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Abstract  

Helical gears are widely used in gearboxes due to its low noise and high load carrying 

capacity, but it is difficult to diagnose their early faults based on the signals produced 

by condition monitoring systems, particularly when the gears rotate at low speed. In 

this paper, a new concept of Root Mean Square (RMS) value calculation using angle 

domain signals within small angular ranges is proposed. With this concept, a new 

diagnosis algorithm based on the time pulses of an encoder is developed to overcome 

the difficulty of fault diagnosis for helical gears at low rotational speeds. In this 

proposed algorithm, both acceleration signals and encoder impulse signal are acquired 

at the same time. The sampling rate and data length in angular domain are determined 

based on the rotational speed and size of the gear. The vibration signals in angular 

domain are obtained by re-sampling the vibration signal of the gear in the time domain 

according to the encoder pulse signal. The fault features of the helical gear at low 

rotational speed are then obtained with reference to the RMS values in small angular 

ranges and the order tracking spectrum following the Angular Domain Synchronous 

Average processing (ADSA). The new algorithm is not only able to reduce the noise and 

improves the signal to noise ratio by the ADSA method, but also extracts the features 

of helical gear fault from the meshing position of the faulty gear teeth, hence 

overcoming the difficulty of fault diagnosis of helical gears  rotating at low speed. The 

experimental results have shown that the new algorithm is more effective than 

traditional diagnosis methods. The paper concludes that the proposed helical gear 

fault diagnosis method based on time pulses of encoder algorithm provides a new 

means of helical gear fault detection and diagnosis. 
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1 Introduction 

Several methods exist in literature and in industry for gear fault diagnosis such as the 

time domain parameters method based on the variation of vibration amplitude (the 

RMS value, kurtosis, margin, etc.), the time domain synchronous averaging method 

based on the internal clock and the external clock, the modulation and demodulation 

analysis method based on the spectrum analysis, the adaptive-filtering method, the 

wavelet analysis method with transient nonlinear analysis, and the method of artificial 

intelligence. 

Sajid et al.1 proposed an adaptive features extraction algorithm for real time gear fault 

detection and integration of different techniques based on a combination of 

conventional one-dimensional and multi-dimensional search methods to detect faults 

in real time. Junsheng Cheng et al.2 put forward a gear fault diagnosis method based 

on order tracking technique and local mean decomposition, which targeted the 

modulation feature of gear fault signal where fault characteristics found in gear fault 

signal were often related to the shaft’s revolution in the transient process. Ales Belsak 

and Joze Flasker 3 used a new family of bi-orthogonal wavelets to determine cracks in 

gears, in which smoothness was controlled independently and discrete finite variation 

was used to optimise the synthesis bank. Roberto Ricci and Paolo Pennacchi4 studied 

diagnostics of gear faults based on EMD and introduced a merit index that allowed the 

automatic selection of the intrinsic mode functions that should be used. F. Combet and 

L. Gelman5 applied the optimal de-noising filter based on the spectral kurtosis to 

detect local tooth faults. Raja Hamzah6 studied the influence of operating condition on 

acoustic emission (AE) generation during meshing of helical and spur gears. 

The pattern classification is also found important in gear monitoring. Wilson Wang et 

al.7 developed an integrated classifier for gear system monitoring which was 

performed by a neural fuzzy scheme. An online hybrid training technique was adopted 

based on recursive Levenberg-Marquet and least-squares estimate (LSE) algorithms to 

improve the classifier convergence and adaptive capability to accommodate different 

machinery conditions. H. Endo et al.8 presented a technique to differentially diagnose 

two types of localized gear tooth faults, a spall and a crack in the gear, using a static 

analysis model to compare the changes in the kinematics of a meshing gear pair due 

to the two gear fault. N. Saravanan9 studied the use of discrete wavelets for feature 

extraction and a Decision Tree for classification.  

Monitoring of the evolution of fault severity is equally important. S. Loutridis10 

presented a method for monitoring the evolution of gear faults based on the 

calculation of local energy density and the results showed that the local energy was a 

sensitive feature for assessing the fault magnitude and there was relationship between 

the energy content and the depth of the crack. S.J. Loutridis11 presented a method for 

monitoring the evolution of gear faults based on empirical mode decomposition; and 

developed a theoretical model for a gear pair with a tooth root crack establishing an 

empirical law relating the energy content of the intrinsic modes to the crack magnitude. 

