Graphical tools for the examination of
high-dimensional functions obtained as
the result of Bayesian analysis

W K Kaye

A thesis submitted in partial fulfilment of the
requirements of Nottingham Trent University

for the degree of Doctor of Philosophy

August 2009

This work is the intellectual property of the author. You may copy up to
5% of this work for private study, or personal, non-commercial research.
Any re-use of the information contained within this document should be
fully referenced, quoting the author, title, university, degree level and
pagination. Queries or requests for any other use, or if a more substantial
copy is required, should be directed in the owner(s) of the Intellectual

Property Rights.

Contents

Acknowledgements xviii

1 Introduction 1
1.1 Software 5
1.1.1 Rand S-Plus 5

1.1.2 Bayesd 5

1.1.3 WinBugs.o 6

114 CH+ .o 7

1.2 Data 7
1.3 Thesis overview 9

2 The Bayesian paradigm 12
2.1 Basictheory 12
2.1.1 Marginal and conditional densities 14

2.1.2 Predictive densitieso 15

2.1.3 Analytic solutions 16

2.2 Implementation Example 18
2.3 Discussion 27
Monte Carlo Markov Chain Sampling 30
3.1 Markov Chains 31
3.2 Practical Methods of MCMC 33
3.2.1 Gibbssamplers L. 34
3.2.2 The Metropolis-Hastings Algorithm 40
323 Rewsampling 44
3.3 Posterior densities oL Lo 45
Viewing Multivariate Data 47
4.1 Projection Methods oo L. 48
4.1.1 The Projection Pursuit Family 48
412 ConePlotso 55
4.2 Other Techniques 56
421 Andrews Plots. 56
4.2.2 Star Diagrams 58
4.2.3 Chernoff Faces 60
4.2.4 Scatterplots 61
4.2.5 Parallel Coordinate Representation 62

i

426 SpinPlots o 64

4.2.7 Principal Component Analysis 64

4.2.8 Comments 70

5 Univariate density estimation 74
5.1 Density Estimation 000 75
5.1.1 The Histogram 75

5.1.2 Polygon Methods 7

5.1.3 The Naive Estimator 78

5.2 The Kernel Density Estimator 80
5.2.1 Introduction 80

5.2.2 The Adaptive Kernel Estimator 82

523 The Kernel, 84

524 Bandwidth.o 86

6 A Bayesian Kernel Density Estimator 88
6.1 A Bayesian Modelo 89
6.2 An Archaeological Problem 93
6.3 Bayesian Adaptive Kernel Estimates 99
6.4 Examples — Hard to estimate densities 102
6.5 Exponential Density 0. 106
6.6 Maxwell Density 00 107

111

6.7 Cauchy Density o
6.8 Infinite Peak Density
6.9 Pareto Density o
6.10 Beta (2,2) Density L
6.11 Smooth Comb Density
6.12 Sawtooth Density L.
6.13 Extension to bivariate density estimation

6.14 Discussiono

Integration of the Grand Tour and Bayesian Kernel Density

Estimator

7.1 Basic Grand Tour S-Plus Implementation
7.2 Examples
7.3 Discussiono
Examples

8.1 Five dimensional datasets
82 Rats
8.3 Surgical
84 Summary
Conclusions

9.1 Overview

v

121

122

125

127

129

130

140

148

155

156

9.2 Further work and Interesting Papers 159

The Grand Tour in S-Plus 174
A.1 The simple Grand Tour 174
A.2 The full Grand Tour 176
The One and Two dimensional Tour using BKDE 192
B.1 The one dimensional Tour 192

A Bayes4 implementation of Bayesian Kernel Density Esti-

mation 204
C.1 Fortran 77 libraries 205
C.1.1 Fixed bandwidth KDE 205
C.1.2 Variable bandwidth KDE 215
C.2 CH+libraries 225
C.2.1 Fixed bandwidth KDE 226
C.2.2 Variable bandwidth KDE 232
C.3 Building the system oL 239
Benchden KDE test densities 240
D.1 Uniform Density 242
D.2 Exponential Density 243
D.3 Maxwell Density 244

D.4 Double Exponential Density 245

D.5 Logistic Density oo 246
D.6 Cauchy Density 247
D.7 Extreme Value Density 248
D.8 Infinite Peak Density 249
D.9 Pareto Density. o o 250
D.10 Symmetric Pareto Density 251
D.11 Normal Density 252
D.12 Lognormal Density 253
D.13 Uniform Scale Mixture Density 254
D.14 Matterhorn Density oL 255
D.15 Logarithmic Peak Density 256
D.16 Isosceles Triangle Density 257
D.17 Beta (2,2) Density 258
D.18 Chi-square (1) Density 259
D.19 Normal Cubed Density 260
D.20 Inverse Exponential Density 261
D.21 Marronite Densityo oo 262
D.22 Skewed Bimodal Density 263
D.23 Claw Density 264
D.24 Smooth Comb Density 265

vi

D.25 Caliper Density 266

D.26 Trimodal Uniform Density 267
D.27 Sawtooth Density oL 268
D.28 Bilogarithmic Peak Density 269
Data 270
E.1 The Old Faithful Data 270

E.2 Largest canonical variable for 6 teeth Andrews (1972, Table 2) 272

vii

List of Tables

2.1

4.1

4.2

8.1

Results for posterior densities for manufacturing problem. 28
Largest canonical variable for 6 teeth Andrews (1972, Table 2). . . 57
A comparison of methods for viewing high-dimensional data sets. . 72

Mortality rates, 12 hospitals performing cardiac surgery in babies. . 148

viil

List of Figures

2.1

2.2

2.3

24

2.5

3.1

3.2

Histogram of a predictive sample, n = 1000, generated using the R
code y <= rnorm(1000, samp, 0.01). samp was generated from
the density 1 ~ N(3.507999,0.003042) using the code in figure 2.2.

Azes are values (x) and bin counts (y).
R code for the MCMC example.

Histogram of sample drawn from pu ~ N (3.507999,0.003042) (Maz-

imum likelihood approximation). Azxes are values (x) and bin counts

Posterior mean and predictive density for u generated by Bayes/,

Normal prior. Azes are p (x) and pdf (y).

Posterior mean and predictive density for u generated by Bayes/,

ty—y prior. Azes are p (x) and pdf (y).

The first 5 samples (including the starting position (20,—20)) of
a Gibbs sampler in state space R2. The distribution sampled from
is a ~ N(0,5), b ~ N(0,2.5), pap = 0.5. The contour lines are

percentage contour lines for the target demsity.

S-Plus code for a simple Gibbs sampler.

X

3.3

3.4

4.1

4.2

4.3

10,000 samples from a Gibbs sampler in state space R2. The dis-
tribution sampled from is a ~ N(0,5), b ~ N(0,2.5), pap = 0.5.

The contour lines are percentage contour lines for the target density. 41

Vectorised S-Plus code for a Gibbs sampler.

Sample of a Grand Tour - projecting on a two dimensional target -
applied to the clinical trial data. The Axes are effectively the axes
of the target and as such represent values of the projected data,
i.e. they are relative to the step of the tour. The views here are
produced from the first 16 steps of a tour choosing a large step size
to give a range of differing views rather than a set of close, and
therefore similar images (using a seed of V5 in the algorithm given

in Section 4.1.1)o

Sample of a Grand Tour - projecting on a two dimensional target.
The data is the result of applying the Metropolis-Hastings algorithm
to the Archaeological problem. The Axes are effectively the axes
of the target and as such represent values of the projected data,
1.e. they are relative to the step of the tour. The views here are
produced from the first 9 steps of a tour choosing a large step size
to give a range of differing views rather than a set of close, and
therefore similar, images (using a seed of /5 in the algorithm given

in Section 4.1.1).o

Sample of a Cone plot - applied to the clinical trial data, first 16
values. The x axis is defined by two points from the data and the

other points are plotted relative to that.

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Siz Andrews plots of the teeth data, the plots each have two columns
of the data swapped showing the influence of ordering. The x axis
is the value of t and so has range [—7,w| the y axis is the value

fx(t) where fx(t) is defined in Equation 4.5

Sample of a Star plot - applied to the clinical trial data, first 16
points. The axis here are meaningless, magnitude being represented

by the line length within the star..
R code for the Chernoff faces example.

Sample of Chernoff faces - applied to 16 random data points, gen-

erated as in Figure 4.6. Each face represents one data point.

Sample of a Scatterplot matrixz applied to the clinical trial data,

first 5 dimensions. Azes represent the variable values.

Sample of a Parallel coordinate plot - applied to the clinical trial
data, first 50 points. Axes are magnitude horizontally and point

number vertically.o

Sample of a Spin Plot applied to the clinical trial data, first 5 di-
mensions, first three dimensions selected. Axes are projected mag-

nitude. . . . L L L e e

Two views of a PCA applied to the first 5 dimensions of the clinical
trial data. Axes relate to the variance attributed to the components.
The figure was generated by the standard R functions screeplot
and biplot. (A more complete discussion of these techniques can

be obtained in Mardia et al., 1979; Venables and Ripley, 2002). . .

x1

61

66

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

Four different histograms of the Old Faithful data. Axes are value

(x) and frequency (y).o

ASH of the Old Faithful data with different bin counts and kernels.

The vertical axis here is a normalised score.

Epanechnikov density, produced trivially by the R command

plot(density(c(0,0) ,kernel="epanechnikov")). Azes are value

(x) and density (y).o

Bayesian estimation. Predictive densities for the four date bound-

aries in the Archaeological problem. Axes are years Before Present

(BP) (x) and density (y).o

Archaeological problem, showing the effect of using different pri-
ors for @ = log(h). Auxes are years Before Present (BP) (x) and

density (Y).o

1998 International *C atmospheric data set (24,000 to 0 BP).
Azes are the conventional date (BC/AD) (x) and the equivalent

date given by examining atmospheric carbon (BP).

Old faithful data, fived h. Azes are eruption duration (x) and non-

normalised, estimated density (y).

Old faithful data, variable h, Predictive density p(y|x) where x is
limited to values within the limits of the data set. Axes are eruption

duration (r) and normalised, estimated density (y).

Old Faithful data - histogram with 17 bins.Axes are eruption du-

ration (x) and frequency (y).

xii

76

79

85

96

97

98

99

100

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

7.1

7.2

7.3

Old Faithful data, larger data set - histogram with 17 bins. Azes are

eruption duration (x) and frequency (y). 104
Exponential density.o 106
Mazwell density. o 107
Cauchy density. 108
Infinite Peak density. 109
Pareto density. 110
Beta (2,2) density. 111
Smooth Comb density. 112
Sawtooth density. 113

Contour plots of Normal kernels parameterised by (a) H € S, (b)
H € D (¢c) H € F. Axes are both normalised, the same and

arbitrary. e 115

View generated by the Grand Tour routines written in S-Plus -
2/ dimensional data set, 2 dimensional target. Axes are projected

values sized to fit all possible projections. 125

Three views of the starting projection of the same Grand Tour of
the 24 dimensional data set, 2 dimensional target. Axes are pro-

jected values sized to fit all possible projections. 126

Ezamples of the indicator — a 5 dimensional “cube “ rotated through
8 steps of a fairly coarse Grand Tour. Note: the two black squares

always mark the ends of the same segment of the cube. 127

xiil

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Five dimensional data, all dimensions independently distributed

N(0,1). Azes are value, (z) and normalised density (y) (not dis-

Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is a mizture of N(0,1) and N(3,1). Axes are

value, (x) and normalised density (y) (not displayed).

Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is a mizture of N(0,1) and N(5,1). Axes are

value, (x) and normalised density (y) (not displayed).

Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is a mizture of N(0,1) and N(10,1). Azes

are value, (x) and normalised density (y) (not displayed).

Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is a mizture of N(0,1) and N(20,1). Azes

are value, (x) and normalised density (y) (not displayed).

Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is Geometric (0.1). Axes are value, (x) and

normalised density (y) (not displayed).

Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is Geometric (0.25). Axes are value, (x) and

normalised density (y) (not displayed).

Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is Geometric (0.5). Axzes are value, (x) and

normalised density (y) (not displayed).

X1v

8.9 Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is Geometric (0.75). Axzes are value, (z) and

normalised density (y) (not displayed).

8.10 Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is Geometric (1.0). Axzes are value, (x) and

normalised density (y) (not displayed).

8.11 Rats example CODA standard density estimates for aq to ag. Azes
are standard BUGS azes.

8.12 Rats example CODA coarse density estimates for ay to ag. Azes

are standard BUGS azes.

8.13 Rats example variable bandwidth BKDE estimates for oy to ag.

Azes are value (x) and predictive density (y).

8.14 Rats example Grand Tour with BKDE estimates for aq to ag. Azes

are value (x) and predictive density (y).

8.15 Rats example Grand Tour with BKDE estimates for o to asg.

Azes are value (x) and predictive density (y).

8.16 Surgical example CODA standard density estimates for hospitals 1

to 6. Azes are standard BUGS axes.

8.17 Surgical example CODA coarse density estimates for hospitals 1 to
6. Azes are standard BUGS axes.

8.18 Surgical example variable bandwidth BKDE estimates for hospitals

1 to 6. Azes are value (x) and predictive density (y).

8.19 Surgical example Grand Tour with BKDE estimates for hospitals

1 to 6. Azes are value (x) and predictive density (y).

XV

8.20 Surgical example Grand Tour with BKDE estimates for hospitals

1 to 12. Azes are value (x) and predictive density (y). 154
B.1 Typical screen-shot of the tourl display. 198
D.1 Uniform density. 242
D.2 Ezponential density. 243
D.3 Mazwell density. 244
D.4 Double Exponential density. 245
D.5 Logistic density. 246
D.6 Cauchy density. 247
D.7 Extreme Value density. 248
D.8 Infinite Peak density. 249
D.9 Pareto density.o 250
D.10 Symmetric Pareto density. 251
D.11 Normal density. 252
D.12 Lognormal density. 253
D.13 Uniform Scale Mizture density. 254
D.14 Matterhorn density. 255
D.15 Logarithmic Peak density. 256
D.16 Isosceles Triangle density. 257
D.17 Beta (2,2) density. 258

Xvi

D.18 Chi-square (1) density. 259

D.19 Normal Cubed density. 260
D.20 Inverse Ezponential density. 261
D.21 Marronite density. 262
D.22 Skewed Bimodal density. 263
D.23 Claw density. 264
D.24 Smooth Comb density. 265
D.25 Caliper density. 266
D.26 Trimodal Uniform density. 267
D.27 Sawtooth density. 268
D.28 Bilogarithmic Peak density. 269

Xvii

Acknowledgements

My thanks go to Serif UK. and their MD and founder Gwyn Jones who

sponsored a large part of this work.

To my family Winifred Kaye, Pauline Smith, Vanessa Smith, Steff Smith,

Samantha Downes, David Downes and Rebecca Rider.
To Judy, Ted and Richard Hunt for their help and encouragement.

To Thom Baguley (not least for the loan of a MAC G3 laptop), Paul Evans,
Wayne Cranton, John Marriott and the other academic colleagues and friends

who have put up with it and even encouraged me in the last 17 years.

Finally to John C. Naylor for his support and understanding.

XViil

Abstract

Bayesian statistics has a tendency to produce objects that are of many more
than three dimensions, typically of the same dimensionality as the parame-
ter set of the problem. This thesis takes the idea of visual, exploratory data
analysis and attempts to apply it to those objects. In order to do this it ex-
amines several areas, Monte Carlo Markov Chains (MCMC), display graphics
and methods — especially Projection Pursuit methods — and Kernel Density

Estimation (KDE).

During the course of this work acceptable prior technology was found for
MCMC and, once the decision for it had been made, Projection Pursuit.
However, the current state of KDE gave rise to several objections. Not least
among these came from the Bayesian background of the researcher, KDE had
not been put in a suitable Bayesian framework and so clashed with the other
technology. In addition it was felt that KDE needed too much user input and
that is was somewhat ad hoc. This led to reformulating KDE in a Bayesian
framework which had the added advantage of removing the need for a user to
provide a bandwidth for each application. Chapter 6 of this thesis considers
Bayesian theory and how it can be applied to KDE to produce a form more

usable and satisfying in terms of Bayesian mathematics.

This is shown to provide a powerful and flexible statistical tool without the
need for the ad hoc choices often associated with these methods. This for-

mulation of the KDE as a Bayesian problem is believed to be unique.

As part of this work, software was produced in R to provide a usable visu-
alisation of BKDE. A large number of examples is provided to demonstrate
how this software can allow easy visualisation of a variety of types of dataset

both with and without Kernel Density Estimation.

i

Chapter 1

Introduction

Bayesian statistics has a tendency to produce objects that are of many more
than three dimensions. This thesis takes the idea of visual, exploratory,
data analysis and attempts to apply it to those objects. In order to do this
it examines several areas, Monte Carlo Markov Chains (MCMC), display
graphics and methods, especially Projection Pursuit methods, and Kernel

Density Estimation (KDE).

During the course of this work acceptable prior technology was found for
MCMC and, once the decision for it had been made, Projection Pursuit.
However, the current state of KDE gave rise to several objections, not least
among these came from the Bayesian background of the researcher. KDE
had not been put in a suitable Bayesian framework and so clashed with the
other technology. In addition it was felt that KDE needed too much user
input and that is was somewhat ad hoc. This led to a new formulation of
KDE in a Bayesian framework which had the added advantage of removing
the need for a user to provide a bandwidth for each application. Chapter 6

of this thesis considers Bayesian theory and how it can be applied to KDE to

produce a form more usable and satisfying in terms of Bayesian mathematics,
ending with a Bayesian formulation that, at least, has the surety of selecting

the best possible model for the data from the KDE family of models.

Bayesian Statistics is a branch of statistics that relies on the statement of

Bayes’ Theorem:

Pl - PP o

originally published in Bayes (1763). Bayesian analysis tends to result in
either a symbolically described posterior density (if the analysis is analytical)
or as a sample from such a density (if the analysis is implemented via some

form of simulation method such as MCMC).

Generally in statistics the first port of call is to some form of exploratory data
analysis. Histograms, box plots, scatter plots, means and standard deviations
are all tools that allow the statistician to perform an initial assessment of a
problem. With the high dimension of the results produced, Bayesian analysis
has no such tools without first summarising the results in some way. This
thesis attempts to provide a methodology for the graphical examination of

such a result.

Bayes’ Theorem is often stated to proportionality as:

P(A|B) x P(B|A)P(A) (1.2)

and the application of Bayes’ Theorem to a problem depends on finding the
constant of proportionality, usually through numerical integration or by using

a prior that is amenable to mathematical analysis.

In the above:

P(A) the prior probability of A. “Prior” in the sense that it does
not take into account any information about B and is gener-
ally held to represent belief about the existing value of A.

P(A|B) the conditional probability of A, given B, also called the pos-
terior probability because it is derived, using Bayes’ Theorem,
having observed B.

P(B|A) the conditional probability of B given A, the likelihood.

P(B) the probability of B, acts as a normalising constant.

If the problem is the analysis of some data then

A is the parameter set of the problem (i.e., A describes a density
that is the current belief about whatever is being measured).

B is the measured data.

Intuitively, Bayes’ Theorem, in this form, describes the way in which beliefs

about ‘A’ are updated by having observed ‘B’.

If the problem is not amenable to a formulation that allows an analytic
solution it is possible to use MCMC methods to derive an arbitrarily large
sample from that density or, equivalently (and sometimes more usefully),

from the Bayesian predictive density! derived from the solution.

Interest in carrying out Bayesian analysis completely by means of Monte

! Assume a probabilistic model p(y|w), parametrised by w, with the prior distribution
p(w). Given an observed a set of data D consisting of N i.i.d.? observations {y,})_; . A
standard approach is to approximate the posterior p(w|D), and use this to make future

predictions.
2In probability theory and statistics, a sequence or other collection of random vari-

ables is independent and identically distributed (i.i.d.) if each has the same probability

distribution as the others and all are mutually independent.

Carlo Markov Chain (MCMC) simulation has grown as the practical means
of carrying out such an analysis has become commonly available, see for
example Smith and Roberts (1993); Gelfand and Smith (1990a); Dellapor-
tas and Smith (1993); Chib and Greenberg (1994); Hastings (1970) and for
a practical example Geman and Geman (1984). The application of these
methods leads to the availability of samples, again arbitrarily large, from

posterior densities.

However the sample is obtained, the interest here is in the application of,
largely existing, technology to the problem of presenting a useful view of the

posterior density.

The approach is to derive a representative sample from the density, either
as an MCMC simulation from the symbolic density or as a random selection
from the simulation output, and to use Projection Pursuit methods (Jones
and Sibson, 1987) to obtain a series of views from that sample. In order
to better view the projection a Kernel Density Estimation technique is used

giving a more readily assessed summary of the information.

In summary the goal of this thesis is to examine possible methodologies for
the examination of high dimensional functions, surveying existing theory,
adding new work where needed and concluding with a working system. The
following sections detail the software used in the examples given in the thesis

and outline the content of each chapter.

1.1 Software

1.1.1 R and S-Plus

Throughout the thesis R refers to the R Project for Statistical Computing

13

that provides “ a free software environment for statistical computing and

graphics.” (CRAN, 2009)

R compiles and runs on a wide variety of UNIX platforms, Windows and
MacOS and can be downloaded from http://www.r-project.org/. R in the

thesis refers to version 2.8.1.

The software for this project was originally written on various versions of
S-Plus 3.x installed on the computing network situated in the Department
of Mathematics and Statistics of Nottingham Trent University between 1993
and 1998. R provides a public domain language that approximates that of
S-Plus.

S is a high level language and S-Plus is a value-added version of S sold by
Insightful Corporation. S-Plus provides advanced statistical analysis capa-
bilities based on the S language. There are effectively three current imple-
mentations of S, the old S engine (S version before version 4), the new S
engine (S version 4 and above), and R. R is, of course, distributed freely

through the CRAN network.

1.1.2 Bayes4

The Bayes4 system is “primarily intended for the numerical implementation

of integrals, for example

or

p(0]z) = /Q p(0]2)db, (1.5)

the evaluation of which is implicit in the practical implementation of the

Bayesian paradigm.” (Naylor and Shaw, 1983)

The original Bayes4 was implemented in Fortran 77 by John C Naylor and
was derived from work in his PhD thesis (Naylor, 1982).

The system, which consists of a library of functions and classes, has been
translated from the original Fortran to C++ and its use involves writing
problem specific C++ code and building an executable image that incorpo-

rates the Bayes4 library?.

1.1.3 WinBugs

“The BUGS (Bayesian inference Using Gibbs Sampling) project is concerned
with flexible software for the Bayesian analysis of complex statistical models
using Markov chain Monte Carlo (MCMC) methods. The project began in
1989 in the MRC Biostatistics Unit and led initially to the ‘Classic’ BUGS
program, and then onto the WinBUGS software developed jointly with the

3] am indebted to Dr. J M Marriott for the most recent version of the Bayes4 code.

Imperial College School of Medicine at St Mary’s, London. Development now
also includes the OpenBUGS project in the University of Helsinki, Finland.
There are now a number of versions of BUGS, which can be confusing.”

(WinBugs, 2009)

The version used to generate the examples in Chapter 8 was WinBUGS 1.4.3.
More information about the background to the system can be found in Lunn

et al. (2000).

1.14 CH++

The C++ compiler used for the compilation of R was the gce (Ubuntu 4.3.3-
Subuntu4) compiler 4.3.3 Copyright (C) 2008 Free Software Foundation, Inc.

