon, 

and acknowledgement frames. ZigBee may secure messages transmitted over a single 

hop using secured MAC data frames, but for multi-hop messaging ZigBee relies upon 

upper layers (such as the network layer) for security [137]. In MAC layer, ZigBee uses 

the  Advanced  Encryption  Standard  (AES)  as  its  core  cryptographic  algorithm  and 

describes a variety of security suites that use the AES algorithm. These suites are to 
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Figure C.5 - Non-beacon communication.[137]
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protect the confidentiality, integrity, and authenticity of frames. 

Network Layer

The ZigBee network layer is responsible for:

• Starting a network,

• Joining and leaving a network,

• Configuring a new device,

• Addressing,

• Synchronisation within a network,

• Security, and

• Routing.

Application layer

The application layer in ZigBee stack consists of APS sub-layer, ZigBee Device Object 
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Figure C.7 - ZigBee stack.[137]
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(ZDO), and the manufacturer-defined application objects. The APS sub-layer  maintains 

tables for binding, which is for matching two devices together based on their services 

and their needs, and forwarding messages between devices. In addition, the APS sub-

layer  is  responsible  for  the  discovery  of  other  devices  operating  in  the  personal 

operating space of a device. In the application layer, ZDO is the responsible for defining 

the role of the device within the network (e.g., ZigBee coordinator or end device). It 

also  initiates  and/or  respond to  binding requests  and establish  a  secure  relationship 

between network devices. The manufacturer-defined application objects implement the 

actual applications according to the ZigBee - defined application descriptions [137].

ZigBee Device Object

• Defines the role of the device within the network (e.g. ZigBee coordinator or 

end device), 

• Initiates and/or responds to binding requests,

• Establishes  a  secure  relationship  between  network  devices  selecting  one  of 

ZigBee’s security methods such as public key, symmetric key, etc.

Application Support Layer

This layer provides the following services:

• Discovery: The ability to determine which other devices are operating in the 

personal operating space of a device,

• Binding: The  ability  to  match  two or  more  devices  together  based  on their 

services and their needs and forwarding messages between bound devices.
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