C.James Li and J.D. Limmer12 proposed a method that used linear dynamic modeling 



 

 

to track the development of gear wear and tooth fatigue crack. 

The existing methods, as outlined above, are not applicable to the fault diagnosis of 

low-speed helical gear, especially for the identification of early faults. There are two 

reasons: 1) the mesh impulse generated from the local fault on the gear is very small 

and the features are further difficult to be identified when coupled with the signals 

from shafts and bearings; 2) for the early stage of gear fault, local fault only occurs at 

one tooth or a few teeth, while other teeth are in normal meshing. In this case, 

differences can be only observed when the faulty teeth are in mesh action, and this 

tiny difference is easy to be covered by the noises generated from the normal vibration 

of the gear and bearing and other components making it difficult to be identified. 

Therefore, this work will address the way to accurately extract the feature signals of 

localized tooth faults, particularly the early fault characteristics of low-speed helical 

gear. In order to solve the problem, a new algorithm of angular domain sampling and 

feature extraction rules based on time impulses of encoder is proposed in this paper. 

Order tracking analysis based on the Angular Domain Asynchronous Averaging (ADSA) 

is introduced to detect the localized tooth faults in the very early stage for the low-

speed helical gears, so that the maintenance can be readily performed before a 

catastrophic failure happens. 

This paper consists of five parts: reviews of the research topics regarding the gear fault 

diagnosis where the motivation to form this paper is introduced. Then, the problem of 

helical gear fault diagnosis is formulated in the second section. The new algorithm of 

helical gear fault under the low rotation speed is introduced in section 3 and its 

experimental results and analysis results are outlined in section 4 which is followed by 

the conclusions in section 5. 

2 Problem formulation 

The currently used time series and angular domain sampling methods for determining 

fault features are all based on the analysis of the integral signal of gear mesh. In order 

to improve the diagnosis ratio of gear fault under a low rotation speed, the vibration 

mechanism of gear fault at different meshing positions must be investigated in detail. 

Figure 1 shows a schematic diagram of the normal and faulty mesh action of a helical 

gear pair. The meshing positions for the faulty tooth and normal tooth are represented 

by A and B respectively. It can be seen that, except for the faulty tooth, the other teeth 

of the large helical gear O1 will all be in normal meshing with their counterparts. 

http://dict.youdao.com/search?q=helical&keyfrom=E2Ctranslation
http://dict.youdao.com/search?q=gear&keyfrom=E2Ctranslation


 

 

 

Figure 1: Schematic diagram of the normal and faulty mesh of pair of helical gears 

 
Figure 2: Different positions for a faulty tooth in mesh 

Figure 2 presents a detailed description of different positions when the faulty tooth is 

in mesh. Figure 3 shows the variation of the meshing stiffness. It is well known that 

there will be a localized reduction in the gear mesh stiffness Ks when the localized 

faulty gear tooth (including tooth crack, pitting, spalls, etc.) comes into mesh, and this 

localized reduction in Ks leads to the changes of the dynamic response predicted by 

the gear meshing dynamic model, as shown in Figure 4. The vibration characteristics 

are thus changes according to Eq. (1). If the changes of vibration arise from the normal 

meshing action, it is called regular vibration and is the main factor for gear vibration. 

If these changes of vibration are caused by the faulty teeth meshing, it is called 

abnormal gear vibration. The purpose of fault diagnosis is to identify this abnormal 

vibration. However, the associated vibration energy is very small and the vibration is 

always coupled with other motions, especially for a low-speed helical gear with large 

loading capacity.   