That used for the compilation of the C++ version of the Bayes4 libraries
and the BKDE code that uses them was that provided with the Yellow Dog
operating system for MAC computers, gcc 4.1.2. Copyright (C) 2006 Free

Software Foundation, Inc.

The C version of the BKDE code was compiled on a SUN system running
SunOS with the gce compiler current in 1993.

1.2 Data

Many of the examples in this thesis use one of the following data sets, chosen

because they have interesting features. A brief description follows:

The clinical trial data. A 24 dimensional posterior density, being cell prob-

abilities of a 2 x 2 x 6 contingency table from a simulated clinical trial,

where the parameters are some function of the cell probabilities. These
data are from a clinical trial simulation system created by Dr J C Nay-

lor for Nottingham Clinical Trials Ltd..

The Archaeological problem. A sample of the posterior density given by
a MCMC approach to the archaeological problem specified in Naylor
and Smith (1988) and discussed in 6.2. The problem is a difficult one
to describe and is an attempt to estimate the endpoints of a series of
phases of pottery production at the Danebury, Iron Age fort. The data
are a series of radio-carbon dates attached to pottery sherds recovered
from the site. The dates are ordered and the pottery is attached to
a style that corresponds to a change in production. The end dates of
the phases overlap and the problem is to derive a reasonable date for
the change. The data here is the output from a Metropolis-Hastings
analysis that was flawed in several ways. Because of the quality of the
data there were areas in the simulation that were not reached in this run
and there was a limit placed on the generated values that created the
straight edge observed in the projections in Figure 4.2. This particular
simulation was not useful as part of the investigation of the problem,

but gave data that were interesting visually.

The tooth data set. The largest canonical variable for 6 teeth from a range
of anthropological sources Andrews (1972, Table 2). This data origi-
nally came from Ashton et al. (1957)

The Old Faithful data. A subset of the data from “Observations of erup-
tions of the Old Faithful geyser in Yellowstone National Park, USA”
Weisberg (1980). These are from the eruption durations and two dif-

ferent size samples from the available data are used.

Five dimensional data set. This is a simulated data set the makeup of
which varies depending on what is being demonstrated. If the data
is anything other than a five dimensional data set consisting of five
uncorrelated normal variates it’s makeup is specified in the relevant

section.

The Clinical trial data, the five dimensional data and the data from the
archaeological problem are too large to sensibly include in the thesis, in
addition some data is generated as needed, for example that in Figure 5.3.
The tooth data are given in Table 4.1 and the Old Faithful data in Appendix
E.

These and other data introduced in this thesis are used purely as data with no
attempt at analysis, or even description, of the underlying statistics except

where that is felt to be necessary in the context of the thesis.

1.3 Thesis overview

The work is divided into sections based around the three techniques used

and the investigations made as follows:

Chapter 2 presents a sufficiently rigorous introduction to Bayesian statistical

theory to allow the average reader to follow the remaining chapters.

Chapter 3 surveys the available forms of MCMC (“Monte Carlo Markov
Chain sampling.”) with a view to their use both in the analysis of intractable
problems and in deriving a sample from a mathematical description of a

density.

Chapter 4 surveys a range of multivariate viewing techniques, especially those

projection techniques that have proved appropriate for the current work. The
requirements of minimal introduced distortion and the ability to apply some

sort of density estimation to the projected data are discussed.

Chapter 5 introduces the technique of Kernel Density Estimation (KDE)
from an ad hoc frequentist approach along with some of the problems that
this approach introduces which make it inadequate here. The literature is

surveyed with the aim of finding fast, automatic approaches to the problem.

Chapter 6 a Bayesian development of Kernel Density Estimation (KDE) is
introduced that offers a novel solution to the bandwidth selection problem.
This is shown to provide a powerful and flexible statistical tool without the
need for the ad hoc choices often associated with these methods. The formu-
lation of the KDE as a Bayes’ problem is believed to be unique. Examples
of the use of the BKDE are given including both real life (for example the
Old Faithful data set) and contrived (examples from Berlinet and Devroye,

1994) data.

Chapter 7 introduces the idea of combining the Grand Tour with KDE and

briefly introduces R routines that accomplish this.
The appendices contain code and data that is referred in the rest of the text.

Appendix A contains the implementations of the Grand Tour that were writ-
ten, along with further explanations of interesting sections of the code and

examples of how to use it within S-Plus 3.x or R.

Appendix B Presents S-Plus/R code for simple versions of the Grand Tour,
three functions that implement Gauss Hermite numerical integration, written
by J C Naylor, and BKDE functions that use that integration to compute
the required bandwidth for the BKDE within the tours.

10

Appendix C has implementations of both the variable and non-variable kernel
versions of BKDE in both the code written for the Fortran 77 libraries of the

original Bayes4 and for the newer C++ version.

Appendix D has examples of BKDE applied to all 28 densities from Berlinet
and Devroye (1994).

Appendix E has the shortened version of the Old Faithful data set and the
Andrews (1972, Table 2) tooth data.

11

Chapter 2

The Bayesian paradigm

This chapter contains basic Bayesian results that are used in later sections.
Some of the common methods used in Bayesian analysis and the problems

that this thesis attempts to address are demonstrated by use of examples.

2.1 Basic theory

Consider a model for data @ assumed to be observed values of some random
variable X. This model defines a probability distribution for X in terms
of parameters 6, from a parameter space ©, by a density function p(x|).
The value of this density data @ is often called the likelihood function, as it

describes the likelihood of this particular sample « in terms of the parameters

0.

In a Bayesian model initial knowledge about 6 is represented as a prior dis-
tribution having density p(€). This may come from some ‘expert’ assessment

of the parameter value or from some previous measurement or experiment.

12

Statistical inference for 0 is obtained by using Bayes’ Theorem to update

knowledge about 0 in the light of the sample data x.

The inference about @, given data x, is provided by the posterior density

given by Bayes’ Theorem as:

D(6la) p(z|0)p(8) p(x|0)p(0)

- Jor(x|0)p@)de p(x) (2.1)

where ® is the entire parameter space.

It is often convenient and sufficient to express Bayes’ theorem to proportion-

ality! as

p(Bz) o< p(x|6)p(6). (2.2)

Note that

plz) = / D((6)p(8)d6 (2.3)

is obtainable as the constant needed to make p(@|x) a proper density, so that

/p(0|:c) = 1. (2.4)

If the sample is large then the information contained in the prior is swamped

by that in the data and the prior has little effect on the posterior density.

IThe variable y is said to be proportional to the variable x, if there exists a non-zero
number k such that y = kx, the relation is often denoted y o« x and the constant ratio

k = y/z, is called the constant of proportionality.

13

If, on the other hand, the sample information is small the posterior will be

dominated by the prior.

The Bayesian approach has several theoretical advantages over, for example,
the more familiar frequentist methods. One such is that it does not violate
the likelihood principle. This principle implies that all the information to be
learned about 6 from the sample is captured in the likelihood (Lindley, 1965).
Hence, two different samples having proportional likelihoods would have the
same inference; this is true if Bayesian methods are used, see, for example,
Savage (1962) and O’Hagan (1994). As a simple example of a statistic in
common use that violates the likelihood principle consider the problem of

estimating the variance (0?) from a sample:

e ngf—lfy (2.5)

where Given a sample mean Z and sample size n, s? is an unbiased estimator
for 02. The denominator has been chosen to remove bias. It therefore con-
siders samples that have not been seen and, hence, information not in the

observed data.

2.1.1 Marginal and conditional densities

Although the posterior density given by (2.1) provides all that is needed for
inference about @, there may be particular interest in a subset of @, 6 of

dimension? t. where

2A quantity @ is said to be of dimension d if it may equally well be written

{61,02,...,04}, i.e. it consists of d distinct items.

14

0,=0,.6, ...,0.)" 2.6
1 2 t

and, if 8 is of dimension k,

[:(i17’i2,...,it)C<1,2,...,]€). (27)

Denoting the complement of @; with respect to 6 as 8%, then the Bayesian

paradigm gives inference for @; as the marginal posterior density

p(6;]x) = /9 p(6]) a6, (2.8)

where Oj_; is the parameter space supporting 67, i.e. the appropriate region

of integration for the subset 67 of 6.

In a similar way, inference about 6;, when 69 are known, is given by the

conditional posterior density

_ p(6lz)
p(07|x)

p(0:167,) (2.9)

2.1.2 Predictive densities

Similarly, inference about future observations y, having observed x is given

by the posterior predictive density

pyle) = /@p<y\0>p<e\w>de (2.10)

where p(0|x) is the full posterior distribution. Note that the predictive den-

sity p(y|x) provides inference about y conditional only on the observed data

15

x, without reference to any specific value of @. This is in contrast to an es-
timative approach which might give p(y|é) where 6 is a point estimate (e.g.

maximum likelihood).

2.1.3 Analytic solutions

The range of problems for which an Bayesian, analytic solution is possible
is limited and depends on the choice of the model (leading to a tractable

likelihood function) and prior.

A simple model assumes that the data & = (z1,...,n,) is a random sample,

of size n, from some distribution having density function p(x|@) with

p(x|0) = Hp x;|0). (2.11)

If a prior p(@) is chosen from some family F, say f(0|a), the choice of a

being regarded as part of the model specification, the posterior is given by

[, p(2.]0)/ (8lax)
PO) = OTIE, p(2:]6) f(Olc)do (2.12)

If p(@|x) is also a member of F, say

p(0z) = f(6|8) (2.13)

where the parameter 3 is a function of only o and « then the family F is
said to be closed under sampling, with respect to the density p(z|@) (Barnard,
1949). The prior p(@|a) is called a conjugate prior for p(x|@) (see Smith
and Bernardo, 1994, p. 265).

16

Example

As an illustration, consider inference about the mean 6 of an exponential

distribution with density

p(x|0) =07t " (x>0, 0>0). (2.14)
The likelihood of a random sample © = (2, 29, ..., 2,)7 is
p(x|f) = 6 "e /0 (2.15)
in terms of the sufficient statistic?
T — =, 2.1
=y (2.16)
=1
Take as prior a density of the form
p(0) = f(blar, az) (2.17)
ag ™! /6
= TeTaz 2.18
T(a 1) ¢ (2.18)
o fremo2/f (2.19)
then the corresponding posterior is
3Let © = (21,...,2,)T be a vector of observations from a distribution with parameters

0= (61,...,0r). Let t =1t1,...,t,) be ¢ functions of . Then the set of statistics ¢ is said

to be sufficient for @ if the likelihood function [(@|x) can be expressed in the form

1(0]x) o g(0]t)

17

p(flz) o< g emo2/0gnena/d (2.20)

— g—(aa+n) ;~(az+nz)/0 (2.21)

which is clearly also of the form (2.17) and so may be written as

p(flz) = f(Olay,as) (2.22)
where

o) =a;+n,and oy = @y + nT (2.23)

Hence (2.14) is closed under sampling, with (2.17) as a convenient natural
conjugate prior family for inference about the mean #. In such a case a

complete analytic solution is available.

2.2 Implementation Example

The cases in which a convenient conjugate prior is available are few, and ide-
ally the choice of model and prior should not be limited to those that allow an
analytical solution. Perhaps the best way to allow the reader to appreciate
the range of alternative approaches, and the difficulties that arise, is to ex-
amine a simple example. A small deviation from that example (replacing the
Normal prior with a Teachers prior with v = 4) makes it impossible to treat

the example analytically but makes little difference to numerical methods.

Consider the manufacture of some component in which a particular mea-

surement, x, is of interest. This may be modeled as being a value of a

18

random variable X having a Normal distribution with mean p and variance
0%, N(p,0?). In this context the mean p represents the ‘setting’ of the man-

ufacturing process, while the variance o2 represents the ‘process variability’.

The parameter p is unknown, but prior knowledge about it may be repre-
sented by a N (ug, of) density, and for this example values of g = 3.5, o2 = 1
are suitable. The choice of o2 is in fact largely uninformative as a wide range

(0.5 to 6.5 say) of values of p are all quite likely.
Assume the parameter o is known: o = 0.01.

The sample data to hand

3.51 3.50 3.52 3.50 3.51 3.50 3.52 3.50 3.51 3.51

can be summarised as n = 10, and) x; = 35.08.

For this example both analytic and numerical solutions are readily available.

Analytic approach

The interest is in inference about € = () given o = 0.01.

With prior u ~ N(3.5,1)

1
p(p) = —=e 27357 (2.24)

V21

z, the sample mean, is a sufficient statistic for u, as the likelihood, I(u|x),

depends only on x and o (fixed), through the sampling distribution of &
which is N (p, U—nQ)

19

plz) o p(zlp,o?) (2.25)
X exp (2—n (,u—:p)z) (2.26)

o2

so the posterior for p is

p(plm) o p(u)l(ulx) (2.27)
o< p(p)p(E|p, o?). (2.28)

So, by inspection
p(plx) = (2:0_2>2€Xp (%(,u — i)2) —00 < pu <00 (2.29)

x is a random sample of size n from N (u, 0?) where o is known and the prior

for p1 is N(po,02). The posterior is p1 ~ N(pp,02) where

_ nzfo? 1 o)
" nfor+1/03

(2.30)

and

0,2 =no"%+ 0> (2.31)

The prior for pis N(3.5,1), ¢ = 0.01 and Z = 3.508 so posterior belief about
pis as if g had a N(3.508,0.00316%) distribution.

20

Simulation approach

It is possible to utilise Monte Carlo integration using Markov Chains (MCMC)
to obtain inference about population statistics in many problems. An MCMC
solution to a problem consists of an MCMC constructed so that its stationary
distribution is the distribution about which it is wished to draw inference,
(see, for example, Gilks et al., 1996). The problem outlined in section 2.2
is amenable to this approach. Specifics of the method used are discussed in

Chapter 3.

As a simple example of the use of MCMC to solve the above problem choose a
Metropolis-Hastings, random walk MCMC. This has the advantage of allow-
ing the use of a symmetrical distribution from which to choose the candidate.*
Once the process has entered the state space of the target distribution® it

will not leave it.

Here

p(0) ~ N(35,1)
[(0]z) o< exp (52%(0 — 2)?) (2.32)

o p(z]f,0)
so the probability of transition from #; the current state to 6y the candidate

state 1s

41f there exists a generated sequence of values and the current value is X;, to generate
Xi41, the process is to generate a possible value for X;,1, for example y, and then decide
whether the chain moves to that value or stays in the current value. The value y is called

the candidate.
5The current value of the chain is called the state and the state space of the distribution

is the space consisting of all possible values the distribution might take.

21

. (% z|02,0
p(f1,6,) = min <%, 1) (2.33)

The code shown in figure 2.2 is for running a Metropolis-Hastings, random
walk MCMC sampler. With the transition probability above, and allowing
1000 samples as a burn in period, the output is a sample of 1000 values with
= 3.507999 and sd = 0.00304. (Note that this result would, of course,
be slightly different if run again, due to the small sample used and random
differences. However, if a large enough sample is taken, run differences tend

to zero with probability 1).

It is possible to draw a predictive sample from this density with the S-Plus
command y <- rnorm(1000, samp, 0.01)% where samp is the output

from the sampler, this gives the histogram shown in Figure 2.1.

Asymptotic approach

As above the likelihood is

1(0]2) o exp | —=(p — 7)? (2.34)
202
so the log-likelihood is

Llz) = C — (- 7)? (2.35)

202

Srnorm(n, m, s) isthe S-Plus command that generates n random numbers mean m,

standard deviation s. So this generates 1000 samples using the MCMC sample from the
posterior distribution of the mean as a vector of means (samp) and the known parameter

o as standard deviation.

22

200

150

100

50

3.48 3.49 3.50 3.51 3.52 3.53 3.54

y

Figure 2.1: Histogram of a predictive sample, n = 1000, generated using the
R code y <= rnorm(1000, samp, 0.01). samp was generated from the density
p ~ N(3.507999,0.00304%) using the code in figure 2.2. Ames are values (x) and

bin counts (y).

where C' is a constant. Differentiating and equating to zero gives

—(0-7)=0 (2.36)

so that

<>
I
Kl

(2.37)

and a second differentiation gives

2= (2.38)

function(theta, w = 1000, mu = 3.508, sigma = 0.01, n = 10)
{
#simple mh sampler for the example with mean 3.05
#sigma 0.01
f <- function(theta, mu = 3.508, sigma = 0.01, n = 10)
{
z <- exp(- n/2/sigma”2 * (theta - mu)~2)
z
}
z <- rep(0, n)
p <- rep(0, w + n)
theta <- 3.5
pmu <- 3.5
psigma <- 1
for(i in 1:(w + n)) {
new <- theta + rnorm(i, 0, 0.01)
prob<-(dnorm(new,pmu,psigma) *f (new))
/(dnorm(theta,pmu,psigma)*f (theta))
alpha <- min(prob, 1)
pl[i]l <- alpha
if (runif (1) < alpha) theta <- new
if(i > w) z[i - w] <- theta
}z

Figure 2.2: R code for the MCMC' example.

giving, in this case, = 3.508 and o, = 0.00316.

A histogram of 1000 samples from N (3.508,0.003162) is shown in figure 2.3.
While not a good density estimator, a histogram is useful for the gross com-
parison of two samples needed here. Note that this histogram appears to
come from a distribution with a smaller standard deviation than that shown
in Figure 2.1; the predictive sample is a safer estimate as it allows for the

uncertainty in the point density estimation.

24

250

200

150

100

50

T T T T 1
3.500 3.505 3.510 3.515 3.520

Figure 2.3: Histogram of sample drawn from pu ~ N(3.507999,0.003042) (Mazxi-

mum likelihood approximation). Azes are values (x) and bin counts (y).

Numerical approach

The interest is in what may be inferred about @ = (1) from a random sample
x = (11,29,...,2,)". Each component of the random sample is modelled as
a value of X, being independently and identically distributed as N(u,o?).
Hence the probability density function (pdf) for the whole sample, the like-

lihood function, can be written as

p(@|0) = Hﬁexp (-% (x;“)) | (2.39)

The prior is as given above, which may, in practice, be a setting up value ()

and a measure of variation derived from system history (o?).

It is possible to numerically apply Bayes’ Theorem. Of the many approaches

25

to numerically applying Bayes’ Theorem, the Bayes4 suite of software devel-
oped by Dr J C Naylor (see Naylor, 1982; Naylor and Shaw, 1983; Naylor
and Smith, 1982) is chosen here. Bayes4 uses Gauss-Hermite quadrature to
obtain values for posterior density parameters. Applying Bayes4 gives the
posterior densities shown in Figure 2.4 and also a numerical approximation

to the posterior mean for p of 3.508.

150

100

pdf
pdf

20

10

3.495 3.500 3.505 3.510 3.515 3.520 3.48 3.49 3.50 351 352 3.53 354
(a) Posterior Mean. (b) Predictive density.

Figure 2.4: Posterior mean and predictive density for u generated by Bayes/,

Normal prior. Axes are p (x) and pdf (y).

Repeating the exercise using a Student’s t-distribution with 4 degrees of free-
dom (t,—4) as prior, renders the calculation analytically intractable. How-
ever, using Bayes4 gives the posterior densities shown in figure 2.5, where

the posterior estimate for u is again 3.508.

All of the examples above are extremely easy to describe. However, as soon as
a t,—4 prior is chosen their solution becomes, analytically at least, intractable.
At the same time the result of the analysis is remarkably similar to that
obtained with a Normal prior. Performing the analysis using Bayes4 is no

more difficult than when a Normal prior is used.

26

pdf
80 100 120 140
pdf
30

60
20

0

4

20

0
0

3.495 3.500 3.505 3510 3515 3.520 3.48 349 3.50 351 3.52 353 3.54
(a) Posterior Mean. (b) predictive density.

Figure 2.5: Posterior mean and predictive density for p generated by Bayes, t,—q4

prior. Azes are p (x) and pdf (y).

The graphs in Figures 2.4 and 2.5 were produced using standard S-Plus

routines, which apply spline curves, to interpolate between points.

The problem analysed in the preceding sections is univariate and simple; the
use of these methods is complete overkill but is done for comparison. In each
case the posterior means and the predictive densities are the same, as is the
inference to be drawn from the data. If the problem exceeds 3 parameters,
the methods of generating the posterior samples are still valid, as long as
they can be applied to the problem. However, the display techniques used
are not available for exploring the results derived from them. A uniform way

of presenting results from higher dimensional objects would be useful.

2.3 Discussion

In the chosen example several different approaches were taken to a single,

simple problem. The key issue being considered here is that the form in

27

Mean Variance

Analytic 3.508000 | 0.0031600?
Gibbs Sampler 3.507999 | 0.0030400>

Predictive mean and vari- | 3.508014 | 0.00311682

ance

Asymptotic 3.508000 | 0.00316002
Bayes4 Normal Prior 3.508000 | 0.0043700?
Bayes4 t Prior 3.508000 | 0.0043600>

Table 2.1: Results for posterior densities for manufacturing problem.

which the answer is available depends on the approach taken to solving the
problem. There is a mathematical function, some pseudo sample data, an
asymptotic expansion, and a numerical approximation. The rest of this thesis
is concerned with presentation methods which may be used across all of these

implementations.

Note that each of the above approaches gives a similar answer to the problem.
Table 2.1 summarises the posterior densities obtained for the posterior mean

E(u|z) and posterior variance F(u?|x) — E?(u|x) by each method:

If the posterior mean is used as a point estimate, all the methods show
reasonable agreement. Point estimates are useful, but decreasingly so as di-
mensionality increases. As the dimensionality of the problems increases so
does the difficulty of presenting the results, due to the difficulty in assess-

ing interactions of densities of higher than 2 dimensions. This makes the

28

application of non-analytic methods such as MCMC estimation attractive.

29

Chapter 3

Monte Carlo Markov Chain
Sampling

The example in the previous chapter was trivial but the change in prior from
Normal to Student’s ¢ rendered it intractable to analytic methods without
making either numerical quadrature or sampling more difficult. The main
limitation to the use of both of these has been their computational inten-
sity but, as Moore’s Law (Moore, 1965) predicts, this is becoming less of a

problem.

In Bayesian analysis the problem dimensionality is the same as the num-
ber of parameters of the problem. In problems of up to 10 parameters it
is possible to use Monte Carlo integration or numerical quadrature (Smith
et al., 1987; Naylor, 1982; Naylor and Smith, 1988), beyond that it rapidly
becomes difficult. Monte Carlo Markov Chain (MCMC) algorithms — espe-
cially Gibbs (Geman and Geman, 1984) and Metropolis-Hastings (Hastings,
1970; Metropolis et al., 1953) — are now commonly used when it is required

to produce a sample from a density. These methods can be used when the

30

density is specified either as a complete set of conditional densities or as a
multivariate density and are very powerful, able to handle problems of the

very high dimensionality needed.

The basic strategy is to construct a Markov Chain sampling scheme for which
it can be shown that the equilibrium distribution is the density of interest.
The great advantage of MCMC is that it is possible to devise methods such
that the density of interest need only be known to proportionality, thus
removing the requirement for knowledge of the constant of proportionality
and the troublesome integration required to obtain it. Interest here is in a
sample obtained from MCMC as the result of an analysis or from a posterior
density, specified as either a full set of conditionals (Gibbs) or a complete

density (Metropolis-Hastings).