To further understand the mesh and vibration characteristics of the faulty tooth, the 

generated impulse during the meshing process is studied using Figure 2. The local 

mesh positions for the faulty tooth in Figure 2 (a), (b) and (c) are represented by 

position 1, 2 and 3, respectively. It can be seen that the teeth are in single-edge contact 

for position 1 and 3, while are in double-edge contact for position 2. The mesh stiffness 

for position 1, 2 and 3 are also changes in the faulty area. 

http://dict.youdao.com/search?q=helical&keyfrom=E2Ctranslation
http://dict.youdao.com/search?q=gear&keyfrom=E2Ctranslation


 

 

 

Figure 3: Variation of the gear mesh stiffness for a normal gear and a faulty gear 

 

.Figure 4: Dynamic model of a pair of gears in mesh13  

The governing equations of motion for the dynamic model shown in Figure 4 are: 

{
𝐽1𝜃̈1 + 𝑅𝑏1𝑐(𝑅𝑏1𝜃̇1 − 𝑅𝑏2𝜃̇2 − 𝑒̇) + 𝑅𝑏1𝑘𝑠(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑒) = 𝑇1

𝐽2𝜃̈2 − 𝑅𝑏2𝑐(𝑅𝑏1𝜃̇1 − 𝑅𝑏2𝜃̇2 − 𝑒̇) − 𝑅𝑏2𝑘𝑠(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑒) = −𝑇2
        (1)                                                             

where J1 and J2 are the inertia moment of drive and driven gear respectively, Rb1 and 

Rb2 are the base radius of drive and driven gear respectively, c is the damping ratio, θ1 

and θ2 are the rotating angle of drive and driven gear respectively, Ks is the mesh 

stiffness and e is the transmission error. The values of mesh stiffness Ks and 

transmission error, e, change in the occurrence of gear fault. 

From the above analysis, it can be seen that this is obviously different from the 

mechanism of abnormal vibration, which is induced only from faulty gear mesh. 

However, the existing time series sampling methods for determining fault features are 

all based on the analysis of the integral signal of gear mesh, hence this is one of the 

reasons for the difficult fault identification of low-speed helical gear. Although the 

angular sampling method can remove the nonlinearity of time series signal resulting 

from the variation of load and velocity, very little treatment of the relationship 

between sampling points in angular domain and faulty gear mesh is available. This is 

also the reason for the low performance of time scale and non-time scale angular 



 

 

method in fault extraction.  

3 A new fault diagnosis algorithm for helical gear rotating at 

low speed 

In this section, the calculation of the RMS values based on the physical structure of the 

gear using the encoder is introduced to improve the sensitivity in detecting faults in 

gears. Several other analyzing methods based on the angular-domain signal are 

intensively introduced. 

3.1 Calculation of RMS values at small angular ranges in one revolution  

The Root Mean Square (RMS), also known as virtual value, is a significant indicator to 

determine whether a mechanical system is working normally or not. It mainly reflects 

the energy of the signal, and has a high virtue of stability and repeatability. The formula 

of RMS is given as:   

𝑋𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1                                                        (2) 

where N is the total number of the sampling points for computation. 

However the impulses caused by the gear’s fault would be thoroughly covered by the 

noise if N is much large, since there exists average process during the computation. As 

a result, the fault may not be correctly recognized in the RMS analysis.  

 

Figure 5: The specific process for calculating the RMS values 

As we know, if the tooth pitting fault only occurs at only one tooth, the tooth pitting 

fault will lead to an impact per revolution, so if we calculate a RMS value per 360 

degrees (i.e. 360 sampling points), the impact caused by tooth pitting may be 

concealed by the averaging process of RMS, which may lead to unobvious difference 

between normal and abnormal tooth. However if we calculate the RMS value at small 

angular ranges, then we may be able to find the impact caused by tooth pitting in a 



 

 

revolution by focusing the analysis based on the physical structure of the gear. The 

number of point NRMS to perform averaging mainly depends on the angular-domain 

sampling rate fa (S/r), the number of teeth for the faulty gear N2 (driven gear in this 

study) and the desired number of points per teeth for RMS analysis Nteeth: 

𝑁𝑅𝑀𝑆 = round(
𝑓𝑎

𝑁2∗𝑁𝑡𝑒𝑒𝑡ℎ
)                                                     (3) 

where round() function rounds the value to the nearest integer. For example, if fa is 

360S/r, N2 is 82, and Nteeth is 0.5 (meaning one point per two teeth), then the number 

of point to perform RMS averaging analysis should be 9, which is about 9 degrees, as 

shown in Figure 5. The larger the Nteeth, the smaller the amount of angular range should 

be chosen to perform the RMS analysis. 

3.2 Refinement of the angular-domain signal based on pulse signal of an 

encoder 

The angular-domain sampling is normally defined as the sampling that is directly 

triggered by the pulses produced by external devices. However, many useful 

information in the signal may be lost if the angular-domain sampling rate is too low, 

which may even cause a serious distortion of the signal. As a result, many factors 

should be considered in the setting of the angular-domain sampling rate based on the 

rotational speed. In order to satisfy the requirements, the angular domain sampling 

method is proposed based on pulses signal of an optical encoder. Firstly the aimed 

signals and the encoder’s signal are captured based on the internal clock. Secondly, 

the timing indexes (also called timing signal) of the rising edge for every impulse are 

calculated at the encoder’s signal following the original sampling.  Finally, aimed signal 

is resample based on the timing signal so as to acquire the angular-domain signal. This 

method, as shown in Figure 6, is also called software sampling since the angular-

domain signal is produced indirectly by internal re-sampling. 

 

Figure 6: The angular-domain sampling 

Generally, the angular-domain sampling rate (for resampling) is restricted by the time-
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domain sampling rate (for the original sampling) and the rotating speed of the shaft 

connected to the encoder, as shown below: 

         
t

a f
nf

2

1

60

*
  (4)  

where fa is the angular-domain sampling rate (S/r, Samples/revolution), n is the 

rotating speed of the shaft connected with the encoder (rpm), and ft is the time-

domain sampling rate (S/s, Samples/second). The setting of the angular-domain 

sampling rate should satisfy inequality (4), or a comparatively large sampling error may 

exist during the resampling. In fact, this is achieved by interpolating the basic timing 

signal, which is acquired by calculating the timing indexes of the rising edge for every 

impulse in the encoder’s signal. For the software sampling, the angular-domain 

sampling rate could be flexibly adjusted and set.  

3.3 ADSA method based on the angular domain re-sampling 

The Angular Domain Asynchronous Averaging (ADSA), similar to the time synchronous 

averaging (TSA) algorithm, is an effective method for the extraction of periodic signal 

components from noisy signals. If there are deterministic periodic signals in the 

random signals, they can be picked up from the random, non-periodic signals or 

periodic signals with undesirable periods. This is achieved by superposition and 

averaging of the acquired signals whose length is determined by the angular 

displacement corresponding to a specified period Ф. The specified periodic 

component and its harmonics can be reserved by ADSA so as to improve the signal to 

noise ratio. The ADSA has also the advantage of being capable of performing the 

extraction even for the weak periodic signals in comparison to the traditional spectrum 

analysis methods.   

Mathematically, assuming one signal, x(θ), consists of a periodic signal y(θ) and white 

noise signal n(θ), which reads: 

 𝑥(𝜃) = 𝑦(𝜃) + 𝑛(𝜃)                                                    (5) 

Then the signal x(θ) is divided into N segments by the period of signal y(θ). And then 

superposition of these segments is carried out. Based on the irrelevance of the white 

noise, it can be described as: 

  𝑥(𝜃𝑖) = 𝑁𝑦(𝜃𝑖) + √𝑁𝑛(𝜃𝑖)                                               (6) 

Consequently, the output signal Y(θi)  can be derived by averaging the signal x(θi) : 

  𝑌(𝜃𝑖) = 𝑦(𝜃𝑖) +
𝑛(𝜃𝑖)

√𝑁
                                                   (7) 

Therefore, the amplitude of the white noise in the output signal is reduced to 
1

√𝑁
 times 

of its original value, indicating that the ratio of the signal to its noise has been 

improved.  



 

 

A huge merit for the ADSA method is that it can effectively reduce the noise contained 

in the signal and then improve the Signal to Noise Ratio (SNR). Therefore, because 

vibration signals normally contain significant noise, which can be considered as 

random signal which is generally normally distributed with mean of 0, in the averaging 

process, the influence of the noise could be reduced to 0 if only the number of the 

samples is relatively large. It should be noted that the ADSA method should be 

performed on the specified period Ф, meaning that if the faults are on the driving gear, 

then Ф should be the rotating period of the driving shaft so that any noise that is 

unrelated to the rotating frequency of driving shaft can be effectively removed. The 

proposed ADSA method can handle faults on any gear or on both gears as long as the 

corresponding encoder pulse signal is captured. 