3.1 Markov Chains

Some Theory

Consider a sequence of random variables X, X1, ... representing the state of
some system at times 0, 1,.... These define a stochastic process, said to be
in state ¢ at time n if X,, = ¢. Suppose the system is in state ¢ at time n and

the transition probability that it will be in state j at time n + 1 is P;;, then

PZ” = P{Xn+1 :j|Xn:i7Xn71:in717"'7X1:i17X0:i0}

If this depends only on the state ¢ and on no previous state, i.e.

31

then this is called a Markov process'. The values P;; are called the transition
probabilities of the Markov Chain and the process is said to have no memory

in the sense that F;; depends only on X,, = i.

Within the state space of the process, if (X;);> is a Markov chain it is said
that ¢ leads to j (written as i — j) if

P;(X; = j for some t > 0) > 0. (3.1)

Where P;(-) is the probability of some event happening, given that the chain
is in state 7. It is held that ¢ communicates with j (written ¢ < j if both
t «— jand ¢ — j. This is an equivalence relation, having reflexivity, symmetry
and transitivity. Sets of states that can communicate with each other can be
considered to be equivalence classes. States belonging to different equivalence
classes do not communicate, though one way transition is possible. If a
Markov Chain has all its states belonging to one equivalence class it is said

to be irreducible.

In practical terms, if the process is not irreducible then it can become “stuck”
in one section and cannot be said to produce a “fair” representation of the
density. An irreducible process is one in which it is possible to reach any

state, starting in any state (Feller, 1970, p 385).

LA process which has no memory, i.e. only the current state of the process influences
where it goes next, is called a Markov process. If this process can assume only a finite or

countable set of states it is usual to refer to it as a Markov chain (see Norris, 1997)

32

It can be shown that the sample obtained from the MCMC tends to a sample
from the distribution of interest after some (large) number of steps n (Gilks

et al., 1996).

Example

Perhaps the simplest possible example of a Markov Chain is the random
walk. The state space is the set of integers (positive, negative and zero) and

the transition probabilities are

Py = q forj=i+1
= 1—q forj=1-1

= 0 otherwise

This process can be viewed as that of a particle constrained to move in single
steps up or down an infinitely long line, with constant probability of moving
up (q) or down (1 — ¢) one step. The particle cannot take two or more steps

at a single time point. Such a process is a 1D ‘random walk’ in discrete time.

3.2 Practical Methods of MCMC

Some methods that are commonly used in constructing MCMC samplers
are now considered. Interest is in methods that lead towards a system for
viewing the results of analysis in some uniform way, regardless of the method
of analysis. The possible starting points for this can be separated into four

cases. Knowledge about the density is contained in:

1. A sample from some simulation analysis.

33

This could be a sample from an MCMC simulation.

2. A set of conditional densities.

For example those used to generate Figure 3.3.

3. A fully specified density.

For example f(z,y) = (2r00) " exp |4 {2l 4 Lo 1],

1
4. Some combination of 2 and 3.

For example if p(x|y1, y2) and p(y1, y2) = f(y1, y2) (see Gilks and Best,

1995, for a practical approach to combining samplers) .

In cases 2, 3 and 4 some form of simulation is needed to obtain a representa-
tive sample, for 2 and 4 Gibbs sampling is used (Smith and Roberts, 1993;
Gilks et al., 1996) and for case 3 Metropolis-Hastings sampling, (Metropolis
et al., 1953; Hastings, 1970; Chib and Greenberg, 1994). For 4, Gibbs and
Metropolis-Hastings samplers can be combined, (Gilks and Best, 1995).

There are other techniques that are used for analysis and sampling, however
all are special cases of the general framework discussed in Metropolis et al.
(1953) and Hastings (1970). Following are details of those that are most

interesting here.

3.2.1 Gibbs samplers

Gibbs samplers are the most popular and versatile of the MCMC methods
discussed here, introduced to mainstream statistical analysis by Geman and
Geman (1984) and developed in, amongst others, Gelfand and Smith (1990b).

Gibbs samplers were originally used to analyse Gibbs distributions on lattices

34

and in statistical physics where they were known as the heat bath algorithm.
For an introduction and history of MCMC samplers see Gilks et al. (1996,
Chapter 1).

Theory

Given a vector of random variables T" = (X, Y7,...,Y3), some distribution
f() = f(z,y1,...,yn), and the requirement to find characteristics (for ex-
ample, but not limited to, position and shape parameters) of the marginal

density
f(:p):/.../f(x,yl,...,yn)dyl...dyn,

then the obvious route is to calculate f(x) and use it to find the required
information. However, there are few cases where the integrations can be

performed.

The Gibbs sampler provides an alternative method of obtaining a sample
Xy, ..., X;m ~ f(z) without having access to a direct mathematical descrip-
tion of f(z). By simulating a large enough sample, the mean, variance and
any other characteristic of f(z) can be found. The MCMC converges to a
sample from the required density and, assuming good quality random num-
bers, as the sample gets larger the effect on the precision of the estimates
of a single extra sample on the values decreases. This means that by taking
sufficient samples, values can be estimated to any desired degree of precision.
This is contrary to the experience of sampling from a ‘real’ population where
a sample can only increase to the size of the population; in MCMC there
is no limit on the size of the sample. For example if some value that has a
value in the region of 1 is being estimated and 1000000 samples which vary

between 1.001 and 0.999 are taken, then the effect of adding another sample

35

will only appear in the 8th decimal place of the answer.

The end results of any calculation, although based on a simulation, are the

population quantities. For example f(z) =1/m> ", X; as

lim iZXZ = /OO xf(r)dr = E[X]

By taking m large enough, any population statistic can be obtained to any

required degree of precision.

As an example, starting with the pair of random variables (RVs) (X, Y), the
Gibbs sampler generates the following sequence from f(x) by sampling from

the conditional distributions f(z|y) and f(y|z)
Yo, Xo, Y1, X1, Y35, X5, Y, X,

the initial value Y = v is specified, the remainder are obtained by alterna-

tively generating

Xj~ f@Y] =)

Yj/+1 ~ f(y|Xg/ = 1’;)

This is, clearly, a Markov Chain as it fulfils the condition, laid down in
section 3.1, that the current state depends only on the previous state and no
other. Under quite general conditions, (see Brooks and Roberts, 1995), the
distribution of Xj converges to f(x) (the true marginal of X) as k& — oc.
Thus for £ large enough, the final point of the sequence is effectively a sample

point from f(x). Also, the distribution of (X},Y}) converges to f(x,y).

36

Practice

The Gibbs sampler is a system that allows the generation of a sample from
a density defined in terms of all its full conditional densities. Smith (1991)
suggested that MCMC benefited from running many chains in parallel and
the S-plus system’s ability with vectorised arithmetic makes running multiple

chains easy.

The density is approximated in the following way:

1. Obtain all the full conditional densities in the form f(6;|6_;) where
0_; is the n — 1 vector consisting of the n parameter vector of the

distribution excluding 6;.

2. Given values for the parameters 9%0), 0&0) ... 0% use the conditional dis-

tribution g(6;]0_1) to obtain a new estimate for 6, o).

3. Use the estimated parameters 0:(,,0), 9&0) ...0% and the new value 99) to

obtain a new value for 65, 951).

4. Repeat, to obtain a complete realisation of .

Once the new realisation of @ has been obtained the process is repeated.
Theory states that the algorithm converges to a sample from the density,
however the convergence can be extremely slow and it is common to throw
away a large number of samples prior to establishing convergence using one

of the well established tests (see, for example, Brooks and Roberts, 1995).

Figure 3.1 shows the first 5 samples, including the starting position (20, —20),
of a simple Gibbs sampler. The four frames show the progression from the

start, each frame showing the two samples obtained in each step from the two

37

20
20

10
10

o o
2 2
8 start 8
-20 -10 0 10 20 -20 -10 0 10 20
a a
o o
N N
o o
- —

| 2P | | =

o o
S <
o o
N X
-20 -10 0 10 20 -20 -10 0 10 20
a a

Figure 3.1: The first 5 samples (including the starting position (20,—20)) of a
Gibbs sampler in state space R2. The distribution sampled from isa ~ N(0,5), b ~
N(0,2.5), pay = 0.5. The contour lines are percentage contour lines for the target

density.

conditional densities (following the line from start in the first diagram leads
from the point (), y() to the point (z(V),y(®) and the next line leads to
the point (2", y™1))). Note that the start point can be anywhere in the state
space of the distribution. The chain quickly enters the 90% contour line?
shown for the target distribution; in the case of a more complex distribution
it can take many more steps for the chain to reach this point. The chain
converges to the required distribution but it is sometimes difficult to predict

the rate of convergence. The S-Plus code used to generate this sampler is

2The 90% contour line is the line within which 90% of a sample from the density is

expected to lie.

38

shown in figure 3.2.

function(x = ¢(0, 0, 5), y = ¢c(0, 0, 2.5), rho = 0.5, n = 20, burn
=0 {
set up the constants
FAC <- sqrt(1 - rho"2) #
n <- n + burn
plot the contours
con <- normgrid(a, b, mu = c(x[2], y[2]),
sig = c(x[3], y[3]), rho = rho)
contour(a, b, con, labex = 0, levels = c(0.1,
0.05, 0.01, 0.005, 0.001)) #
generate the samples
for(i in 1:n) {
generate a new Y from the current X
ynew <- rnorm(1l, (rho * y[3])/x[3] * x[1], FAC * y[3])
generate a new X from the new Y
xnew <- rnorm(1l, (rho * x[3])/y[3] * ynew, FAC * x[3])
output if past the burn in,
in this case output the number i
if (i > burn)
text (x[1], y[1], as.character(i - burn))
update the output
x[1] <- xnew
y[1] <- ynew
out <- c(out, c(x[11, y[11))
}
output the plotting info for reuse
out <- list(out, con)
out

Figure 3.2: S-Plus code for a simple Gibbs sampler.

The density shown in figure 3.1 is a bivariate Normal with means zero, vari-
ances 2.5 and 5 and covariance p = 0.5. The well-known equations for the

two conditional densities for such a density may be found, for example, in

39

Feller (1970) and are:
the conditional density

p(X2|X1) — 1 exp _<x2 _p<0-2/0-1)x1>2 ’

27(1 — p?)o3 2(1 - p*)o3

the conditional expectations
E(X2|X1) = ploz/o1)w,

E(X1]X2) = p(o1/02)xa,

and the variances

var (X|X1) = (1 - p?)os,

var (X1|X3) = (1 — p*)o?.
The 10,000 samples in Figure 3.3 were generated in a similar manner, however
this time the S-Plus routines make use of the ability of S-Plus to handle

vectorised arithmetic to reduce the use of the for loop. This gives a much

more efficient program. The code used is shown in Figure 3.4.

3.2.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a method first proposed in Metropolis
et al. (1953) and generalised in Hastings (1970).

Theory

If the target density 7(x) is known to proportionality, and a Markov process
with candidate-generating probability ¢(z,y) is constructed, so the probabil-

ity of transition from state z to state y is ¢(z,y), then, with the chain at

40

20

10

-10

-20

Figure 3.3: 10,000 samples from a Gibbs sampler in state space R%. The distri-
bution sampled from is a ~ N(0,5), b ~ N(0,2.5), pap = 0.5. The contour lines

are percentage contour lines for the target density.

point X,, = x,, a candidate value Y for X, is generated from the density

q(z,y). This candidate is accepted with probability a(x,y) where

0 d TWaly,x) : Nl
min {W, 1} if 7(z)q(z,y) > 0,
a(z,y) = (x)q(z,y)
Lif w(x)q(x,y) = 0.

a(x,y) is called the acceptance probability. Details of the derivation of the

acceptance probability have been extensively discussed in the literature, see

e.g. Chib and Greenberg (1994).

The acceptance probability only depends on 7 through the ratio 7 (y)/7(z),
so 7 is only needed to proportionality. If the step is accepted the chain moves

to X, 11 = vy, otherwise it remains at X,, .1 = x.

41

function(x = ¢(0, 0, 5), y = c(0, 0, 2.5), rho = 0.5,
n = 10000, burn = 10,cont=T)

{

FAC <- sqrt(1 - rho"2) #
draw the contour lines

if (cont)

contour(a, b, normgrid(a, b, mu = c(x[2], y[2]),
sig = c(x[3], y[3]), rho = rho), labex =0,
levels = ¢(0.1, 0.05, 0.01, 0.005, 0.001))
replicate the x and y data to give 1 stream for each output
x2 <- rep(x, n)
dim(x2) <- ¢(3, n)
x2 <- t(x2)
y2 <- rep(y, n)
dim(y2) <- c(3, n)
y2 <= t(y2) #
burn in
for(i in 1:burn) {
ynew <- x2[,2] + rnorm(n, (rho * y2[, 3]1)/x2[, 3]
* (x2[, 11 - x2[,2]), FAC * y2[,3])
xnew <- y2[,2] + rnorm(n, (rho * x2[, 3])/y2[, 3]
*x (ynew - y2[,2]), FAC * x2[, 3])
x2[, 1] <- xnew
y2[, 1] <- ynew
}
points(x2, y2)
list(x2, y2)

Figure 3.4: Vectorised S-Plus code for a Gibbs sampler.

If the candidate generating density is symmetric, an important special case,
q(z,y) = q(y,z) the probability of a move reduces to m(y)/m(z), hence, if
7(y) > 7(x), the chain moves to y, otherwise it moves with probability given

by m(y)/m(x). In other words, if the jump is to a point with higher probability

42

it is always accepted, if to a point with lower probability it is accepted with
a non-zero probability defined by the target density, see, again, Chib and
Greenberg (1994) and Metropolis et al. (1953).

If the Markov process is irreducible and the candidate generating density is

symmetric, then ¢(x,y) > 0 and ¢(z,y) = q(y,x) for all x and y and

Random Walk Chains

If the target density is of dimension k and E = R* where E is the state space
of the target density f(-), then the candidate Y is generated by drawing Z
independently from f(-) and setting Y = x + z, ¢(x,y) = f(y —x) = f(z),

and the kernel driving the chain is a random walk.

In this case ¢ is symmetric, the process is irreducible and the acceptance

probability is

a@y) = min {711,

Independence Chains

Candidate steps Y can also be chosen from a fixed density f. In this case

q(z,y) = f(y) and
alz,y) = min{w<y), 1}

w(z)

where w(z) = 7(x)/f(x). The function w is the importance weight function

that would be used in importance sampling if observations were generated

43

from f.

Practice

The easiest algorithm to implement is the random walk. It has the major
advantage that the candidate can be generated from a symmetrical distri-
bution, in the sense that ¢(z,y) = ¢(y,z), and so the transition probability

1S

aoy) = min { 70 1]

In addition, the process will not leave the state space once it has entered it,

so m(xz) = 0 is not possible.

3.2.3 Re-sampling

Re-sampling is a technique that allows a sample from one density to be used
to generate a sample from a similar or related density. For example a sample

from a prior density may be used to obtain a sample from a posterior density.
As a specific example of this approach, let us consider the Rejection method.

Suppose that given a sample from a continuous density ¢(f) a sample is

required from a density h(6) that is absolutely continuous with respect to
9(0) °.
More generally, given a function f(6) which is normalisable to a density

N ()

J f(0)do

3All areas of h(f) can be reached from g(#), i.e. g(#) is an envelope of h(6).

44

and there exists an identifiable constant M > 0 such that % < M, it is

~

9
possible to obtain a sample from A(#) in the following way, (see Smith and
Gelfand, 1992).

1. Generate 0 from g(6).

2. Generate v from uniform (0, 1).

3. Ifu< Age(;) accept, 0.

4. repeat steps 1-3.

Any accepted 6 is then a random variate from h(6).

3.3 Posterior densities

After a Bayesian analysis a posterior density exists in some form. If the anal-
ysis was carried out analytically, or using quadrature that results in estimates
of the parameters of the distribution, there is a mathematical description of
a density in a form that can be used to construct a sampler for that density.
If the analysis used MCMC methods the posterior exists as a sample from

the converged chain.

Whatever form the posterior is obtained in, it is possible to obtain a repre-
sentative sample from it which can then be used to produce marginal and
conditional densities. In order to view or present such summaries some means

of handling high dimensional sample data is needed.

The sample can be as large as required so there is no problem with the

inherent sparsity of data in high dimensional space, the so called ‘curse of

45

dimensionality’, (referred to in, for example, Wand and Jones, 1995, p. 90,
though the expression is much older). The sample size required to obtain a
particular accuracy in Kernel Density Estimation for the first 10 dimensions

is quantified in Silverman (1986, p. 93ff).

Visual examination of any object of greater than two dimensions requires
some method of extracting a 2D subset or series of subsets from that object.
There are a large number of techniques for doing this which preserve the
original character of the object to a greater or lesser extent. The next chap-
ter reviews several of the more common systems along with the Projection
Pursuit family. This family seems most appropriate to the work at hand, not
least because it introduces little perceived distortion and provides an easily

understood view.

46

Chapter 4

Viewing Multivariate Data

Given some collection of points, drawn in some fashion from a density of high
dimensionality, a method of viewing the sample in order to appraise it (and
hence the underlying density) is required. Such methods generally produce
some one, two or three dimensional condensation of the data or series of

views projected from the data.

Many of the available methods are ad-hoc in the extreme and not really
useful outside of the context in which they were designed. As an extreme
example of this consider Chernoff faces (Chernoff, 1973) or any other method
(essentially identical) that uses variation in shape or colour as a means of

examining data of more than three dimensions.

Other methods — for example Principle Component Analysis (PCA) — while
effective in identifying the sources of variation within a sample, do not pro-
vide views of the data that help with obtaining a coherent picture of its
internal structure. In contrast, projection methods (sometimes referred to

as dimension reduction methods), because of their preservation of data and

47

their presentation of a sequence of distinct views of that data, have proved
to be of more general value for this work (see, for example, Asimov, 1985;
Jones and Sibson, 1987). The process of adding a rotation to PCA, either
Varimax or Oblimin, should, in theory, separate the variables so that highly
correlated variables load a lot on one factor and very little on the others. In
reality, this doesn’t always happen and the process of moving in a dense way
through the Projection Pursuit or Grand Tour achieve the same objective

and it is agreed more.

4.1 Projection Methods

Projection methods fall into two categories, those that project the data onto a
lower dimensional subspace and those that use some method to compress the
data into few dimensions, possibly introducing some distortion to the data
in the process. For this work the Projection Pursuit family of algorithms,
discussed in section 4.1.1, has proved the most useful and is an example of
the first type. An example of the second type is the Cone Plot, discussed in
4.1.2.

4.1.1 The Projection Pursuit Family

This family of methods depends on taking points from the sample space and
projecting them onto one or more subspaces. Usually the subspace is one,

two or three dimensional.

Assume a data set of size N and dimensionality K, giving a K x N matrix X,

then each sample is a row vector and the coordinate vectors are row vectors.

48

If a is a K row vector then a’ X, where a” denotes the transpose of a, is
an N row vector and is the orthogonal projection of X in the direction of a
scaled by the magnitude of a. If H is a function measuring how interesting!
such a sample is then H(a” X) is, for fixed X, a function I(a) of the projec-
tion direction a. Such a function is a projection inder . Projection pursuit
attempts, by numerical optimisation, to find local optima of /(a). Usually a
is constrained to be of unit magnitude (Jones and Sibson, 1987). This lends
itself to automated selection of a set of ‘best’? projections for future, human

or automated, examination.

Projection pursuit is ideal for initial automatic examination of a data set,
resulting in several “interesting” views for further examination. However, if
the examination is intended to be carried out by a human operator, a series
of views that changes in a way acceptable to that operator is required. In
addition the series of projections should be, in some way, complete. Pro-
jection Pursuit may be seen as a series of projections from the data space
to a sequence of subspaces, if the subspaces are, in some sense, adjacent to
each other and dense in the set of possible subspaces the algorithm is known
as the Grand Tour, (Asimov, 1985). The basic structure of the Grand Tour

algorithm is as follows:

1. Choose a set of axes that determine a subspace.
2. Project the data onto the subspace.

3. View the projection.

'The function measuring interest might be as simple as a measure of deviation from

normality, but can essentially be any function that can be defined on the data by the user.
2Where ‘best’ is a subjective judgement of interest as defined in 1

49

4. Rotate the surface through a predetermined angle following a path
through the sample space.

5. Project onto the new subspace and repeat.

This may be seen as analogous, in K dimensions to the well known spin plot

in three dimensions (see section 4.2.6).

Steps 1,2,3 and 5 above are fairly easy, the rotation is a well documented
matrix operation (see 7.1 for the starting plane and derivation of an N di-
mensional rotation matrix). All that is required for a successful Grand Tour
is some means of ensuring that the projection planes are dense in the set of
all possible planes. This is dependant on finding a set of real numbers that

are linearly independent over the integers.

Kronecker’s Theorem

Kronecker’s Theorem (Hardy and Wright, 1954, Theorem 442, p. 373) gives
a way of defining a set of numbers that includes a number that is arbitrarily

close to any number in a given set. In one dimension
If ¥ is irrational, « is arbitrary, and N and e are positive, then
there are integers n and p such that n < N and

InY —p—a| <e (4.1)
Hardy and Wright (1954, p. 373, Theorem 438)

Asimov (1985) uses the equivalence that the N dimensional torus may be
thought of as a Euclidean space RY in which all arithmetic is performed

modulo 1. Symbolically

50

N
v, I

~ 4.2
2 ZN (4.2)

where ZV is the integer lattice in RY. It is well known that dense curves

may be found on TV via the following

Proposition

Let {\1,..., An} be a set of real numbers that are linearly independent over
the integers. Then the curve a: R — TV wia a(t) = (Mt, ..., Ayt) has dense

image in TY. (Note that the coordinates \it are interpreted modulo 27)
Hardy and Wright (1954, p. 381 ff)

Real numbers uq,...,uy are said to be linearly independent over the inte-
gers if the only sequence of integers {K7,..., Ky} for which the equation
Zi\il K;u; = 0 holds is with K; = 0 for all 7 (an obvious example being the

logarithms of the prime numbers).
This leads to the Torus method of defining a Grand Tour in Asimov (1985).

Two examples of linearly independent sets of numbers (zAx) are given in

Asimov (1985):
1. Let \x = \/px = the square root of the Kth prime (p1 = 2,p2 = 3,...).
Let z be almost any irrational, positive real.
2. Let A\ = X mod 1. Let z be almost any irrational, positive real.

The implementation of the Grand Tour in appendix A is based on the first
of these (though changing it to the second is trivial).

51

The Grand Tour is a particular case of Projection Pursuit (Asimov, 1985;
Posse, 1990) such that the set of projection planes is dense in the set of all
possible planes. If the path followed by the projection method through the
data is chosen carefully, these methods produce a series of changing views of

the data that appear coherent to human viewers.

If the intention is to use an automated method to detect features of interest,
it is only necessary that the path be one in which the method of selecting
projection subspaces chooses a set of spaces that rapidly become dense in
the set of all possible choices. In addition it is possible to use these methods
for purely machine operation and no visual output, in this case the step
to the next projection can be randomised and the most interesting data
projection in the neighbourhood searched for. This should produce a set
of interesting projections for further analysis (human or automated) if the
concept of “interesting” can be quantified. For example, in many cases,
interesting might be equivalent to “non-normal” or “multi-modal”. As a
trivial example the data might be the output from some MCMC simulation,
in which case, the definition of interesting might be some projection that

deviates from the expected density.