3.4 Order tracking analysis 

For the angular-domain signal, the Nyquist sampling theory is as follows: 

     𝑂𝑆 < 2 ∗ 𝑂𝑚𝑎𝑥  (8) 

where Os is the order sampling rate (same with fa, the angular-domain sampling rate), 

and Omax is the maximum order of the signal. 

For the angular-domain sampling, the order sampling rate Os is equal to the reciprocal 

of the angular sampling interval, that is: 

     𝑂𝑆 =
1

𝛥𝜃
  (9) 

where Δθ is the angular interval of the angular sampling, and also the angular 

resolution. 

Similarly, the Discrete Fourier Transform (DFT) could also be applied in the conversion 

between angular-domain and order-domain. The formula of the DFT in the angular 

domain is same as the time domain, except that the meaning of the variable in the 

formula which is different, as shown below: 

 𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒
𝑗2𝜋𝑛𝑘

𝑁𝑁
𝑛=1   (10) 

where x(n) is the nth sampling point in the angular-domain, X(k) is the kth point in the 

order-domain, and N is the number of points needed for the DFT. 

In the order tracking spectrum analysis resulted from DFT, the largest order is Os/2, 

and the number of points is N/2, hence the order resolution could be reflected as 

follows: 

 𝛥𝑂 =
1

𝑅
=

1

𝑁∗Δ𝜃
  (11)

Where ΔO is the order resolution in the order spectrum, R is the total revolutions for 

the conversion, N is the number of points needs for the DFT, and Δθ is the angular 

interval for the discrete angular-domain sampling; and also angular resolution. 



 

 

Figure 7 presents the complete flowchart of the proposed algorithm based on the 

angular-domain signal.  
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Vibration acceleration signalVibration acceleration signal Encoder pulse signalEncoder pulse signal
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Figure 7: Flow chart of the proposed diagnostic algorithm 

It should be noted that the proposed diagnostic method can be achieved only when a 

series of time-domain vibration signal and encoder pulse signal (i.e. N revolutions of 

the y(θ)) have been simultaneously collected so that the internal resampling (i.e. 

software sampling) can be conducted. This constitutes one of the major limitations of 

the proposed method. The larger the N, the more SNR can be achieved, and the more 

time are required to collect the time-domain signals before the analysis can be 

performed. However, it is possible that the proposed method can be run on the live 

data with a little time lag, which depends on N and the rotating speed ω of the faulty 

gear. For example, if N is 10 and the rotating speed of faulty helical gear is 750 rpm, 

then the time lag will be 0.8s. 



 

 

4 Experimental results and discussions 

4.1 Experimental setup 

 
Figure 8: Diagram of test rig including the Encoder 

Figure 8 presents the test rig with the encoder, which includes two stage gears and 

speed-increasing device by pulley structure. Component (1) is the driving motor, (2) is 

the speed and torque sensor, (3) is the tapered roller bearing, (4) is tapered roller 

bearing, (5,6) are spiral bevel gears, (7) is the tapered roller bearing, (8,11) are helical 

gears, (9) is the tapered roller bearing, (10) is the encoder, (12) is tapered roller bearing, 

(13) is tapered roller bearing, (14) is speed and torque sensor,  (15,16) is the level 1 

pulley of lifting speed, (17, 18) are the level 2 pulley of lifting speed and (18) is the 

loading motor.  

Two acceleration sensors are installed on the housing of bearing at the position 3 and 

9 in Figure 8, and an encoder 10 has been assembled on the test rig to achieve the 

angular-domain sampling. 

 

Figure 9: The data acquisition system 
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The data acquisition system is shown in Figure 9. The data acquisition is conducted 

using National Instrument NI USB-6259 with LabVIEW software.  

There are total six conditions of tooth surface in the helical gear 11 to be investigated: 

one healthy condition and five faulty conditions. The faulty conditions are based on 

the area ratio of pitting on the surface of the helical for 0%, 25%, 50%, 75% and 90%. 

Another faulty condition is tooth broken. The different pitting sizes of gear’s tooth 

surface and the tooth broken are shown in Figures 10. In the test, the rotating speeds 

of the faulty helical gear are set to 28 rpm, 210 rpm, 350 rpm, 500 rpm and 750 rpm 

respectively, the load torques are set to 2 N.m, 4 N.m, 6 N.m and 8 N.m respectively.  

  

(a) 25%-pitting area     (b) 50%-pitting area 

            (e) Broken tooth 

   (c) 75%-pitting area    (d) 90%-pitting area 

Figure 10: The investigated pitting faults of the helical gear and broken tooth 

4.2 Fault features of helical gear 

In order to investigate the fault features of the helical gear under different sampling 

rates of angular-domain signal, the typical fault signal of broken tooth is implemented. 

The picture of tooth broken is shown in Figure 10(e). The test is conducted under the 

input rotational speed of 210 rpm and load torque of 8 Nm. The time-domain sampling 

rate is set to 25600Hz, and the angular-domain sampling frequency is set to 360, 1800 

and 3600 (r/s) respectively. 

Figure 11 (a) presents an example of an original faulty signal of the helical gear in time-

domain. The impulse from the meshing of the faulty gear in time-domain is obvious. 

In order to investigate the effectiveness of the angular-domain sampling rate for fault 

waveform features of angular domain, the original fault signal of helical gear in time-

domain is transferred into the angular-domain by resampling the signal based on time 

pulses of the encoder. Figures 11 (b), (c) and (d) show the angular-domain waveforms 

with sampling rate of 360, 1800 and 3600 S/r respectively. Notice that the angular-

domain waveform gets closer to the original time-domain waveform with the increase 



 

 

of the angular-domain rate. For example, the impulse at about 1000° is completely 

missed in Figure 11 (b) because of the low angular-domain sampling rate. However, 

Figures 11 (c) and (d) clearly show this impulse. 

 
Figure 11: The comparison of the waveforms 

(a) Time-domain waveform (b) Angular-domain waveform at 360 S/r  

(c) Angular-domain waveform at 1800 S/r (d) Angular-domain waveform at 3600 S/r 

 

Figure 12: The comparison of the refined waveforms 

(a) Time-domain waveform (b) Angular-domain waveform at 360 S/r  

(c) Angular-domain waveform at 1800 S/r (d) Angular-domain waveform at 3600 S/r 

Figures 12 (a) – (d) are zoomed waveforms of Figures 11 (a) – (d), which reflect the 

impulse features in detail when the broken tooth ran into and out of the mesh zone. 

These abrupt impulses results from the sudden localized decrease of the gear mesh 
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stiffness when the broken tooth ran into the mesh zone. The results are the same as 

the analyzed results in section 2. As a result, with the load constant, the vibration 

would abruptly increase so much to form an impulse, and return to normal when the 

broken tooth runs out of the mesh zone. Figures 12 (c) and (d) reflect this whole 

phenomenon in great detail, which shows the refined angular-domain waveforms get 

closer to the shape of refined time-domain waveform. Hence, the lost information 

decreases with the increase of the angular-domain sampling rate.  

4.3 Fault feature identification of helical gear  

4.3.1 Order tracking spectrum based on the ADSA method 

Figures 13, 14 and 15 are the order tracking spectrum based on the ADSA method for 

every revolution (N=1) from normal condition, 25%-pitting area and 90%-pitting area 

when the rotating speed is 210 rpm and load torque is 2 Nm. Figure 13 and 14 show, 

especially for the 90%-pitting area, that the vibration energy is mainly concentrated 

on 82th order and 1/2 time order and 2 time order for the pitting damage, which is 

precisely the number of the tooth of the faulty gear.  

As to normal condition, no such phenomenon happens in Figure 15. Since the same 

features exist in Figures 13 and 14, which have higher resolution, the order tracking 

analysis based on the ADSA method is almost perfect in distinguishing between the 

90%-pitting damage and the normal condition. For the 25%-pitting damage, the 

differentiation is not that clear. 

 
Figure 13: Order tracking spectrum of 25% pitting fault using the ADSA 
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Figure 14: Order tracking spectrum of 90% pitting fault using the ADSA 

 

Figure 15: Order tracking spectrum of normal gear condition using the ADSA 
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4.3.2 RMS value in small angular ranges  

 
Figure 16: The RMS curves under different angular ranges  

(a) 180 degrees (b) 72 degrees (c) 9 degrees 

Figure 16 is the RMS curves in different angular ranges (180, 72 and 9 degrees) under 

the tooth broken fault. When in 180 degrees, no obvious impulse exists in the curves. 