Projection methods are easily implemented and, given an MCMC implemen-
tation, lend themselves to the viewing of functions. They are easy to combine

with density estimation to give a contour view of the underlying density.

Figures 4.1 and 4.2 are examples of a small number of views from two Grand
Tours. Figure 4.1 is a sample from a 24 dimensional posterior density, being
cell probabilities of a 2x 2 x 6 contingency table from a clinical trial, where the
parameters are some function of the cell probabilities. The only interesting

feature here is the normality of the views. Figure 4.2 is a sample of the

52

8 8 8 8
3 g g g
S S S S
%3 %38 3 %3
002 001 00 001 002 w002 001 00 oo1 ooz 002 001 00 001 002
o011 o 1] . 1]
3 3 3 3
= 5. T o 5.
¥3 £3 %3 73
i 002 001 00 001 002 i "002 001 00 001 002
. 1] . 1]
] s] s
002 002 001 00 001 002 002 001 00 001 002
o 1) o, 1]
g8 g g g
8 g g g
s s s
002 001 00 001 002 002 001 00 001 002 002 001 00 001 002 002 001 00 001 002

X, 1) X, 1] .1 X, 1]

Figure 4.1: Sample of a Grand Tour - projecting on a two dimensional target -
applied to the clinical trial data. The Azxes are effectively the axes of the target
and as such represent values of the projected data, i.e. they are relative to the
step of the tour. The views here are produced from the first 16 steps of a tour
choosing a large step size to give a range of differing views rather than a set of
close, and therefore similar images (using a seed of \/5 in the algorithm given in

Section 4.1.1)

93

4, 2]

-a00 0 200 400
I é%;
3
%4, 2]

-a00 00 400

%4, 2]
-400 0 200 400

4, 2]
4, 2]
%4, 2]

4,2
0,2

04,2
-400 0 200 400

Figure 4.2: Sample of a Grand Tour - projecting on a two dimensional target. The
data is the result of applying the Metropolis-Hastings algorithm to the Archaeolog-
ical problem. The Azes are effectively the axes of the target and as such represent
values of the projected data, i.e. they are relative to the step of the tour. The views
here are produced from the first 9 steps of a tour choosing a large step size to give
a range of differing views rather than a set of close, and therefore similar, images

(using a seed of /5 in the algorithm given in Section 4.1.1).

posterior density given by a MCMC approach to the archaeological problem
specified in Naylor and Smith (1988) and discussed in 6.2. Note the “holes”
in the projection, indicative of sampling problems, and the straight edge
indicating a boundary to the sample space. In effect the Metropolis Hastings
approach designed for the problem had several limitations preventing access

to parts of the sample space, this is clearly shown in the figure.

o4

4.1.2 Cone Plots

w0 e e

A XY A - I P

T e T 10 L Tl P)

11%5 11%1.151?1 1342@52 sjéz

119405 e 1 1]%%31\1 #g

Figure 4.3: Sample of a Cone plot - applied to the clinical trial data, first 16
values. The x axis is defined by two points from the data and the other points are

plotted relative to that.

Cone plots, a term introduced by Dawkins (1993, 1995) are produced in the
following manner:

1. Call the data set P and P; € P is a single point of the set.

2. Choose two points in P, denoted by V' and A.

3. Compute the Euclidean distance R; from V to all the points in the data

set.
4. Compute all the angles 6; = AV P,.

55

5. Plot the points (R; cosb;, R;sin6;).

The Cone plot has application in the examination of data sets with structure
that is internal (i.e. structure that cannot be seen without removing part
of the data). For example, a data set that consists of an n dimensional
hollow sphere is easily examined with a Cone plot. This type of data set was
proposed by Wegman (1990) as a test of multi-dimensional EDA techniques.
However, the limitation of the method to small numbers of points limits
the possibilities of density estimation. In addition the Cone plot introduces
substantial distortion to the data before viewing due to the ‘folding’ effect.
As interest here is in the advantages derived from the availability of large
samples, the subsequent limitation of the “curse of dimensionality”, and the
estimation of the underlying density, the Cone plot is of little use in this

work.

4.2 Other Techniques

The following are graphical techniques that have been examined for their
potential as visualisations of multi-dimensional data sets, however for reasons
discussed in subsequent sections they have not proved suitable for the current

work.

4.2.1 Andrews Plots

The Andrews plot is a system that represents each point of a data set as a
separate object, see (see Andrews, 1972). In this case each point in the data

set X = (z1,2,...,x,) is mapped onto a function of the form:

o6

Tooth type 1 2 3 4 5 6

A. British -5.35 -7.07 -937 -428 -2.15 -293
B. Australian aboriginal 3.93 -6.04 -887 -2.16 -0.5 -1.09
C. Gorilla male 3.12 6.66 6.28 4.96 4.13 4.60
D. Gorilla female 1.45 1.73 482 3.96 3.35 3.63
E. Orang-outang male 2.83 5.10 5.11 2.72 1.21 1.49
F. Orang-outang female 1.49 1.63 3.61 1.29 -0.171 0.0503
G. Chimpanzee male 0.38 3.82 346 -1.65 -2.32 -1.92
H. Chimpanzee female 0.01 0.231 3.05 -2.25 -2.65 -2.15
[. Paranthropus crassidens -4.52 -6.49 -7.79 3.45 4.91 3.72

J. Pithecanthropus pekinensis -1.81 -2.94 -6.63 -0.369 -1.32 1.09

Table 4.1: Largest canonical variable for 6 teeth Andrews (1972, Table 2).

Fx(t) = 21 /V2 + zysin(t) + x5 cos(t) + x4 sin(2t) 4+ 25 cos(2t) + ... (4.3)

and the function plotted on the range —7 < w < 7.

There is a possible extension to this type of plot to make it useful for the
dynamic examination of the output of a simulation. The output is passed to
a file and the file monitored by a program that dynamically uses an Andrews
plot to display the last n values from the simulation. In this way the user
might gain some indication of convergence of the simulation. As a static
viewing device the plot is too dependent on the ordering of the data to make

it useful for a large number of data points. It also places a heavy demand on

o7

Figure 4.4: Siz Andrews plots of the teeth data, the plots each have two columns
of the data swapped showing the influence of ordering. The x axis is the value of
t and so has range [—m, 7| the y azis is the value fx(t) where fx(t) is defined in

FEquation 4.3

the user in terms of concentration and use of time. See the example of tooth

data in Figure 4.4 and Table 4.1 as an illustration.

4.2.2 Star Diagrams

Star diagrams are a representation of an n dimensional data set by the ad-
dition of a series of spikes to a plotted point. The plotted point represents
two of the dimensions, and the length of each spike one of the remaining

dimensions (Fienberg, 1979).

o8

S

5 13

*
%

¥*

6

%@%
*e
x4
*

14

¥

15

X025 =%
%

16

Figure 4.5: Sample of a Star plot - applied to the clinical trial data, first 16
points. The axis here are meaningless, magnitude being represented by the line

length within the star.

The Star diagram represents a single point in n-dimensions, a data set with
several points has a Star plot for each point. The practical limit of usability is
in the region of 20 points, so for the type of plot required here, with sometimes
many hundreds of points, the system is obviously unusable. However, for
small collections of data of high dimensionality, the Star plot allows an easy,
visual, comparison of the points in the data set. Figure 4.5 shows 16 data

points of dimension 24.

99

> require(TeachingDemos)
> set.seed(17)
> faces(matrix(sample(1:1000,128,),16,8) ,main="random faces")

Figure 4.6: R code for the Chernoff faces example.
4.2.3 Chernoff Faces

Chernoff faces are a system for Exploratory Data Analysis (EDA) of multi-
variate data that use the idea of varying features of an image according to
the values of a high dimensional object. They are typical of such systems,
being difficult to interpret, impractical, unusable for large (> 20) numbers of
points and limited in the number of dimensions of the data by the number
of distinct features in the image. The ‘facial features’ each correspond to
one dimension of the data and are varied according to the data value. See,
for example, the ‘faces’ command in the TeachingDemos package of R. In
R, having loaded the package using the install.packages() command, the

code in Figure 4.6 will produce a page of “faces”.
For details see (Chernoff, 1973).

A Chernoff face represents a single point in n-dimensions, a data set with
several points has a face for each point. For the type of plot required here,
with sometimes many hundreds of points and in which there is no interest in
identifying individual points, the system is inappropriate. For comparisons
of small sets of high dimensional data the faces can be useful in a similar way

to a Star plot.

60

Random Faces

4

A, <N
~

p

®

®

N

’@
m>)~

(]

)

|) :
0

\>;

= 8
5 6 7 8
C—— C——D C——D 0
==Y —_— (SR> ® ®
Q L ya) AT a7) A EA, /0 \
9 10 11 12

16

-
T [_ —_—

<€

8
D@
0
N
;@
9
Ay
|
g
'r

RN
1;
)]

A
I
>
!
Y
§
=
®
@
\

Figure 4.7: Sample of Chernoff faces - applied to 16 random data points, generated

as in Figure 4.6. Each face represents one data point.

4.2.4 Scatterplots

In its crude form the Scatterplot consists of a simple (x,y) plot of the values
of two variables. Scatterplots are often used to look for features, such as

linearity, in low dimensional data.

Scatterplot matrices are an extension of this. For n dimensional data a
Scatterplot matrix is a ‘matrix’ of plots in which the plot of the ith variable
against the jth variable, ¢ # j, is the (i,) entry of the ‘matrix’. The basic
idea is a generalisation of a draughtsman’s plot in which the top, front and
side views of an object are shown (Cleveland and McGill, 1984). A valuable
extension to this is the technique of brushing in which the same point (or
group of points) is highlighted on all the 2D plots, (see Weihs, 1993; Becker
and Cleveland, 1987).

61

0010 0015 0.020 0.015 0.025 0.035

0.015

x5[,1]

0.005

0.020

x5[,2]

0.010

X51,3]

0010 0020 0.030

0.030

x5[,4]

0.015

X5[,5] ~

0.005 0.015 0.010 0.020 0.030 0.05 0.07 0.09

Figure 4.8: Sample of a Scatterplot matriz applied to the clinical trial data, first

5 dimensions. Axes represent the variable values.

The plot shown in Figure 4.8 is a five dimensional data set. The main
problems here are a) the system will become very unwieldy for any system of
dimensionality much larger than five and, b) the views shown are not views
of the whole data set (but are of sets of two dimensions extracted from the

whole).

4.2.5 Parallel Coordinate Representation

Parallel Coordinate Representation was first proposed by Wegman (1990)
and is a variation on methods which take each point as an independent

entity such as the Andrews plot.

A parallel coordinate diagram is produced as follows:

62

1. draw the n axes in parallel.

2. for each point in the data set X = (21,9, ..., z,) plot each component

Zj; on axes j.

3. join the points comprising X with a line.

Parallel coordinate plot of 24 dimensional data set - first 50 items

PNWAUOON®O©

Figure 4.9: Sample of a Parallel coordinate plot - applied to the clinical trial data,

first 50 points. Azxes are magnitude horizontally and point number vertically.

Like the Andrews plot, the Parallel Coordinate Diagram is highly dependent
on the ordering of the data. In addition, with a large number of points,
the plot soon looks like a single black blob. The difficulty in interpreting
such a plot is illustrated in Figure 4.9. Again it is useful for small data

sets, and especially so for comparing identically ordered data (see Fiorini

and Inselberg, 1989).

63

4.2.6 Spin Plots

Spin plots are a scatter plot that consists of three dimensions of the data set
projected onto two dimensions with the ability to interactively change the
projection angle. This gives a simple system for examining and exploring
low dimensional data. When combined with principal component analysis
(see section 4.2.7), this may be particularly powerful, as three dimensions
may hold, for example, 90% of the variation of some data sets. However, in
reducing the viewed dimensions to three, while much of the variation may be
displayed, some is not, and this can result in missing important subtleties of

the data.

The Spin plot can be used to look at data with more than three dimensions in
much the same way that the Scatter plot matrix can. However, the addition
of the spin controls to the matrix of plots makes them hard to understand
and adds little useful information to the analysis. As a tool for viewing three
dimensions of data it is excellent. It can be further improved by the addition
of brushing and combining it with Principle Component Analysis extends its

use to objects of higher dimensionality.

4.2.7 Principal Component Analysis

Principal component analysis (PCA) transforms a number of possibly corre-
lated variables into a smaller number of uncorrelated variables called princi-
pal components. The variables are sorted into an order based on the contri-
bution they make to explaining the variance in the data. A sufficient number
of variables are preserved to explain the required amount of variability and

the rest discarded. For example if the data is 10 dimensional and the first

64

lett | circde | right

down

N
bigger
™ .\st; smaller

Varl [
Var2 7]
Vard
Vard
Va5

oL Wad

Figure 4.10: Sample of a Spin Plot applied to the clinical trial data, first 5 di-

mensions, first three dimensions selected. Azes are projected magnitude.

three variables explain 90% of the variability, they might be sufficient for the

required analysis.

Figure 4.11 shows two uses of graphical techniques with PCA. The data are
limited to 5 dimensions to reduce congestion. 93% of the variation in this

data was explained by the first two components.

There are several methods of deriving the ordering for the components and
their contribution to variability, one of the most common being the covariance

method:

65

x2prin

0626

0.00008

002

000004 0.00006
| |
Comp. 2
001

00

0.00002
L

001
L

T
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 001 00 001 0.02

(a) Scree plot (b) Biplot

Figure 4.11: Two views of a PCA applied to the first 5 dimensions of the clinical
trial data. Azes relate to the variance attributed to the components. The figure was
generated by the standard R functions screeplot and biplot. (A more complete
discussion of these techniques can be obtained in Mardia et al., 1979; Venables

and Ripley, 2002).

1. Organise the data set

Suppose you have data comprising a set of observations of M variables,
arrange the data as a set of N data vectors x;...xy with each x,

representing a single grouped observation of the M variables.

e Write x;...xy as column vectors, each of which has M rows.

e Place the column vectors into a single matrix X of dimensions

M x N.
2. Calculate the empirical mean

e Find the empirical mean vector u by calculating the mean along

each dimension m =1... M.

[m] = % S X[m,) (4.4)

66

3. Calculate the deviations from the mean.

Mean subtraction is an integral part of the solution towards finding
a principal component basis that minimizes the mean square error of

approximating the data.

e Subtract the empirical mean vector u from each column of the

data matrix X forming the matrix B.

4. Find the covariance matrix

Find the M x M empirical covariance matrix C from the outer product

of matrix B with itself:

CzE[B@B]zE[B~B*]:%B-B* (4.5)

where

E is the expected value operator, ® is the outer product operator, and
x is the conjugate transpose operator. Note that if B consists entirely
of real numbers, which is the case in many applications, the “conjugate

transpose” is the same as the regular transpose.

5. Find the eigenvectors and eigenvalues of the covariance matrix

e Compute the matrix V of eigenvectors which diagonalises the co-

variance matrix C:

VCv=D (4.6)

where D is the diagonal matrix of eigenvalues of C. This step
will typically involve the use of a computer-based algorithm for

computing eigenvectors and eigenvalues.

67

e Matrix D will take the form of an M x M diagonal matrix, where

Dlp,gl =Xy, for p=qg=m (4.7)

is the mth eigenvalue of the covariance matrix C, and

Dlp,q] =0 for p#gq (4.8)

e Matrix V., also of dimension M x M, contains M column vec-
tors, each of length M, which represent the M eigenvectors of the

covariance matrix C.

e The eigenvalues and eigenvectors are ordered and paired. The

mth eigenvalue corresponds to the mth eigenvector.

6. Rearrange the eigenvectors and eigenvalues

Sort the columns of the eigenvector matrix V and eigenvalue matrix D
in order of decreasing eigenvalue, making sure to maintain the correct

pairings between the columns in each matrix.

7. Compute the cumulative energy content for each eigenvector

The eigenvalues represent the distribution of the source data’s energy
among each of the eigenvectors, where the eigenvectors form a basis for
the data. The cumulative energy content g for the mth eigenvector is

the sum of the energy content across all of the eigenvectors 1...m:

glm] :zm:D[p,q] for p=q and m=1...M (4.9)

q=1

68

8.

10.

Select a subset of the eigenvectors as basis vectors
Save the first L columns of V as the M x L matrix W:

Use the vector g as a guide in choosing an appropriate value for L.
The goal is to choose as small a value of L as possible while achieving
the required value of g[-] on a percentage basis. For example, you may
want to choose L so that the cumulative energy g¢[-| is above a certain
threshold, for example 90 percent. In this case, choose the smallest

value of L such that

glm = L] > 90% (4.10)

Convert the source data to z-scores

Create an M x 1 empirical standard deviation vector s from the square
root of each element along the main diagonal of the covariance matrix

C:

s = {sm]} = V/CIp,q] forp=gq=m=1...M (4.11)

Calculate the M x N z-score matrix:

B
Z = —h(divide element — by — element) (4.12)
S .

Note: While this step is useful for various applications as it normalises

the data set with respect to its variance, it is not an integral part of

PCA!

Project the z-scores of the data onto the new basis

The projected vectors are the columns of the matrix

69

Y = W*. Z = KLT{X} (4.13)

The columns of matrix Y represent the Karhunen-Loeve transforms

(KLT) of the data vectors in the columns of matrix X.

Although PCA is “perfectly general” and makes no basic assumptions, this
method for deriving the PCA from a set of points using the variance-covariance
matrix of the points depends on an underlying assumption of normality. Also
the measure of how much variation can be captured by the leading PCA term

assumes normality.

4.2.8 Comments

All of the methods in section 4.2, have one or more of the following problems

making their use for the current project not very practical.

1. They cannot deal with many more than 3 dimensions. For example
Chernoff faces have about 10 usable features and with more than 5

dimensions they become very confusing to interpret.

2. The “Curse of Dimensionality”. In examining a data set obtained by
some experiment, there is a limited quantity of data. If the data has
2 dimensions, 300 points may be a sufficient data set, if it is of 300

dimensions, 300 points is very sparse (Silverman, 1986).

3. Computational difficulties. Some of the methods require a large number

of computations in a short time to be viable.

70

4. Interpretation difficulties. Distinguishing detail in two similar plots
where detail is obscured by the necessity of fitting a series of plots into

a limited area, or where there are many plots to compare, is difficult.

5. Usability, varies between the methods with some requiring operator

training and some being practically useless except in special cases.

Table 4.2 attempts to summarise some of the differences between various

display methods.

In summary, many of the methods examined have a lot of merit in data
analysis. Some, for example Chernoff Faces, have little use except in very
limited situations. The choice of which to use here comes down to several

factors:

1. Retention of data. Ideally there would be no loss of data, or, even,

reduction in available information from the data.

2. Ease of implementation. As a system of exploratory analysis ease of

use and the availability of a simple version of the algorithm is desirable.

3. Maturity. The method chosen should be well established in a form that

requires as little specialist interpretation as possible.

The Grand Tour fits all of these, there are variations and improvemants to
the basic system but these are not considered neccessary or desirable here.
It is possible that similar use could be made of other systems, for example
PCA with rotation, however, the Grand Tour is the one chosen here. In
terms of the software produced, discussed in Chapter 7 and Appendices A

and B, the requirement was for simple to use software for EDA. Therefore

71

Max Dim Computation | Interpretation | Usability
Projection x N low simple good
Cone plot ~ N low difficult® good
Andrews plot ~ 10 medium?” difficult® poor?
Star Diagram ~ 30 high difficult® limited
Chernoff faces 15/ high difficult? limited
Scatterplot ~ 10" low simple good
Parallel coordinate rep- | ~ 20 low! difficult’ poor
resentation
Spin plot ~ 5F high simple good
Principal ~ component | high! variable simple™ good
analysis

%except for internal features

®high if the dynamic extension is used

“due to the sensitivity to ordering

dskill needed to interpret

°but easy for comparison of points

fin the R version

9but easy for comparison of points

Mimit is legibility, for n parameters t he scatterplot is an n x n array.
‘but can have a dynamic extension like Andrews plots
Jdue to the sensitivity to ordering

kallowing for some manual choice of displayed 3
Nimited by data and computation time
Musually used with a display technique, e.g. a spinplot

Table 4.2: A comparison of methods for viewing high-dimensional data sets.

72

the simplest version of the Grand Tour was used. There is a wide range of
available literature detailing refinements to both Projection Pursuit and the
Grand Tour and their use, but these refinements, see for example Lee and
Verleysen (2007), are not helpful here as the intended use of the software is
for exploratory analysis of new data (i.e. where little is known about data

type or structure).

These problems can be minimised if it is possible to tailor the data to the
requirements of the display technique, however, for the present work on visu-
alizing large data sets it is difficult to achieve that tailoring. In addition the
system should be usable by observers who are interested in other specialities
and who do not necessarily want to assimilate an unfamiliar way of viewing

data.

It is also the case that many of these methods are good at highlighting “odd”
values in the sample, or tracking individual data items or groups. In the
present context there is no real meaning to an individual data point — the
sample is truly anonymous and has no outliers such as might be expected in
a measured set of data. Consequently, the remainder of this thesis assumes
some projection pursuit method (e.g. the Grand Tour) is to be used for

dimension reduction as there is no need to limit the data in any way.

73

Chapter 5

Univariate density estimation

As stated, Bayesian analysis typically results in either a mathematical ex-
pression for the posterior density or, given MCMC treatment, a sample from
the posterior. In the first case it is usually a trivial matter to obtain a sample
from that density. The sample, in either case, will have dimensionality equal
to that of the parameter space of the posterior, typically this will be signif-
icantly higher than 3. As discussed in Chapter 4 some method can then be
used to obtain reduced dimensional “views” of the sample, for the purposes
of this thesis this is the Projection Pursuit family of tools and results in 1D

or 2D projections from the sample of interest.

Having obtained a low dimensional projection the problem is how to represent
it. Ideally that representation should consist of some form of estimation of
the underlying density. Initially, consider a 1 dimensional projection. This
may be a marginal density for some univariate functions of the parameter
vector @ or a predictive density for some future observation y. In either case

the presentation or density estimation problem is the same.

74

In this chapter a review of frequentist density estimation techniques is pre-
sented. The issues relating to the use of these methods for presenting marginal
posterior densities are also discussed and a number of concerns and problems
identified. Kernel Density Estimation (KDE) would normally be used to
attempt to recover the underlying density from a data sample, here it is in-
tended to apply the same technique to the output obtained as a projection

from a sample from a posterior density.

5.1 Density Estimation

Given some experimental data @ = {z1, z9, ..., 2, }, assumed to be a random
sample from some distribution (i.e. values of g(0) or y), the problem is esti-
mating the probability density function (pdf), fx(-). This density estimation
problem has had much attention in recent papers. Books by Scott (1992),
Silverman (1986) or Wand and Jones (1995) provide a good overview of the
field.

5.1.1 The Histogram

The simplest density estimator is the histogram. This is formed by first
dividing the real line into intervals called bins. In the case of bins of equal
width h the histogram is a step function which estimates the density at a

point x by the function

A 1
f(x) = %(no. of x; in the same bin as z) (5.1)

where n is the sample size. However, in constructing the histogram it is

75

necessary to choose the origin and the bin width h. Both of these make a
significant difference to the performance of the method, Figure 5.1 shows the
effects of different start points and number of bins when plotting some of
the data set “Observations of eruptions of the Old Faithful geyser in Yellow-
stone National Park, USA”, from Weisberg (1980). The data consists of the
eruption lengths (in minutes) of 107 eruptions of the Old Faithful geyser and
is analysed using several existing KDE methods in Silverman (1986). For

further examples see Scott (1992).

Frequency

Frequency
10 15 20 25

5 10 15 20 25 30

5

0
0
L

r T T T T T 1 r T T T T T 1

0 1 2 3 4 5 6 0 1 2 3 4 5 6
7 bins of width 0.5 starting at 1.5 8 bins of width 0.5 starting at 1.25
g 8
3 g
= >
))
2 s 9
& T ®
S o S
g ¥ g
[L g
=)
-~ o
S
o o
r T T T T T 1 r T T T T T 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
4 bins of width 1.0 starting at 1.0 5 bins of width 1.0 starting at 0.75

Figure 5.1: Four different histograms of the Old Faithful data. Axes are value (z)

and frequency (y).

The histogram can be generalised by allowing the bin widths to vary (Silver-

man, 1986; Scott and Terrell, 1987), such that

76

5 1 (no. of z; in the same bin as x)

fz) = (5.2)

" n (width of bin containing z)

The bin width is often called the smoothing parameter as it specifies the
amount of smoothing being applied to the data — a small value giving a more
jagged appearance. The histogram is an excellent tool for Exploratory Data
Analysis (EDA)(Tukey, 1977), however, it is of limited use for the appli-
cation considered here. The histogram has the unfortunate feature that it
estimates all densities as step functions. As the densities that result from
Bayesian analysis are usually continuous, and part of the interest in KDE is
to obtain some estimate of their smoothness, a continuous estimate of the
density function is desirable. In addition the histogram’s sensitivity to bin
position and width means that, in order to obtain a satisfactory representa-
tion, multiple histograms, or even some form of averaged histogram (Scott,

1992), are needed.

5.1.2 Polygon Methods

By connecting the centre point of the top of each bin with a continuous line
a frequency polygon is obtained. Scott (1983, 1985) considered the problem
of choosing amongst the collection of multivariate frequency polygons each
with the same smoothing parameter but differing bin origins. Rather than
choosing the smoothest! curve or surface, he proposed averaging a series of

such polygons. As the average of piecewise linear curves is also piecewise

LA smooth curve here is one with no rapid changes or oscillations, so the smoothest is

the one with the least change in slope over its length.

77

linear? the result appears to be a frequency polygon.

A similar device that is just as general is the Averaged Shifted Histogram
(ASH) in which several shifted histograms are averaged®. Again since the
average of piecewise constant functions is itself a piecewise constant function,
the resulting ASH appears to be a frequency polygon as well. In practice the
ASH is made continuous using some form of linear interpolation. ASH is a
useful tool for density estimation, however these methods are complex and
do not yield the smooth style of density estimate preferred for the application

here.

5.1.3 The Naive Estimator

For a random variable X, the probability density function is defined as a

limit of a probability for an interval, as the interval width reduces to zero.

That is

f(z) = lim % Pr(z—h< X <x+h). (5.3)

h—0

This allows estimation of P(z —h < X < x+h), for any h, by the proportion
of the sample falling in the interval (z — h,x + h). Hence, for a small h,
ﬁ Pr(z —h < X < z + h) would be an approximation to f(x). Replacing

the probability with a relative frequency gives the naive estimator

ZWrite a linear segment as y; = mx; + ¢, so summing several linear segments, at the
point (z;,y:) gives y; = X7 (myz; +¢;) = ¥_ymjx; + X7 _1¢; = ;57 1m; + X ¢;

which is obviously a linear segment.
3A shifted histogram being one with the same data and bin width but with a different

starting point on the x axis.

78

0.10 0.15 0.20 0.25 0.30
I
01 02 03 04 05
I

1 2 3 4 5 1 2 3 4 5
ASH with 10 bins, uniform kernel ASH with 50 bins, uniform kernel
0
8 S
=]
<
3 A
0
8
o]
g
o o
S 4 v
o o
-
0 S
4
=]
T T T T T T T T T T
1 2 3 4 5 1 2 3 4 5
ASH with 10 bins, biweight kernel ASH with 50 bins, biweight kernel

Figure 5.2: ASH of the Old Faithful data with different bin counts and kernels.

The vertical axis here is a normalised score.

1

flz) = ﬂ(no. of zy,...x, falling in = £ h) (5.4)
n

see Silverman (1986).
Defining the weight function

if |z] <1
w(z) =

(5.5)

1
2
0 otherwise

allows the naive estimator to be written

f(a) :%iw(x;x) (5.6)

79

Like the histogram the naive estimator is a step function not a continuous
function. For this reason it is not wholly satisfactory either as a density esti-
mate or for presentation. For the recovery of continuous densities a smooth
estimator that operates in a way that is consistent with its use in a Grand
Tour is required (see section 4.1.1) (i.e. it should be fast enough that the
flow of projections is not disrupted). KDE is a generalization of the naive
estimator which replaces the weight function with a kernel function. If this
kernel function is a smooth, continuous, probability density function then the
density estimate will be a smooth, continuous, probability density function

too, obtaining the necessary smoothness characteristics.

5.2 The Kernel Density Estimator

5.2.1 Introduction

If the weight function in (5.6) is replaced by a kernel function K which

satisfies

/OO K(x)dr =1 (5.7)

The kernel density estimator is defined as (see for example Silverman, 1986,

p. 15)

f@):%é}((fc;“). (5.8)

where h, is the window width or bandwidth of the estimator. Note that

the estimate smoothness depends on the bandwidth. If A is small then the

80

estimate will consist of spikes centred on the z; if h is large then the estimated

density tends to the uniform and all detail is obscured.

The estimate obtained is continuous if K is continuous and so may avoid
the problems associated with the naive estimator or the histogram. A real
disadvantage, in this context, of both the naive estimator and the histogram

is that they both exhibit a lack of continuity.

The estimated density is a sum of n functions, where n is the number of items
of data. This means that it has the same properties as the kernel function —

if K is a probability density function* then so too is f :

It should also be noted that the naive estimator, as defined above, is a KDE

with the non-continuous Kernel

if —1l<z<l1

Ky(z) = (5.9)

O ol

otherwise

However, this kernel gives an estimate with discontinuities similar to, if not

so visually obvious as, the histogram.

It is usual that K(z) > 0, Vx, however there are arguments for sometimes
using kernels which take negative values (see Silverman (1986) section 3.6).
This can lead to problems and, as the potential advantages are not large, the

kernel functions used in the present work are everywhere non-negative.

1A probability density function is a function fdefined on an interval (a, b) and having

the following properties.
1. f(z) > 0 for every z

2. f; flx)dx =1

81

5.2.2 The Adaptive Kernel Estimator

The kernel estimator does suffer from one significant drawback, the need to
estimate, or choose the bandwidth. If density is such that different values of h
are best for different areas of it, then the best a single value of bandwidth can
do is a compromise. For example, when applied to long-tailed distributions
the fixed kernel estimator will tend to under-smooth the tail. In order to
overcome this, the bandwidth of the estimator may be allowed to vary, for
example it is possible to have a bandwidth inversely proportional to the local

density obtained from some previous estimate, Silverman (1986, p. 100).

The steps given in Silverman (1986) for arriving at this are

1. Find a pilot estimate f(t) that satisfies f(x;) > 0 for all ¢

2. Define local bandwidth factor \; by

W P ACD (5.10)

where g is the geometric mean of the f(x;):

1 ~Y
logg = %ZlngCL’i) (5.11)
and « is the sensitivity parameter, a number satisfying 0 < o < 1.

3. Define the adaptive kernel estimate f by

n

f(t)=52<hAi)dK{ o } (5.12)

i=1

where K is the kernel function and h is the bandwidth. As in the

ordinary kernel method, K is a symmetric function integrating to unity.

82

The first step of this requires the use of some density estimator to obtain a
pilot estimate, this does not need to be of particular accuracy and can be a
simple as a nearest neighbour estimator®, the fixed BKDE estimate is used
here for the very simple reason that it is already part of the Bayes 4 program
written to support this work, see appendix C. The sensitivity parameter o
controls the sensitivity of the method to variations in the pilot density, setting
a = 0 gives the fixed bandwidth KDE. Abramson (1982) gives arguments for
choosing o = % for reasons of minimising the bias of the estimator and finds

that:

Proportionally varying the bandwidths like f =% at the contribut-
ing readings lowers the bias to a vanishing fraction of the usual
value, and makes for performance seen in well-known estimators
that force moment conditions on the kernel (and so sacrifice pos-

itivity of the curve estimate).

Abramson (1982)

The factor g* in (5.10) means that the bandwidth factors, A; are free of the

scale of the data. Moreover

o rj\;(%) h
hAi = h P (5.13)
h ~ —«
= gTa {f(ﬂfz)}) (5.14)

For nearest neighbour the density is taken to be inversely proportional to the distance

between the data item and the next nearest, by some measure, data item.

83

so writing

No— {?(:ci)}a, (5.15)

is equivalent to rescaling h by a factor of g%a.

5.2.3 The Kernel

It is advantageous to employ a probability density function (pdf) as the kernel,
since then the estimated density is guaranteed to also be a pdf. A common
choice of kernel is the Normal pdf, however there is some advantage in using
other functions, both those with a higher probability associated with the tail,
and those whose contribution to the estimate decreases to zero for points
sufficiently remote from the contributor thus allowing the use of a kernel
that allows a better fit to the data. For example, in the case of estimating a
density that arrives from survival data, there is a distinct advantage in using

a kernel with f(z) =0 for z < 0.

The Epanechnikov Density

The Epanechnikov Density is an example of a kernel that has zero contri-
bution outside a range but is smooth inside that range, first suggested by

Epanechnikov (1969).

Leld+2)1 — 2%2) if 2%z < 1
K (z)={ 2" (d+2)) (5.16)

0 otherwise

84

Epanechnikov density

0.20
|

0.15
|

Figure 5.3: Epanechnikov density, produced trivially by the R command

plot(density(c(0,0) ,kernel="epanechnikov")). Azes are value (xr) and den-

sity (y)-

Where cq4 is the volume of the d dimensional unit sphere®.
So for a 1D KDE, ¢; = 2 and
3(1—2?) ifz?<1

Ke(z) = (5.18)
0 otherwise

6The volume of the d dimensional sphere is given by
/2

(d/2)!

See McDonald (2003) for derivation and evaluations of (d/2)!. This gives values for ¢4

Cq = (5.17)

as follows

— _ __ 4 _ =
1 =2,c0=m,c3 =34 =5

85

and for a 2D KDE, ¢; = 7 giving

2r(1 —x'x) ifxx <1
Keo(z) = (5.19)

0 otherwise
If the density estimate is required for some application where it is only re-
quired to proportionality (such as contour plotting) then the following kernel

may suffice:

(1-zTz) ifz’z <1
K.(x) = (5.20)

0 otherwise
Such kernels save the necessity of determining which points have sufficient
influence to be included in the summation, but have some unfortunate math-
ematical properties that make them unsuitable for the Bayesian KDE in the
next section. The main disadvantage being the introduction of an “edge”

wherever the density arrives at the zero crossing — if the resulting density

is to be smooth, introducing arbitrary cut-offs should be avoided.

5.2.4 Bandwidth

At this point in any discussion of KDE it should be obvious that the one
major problem is that of choosing the bandwidth h. In the literature there
are many good sources for estimation of bandwidth, see for example articles
by Jones et al. (1994, 1992); Park et al. (1994) and books by Silverman
(1986); Scott (1983, 1992) and Wand and Jones (1995).

However, for the current project, a series of projections from some density is

required (along with a KDE from each of them) quickly enough for a human

86

operator to perceive continuity. This implies that an automatic (no human
intervention) system, with no delay caused by deliberation concerning the
smoothness of the density, is needed. Speed of estimation here will improve

the flow of images, thus helping the operator assess the density.

If the kernel density estimator is written in terms of some function K (-|u, 0)
where g is a location parameter and #, which may, more generally, be a
vector, is a scale parameter, an estimate of fx(-) based on the sample x, at

the point, X =t can then be written as

ix(tx, 0) ZK t|xz;, 0) (5.21)

where n is the number of data items. Note that @ may be considered to be
a generalisation of bandwidth. It now becomes obvious that the bandwidth
may be considered as merely another parameter in the specification of the
problem. Belief in the posterior for @ given some data x can be written in

the form

p(0|x) x fx(t|z,0)p(O) (5.22)

This naturally leads to the Bayesian approach proposed in the next chapter.

87

Chapter 6

A Bayesian Kernel Density
Estimator

As was seen in Chapter 5 the Kernel Density Estimator with kernel K(-) is
defined by

n

1
n

fla) = 1 %K (”3 ;x) (6.1)

where h is the window width, smoothing parameter or bandwidth. An ap-

i=

proach is proposed in which h is a parameter of the problem, so avoiding

both the specification of the bandwidth and the assumption that all projec-

tions from a density have the same smoothness.

88

6.1 A Bayesian Model

A KDE is specified in terms of some function K(-|u,) where p is a location
parameter and #, which may, more generally, be a vector, is a scale parameter.
Examples of K(-|u,) include K(-) a Normal pdf with locator y = z; and
scale § = 0. The estimate of fx(-) based on the sample x, at the point,

X =tis

n

Fat]a, 0) = %ZK(H%H) (6.2)

i=1
where n is the number of data items. Note that @ may be considered to be
a generalisation of bandwidth. Taking @ = h leads to the standard KDE of
(6.1).

The form fx(t|z, 8) exposes clearly the dependence of the estimator on both
the sample to hand @ and the parameter vector 8 and gives a density estimate
that is a probability density if the kernel K(-) is a probability density. The

estimate has the continuity of the kernel K(-).

The need to choose h, or more generally 6, is formulated as a problem of
inference about 6. Sample data and model (6.1) allow the building of a
likelihood for @ and belief about the smoothness is expressed in a prior p(8).

Choice of 0 is provided by the posterior distribution p(@|x).

By taking fX(:E) to be a model for the data, a likelihood function can be

constructed in the following way:

Define ;) = {1,22,...,2;}, as the sub-sample consisting of the first 4
elements of x. Assuming no particular ordering to the sample data (so that

it can, at least, be considered exchangeable with a random sample observed

89

in the order implied by the subscripts), the likelihood may be written as

= [[p(@ilziy),6) (6.3)
i=1
where p(x;|2;_1), @) is the probability density of z;, given x(;_1) and 8, given
by the chosen model.

This is of the style commonly used for a time series {z;}, but is more generally
true. If, for example, the density were fx(z|@) we would have the usual

formulation for a random sample

0) = H Jx(i0) (6.4)

If the KDE (6.2) is taken as a model for observation z; having seen x(;_1

then (6.4) can be rewritten as

6) = HfX(:ci\w(i,l),H) (6.5)

It would be difficult to argue that fx() is, in any sense, a ‘true’ model, but,

in the absence of a parametric family for p(), it is the ‘best’ available model.

Since x(;_1) is a parameter of f ¥ () there is generally some minimum number
no (say) of values needed for fx() to be defined and it seems reasonable to

use a conditional likelihood of the form

U(x; 0, 2(,0)) H o (@ilxi_), 0) (6.6)

90

The choice of prior p(@) will, typically, reflect belief about the smoothness
of the true density that fX() is intended to estimate. For example, for the
basic KDE (6.1), 0 is taken to be {h}. In this case a Normal prior for 8 with
a high value of p implies a belief in a rather smooth, near uniform density
while a low value implies a non-smooth density. The variance parameter is
chosen to reflect the strength of belief, a small value indicating a strongly

held belief and a large value the opposite.

With small data sets the choice of prior has a large influence on the smooth-
ness of the final estimate. It may be expected that with large data sets,
for example those available from MCMC, the likelihood will dominate in
the posterior and roughly non-informative priors will be a convenient initial

choice.

Once the likelihood function and the prior are settled, Bayes theorem is

applied to obtain the posterior density

U(; 6, (s,))p(6)
p(zx)

p(O|z) = (6.7)

in which

@) = [i, r(0)d9 (65)

where the integration is over the whole parameter space ©.

The result in (6.7) is a posterior density for the parameter vector 8. The
model used for the density is a KDE in which many densities are summed
to model a single density. This is in no way anything like a realistic model
since it depends on the sample size n. It is not believed to be the true model,

however the KDE family is very rich and adaptable, and it can be reasonably

91

expected to provide an adequate model. It is, in any case, presumably the
best available model, since otherwise some other density or approach would

be used.

Situations in which the model is known, a priori, not to include the ‘true’
density have been considered by Berk (1966). In this situation the appli-
cation of Bayes’ theorem leads, asymptotically, to the member nearest to
the ‘true’ density, in terms of Kullback-Leibler directed distance (Kullback,
1997). Berk terms this the ‘asymptotic carrier’. There is then, some assur-
ance that Bayesian methods will lead to an adequate, even optimal or near

optimal, solution within the chosen modeling family — in this case KDE.

The primary objective here is that of estimating the density fx(:). Within
the family of KDEs, defined in terms of @, it is easy to obtain estimates of
the form f (|é), where 6 is some convenient point estimate of 6, perhaps
the posterior mode or the posterior mean F(@|x). Such a density could be
evaluated at some set of values y, as f (y|9), and this estimative density
plotted. Here 0 is an estimate, not the true value, and the estimate makes
no allowance for the shape (or uncertainty in the estimate) of the posterior

distribution for 6.

A better approach is to integrate over the parameter space of 8 giving the
predictive density of the unobserved data y. See, for example Aitchison and

Dunsmore (1975):

fylz) = / F(yl. 8)p(6]a)d6 (6.9)

Each point requires the evaluation of an integral like (6.9) for y = y; —

unfortunately, this becomes computationally expensive. Given data with

92

range Trange = Tmax — Tyip- @ set of points is chosen y that give sufficient

information to cover zrange. The corresponding values of f (yi|x) are plotted.

In (6.8) and (6.9) the integration is over the whole parameter space O, this
is typically of low dimension but in many cases it is not possible to obtain
the result analytically. In such cases numerical quadrature! can be applied

(see Naylor and Smith, 1982).

6.2 An Archaeological Problem

As a first example, consider an MCMC analysis of the model and data de-
scribed in Naylor and Smith (1988). This concerns inference about five dates
forming boundaries between differing, distinct, and abutting periods of pot-
tery production. The data consist of radiocarbon date determinations asso-
ciated with pottery fragments identified as belonging to one of four periods

of pottery production.

Their analysis obtains a posterior density

1)

p(x)

(&

plale) = (6.10)

where

'Numerical quadrature or integration is the process of approximating an integral of
the form f; f(z)dz by a summation of the form > ;" wyf(zr). It can be shown that
this can be achieved with any desired level of accuracy by careful choice of the nodes xj
and the weights wy, (e.g., see Davis and Rabinowitz, 1984; Shaw, 1986). As the number
of nodes needed increases as the dimensionality of the function, numerical quadrature

becomes more difficult to apply as the dimensionality of the problem increases.

93

« is a vector of dates before present? (BP) a; > as > az > ay > as, having

prior

pla) = 1 fag>ay>a3>a4>a5>0 (6.11)

= (0 otherwise (6.12)

p(x) is the normalizing constant.

L(ca; x) is the Log-Likelihood

Zlogp@ﬂsi,ji,a) (6.13)
i=1
where
p(wilsi, Ji, @) =/ p(x|p(0), s)p(0ley, cvjy1)do (6.14)
Qj41
la(j)+1

— (aj_ajﬂ)—l-z I (6.15)

with (6.16)
d;(5)
I, = / p(z|a; + b0, s)db (6.17)
di—1(J)
_ {@ {ai + bid; () — :1:] _ & [ai +bid;_1(j) — x} }
s s
(6.18)

®(+) being the standard Normal distribution function and d;, a;, b;, [;(j) and p(6)

2Present for the article was taken to be 1983.

94

are values expressing a piecewise linear radiocarbon calibration curve (Clark,

1979).

p(0lj.) = plag, i) o >0 = o (6.19)

= 0 otherwise (6.20)

where here 0 is the actual date of manufacture.

The analysis presented here, using MCMC, incorporates into the likelihood
a calibration curve, defined by Clark (1979) in piecewise linear segments,
relating radiocarbon date to calendar date. This curve includes inversion (i.e.
it is not monotonically increasing), which renders its use difficult. Figure 6.1
shows univariate posterior densities estimated using BKDE for four of the

five boundary dates.

Taking @ = log(h) (ensuring that the estimate of h at any point is positive)
to have prior N (0, 1), represents a loosely held belief (o = 1) that the density
is smooth (u = 0), corresponding to h = 1. That is h in the range 0.135 to
7.389 being considered probable a priori.

These densities are seen to be considerably less smooth than the correspond-
ing results of Naylor and Smith (1988) who used an older, but smoother,
calibration curve. There is some evidence that the likelihood is not smooth
and other authors have found that there are considerable problems for max-

imum likelihood analyses (Clark, 1979; Cunliffe, 1984).

The analysis returns as many points as required. In this example 10,000

points were generated and then reduced to 500 by extracting every 20th

95

result 3. Taking ng = 1, a uni-dimensional likelihood is constructed with one

previous sample.

alpha 2 alpha 3
o
N
10 S
- o
=
o
. - o
E g g
o) o
o
o
o
o o
IS} IS
2400 2500 2600 2700 2100 2200 2300 2400 2500 2600
predx 100 predx 100
alpha 4 alpha 5
o
8
] S
=
o
5 T o
o o
o
0 (<)
o
=
o
o o
IS IS
2000 2100 2200 2300 2400 1900 2000 2100 2200
predx 100 predx 100

Figure 6.1: Bayesian estimation. Predictive densities for the four date boundaries

in the Archaeological problem. Axes are years Before Present (BP) (x) and density

(y)-

In Figure 6.2 the effect of changing the prior is observable:

1. Prior N(0, 1) loosely held belief in a smooth density, (0.135 < h < 7.389).

3Extracting a sub-sample of the data in this way removes correlation from the result. A
sample size of 500 is amenable to computation and allows demonstration of the influence
of a strong prior. If 10,000 points are used then the information in almost any prior is

significantly less than that in the data.

96

0.015

0.010

0.005

0.0

Figure 6.2: Archaeological problem, showing the effect of using different priors for
0 = log(h). Axzes are years Before Present (BP) (x) and density (y).

2. Prior N(0.1, 1) loosely held belief in a slightly smoother density (0.149 < h < 8.166).
3. Prior N(0,0.1) stronger belief in a smooth density (0.729 < h < 1.372).

4. Prior N(0.1,0.1) stronger belief in a slightly smoother density (0.806 < h < 1.516).

On initially examining Figure 6.2, it is apparent that 1 and 2 show the same
curve, the weak prior being overridden by the data. In 3 and 4 the curves are
similar and smooth, the information in the data being insufficient to override

the strong prior.

Having a degree of belief in the confidence placed in an “expert opinion” is

97

cl4 date (BP)
2200 2400 2600 2800
1 1 1 !