For every revolution, there exists only one impulse, which is easily recognized that the 

impulses are just caused by the breakage in the tooth. Therefore, the RMS curves 

become clearer as the decrease of angular ranges. The result has shown that the 

analysis method of RMS values of small angular ranges is effective for the identification 

of helical gear fault under low rotational speed. 

 

       (a)                                   (b) 

Figure 17: The RMS values of small angular ranges for pitting fault of helical gear 
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Figure 17 shows that the RMS values of small angular ranges (45 degrees) in one 

revolution for pitting fault of the helical gear under the rotation speed of 56 rpm. The 

RMS values of 25% and 90% pitting fault are higher that of the normal condition, and 

the RMS values of 90% are higher than the values of 25% pitting fault. The results have 

shown that RMS value of small angular range is effective statistical parameter for the 

identification of helical gear fault under low rotational speed. 

4.4 Comparison with traditional method  

4.4.1 Improve the Signal to Noise Ratio 

Figure 18 shows the angular domain waveforms of 90% pitting fault in the helical gear 

when the rotating speed is 210 rpm and the load is 4 Nm. The impulse waveform 

cannot be found in this case (i.e. when the ADSA method is not used to process the 

data). Figure 19 shows the angular domain waveforms of 90% pitting fault in the helical 

gear after using ADSA when the rotating speed is 210 rpm and load is 4 Nm. The 

impulse can be seen clearly, which means the impulses are precisely caused by the 

abrupt change of the mesh stiffness when fault tooth ran into the mesh zone. The 

cyclic impulses duo to the fault are not significantly clear in this case,  as in waveform 

without using ADSA, which means its Signal to Noise Ratio (SNR) is much lower. 

Therefore, the ADSA has improved the Signal to Noise Ratio under the heavy 

environment noise, and it is effective to improve the success ratio of helical gear fault. 

 

Figure 18: The waveform of angular domain sampling without ADSA 

 

Figure 19: The waveform of angular domain sampling using ADSA 

4.4.2 Improve the success ratio of helical gear fault diagnosis 

Figure 20 shows the order tracking spectrum of 25% pitting fault without using the 
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ADSA, when the rotating speed is 210 rpm and load torque is 2 Nm (same as Figure 

13). There are many peaks in Figure 20 which makes it difficult to identify the fault. 

This is because the vibration energy is not mainly concentrated at 82th order and 1/2 

time order and 2 time order for the pitting damage. Therefore, the ADSA method 

makes the vibration energy more concentrated at some specific orders. 

 
Figure 20: Order tracking spectrum of 25% pitting fault without using the ADSA 

4.4.3 Envelop analysis based on the Hilbert Transform 

The envelop analysis based on the Hilbert Transform can demodulate the gear 

vibration signal and reveal the information of the amplitude modulation that may exist 

in the signal; it is basic analysis method for gear fault diagnosis.  

 

Figure 21: Time domain waveform when the helical gear fault is 90% pitting fault 

under rotational speed of 210 rpm and 2 Nm load 

Figure 21 is the time domain waveform when the helical gear fault is 90% pitting fault 

under rotational speed of 210 rpm and 2 Nm load (same as Figure 14). Figure 22 is the 

envelop spectrum of Figure 21. Although meshing frequency (287Hz) of gear exists, 

the side band frequencies are not clear in Figure 22 and the amplitude of meshing 

frequency is also small in Figure 22. Comparing with the results in Figure 14, it can be 

concluded that Order tracking spectrum based on ADSA is much more powerful in 

identifying the fault of the helical gear than the envelop analysis based on the Hilbert 

Transform 
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Figure 22: Envelop spectrum of Figure when the helical gear fault is 90% pitting fault 

under rotational speed 210rpm and load of 2Nm 

4.4.4 RMS value under different angular ranges 

Figure 23 presents a comparison between the RMS values under different angular 

ranges with pitting area of 50%, rotational speed of 210 rpm and toque of 2Nm. The 

meshing impact due to the fault of the gear can be found when the RMS calculation 

use the data of per-angular-45o (per 45 degrees angular range), but the meshing 

impact due to the fault of the gear is not clear if the data of per-angular-360o is used. 