2000
|

1800
|

T T T T T T T T
—-1000 -800 -600 -400 -200 0 200 400

Conventional date (AD/BC)

Figure 6.3: 1998 International "*C atmospheric data set (24,000 to 0 BP). Axes
are the conventional date (BC/AD) (x) and the equivalent date given by examining

atmospheric carbon (BP).

central to a subjective Bayesian approach to a problem. Priors arising from
either previous knowledge of a process or from some reliable analysis of a
situation may be assumed to have some degree of validity. This is expressed
here in 3 and 4 by the adoption of a small value for ¢ leading to the retention
of the smooth curve in the density estimate. The larger prior value for ¢ in 1
and 2 expresses the opposite, i.e. an assumption that there is no prior belief
in a smooth curve and that is reflected in the density estimation obtained.
Equally a strong belief in a jagged curve could be imposed, which would seem
to be more appropriate here. In all cases, more data reduces the influence of

the prior.

98

Finally, note that the jagged curve in 1 and 2 might be taken to indicate that
the curve is under-smoothed, however, the *C' calibration curve used here is
in nowise linear as can be seen in Figure 6.3, and this might be reflected in

the posterior.

6.3 Bayesian Adaptive Kernel Estimates

The method described above is readily applied to observed data. As a second
example consider the Old Faithful data set again.

The curve shown in Figure 6.4 is the density, estimated using the above

methods and a non-informative prior N(0, 1), showing the two main modes.

40

20

10

Figure 6.4: Old faithful data, fized h. Axes are eruption duration (x) and non-

normalised, estimated density (y).

99

0.6

0.5

0.3

0.1

0.0

20 25 30 35 20 45 50
predx 50
Figure 6.5: Old faithful data, variable h, Predictive density p(y|x) where x is

limited to values within the limits of the data set. Axes are eruption duration (x)

and normalised, estimated density (y).

As can be seen from the estimate, the density has two areas of high density
and three of relatively low density. Intuitively a large bandwidth is required
in an area of low density and a small bandwidth in an area of high den-
sity, smoothing out the tails and revealing more detail in the high density
areas. This leads to the notion of an adaptive, two pass, estimate where the

bandwidth is inversely proportional to the local density.

An estimate is required that works in a similar way. An initial KDE is used

to modify the bandwidth used in the final estimate.

100

First a fixed bandwidth KDE is adopted as pilot estimate, so that, for such

a pilot, on a sample x,)

Fult) = %zn;hipK (tzx) (6.21)

P

where h,, is the pilot bandwidth. Following Abramson (1982) and taking

a = % in 5.10 gives

In

A== (6.22)
S (i)
as the local bandwidth. For univariate data with (d = 1) equation (5.12)
gives
: I~ 1 t—w
t)=— K : 2
fa(®) n;h)\i (o) (6.23)
where

o 9n _ _ hy
hXi=h /]E(:Cl) \/% (6.24)

The factor g, is absorbed in h as discussed in section 5.2.2. So it is seen that

(6.23) is of the form

. 1 &

n(tlx,0) = = > K(t|z;,0). 6.25

falt|, 6) n;(kﬁ) (6.25)
This is similar to (6.2) and is still easily accommodated in the formulation
based on (6.3).
Taking

101

p(zi|T 1), 0) = f(ifl)(xi) (6.26)

a likelihood for the analysis can be constructed as before.

Figure 6.5 shows the density obtained from the eruption duration subset of
the Old Faithful data using the adaptive KDE. The two main peaks are still
there, however there is a third peak appearing at around 4.5 minutes that is
not obvious in the simple estimate. This is also seen in Figure 6.6 and, to a
slightly reduced level, in the larger data set in Figure 6.7% (this data has 298

items as opposed to 107).

6.4 Examples — Hard to estimate densities

The paper by Berlinet and Devroye (1994) is an attempt to provide a torture
trial of a wide range of KDEs. Appendix D contains estimates of each of the

28 densities in the paper, the estimates given are:

e A histogram.
Providing an example of simple density estimation, a sample of 1000
from the density in question giving a reasonable picture.

e An estimated density for a sample of 10000 points using the inbuilt R
function density ().

R provides a function density that is a highly accurate KDE, this,

4In these figures, 17 bins refers to the command used to generate the image, in this
case hist (oldf2$lengthm, main=" ",xlab=" ", breaks = 17), this is a much higher

bin count than would normally be used with this data but is an informed choice.

102

14
|

12
L

8
1

Frequency

15 2.0 25 3.0 35 4.0 4.5 5.0

Figure 6.6: Old Faithful data - histogram with 17 bins.Axes are eruption dura-

tion (z) and frequency (y).

with a sample of 1000 data items is provided as a reference (referred

to as the R estimator in the following).
e An estimated density for a sample of 1000 points using BKDE.
e An estimated density for a sample of 1000 points using adaptive BKDE.
e An estimated density for a sample of 100 points using BKDE.

e An estimated density for a sample of 100 points using adaptive BKDE.

Each sub-figure is overlaid with the output from

103

40 50
L L L

Frequency
30

10

ﬁ anSlN==l L

r T T T 1
1 2 3 4 5

Figure 6.7: Old Faithful data, larger data set - histogram with 17 bins.Axes are

eruption duration (x) and frequency (y).

dberdev(seq(-n,m,0.01) ,dnum=1)".

which gives the source density. The histogram and the R density estimator
are from samples that are generated for the figure, the BKDE and VBKDE
figures are from the same samples in each case. Each sample is taken as found
and each test is a single sample unless otherwise noted. Presented here are a
few of the estimations where BKDE can be seen to be significantly different

to the expected result, from the histogram or from the R estimator.

It should be noted that the interest here is not in absolute accuracy, but

in good behaviour over a wide range of density shapes. The application of

®Where the value of dnum varies from 1 to 28 giving the appropriate line for each density.

The values n and m provide a limit to the range of dberdev so the graph is not swamped.

104

KDE to a problem, combined with the use of a Bayesian predictive estima-
tion is known to select the best possible model, from those available (Berk,
1966). KDE (of any form) presents a very rich set of available models. For
particular data it is possible to select a kernel to get a better fit, but that
requires intervention. The techniques presented here are intended to give a
good initial view of as wide a range of data as possible, making their use as
automatic as possible. For this reason the comparison in what follows is with
the R estimator (in its default mode) and with the BKDE estimators using
a normal kernel. Formal goodness of fit is not applied because the density
estimation is returned as density values at the predictive points. In addition

the aim is not to optimise density estimation

For each estimate the y axis is normalised to a 0 — 1 scale, = axis is value.

105

6.5 Exponential Density

00 02 04 06 08 10

00 02 04 06 08 10

00 02 04 06 08 10

exponential

tberdev(1000, dnum = 2)

exponential

00 02 04 06 08 10

exponential

T T T T T T
0 2 4 6 8 10

N=1000 Bandwidth =0.1917

exponential

00 02 04 06 08 10

T
4

Bayes KDE, n=1000

exponential

T T T T
0 2 4 6

Variable Bayes KDE, n=1000

exponential

00 02 04 06 08 10

Bayes KDE, n=100

25

3.0

T T T T T T T
0.0 05 1.0 15 2.0 25 3.0

Variable Bayes KDE, n=100

Figure 6.8: Exponential density.

This shows a difference in software set-up. The R estimator returns values
below 0 which cannot exist, the BKDE estimators are limited to the range of
the data by a choice made when writing the problem specific code for Bayes4.

Other than this the plots are all similar.

106

6.6 Maxwell Density

Maxwell Maxwell

00 02 04 06 08
00 02 04 06 08
I

T T T T T
0 1 2 3 0 1 2 3 4

rberdev(1000, dnum = 3) N=1000 Bandwidth = 0.1472

Maxwell Maxwell

00 02 04 06 08
I

00 02 04 06 08
I

T T T T T T T T
0 1 2 3 0 1 2 3

Bayes KDE, n=1000 Variable Bayes KDE, n=1000

Maxwell Maxwell

00 02 04 06 08
I

00 02 04 06 08
I

T T T T T T T T T T T T
05 1.0 15 2.0 25 3.0 05 1.0 15 2.0 25 3.0

Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure 6.9: Mazwell density.

Here the plots are again similar, however the R estimator is showing a lack

of smoothness all four BKDE estimates are similar.

107

6.7 Cauchy Density

Cauchy Cauchy
8 o 4
= B
< @ |
8 S
S
©
= o 7
3
s <
=
o
g ~
s S
3 o
] r T T T 1 < T T T T T T T
-40 -20 0 20 40 -6 -4 -2 0 2 4 6
rberdev(1000, dnum = 6) N=1000 Bandwidth = 0.3235
Cauchy Cauchy
< <
S] =4
o ©
o 7 o 7
o o
S S
- -
s s
o | o |
° T T T T T T T ° T T T T T T T
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
Cauchy Cauchy
< <
S] g
© ©
o 7 o 7
o o
S S
- -
s s
o | o |
° T T T T T T T ° T T T T T T T
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure 6.10: Cauchy density.

The Cauchy Density is a difficult density that the BKDE does not handle
well, however this is interesting because BKDE has performed better with
the sample of 100. This is due to sample variation and not intrinsic to the

method.

108

6.8 Infinite Peak Density

infinite peak infinite peak
o
E| o
@
©
©
<« 4
<
~ 4
~ I [
T AR e [0 oo o
- [———— £ o
r T T T T 1 T T T T T T T T
0.0 0.2 0.4 06 08 1.0 -0.2 0.0 0.2 0.4 0.6 08 1.0 12
rberdev(1000, dnum = 8) N=1000 Bandwidth = 0.06708
infinite peak infinite peak
o @
o ©
<+ <
o~ o~
o | o —\
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 06 08 1.0
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
infinite peak infinite peak
o @
o ©
<+ <
o~ ~
o \ o \|
T T T T T T T T T T T T
0.0 0.2 0.4 06 08 1.0 0.0 0.2 0.4 0.6 08 1.0
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure 6.11: Infinite Peak density.

Here the advantage of limiting to the range of the data is seen with the R
estimator producing a very different estimate to the BKDE, and the variable

BKDE performing somewhat better than BKDE.

109

6.9 Pareto Density

Pareto Pareto
0 0
S =
< <
= S
o o
o o
o o
o o
- -
S =
) o P
< r T T T T 1 < T
0 20 40 60 80 100 0 20 40 60 80 100
RS_rberdev(n = 1000, min = -5, max = 150, dnum = 9) N=1000 Bandwidth =1.238
Pareto Pareto
< <
= o
m o
S S
o o
=] o
- -
B o
) o
° T e T
0 20 40 60 80 100 0 20 40 60 80 100
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
Pareto Pareto

00 01 02 03 04
00 01 02 03 04

T T
0 20 40 60 80 100 0 20 40 60 80 100

Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure 6.12: Pareto density.

This is an example of a density which can have an extremely wide range of

values. In 10 samples of 1000 from this density the maximum values were:

277150.1 5461690 3065065 408696.6 130378.8
510953.3 142911.3 22289502871 12736939 4845980

Unfortunately this wide range makes it difficult to obtain an estimate. For
this reason the sample here is limited to a maximum value of 150 with the
sample drawn from a parent sample large enough to give the desired sample
size with values less than 150. Once this has been done the estimators all

give acceptable results.

110

6.10 Beta (2,2) Density

beta (2,2) beta (2,2)
0
o ~
« o |
- N
3 |l| 0
[SN
2
Bl P1 S
0 0
B | 2
° o |
° T T < T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 12
terdev(1000, dnum = 17) N=1000 Bandwidth = 0.05137
beta (2,2) beta (2,2)
0 0
o 7 o 7
o o
d N
w o |
S <
° °
B B
0 | 0 |
s o
o | o
° T T T T T T ° T T T T T T
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 04 0.6 0.8 10
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
beta (2,2) beta (2,2)
0 0
o 7 o 7
o o
o N
w o |
S S
° °
B B
. 0 |
s S
o I © 4
° T T T T T ° T T T T T
0.2 0.4 0.6 08 1.0 0.2 04 0.6 0.8 10
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure 6.13: Beta (2,2) density.

The Beta (2,2) Density is limited in both the negative and positive directions.
It can be difficult to estimate with a kernel that has tails to infinity. This is

apparent here, as is the failure of non-adaptive BKDE with this density.

111

6.11 Smooth Comb Density

smooth comb

00 01 02 03 04 05

smooth comb

tberdev(1000, dnum = 24)

smooth comb

N=1000 Bandwidth = 0.3711

smooth comb

00 01 02 03 04 05

T T T T T T T
-3 -2 -1 0 1 2 3

Variable Bayes KDE, n=1000

smooth comb

0
9
<
g
«
g
N
o
-
24
o |
° T T T T
-3 -2 -1 0
Bayes KDE, n=1000
smooth comb
0
9
<
g
«
g
N
o
-
24
°
g

00 01 02 03 04 05

Bayes KDE, n=100

Figure 6.14:

T T T T T T
-2 -1 0 1 2 3

Variable Bayes KDE, n=100

Smooth Comb density.

The Smooth Comb Density a difficult density that appears to have some

affinity with BKDE with even the samples of size 100 producing acceptable

results.

112

6.12 Sawtooth Density

sawtooth sawtooth

000 004 008 012
0.00 0.04 0.08 0.12

T T T
-15 -10 -5 0 5 10

rberdev(1000, dnum = 27) N=1000 Bandwidth = 1.316
sawtooth sawtooth
o ~
g]
S c
@ @
g &
s S
s s
3 3
s s
3 3
8 8
© T T T © T T
-10 -5 0 5 10 -10 -5 0 5 10
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
sawtooth sawtooth
o o
g]
S c
@ @
g &
s S
s s
3 3
s s
3 3
8 8
© T T T © T T
-10 -5 0 5 10 -10 -5 0 5 10
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure 6.15: Sawtooth density.

The Sawtooth Density is another density where BKDE produces reasonable

results even with a sample of 100.

6.13 Extension to bivariate density estima-
tion
Outputs from the Grand Tour can be projections onto subspaces of any di-

mensionality, usually one two or three for convenience, as discussed in section

4.1.1. Extending the BKDE discussed above to more than one dimension is

113

both natural and easy. A KDE is still specified in terms of some function
K(-|u, 0) and an estimate of fx(-) based on the sample x, at the point, X = ¢

1S written as

flE) = 23" Kt) (6.27)

where

Kg(x) = K (xH 'z (6.28)

E

H is a bandwidth matrix and K is some bivariate kernel.

The estimate of fx(:) based on the sample x, at the point ¢, X = t is seen

to again be of the form

n

Fx(t]z, 0) = %ZK(t\wi,é)) (6.29)

i=1
where n is the number of data items. Note that @ may be considered to be
a generalisation of bandwidth. Taking @ = h with univariate data still leads
to the standard KDE of (6.1), however, taking @ = H leads to some higher
dimensional estimate. In this case interest is in bivariate data and a 2 x 2

matrix form of H.

There are three possible orders of complexity for H; if H € F, the class of
all symmetric, positive, definite 2 x 2 matrices, then there are 3 bandwidth
parameters to choose; if H € D, the subclass of all diagonal, positive, definite
2 x 2 matrices, then there are 2 bandwidth parameters to choose; and finally,
if H € S, where § = {h*I : h > 0}, there is only 1 bandwidth parameter to

choose.
However, a compromise between the work needed to estimate the bandwidth

114

(a) (b) ()

Figure 6.16: Contour plots of Normal kernels parameterised by (a) H € S, (b)

H eD (c) HcF. Azes are both normalised, the same and arbitrary.

and the time taken to perform the estimation is required. Fukunaga (1972,
p. 175) suggests a simple way of obtaining a bandwidth matrix of arbitrary
orientation (see Silverman, 1986, p. 78). Take H to be of the form

H =h’S (6.30)

where S is the covariance matrix. This approach is equivalent to sphering

the data (i.e. transforming it to have unit covariance matrix).

This gives an estimate of the form

~

z—) (x - wz’>) (6.31)

N B o
J(@) = nvdet S ; hk (h2S

It can be shown (Wand and Jones, 1995, p. 106) that, for the multivari-
ate N(u,o) distribution, the Asymptotic Mean Integrated Squared Error
(AMISE) optimal H satisfies

HAMISE =X (632)

115

for a scalar constant c¢. This implies that, for the multivariate Normal, spher-
ing is appropriate. There is, unfortunately, no equivalent result for estimation
of arbitrary density shapes. The approach taken for the version of the bi-
variate BKDE incorporated into the Grand Tour is to sphere the data. By
taking f ¥ () to be a model for the data a likelihood function is constructed

as before.

E(m;e,m(no)): H f(i)($i|w(i—1)>0)- (633)

i=no+1

Choice of prior for 8 again indicates belief in the smoothness of the underlying

density and in the strength of that belief. This gives the posterior density

E(a}; 0, w(”0)>p<0>

p(0]z) = =~ (630
and the predictive density
flvle) = [Fulz,Opela)de. (6.3)
e

6.14 Discussion

Interest here is in initial examination of data. This means that we are in-
terested in automated methods that produce easy to evaluate images. For
this reason we have chosen automation over accuracy of estimation or single
dimension projection. The main area of compromise is in kernel choice. If
we are aware that there is a limit to the density, for example in estimating

the underlying distribution for survival data (where negative values are not

116

possible), then it is reasonable to choose estimation methods that do not
violate this. However, when the expected density is not only unknown but
unpredictable it makes sense to choose a general kernel such as the Normal,

or possibly one with definite limits such as the Epanechnikov.

The application of Bayesian model selection to such a rich family of models
with moderately large amounts of data is computationally intensive. The
Software used here, written within Bayes4, runs in On? time®. The plotted
output is a spline curve plotted using the plot function in R, this provides
an easy way to plot data but does not provide a sample suitable for distance
based goodness of fit measures such as the Kolmogorov-Smirnov tests (avail-
able in R via the ks.test() function) or information based tests such as

Kullback-Leibler divergence (available in R via the KLdiv() function).

The choice of kernel is as general as possible, if a single density estimate is
required it makes sense to tailor the kernel for the expected target density

and to use adaptive estimation.

If a density is such that different values of bandwidth are appropriate for
different areas of it, then the best a single value of bandwidth can do is
a compromise. Intuitively a large bandwidth is required in an area of low
density and a small bandwidth in an area of high density, smoothing out

the tails and revealing more detail in the high density areas. For example,

6In mathematics, computer science, and related fields, big O notation describes the
limiting behavior of a function when the argument tends towards a particular value or
infinity, usually in terms of simpler functions. Although developed as a part of pure
mathematics, this notation is now frequently also used in the analysis of algorithms to
describe an algorithm’s usage of computational resources: the running time or memory
usage of an algorithm is often expressed as a function of the length of its input using big

O notation.

117

when applied to long-tailed distributions the fixed kernel estimator will tend
to under-smooth the tail. In order to overcome this, the bandwidth of the
estimator may be allowed to vary in some way, for example it is possible to
have a bandwidth inversely proportional to the local density obtained from

some previous estimate,

BKDE seems to provide some advantages:

1. The Bayes Density Estimator provides a kernel density estimate, with-
out the need for bandwidth choice by the user. This has the distinct
advantage that, when applied to a series of projections, the bandwidth
need not be assumed to be the same for all projections. The corol-
lary to this is that the data need not be distorted in trying to ensure

uniform smoothness for all projections.

2. The model found by the BKDE should be the best available from the
family of models provided (Berk, 1966), which, in the case of KDE
models, gives a wide range to choose from. This leads to a high degree

of confidence in the density estimate obtained.

3. The bandwidth found is not a point estimate but a density with loca-
tion and shape parameters. This allows for examination of the chosen
bandwidth for suitability and might lead, in further work, to a system

of kernel suitability evaluation.

4. The choice of kernel affects the final model, some kernels being more
suitable for particular types of data, for example, survival data is not
well served by any kernel that allows negative values. The BKDE allows
for rapid selection of kernel and might lead to suitability analysis of the

kernel.

118

5. The prior allows for the modelling of belief in the smoothness of the
underlying density. The strength of that belief can also be represented
and allows for a wide variation in the balance between that belief and

the information from the data.

6. With the large samples obtained from MCMC simulation, the prior is
dominated by the information from the data in the likelihood, however
it is possible to force a “wrong” prior on the system. A very strongly
held belief in a prior, for example N(0.1,0.01) in section 6.2 needs
substantially more data to modify than that of N(0,1). used in graph
1. of Figure 6.2.

The examples from Berlinet and Devroye (1994) are designed to be difficult
to estimate and the results in that paper are all averages of 20 different
samples of size 100. The overwhelming conclusion to be drawn from it is
that no one KDE will do well at all densities and some experimentation
with method is needed. However, the BKDE in one of its forms produced
acceptable estimates of a large number of the densities without the need for
human intervention. As a method KDE compares well to several others, in
terms of producing a reasonable output, and can be considered at least the

equal of most.

In these examples both BKDE and adaptive BKDE have been used. The
adaptive variant of any KDE is useful in density estimation where the density
changes, as observed in Section 6.3. Intuitively a large bandwidth is required
in an area of low density and a small bandwidth in an area of high density:
smoothing out the tails and revealing more detail in the high density areas.
However, the addition of the initial estimate used to govern the varying

bandwidth of the final estimate adds an operation On® to each iteration

119

of the final estimate. while this is useful in a single estimate (for example
the Old Faithful data estimate shown in Figure 6.5), it is an unnacceptible

increase in overhead for the automated Grand Tour.

120

Chapter 7

Integration of the Grand Tour
and Bayesian Kernel Density

Estimator

Previous chapters have reviewed existing tools that lend themselves to the
process of examining some high dimensional, posterior density. This would,
ideally, lead to a system that could be encapsulated in a single software sys-
tem that would take either a mathematical description of a posterior density,

or a sample from such a density, and display it in a human-friendly fashion.

The obvious problem is in going from a mathematical description of a density
to a sample from that density. Once obtained, using MCMC methods, the
sample can be of any required size so the “curse of dimensionality” can be
ignored, but Markov chain simulations are very problem specific and so the
first step in the sequence has to be written individually for each problem that

needs it.

121

The Grand Tour and Density Estimation phases, however, fit together well,
the automation available with Bayesian Kernel Density Estimation (BKDE)
providing the required functionality for the combination. This chapter will

explore that joining.

The Grand Tour produces a conditional density from the complete sample.
This conditional density is dependent on the current tour step position. As
the operator moves through the tour they see a sequence of projected den-
sities. When an interesting projection is found, the operator should be able
to stop and change the view to either a contour plot, or a greyscale density

view.

In order to achieve the density view KDE is used, however, conventional
KDE has the difficulty that the bandwidth needs to be chosen accurately for
each projection. This, with its customary operator intervention, takes far
too much time and disrupts the flow of information. The Bayesian Kernel
Density Estimator (BKDE) discussed in Chapter 6 removes the necessity for
such operator intervention, data modification (for example, sphering) or the

use of ad-hoc values.

7.1 Basic Grand Tour S-Plus Implementation

The Grand Tour is implemented as several sets of S-Plus routines (see Ap-
pendix A). A basic tour is shown in Figure 4.1. As discussed in Section 4.1.1
a Grand Tour is a series of projections from n dimensional space onto a space

of lower dimension, the target space is usually 1D or 2D.

In the current work the target is a plane in one or two dimensions and the

tour is achieved by rotating this target, in n dimensions, and then projecting

122

the data onto it. For example, if the problem space has five dimensions then

the starting plane for a 2D output is represented by

s

Il
o o o o =~
o o o = o

and each step of the tour is given by RP where R is the rotation matrix.
Some authors use of the first 1, 2 or 3 rows of the data matrix as a projection

matrix, however the above ensures axes that are orthogonal.

The rotation matrix

The rotation matrix is derived as follows:

o _ cos @ sin@ \)) o
A rotation in 2D looks like in p dimensions it is made

—sin 0 cos 0

up of a product of matrices like

oS Y13 SIN Y19 0

—Sin Y12 COS Y12

123

with the general form

1

COS ij o ST Y44

— SN Vi . COS ij

The matrix for the total rotation given by Ria(V12), - - ., Rip(71p), Ras(723), - - - s Rop(v2p)
where R;;(7;;) is the matrix that rotates the subspace (X;, X;) through the

angle 7;; and corresponds to the identity matrix except for the elements:

('Lvl) = (]7]) - COS(/Yij)
(1,7) = —=(j, 1) = sin(v;)
Labeling vi2, ..., Yip, Y23, - - - Y2p @S Y1,...,7vr with L = 2p — 3, the angles

are given by

vi=zvP,i=1,...,L

where P; is the i prime number and z is any irrational number. Marriott
and Eslava (1994) use a step of z = v/5 which “is large enough to produce

pseudo-random projections”.
R is the product of all the R;; matrices.

124

7.2 Examples

In the Grand Tour implementation given in Appendix A, mouse control is
provided to allow sweeping forward or backward from the current view. Tools
are provided that give a contour plot or a coloured image plot of the current
projection based on a BKDE of the density embodied in the view. Example

screen shots of this implementation are shown in Figure 7.1 and Figure 7.2.

] 5-PLUS
quit
step
back
g +3
o
* -3
o % +10
* srey
a oo *} P K ¥ contour
c . L ¥ * R * ;:* * redraw
o h?***}**ﬁ‘* ey L Print
* *
o R Mf*#h*:““ﬁ** ¢t
* *,
. x ’31* * *‘M * ¥

==[, 2]
[o]s]
«
«
-
"Se
"
*

:,
e;* =
=
**i {
iy
=5,

* *.
‘:geﬁ
:

.

.

*

-

-0.01
*
=
=

T

-002

-002 -001 00 001 0oz
=1

Figure 7.1: View generated by the Grand Tour routines written in S-Plus - 2/
dimensional data set, 2 dimensional target. Azxes are projected values sized to fit

all possible projections.

In addition, an indicator to give a visual guide to orientation of the view is

provided. This consists of two opposite corners of an n dimensional “cube”

125

quit

step
back
2
o +3
3 L. 3
. . - +10
et . : grey
9 contour
= .
o .. redraw
Print
¥ o | .o
< o
x
wn
(=3
g |
3 T
o
=
g |
-0.010 -0.005 0.0 0.005 0.010
xx[, 1]
(a) Scatter plot.
quit quit
step step
° back ° back
a3 +3 B} +3
S 3 S 3
+10 +10
arey grey
8 contour 8 contour
S redraw 3 redraw
Print Print
o 3
‘ 1 1
=) I_. =) l_.
' -0.010 -0.005 0.0 0.005 0.010 ' -0.010 -0.005 0.0 0.005 0.010
i$x
(b) Greyscale image. (c) Contour plot.

Figure 7.2: Three views of the starting projection of the same Grand Tour of the
2/ dimensional data set, 2 dimensional target. Azxes are projected values sized to

fit all possible projections.

that have been rotated to the same orientation as the main view.

126

Figure 7.3: Ezamples of the indicator — a & dimensional “cube® rotated through
8 steps of a fairly coarse Grand Tour. Note: the two black squares always mark

the ends of the same segment of the cube.

7.3 Discussion

Once the basic elements of the tour (the rotation matrix, stepping function
and display function) are available then the tour can be constructed simply.
Various different configurations have been used to produce the examples here
and are shown in appendices A, B and C in sufficient detail to allow the reader

to construct various, useful tours in R or S-Plus, with or without BKDE.

Given a sample from a posterior density, regardless of how the sample is
obtained, the combination of the Grand Tour with some kind of good, au-
tomatic, density recovery technique. In this case the new Bayesian Kernel

Density Estimator effectively fulfils the main aim of this research.

In examining a new density in this way the overwhelming neccessity is for

the operator to be able to quickly assess the display. In looking at the Grand

127

Tours here the initial intention was to use a 2 dimensional projection target.
However, once the software was used it quickly became apparent that a 1
dimensional target gave a display that this operator found easier to use. 3
dimensional projections using a spin plot as the viewing medium were so slow

that they were useless in a high dimensional, exploratory analysis.

128

Chapter 8

Examples

Previous chapters evaluate three types of tool useful in the examination of

posterior densities.

MCMC simulation allows the generation of a sample from a posterior den-
sity expressed mathematically. Numerous tools for this are available,
both commercially and from organisations that support the copyleft
system. The BUGS software written at the MRC Biostatistics Unit!
(Lunn et al., 2000) is one.

Given high dimensional data the Grand Tour gives a series of views,
generated in a coherent way, that can be displayed for analysis. In

appendix B, R routines that implement the Grand Tour are discussed.

The Bayesian Kernel Density Estimator (BKDE) provides fast, au-

tomated density estimation for each view produced by the Grand Tour

'MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge
CB2 2SR, UK the software is available from the MRC web page at http://www.mrc-

bsu.cam.ac.uk/bugs

129

giving a more intuitive way to evaluate each view.

In this and the following sections are some examples of the software in use.

The first figures show several steps from a tour through a five dimensional
data set in which four of the dimensions are Normal and one is bimodal, the

bimodality increasing from modes at (0,0) to (0, 20).

Then comes a sequence where four of the dimensions are Normal and one is

geometric, the geometric having parameters ranging from 0.1 to 1.

Next the BUGS system was used to produce two posterior samples. BUGS
enables a user to carry out MCMC analyses in a structured way and to

examine the results of that analysis.

The examples here are from two of the examples included in the BUGS
distribution, Rats and Surgical. The descriptions of the problems are taken
from the BUGS example documentation. BUGS own graphical output is
shown for comparison. The version of BUGS is the latest available for UNIX

operating systems.

8.1 Five dimensional data sets

The five dimensional data sets used in this chapter are manufactured data
sets of 100 points in five dimensional space. In the first sequence the points

are all N(0,1). In the next four figures the first dimension is a mixture of

N(0,1) with N(3,1), N(5,1), N(10,1) and N(20, 1) respectively.

In the next five sequences the first dimensions’ values are drawn from a

geometric distribution with parameters ranging from 0.1 to 1.

130

All the samples here are randomly generated using the standard generators

in R or S-Plus.

A AN A\

| I B m— —]
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Figure 8.1: Five dimensional data, all dimensions independently distributed

N(0,1). Axes are value, (x) and normalised density (y) (not displayed).

The small size of the sample used to generate Figure 8.1 leaves some deviation

from Normality, otherwise the sample is as expected.

131

Figure 8.2: Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is a mizture of N(0,1) and N(3,1). Azes are value, (z) and

normalised density (y) (not displayed).

In Figure 8.2, the two Normal densities mixed for the 1st density are starting
to make some of the samples look non-normal and adding to the overall width

of the plot.

132

N A AN AV
| e e e—] | e e e—]
-10 -5 0 5 10 10 -5 0 5 10 -10 -5 0 5 10 10 -5 0 5 10
I B e —]

-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
| e E— —] | B e —] e E—— e—]
10 -5 0 5 10 -10 -5 0 5 10 -10 5 0 5 10 10 -5 0 5 10

I S E— —]
10 -5 0 5 10 10 5 0 5 10 -10 -5 0 5 10 -10 5 0 5 10

Figure 8.3: Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is a mizture of N(0,1) and N(5,1). Azes are value, (z) and

normalised density (y) (not displayed).

In Figure 8.3, distinct evidence of two peaks is starting to emerge in some

views.

133

Figure 8.4: Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is a mizture of N(0,1) and N(10,1). Axes are value, (x)

and normalised density (y) (not displayed).

Clearly some views in Figure 8.4 show two peaks. Some of the views are still
wholly Normal, this is where the rotation has moved to an angle in which

the 1st dimension of the data is orthogonal to the projection plane.

134

S/ S | Y A VO

-30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -10 0 10 20 30

VRV A S W S TN

-30 -0 0 10 20 30 =30 -10 0 10 20 30 =30 -10 0 10 20 30 -30 -0 0 10 20 30

YL A VY O VA W

-30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -10 0 10 20 30

AL VUV I VO A T

-30 -0 0 10 20 30 -3 -10 0 10 20 30 -10 0 10 20 30 -30 -0 0 10 20 30

Figure 8.5: Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is a mizture of N(0,1) and N(20,1). Axes are value, (x)

and normalised density (y) (not displayed).

As shown in Figure 8.5, there are very distinct peaks, especially in the first
view that is orthogonal to dimensions 2 to 5. The purely Normal views look

very thin in comparison to the width of the other views.

The exploration of a largely Normal object is typical of the outcome of
Bayesian analysis, large deviations from Normal often indicating a problem

with the process, see Figure 4.2 for an example.

135

>

-15 -10 -5 0 5 10 15

b

-15 -10 -5 0 5 10 15

b

-15 -10 -5 0 5 10 15

W%

N

e |
-15 -10 -5 0 5 10 15

N\

-15 -10 -5 0 5 10 15

AN

-5 -10 -5 0 5 10 15

/AN

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Figure 8.6: Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is Geometric (0.1). Azxes are value, (x) and normalised

density (y) (not displayed).

The first view in Figure 8.6 shows the clearly geometric 1st dimension and

the effect that it is having on the rest of the views.

136

Figure 8.7: Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is Geometric (0.25). Azxes are value, (xr) and normalised

density (y) (not displayed).

The 1st view in Figure 8.7 is still plainly geometric and showing effects on

the other views.

137

-4 -2 0 2 4 -4 -2) 2 4 -4 -2 0 2 4 -4 -2 0 2 4
T T T 1 T T T 1 T T T 1 T T T 1
4 2 o 2 4 4 2 o 2 4 4 2 o 2 4 4 2 o 2 4

| B E— —] | B m— — [B e— —]
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

-4 -2 [2 4

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

-4 -2 0 2 4

Figure 8.8: Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is Geometric (0.5). Azxes are value, (x) and normalised

density (y) (not displayed).

As the parameter increases, the 1st dimension becomes thinner and more
symmetric. This blends in with the four Normal dimensions and the plots in

Figure 8.8 look similar to those in Figure 8.1.

138

AN AN

Figure 8.9: Five dimensional data, dimensions 2 - 5 independently distributed
N(0,1), dimension 1 is Geometric (0.75). Azxes are value, (xr) and normalised

density (y) (not displayed).

In Figure 8.9 the 1st dimension is becoming a spike and showing less and less

effect on the views that are not parallel to one of the five axes.

139

Figure 8.10: Five dimensional data,

N(0,1), dimension 1 is Geometric (1.0).

density (y) (not displayed).

dimensions 2 - 5 independently distributed

Azes are value, (x) and normalised

In Figure 8.10 the 1st dimension is a thin spike when compared to the other

dimensions of the data which appear very similar to those in Figure 8.1.

8.2 Rats

The Rats example is taken from Gelfand et al. (1990, section 6), and concerns

30 young rats whose weights were measured weekly for five weeks. Part of

the data is shown below, where Y;; is the weight of the i rat measured at

age ;.

140

Weights Y;; of rat ¢ on day z;
z;= 8 15 22 29 36

Rat 1 151 199 246 283 320
Rat 2 145 199 249 293 354

Rat 30 153 200 244 286 324

A plot of the 30 growth curves suggests some evidence of downward curvature.

The model is essentially a random effects linear growth curve

Yrij i NOI‘I’H&I(O[Z' + 52<x] - xbar>7 Tc) (81)
a; ~ Normal(a,, 7,) (8.2)
B; =~ Normal(8.,) (8.3)

where xp, = 22, and 7 represents the precision (1/variance) of a Normal
distribution. Note the absence of a parameter representing correlation be-
tween «; and §; (unlike Gelfand et al., 1990). The x; values are standardised
around their mean to reduce dependence between «; and [3; in their likeli-
hood: in fact, for the full balanced data, complete independence is achieved.
(Note that, in general, prior independence does not force the posterior dis-

tributions to be independent.)

Qe, Ta, Be, T and 7, are given independent “noninformative” priors. Particular
interest focuses on the intercept at zero time (birth), denoted ag = . — B, Tpar-
However, for the purposes of this demonstration, the a; parameters are ex-
amined. From the analysis the posterior is expected to be largely Normal

and so any projection from the parameter space should show Normality.

141

Figures 8.11 and 8.12 show the density estimations given by CODA (the
BUGS analysis tool) for the 6 parameters a; to ag, Figure 8.11 being the
standard smooth estimate and Figure 8.12 being the coarse version derived
from Silverman (1986, pp 45-47). Figure 8.13 shows the adaptive BKDE

estimates for the same 6 parameters.

Figure 8.14 shows the first six steps of the 1D Grand Tour with non-adaptive
BKDE (produced by the tourls routine given in Appendix B), the first step
being «; as that axis is the tour starting point. Finally Figure 8.15 shows

the first six steps of a tour from the whole data set o to asg

As expected the adaptive BKDE estimates (Figure 8.13) and the smooth
CODA estimate (Figure 8.11) show basically the same information. The non-
adaptive BKDE (Figures 8.14 and 8.15) show the same basic information but

with less detail.

Only the coarse estimates show a markedly different view, however, given
the nature of the data and the agreement of the other four estimates, it is
assumed that this should be discarded as under smoothed. Note that in
this case the BKDE agrees with the smooth CODA estimate and with the
expected smoothness of the data, without the necessity of choosing between

the two different bandwidths.

142

rats

Kernel density for alpha[1] Kernel density for alpha[2]
(500 values) (500 values)
—
o
o
230 235 240 245 250 240 250 260
alpha[1] alpha[2]
Kernel density for alpha[3] Kernel density for alpha[4]
(500 values) (500 values)

0.1
0.1

0.05
0.05

o o
250 260 220 230 240
alpha[3] alpha[4]
Kernel density for alpha[5] Kernel density for alpha[6]
(500 values) (500 values)

0.1
0.1

0.05
0.05

220 230 240 240 250 260
alpha[5] alpha[6]

Figure 8.11: Rats example CODA standard density estimates for ay to ag. Azes

are standard BUGS azes. 143

rats

Kernel density for alpha[1] Kernel density for alpha[2]
(500 values) (500 values)
—
o
o
235 240 245 240 245 250 255
alpha[1] alpha[2]
Kernel density for alpha[3] Kernel density for alpha[4]
(500 values) N (500 values)
o

—l
o
ol - s
245 250 255 260 225 230 235 240
alpha[3] alpha[4]
Kernel density for alpha[5] Kernel density for alpha[6]
(500 values) (500 values)

Figure 8.12: Rats example CODA coarse density estimates for oy to ag. Azes

are standard BUGS azes. 144

Kernel density for alpha[1] Kernel density for alpha[2]

008 010 012

004 006 008 010 012
0.06

0.04

235 240 245 240 245 250 255
alphal1] alpha2)

Kernel density for alpha[3] Kernel density for alpha[4]

004 006 008 010 0.12

002 004 006 008 010 012 014

245 250 255 260 225 230 235 240
alphal3) alpha4]

Kernel density for alpha[5] Kernel density for alpha[6]

002 004 006 008 010 012
002 004 006 008 010 012

225 230 235 240 245 250 255 260
alphals) alphals)

Figure 8.13: Rats example variable bandwidth BKDE estimates for ay to og. Axes

are value (x) and predictive density (y).

145

2r0 0T0 800 900 ¥00 200 00

-45

50

-60

-70

75

255

250

245

240

235

230

25

&

$T'0 210 OT'0 800 900 Y00 200 00

210 0T0 800 900 Y00 200 00

95

-100

-105

-110

-115

-120

-125

240

235

230

225

220

15

&

2T0 0T0 800 900 Y00 200 00

$T'0 210 0T'0 800 90°0 ¥0'0 200 00

-185

-190

-195

-200

-205

210

215

-220

-455

-460

-465

-470

-475

-480

Figure 8.14: Rats ezample Grand Tour with BKDE estimates for oy to ag. Axes

are value (x) and predictive density (y).

146

Lyl

‘(h) fiprsuap a0121paud puv () anjpa 94

saxy 080 07 Lo Uof $2I0UISI F (M Y1m 4nof, punis) 2jdwnra s0Y GT'Q 9INTT]

S2-

oz~

ST~

ot-

08T

s8T

06T

S6T

00z

502

otz

s1z

0.0 002 004 006 008 010 012

00 002 004 006 008 010 012

05

£

09

59

oze

sze

oge

SEe

ore

Sve

00 002 004 006 008 010 012

0.0 0.02 0.04 0.06 0.08 0.10 0.12 0.14

szz

0gz

x4

orz

sz

o0sz

4

S8T

06T

96T

00z

502

otz

s1z

00 002 004 006 008 010 012

00 002 004 006 008 010 012

8.3 Surgical

This example considers mortality rates in 12 hospitals performing cardiac

surgery in babies. The data are shown in Figure8.1.

Hospital Operations Deaths

A 47 0
B 148 18
C 119 8
D 810 46
E 211 8
F 196 13
G 148 9
H 215 31
I 207 14
J 97 8
K 256 29
L 360 24

Table 8.1: Mortality rates, 12 hospitals performing cardiac surgery in babies.

The number of deaths r; for hospital i are modelled as a binary response
variable with ‘true’ failure probability p;:
r; ~ Binomial(p;, n;) (8.4)

The random effects model is used and interest is in the parameters p; for each

hospital. Figures 8.16 and 8.17 again show the two different density estima-

148

tions given by CODA. Figure 8.18 showing the adaptive BKDE estimates.
Figures 8.19 and 8.20 show the first six steps of the Grand Tour for 6 and 12
hospitals respectively. Note that the BKDE here is non-adaptive, producing

a faster but less informative output.

In this case the smooth CODA estimate is similar to those produced by the
non-adaptive BKDE in the Grand Tour examples (Figures 8.19 and 8.20).
However, in the adaptive BKDE, Figure 8.18 there is more detail, the coarse
CODA estimate (Figure 8.17) actually being more useful (or at least more in
agreement with BKDE) here than the smooth estimate. Again the adaptive
BKDE shows detail with no requirement to choose the bandwidth (or to

choose between two different estimations).

149

surgical

Kernel density for b[1] Kernel density for b[2]
(6000 values) (6000 values)
Te}
o i
o o
-8 -6 -4 -2 -3 -2 -1
b[1] b[2]
Kernel density for b[3] Kernel density for b[4]
(6000 values) (6000 values)
N
—
0 -
o
o i o
-4 -3 -2 -3.5 -3 -2.5
b[3] b[4]
Kernel density for b[5] Kernel density for b[6]
(6000 values) (6000 values)
—
i
n
o
o o
-4 -3 -2 -4 -3 -2
b[5] b[6]

Figure 8.16: Surgical example CODA standard density estimates for hospitals 1

to 6. Azes are standard BUGS azxes. 150

surgical

Kernel density for b[1] Kernel density for b[2]
(6000 values) (6000 values)
—
—
Lo
o
o o
-6 -4 -2 -3 -2.5 -2 -1.5
b[1] b[2]
Kernel density for b[3] Kernel density for b[4]
(6000 values) (6000 values)
- N
o o
-4 -3 -2 -3 -2.5
b[3] b[4]
Kernel density for b[5] Kernel density for b[6]
(6000 values) (6000 values)
—
—
of — of ~— —
-4 -3 -3 -2
b[5] b[6]

Figure 8.17: Surgical example CODA coarse density estimates for hospitals 1 to

0. Azes are standard BUGS axes. 151

Kernel density for hospital[1] Kernel density for hospital[2]

°
~ &
o
w
4
°
S
S 0
o
&
S
-4.0 -35 -3.0 -25 -2.0 -2.8 -26 -2.4 2.2 -20 -1.8 -1.6 1.4
hospital[1] hospital[2]
Kernel density for hospital[3] Kernel density for hospital[4]
<
w0
=
©
°
S
~
w0
s -
°
-3.2 -3.0 -2.8 -2.6 -2.4 22 -20 -3.0 -2.8 -2.6
hospital[3] hospital[4]
Kernel density for hospital[5] Kernel density for hospital[6]
o
&
o
&
w
=
0
S
o
- o
S
n
S w0
S
-3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -3.0 -2.8 -2.6 2.4 2.2 -2.0
hospital[5] hospital[6]

Figure 8.18: Surgical example variable bandwidth BKDE estimates for hospitals

1 to 6. Azes are value (x) and predictive density (y).

152

~ °
S &
©
S
0
0 S
S
<
°© o
S
]
S
o
S v
S
-
s
=] o
S S
5 4 -3 2 1 0 10 05 0.0 05 10 15
~ °
S &
©
S
0
© 4
S
<
S °
S
@
5]
o 0
S S
=
s
°
2 S
-4.0 35 3.0 25 2.0 15 10 05 0.0 05 10 15 2.0
° <
< S
~
o
0
-]
S
@
° S
S
@
3
<
w0 S
S
o
S
o =]
S S
4.0 45 5.0 55 6.0 65 05 10 15 2.0 25 30 35 4.0

Figure 8.19: Surgical example Grand Tour with BKDE estimates for hospitals 1

to 6. Axes are value (x) and predictive density (y).

153

00 01 02 03 04 05 06 07
00 02 04 06 08 10 12 14

00 02 04 06 08 10 12 14 16
00 02 04 06 08 1.0 12 14 16

0.8

0.6

0.2

00 02 04 06 08 10 12 14
0.4

Figure 8.20: Surgical example Grand Tour with BKDE estimates for hospitals 1

to 12. Axes are value (x) and predictive density (y).

154

8.4 Summary

Comparing the plots of the Rats and the Surgical examples, the two are seen
to come from two very different problems. In the case of the Rats problem the
posterior distribution is expected to be multivariate Normal and the smooth
estimate from CODA shows a marked similarity to those produced by both
the adaptive and non-adaptive BKDE. The coarse estimate has the same

general shape but is much less smooth.

In the surgical example the smooth CODA estimate still appears to be Nor-
mal, however, the adaptive BKDE and the coarse estimate show more detail,
the BKDE giving a locally smoother estimate. The non-adaptive BKDE

gives a similar estimate to the smooth CODA estimate.

As discussed in section 6.3 an adaptive estimate gives a better result for
data with areas of both low and high density, such as the Old Faithful data.
Making the bandwidth parameters part of the Bayesian formulation of the
problem makes the BKDE particularly suitable for automated systems and

also removes choice of bandwidth from the operator.

155

Chapter 9

Conclusions

This thesis presents a detailed investigation of graphical representation tech-
niques as applied to a methodology for the examination of high dimensional
objects, with case studies developed to demonstrate the use of such a method-
ology. It begins with summaries of Bayesian Theory and its applications,
MCMC methods, display methods and the frequentist view of KDE. It then
considers how KDE can be modified to provide a more satisfactory formula-
tion, from a Bayesian perspective and to enable automated density estimation

in the context of a display system such as the Grand Tour.

As this work was progressing it became apparent that many researchers,
in many different disciplines, need to analyse their data in this way, but
they may neither have, nor need to have, a detailed understanding of the
mathematics involved. What they do need is to be able to visualise their
data in some form. Hence, as part of this work, software was produced in
R to provide a usable visualisation of BKDE. A large number of examples
is provided to demonstrate how this software can allow easy visualisation of

BKDE for a variety of types of dataset.