The result has shown that the RMS value calculation method of small angular ranges 

at one revolution is more effective than traditional RMS calculation methods. 

 
Figure 23: Comparison between the RMS values under different angular ranges 
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5 Conclusions 

Helical gear box generates vibration signals with strong noise and non-stationary 

characteristics in the time domain. This causes difficulties when attempting to 

diagnose helical gear tooth initial faults features (e.g. tooth crack, pitting, spalls etc.) 

using vibration signals, especially when the gears are running at the low speed 

 To cope with these difficulties, a new diagnostic algorithm based on the Order tracking 

analysis and the ADSA method, as well as the new concept of RMS value calculation in 

small angular ranges, is introduced to detect the localized tooth faults in the very early 

stage for the low-speed helical gears. Compared with the traditional method, the 

proposed method has been found to effectively improve the ability and success rate 

of the helical gear fault diagnosis based on the experimental work provided in this 

study. 

One limitation of the proposed diagnostic algorithm is that there will be a time lag 

before it is performed on the live data, especially when the gears are running at a low 

speed range. Another limitation is that the proposed algorithm is not fully capable to 

differentiate different types of localized tooth faults. However, the order tracking 

spectrum may provide some insights about it, which will be the focus of the future 

research. 

The proposed diagnostic system (as shown in Figure 9 ) can be used in many industrial 

applications, such as the end of line test for a gear manufacture,  condition monitoring 

for the gearbox inside the agitators, wind turbines, automobiles etc. 

Acknowledgement 

The authors are grateful for the financial support provided by the European 

Commission under the FP7 Marie Curie International Incoming Fellowship programme, 

FP7-PEOPLE-2009-IIF (Marie Curie) project No. 253403, and the financial support 

provided by the National Natural Science Key Foundation of China (grant number 

51035008). 

References 

1. Hussain S and Gabbar HA. A novel method for real time gear fault detection based 

on pulse shape analysis, Mechanical Systems and Signal Processing 25 (2011): 

1287–1298 

2. Junsheng Cheng, Kang Zhang and Yu Yang. An order tracking technique for the 

gear fault diagnosis using local mean decomposition method，Mechanism and 

Machine Theory 55 (2012): 67–76 

3. Belsak A and Flasker J. Determining cracks in gears using adaptive wavelet 

transform approach，Engineering Failure Analysis 17 (2010): 664–671 

4. Ricci Rand Pennacchi P. Diagnostics of gear faults based on EMD and automatic 

selection of intrinsic mode functions，Mechanical Systems and Signal Processing 

25 (2011): 821–838  



 

 

5. Combet F and Gelman L. Optimal filtering of gear signals for early damage 

detection based on the spectral kurtosis, Mechanical Systems and Signal 

Processing 23 (2009): 652–668 

6. Raja Hamzah RI and Mba D. The influence of operating condition on acoustic 

emission (AE) generation during meshing of helical and spur gear, Tribology 

International 42 (2009): 3– 14 

7. Wang W and Kanneg D. An integrated classifier for gear system monitoring, 

Mechanical Systems and Signal Processing 23 (2009): 1298–1312 

8. Endo H, Randall RB and Gosselin C. Differential diagnosis of spall vs. cracks in the 

gear tooth fillet region: Experimental validation，Mechanical Systems and Signal 

Processing 23 (2009): 636–651 

9. Saravanan N and Ramachandran KI. Fault diagnosis of spur bevel gear box using 

discrete wavelet features and Decision Tree classification, Expert Systems with 

Applications 36 (2009): 9564–9573 

10. Loutridis S. A local energy density methodology for monitoring the evolution of 

gear faults, NDT & E International 37 (2004): 447–453 

11. Loutridis SJ. Damage detection in gear systems using empirical mode 

decomposition，Engineering Structures 26 (2004): 1833–1841 

12. Li CJ and Limmer JD. Model-based condition index for tracking gear wear and 

fatigue damage, Wear 241 2000: 26–32 

13. Kahraman A and Singh R. Non-linear dynamics of a spur gear pair, J. Sound and 

Vibration, 142(1) (1990): 49-75. 

 