156

9.1 Overview

The initial aim of this project, driven by the interests of those involved and of
the sponsoring company, Serif (UK) Ltd., was to review existing technology
that could be of use in the visual representation of high dimensional functions,
specifically those functions that might arise from some Bayesian examination
of a problem. This aim was achieved via the combination of MCMC and the
Grand Tour with the new Bayesian Kernel Density Estimation technique.
These objects arise, basically, in two forms, a mathematical description of an
object generated by a mathematical analysis, or increasingly, a sample from

an object generated by an MCMC analysis.

Data of high dimensionality can be displayed in various ways and all of these
in some way address the issue of dimension reduction. The progression from
a mathematically expressed function to a sample from that function is easily
handled by Monte Carlo Markov Chain (MCMC) methods. Once a sample
is obtained several methods of dimensional reduction are available to either
produce a summary view of the sample or, more usefully here, to produce
a series of views from differing perspectives within the state space of the
sample. All that is left is some way of displaying the dimensionally reduced
data in a more informative way than a dot plot or line graph and the idea
of recovering, and displaying, the underlying density, using kernel density

estimation (KDE) seems to be an obvious approach.

Chapter 2 starts by giving a short introduction to Bayesian theory that
should be enough for any reader to understand the Bayesian parts of the
thesis. Chapters 3, 4, and 5 give introductions to MCMC, the Grand Tour
and kernel density estimation respectively. In addition a survey of the meth-

ods and their origins is provided along with discussion of their suitability to

157

the work at hand.

Of the techniques available for MCMC, Gibbs sampling and Metropolis Hast-
ings stand out for various reasons, not least that between them they provide
techniques for sampling from the most common descriptive specifications for
posterior densities. The conditions under which each of these is appropriate

are:

Gibbs samplers given a target density specified as a complete set of con-
ditional densities Gibbs samplers, for example that used to generate

Figure 3.3, can produce a sample from the target density.

Metropolis Hastings samplers A fully specified density, for example

F@y) = (2m001) " exp {—3 { @—m)f = n) H |

2 o7 o

allows a sample to be drawn by rejection sampling.

Combination of Gibbs and Metropolis Hastings samplers. For exam-
ple given p(x|y1,y2) and p(y1,y2) = f(y1,y2) then a combination of
Gibbs and Metropolis Hastings sampling provides a route to a sam-
ple. (see Gilks and Best, 1995, for a practical approach to combining

samplers) .

Given a sufficiently large data set some method of viewing the sample in
order to appraise it, and hence the underlying density, is needed. Projection
methods (sometimes called dimension reduction methods) are more useful
for this type of work, standing out for two reasons; 1) the view produced is
without distortion as far as possible and 2) is a marginal projection of the
data, and they lend themselves to density recovery in the form of KDE (see,

for example, Asimov, 1985; Jones and Sibson, 1987).

158

Conventional KDE has two disadvantages, it is ad hoc in the extreme and
a large amount of user input is required in choosing the bandwidth. In
a situation where large numbers of projections are viewed in sequence the
choice of a bandwidth for each view becomes problematical. This leads to
the Bayes KDE in Chapter 6. BKDE is introduced along with a discussion
of the need for an automated, accurate system for KDE, and a mathematical
derivation of the new estimator is given. Both fixed and variable kernel

treatments are discussed.

Examples of the BKDE being used, both for real data and constructed data,
are included as well as a short discussion of the extension of the method to

bivariate data. A brief discussion of the integration of the Grand Tour and

BKDE is given in Chapter 7.

Several more examples are given in Chapter 8, in the form of both con-
structed, five dimensional, data sets, with views derived from the Grand
Tour with BKDE, and two examples (the Rats example and the Surgical ex-
ample) taken from WinBugs, allowing comparison of the density estimation

provided by WinBugs with BKDE.

9.2 Further work and Interesting Papers

The BKDE presented here is essentially simple in concept but computation-
ally expensive. New approaches to KDE, numerical integration or the Grand
Tour will make this work more efficient and useful. A library for R incor-
porating some of the work referenced below should make the methods more

accepted.

The BKDE relies on a system of numerical integration that is versatile but

159

has difficulty in dealing with high orders of variable. Many researchers have
established research in the area of integration for use in Bayesian statistics.
The R version of J Naylor’s Gauss-Hermite functions (Naylor and Smith,
1982) needs further work to make it more universally useful. Papers such
as Grey (2009) have proposed alternatives and these need investigating for

alternatives to Gauss-Hermite rules.

Several authors are working on adaptive bandwidth selection, for example
Ahmad and Amezzine (2007); Brewer (2000); Wand and Jones (1995) and
more are working on comparisons between various KDE methods for example
Assenza et al. (2008); Archambeau et al. (2006); Lian (2009). These take
the comparison further than Berlinet and Devroye (1994) and could lead to
insight into BKDE.

One of the problems of many KDEs is the difficulty presented by thick-tailed
distributions. Bolance et al. (2008) present a transformation kernel density
estimator that is suitable for heavy-tailed distributions. Alternative kernel
functions such as the skew Student-t-Normal (StN) distribution, have been
suggested (Barbosa et al., 2008) showing that it is a good alternative for

modeling heavy-tailed data with a strong asymmetrical nature.

Various new approaches to KDE have been proposed, all are significantly
different to that here, for example Duong and Hazelton (2003); Duong (2007);
Gray and Moore (2003); Hazelton and Marshall (2009); Jebara et al. (2007);
Ker and Ergun (2005). Comparison between them should lead to a more

universal model.

Extension to more than one dimension for KDE is simple using the formu-
lation here but leads to a large increase in computational load. A different

approach to multivariate KDE is proposed by Zhang et al. (2006). KDE with

160

censored data is of interest, Kulasekera and Padgett (2006) as is grouped
data (Lambert and Eilers, 2009), soft clustering (Lopez-Rubio and Ortiz-de
Lazcano-Lobato, 2008) and density estimation on limited a range such as

[0,1] (Jones and Henderson, 2007).

Approximations to Bayesian predictive distributions that do not rely on
Gauss-Hermite integration could be an improvement, see for example Snel-
son and Ghahramani (2005). In addition, modifications to the Grand Tour
by Huh and K. (2002) might lead to a more efficient formulation of the R

routines used here.

All of the above lead to different KDEs that will perform differently to BKDE.
Some of them have different, automated bandwidth selection. As observed
in applying BKDE to the data from Berlinet and Devroye (1994) in Chapter
6,

The overwhelming conclusion to be drawn from it is that no
one KDE will do well at all densities and some experimentation
with method is needed. However, the BKDE in one of its forms
produced acceptable estimates of a large number of the densities
without the need for human intervention. As a method KDE
compares well to several others, in terms of producing a reason-

able output, and can be considered at least the equal of most.

The new kdes in the above papers will perform differently to BKDE and to
each other. Weither or not they are better, in some sense, depends on the
use being made of them. Without producing a test such as that in Berlinet

and Devroye (1994) it seems pointless to comment further.
In terms of the current work BKDE can be considered to outperform any

161

method without some automatic bandwidth calculation. The Bayesian for-
mulation of BKDE gives it some advantage over other methods as far as
theoretical underpinning is concerned, however, it is always possible to find
a data set on which one method outperforms another. In summary, for the
current work, the requirement was for a density estimator that provides a
systematic procedure for bandwidth, and hence kernel, choice, BKDE readily

provides that.

The variant of Projection Pursuit used here is the most basic of the many
Grand Tour algorithms available. The requirements for the Grand Tour in
this work were simply that it be easy to write in R, that it run on a reasonable
machine and that the produced functions be easy to use. To this end, once
the basic rotation matrix had been worked out and the Grand Tour run
in R no further investigation into improvements was carried out. A recent
overview of the Grand Tour can be found in Everitt (2005). No further
comment about Projection Pursuit or The Grand Tour seems appropriate

here.

Finally a new Bayesian analysis of the radiocarbon data is presented in Buck
et al. (2006), which proposes a replacement for the piecewise linear formula-
tion shown in Figure 6.3. the application of Bayes’ curve estimation to these
data could lead to a better understanding of radiocarbon dating and make

revisiting the problem of Naylor and Smith (1988) worthwhile.

162

Bibliography

I. S. Abramson. On bandwidth variation in kernel estimates — a square root

law. The Annals of Statistics, 10:1217-1223, 1982.

[. A. Ahmad and M. Amezzine. A general and fast convergent bandwidth
selection method of kernel estimator. Journal of Nonparametric Statistics.,

19(4):165-187, 2007.

J. Aitchison and I. R. Dunsmore. Statistical prediction analysis. Cambridge

University Press, Cambridge, 1975.

D. F. Andrews. Plots of high dimensional data. Biometrics, 28:125-136,
1972.

C. Archambeau, M. Valle, A. Assenza, and M. Verleysen. Assessment of
probability density estimation methods: Parzen window and finite gaussian
mixtures. In Proceedings of IEEE International symposium on circuits and

systems, volume 1-11, pages 3245-3248, May 21-24 2006. Kos Isl, Greece.

E. H. Ashton, M. J. R. Healy, and S. Lipton. The descriptive use of discrim-
inant functions in physical anthropology. Proceedings of the Royal Society
B, 146:552-572, 1957.

163

D. Asimov. The grand tour - a tool for viewing multidimensional data. STAM

Journal of Scientific, Statistical Computing, 6(1):128-143, Jan 1985.

A. Assenza, M. Valle, and M. Verleysen. A comparative study of various
probability density estimation methods for data analysis. International

journal of computational intelligence systems, 1(2):188-201, June 2008.

C. Barbosa, R. Celso, H. Bolfarine, and J. Gomes P., Raimundo. Bayesian
density estimation using skew Student-t-Normal mixtures. Computational

Statistics and Data Analysis, 52(12):5075-5090, Aug 15 2008.

G. A. Barnard. Statistical inference. Journal of the Royal Statistical Society
B, 11(2):115-139, 1949.

T. Bayes. An essay towards solving a problem in the doctrine of chances.

Philosophical Transactions of the Royal Society A, 53:370-418, 1763.

R. A. Becker and W. S. Cleveland. Brushing scatterplots. Technometrics,
29:127-142, 1987.

R. H. Berk. Limiting behaviour of posterior distributions when the model is

incorrect. The Annals of Statistics, 37:51-58, 1966.

A. Berlinet and L. Devroye. A comparison of kernel density estimates. Pub-

lications de lInstitut de Statistique de [Universite de Paris, 38:3-59, 1994.

C. Bolance, M. Guillen, and J. P. Nielsen. Inverse beta transformation in
kernel density estimation. Statistics and Probability Letters, 78(13):1757—
1764, S 15 2008.

M. J. Brewer. A Bayesian model for local smoothing in kernel density esti-

mation. Statistics and Computing., 10:299-309, 2000.

164

S. Brooks and G. Roberts. Diagnosing convergence of mcmec algorithms.

Technical report, Cambridge University, 1995.

C. E. Buck, C. D. Litton, D. G. P. Aguilar, and A. OHagan. Bayesian
nonparametric estimation of the radiocarbon calibration curve. Bayesian

Analysis, 1(2):265-288, 2006.

H. Chernoff. Using faces to represent points in k-dimensional space. Journal

of the American Statistical Association, 79:807-822, 1973.

S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algo-
rithm. Technical report, Washington University, 1994.

R. M. Clark. A calibration curve for radiocarbon dates. Antiquity, 49:251—
266, 1979.

W. S. Cleveland and R. McGill. The many faces of the scatterplot. Journal
of the American Statistical Association, 79:807-822, 1984.

CRAN. The r project for statistical computing, r-faq. World wide web., June
2009. URL http://cran.r-project.org/doc/FAQ/R-FAQ.htm.

B. Cunliffe. Danebury: An Iron-Age hill fort in Hampshire. Research Report
2, Council for British Archaeology, London, 1984.

P. J. Davis and P. Rabinowitz. Numerical integration. Academic press Ltd.,

London, 2nd edition, 1984.

B. P. Dawkins. Investigating the geometry of a p-dimensional data set. Tech-

nical report, Victoria University of Wellington, Mar 1993.

B. P. Dawkins. Investigating the geometry of a p-dimensional data set. Jour-

nal of the American Statistical Association, 90(429):350-359, 1995.

165

P. Dellaportas and A. F. M. Smith. Bayesian inference for generalized linear

models via Gibbs sampling. Applied Statistics, 42, 1993.

T. Duong. Kernel density estimation and kernel discriminant analysis for

multivariate data in r. Journal of Statistical Software, 21(7), Oct 2007.

T. Duong and M. L. Hazelton. Plug-in bandwidth matrices for bivariate
kernel density estimation. Nonparametric Statistics, 15(1):1730, 2003.

V. A. Epanechnikov. Nonparametric estimation of a multidimensional prob-

ability density. Theoretical Probability, Applications, 14:153-158, 1969.

B. S. Everitt. An R and S-Plus Companion to Multivariate Analysis.
Springer, 2005.

W. Feller. An introduction to probability theory and its applications. Wiley,
New York, 3rd edition, 1970.

S. Fienberg. Graphical methods in statistics. The American Statistician, 33:

165-178, 1979.

P. Fiorini and A. Inselberg. Configuration space representation in parallel
coordinates. Proceedings of the IEEE International Conference on Robotics

and Automation, 2:1215 — 122, 1989.

K. Fukunaga. Introduction to statistical pattern recognition. Academic Press,

New York, Boston(Mass), 1972.

A. E. Gelfand and A. F. M. Smith. Sampling based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85

(410):398-409, 1990a.

166

A. E. Gelfand and A. F. M. Smith. Sampling based approaches to calculating
marginal densities. jasa, 85(410):398-409, 1990b.

A. E. Gelfand, S. E. Hills, A. Racine-Poon, and A. F. M. Smith. Illustration
of Bayesian inference in normal data models using Gibbs sampling. Journal

of the American Statistical Association, 85(412):972-985, 1990.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images. ieeep, 6:721-741, 1984.

W. R. Gilks and N. G. Best. Adaptive rejection Metropolis sampling within
Gibbs sampling. Journal of the Royal Statistical Society C, 44(4):455-472,
1995.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (editors). Markov Chain
Monte Carlo in practice. Chapman and Hall, London, 1996.

A. G. Gray and A. W. Moore. Rapid evaluation of multiple density models.
In In Artificial Intelligence and Statistics, 2003.

A. Grey. Adaptive Monte Carlo methods - high-dimensional integra-
tion without Markov chains. World wide web., July 2009. URL

http://www.cs.cmu.edu/ agray/.

G. H. Hardy and E. M. Wright. An introduction to the theory of numbers.
Oxford University Press., Oxford, 1954.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrics, 57(1):97-109, 1970.

M. L. Hazelton and J. C. Marshall. Linear boundary kernels for bivariate
density estimation. Statistics and Probability Letters, 79(8):999-1003, Apr
15 20009.

167

M. Y. Huh and Kim K. Visualization of multidimensional data using mod-
ifications of the grand tour. Journal of Applied Statistics, 29(5):721-728,
July 2002.

T. Jebara, Y. Song, and J. Thadani. Independent similarly distributed as-
sumptions for semiparametric density estimation. Department of Com-

puter Science, Columbia University, New York, NY 10027, USA, 2007.

M. C. Jones and D. A. Henderson. Kernel-type density estimation on the
unit interval. Biometrica, 94(4):977-984, 2007.

M. C. Jones and R. Sibson. What is projection pursuit. Journal of the Royal
Statistical Society A, 150(1):1-36, 1987.

M. C. Jones, J. S. Marron, and S. J. Sheather. Progress in data-based band-
width selection for kernel density estimation. Chapel Hill, N.C. : Dept. of
Statistics, 1992.

M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of band-
width selection for density estimation. Journal of the American Statistical

Association, 91:401-407, Feb 1994.

A. P. Ker and A. T. Ergun. Empirical Bayes nonparametric kernel density
estimation. Statistics and Probability Letters, 75(4):315-324, Dec 15 2005.

K. B. Kulasekera and W. J. Padgett. Bayes bandwidth selection in kernel
density estimation with censored data. Journal of Nonparametric Statis-

tics, 18(2):129-143, Feb 2006.

S. Kullback. Information theory and statistics. Dover Publications, London,

2nd edition, 1997.

168

P. Lambert and P. H. C. Eilers. Bayesian density estimation from grouped
continuous data. Computational Statistics and Data Analysis, 53(4):1388~
1399, 2009.

J. A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Springer,

Nov 2007.

H. Lian. Cross-validation for comparing multiple density estimation proce-

dures. Statistics and Probability Letters, 79(1):112-115, Jan 1 2009.

D. V. Lindley. Introduction to probability and statistics, volume 2 - Inference.

Cambridge University Press., Cambridge, 1965.

E. Lopez-Rubio and J. M. Ortiz-de Lazcano-Lobato. Soft clustering for non-
parametric probability density function estimation. Pattern Recognition

Letters, 29(16):2085-2091, Dec 1 2008.

D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. Winbugs — Bayesian
modelling framework: concepts, structure, and extensibility. Statistics and

Computing, 10:325-337, 2000.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. London:
Academic Press, 1979.

F. H. C. Marriott and G. Eslava. Some criteria for projection pursuit. Statis-

tics and Computing, 4(1):13-20, 1994.

K. T. McDonald. Volume and surface area of an n-sphere, 2003. Internet

note from the Joseph Henry Laboratories, Princeton University.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. Equa-
tions of state calculated by fast computing machines. The Journal of

Chemical Physics, 21(6):1087-1092, 1953.

169

G. E. Moore. Cramming more components onto integrated circuits. Flec-

tronics Magazine, 4, 1965.

J. C. Naylor. Some numerical aspects of Bayesian inference. PhD thesis,

University of Nottingham, October 1982.

J. C. Naylor and J. E. H. Shaw. Bayes 4 user guide. Private, The Nottingham
Trent University, 1983.

J. C. Naylor and A. F. M. Smith. An archaelogical inference problem. Journal
of the American Statistical Association, 83(4):588-595, 1988.

J. C. Naylor and A. F. M. Smith. Applications of a method for the effi-
cient computation of posterior distributions. Applied Statistics, 31:214—
225, 1982.

J. R. Norris. Markov Chains. Cambridge University Press, Cambridge, 2nd
edition, 1997.

A. O’'Hagan. Kendall’s advanced theory of statistics, volume 2B - Bayesian
inference. Edward Arnold., London, 1st edition, 1994.

B. U. Park, J. S. Marron, and W. C. Kim. Asymptotically best bandwidth
selectors in kernel density estimation. Statistics and Probability Letters,

19:119-127, 1994.

C. Posse. An effective two-dimensional projection pursuit algorithm. Com-
munications in Statistics, Simulation and Computation, 19(4):1143-1165,

1990.

L. J. Savage. Subjective probability and statistical practice. In The founda-
tions of statistical inference., pages 9-35. Methuen and Wiley, 1962.

170

D. W. Scott. Multivariate density estimation, Theory, practice and visuali-
sation. Number 0-471-54770-0 in Wiley series in probability and mathe-
matical statistics. Wiley, New York, 1992.

D. W. Scott. Averaged shifted histograms: Effective nonparametric density
estimation. The Annals of Statistics, 13:1024-1040, 1985.

D. W. Scott. Nonparametric probability density estimation for data analysis
in several dimensions. In Proceedings of the twenty-eighth conference on
the design of experiments in army research, development and testing, pages

387-397, 1983.

D. W. Scott and G. R. Terrell. Biased and unbiased cross-validation in
density estimation. Journal of the American Statistical Association, 82

(400):1131-1146, 1987.

J. E. H. Shaw. A quasirandom approach to integration in Bayesian statistics.

Technical report, University of Nottingham, 1986.
B. W. Silverman. Density estimation. Chapman and Hall, London, 1986.

A. F. M. Smith. Bayesian computational methods. Philosophical Transac-
tions of the Royal Society A, 337:369-386, 1991.

A. F. M. Smith and J. M. Bernardo. Bayesian Theory. Wiley and Sons.,
Chichester, 1994.

A. F. M. Smith and A. E. Gelfand. Bayesian statistics without tears: a
sampling - resampling perspective. The American Statistician, 146(2):84—

88, 1992.

171

A. F. M. Smith and G. O. Roberts. Bayesian computation via the Gibbs
sampler and related Markov-chain and Monte-Carlo methods. Journal of

the Royal Statistical Society, 55(1):3-23, 1993.

A. F. M. Smith, A. M. Skene, J. E. H. Shaw, and J. C. Naylor. Progress with
numerical and graphical methods for practical Bayesian statistics. The

Statistician, 36:75-82, 1987.

E. Snelson and Z. Ghahramani. Compact approximations to Bayesian pre-
dictive distributions. In ACM International Conference Proceeding Series;

Proceedings of the 22nd international conference on Machine learning, vol-

ume 119, pages 840 — 847. ACM New York, NY, USA, 2005.
J. W. Tukey. Exploratory data analysis. Addison-Wesley, London, 1977.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-
Verlag, 2002.

M. P. Wand and M. C. Jones. Kernel smoothing. Chapman and Hall, London,
1995.

E. J. Wegman. Hyperdimensional data analysis using parallel coordinates.

Journal of the American Statistical Association, 85(411):664-675, 1990.

C. Weihs. Multivariate exploratory data-analyses and graphics - a tutorial.

Journal of Chemometrics, 7(5):305-340, 1993.
S. Weisberg. Applied linear regression. Wiley, Sanford, 1980.

WinBugs. The bugs project. World wide web., June 2009. URL

http://www.mrc-bsu.cam.ac.uk/bugs/.

172

X. Zhang, M. L. King, and R. J. Hyndman. A Bayesian approach to band-
width selection for multivariate kernel density estimation. Computational

Statistics and Data Analysis, 50:3009 3031, 2006.

173

Appendix A

The Grand Tour in S-Plus

The following are the collection of S-Plus routines that allow the production
of the Grand Tour, with the kernel density estimation and contour plotting.

Examples are shown in Figures 4.1, 7.1 and 7.2.

A.1 The simple Grand Tour

This simple wrapper function uses some of the functions below and produces

a simple output such as that shown in Figure 4.1.

A typical call might be

simpleGT (x,x1im=c(-1000,1000), ylim=c(-500,500),steps=100),
the only parameter that differs from those in section A.2 is the “steps” pa-

rameter, this simply defines the number of steps through n-space to be taken

and displayed.

174

simpleGT(x, step = sqrt(5), steps = 10, xlim, ylim)
{
#rotate project and display latest at 20/4/95
size <- ncol(x)
#changed for size info
xn <- as.matrix(x) #
#xp is the matrix that is used as the plane to project onto
in this case 2d
xp <- rep(0, 2 * size)
dim(xp) <- c(2, size)
xpll, 1] <=1
xpl2, 2] <- 1
temp <- xn #
centre the data by subtracting the mean
for(i in 1:ncol(temp))
temp[, i] <- temp[, i] - mean(temp[, i]) #
set the limits for the display
if (missing(x1im))
xlim <- c(-2000, 2000)
if (missing(ylim))
ylim <- ¢(-2000, 2000) #
test is the matrix R - the composite rotation
test <- rotation(size, step = step) #
apply the rotation/projection steps times
for(i in 1:steps) {

project and display

xx <- t(xp %*) t(temp))

plot(xx[, 1], xx[, 2], xlim = xlim, ylim = ylim) #
rotate the projection plane

xp <- t(test %*% t(xp))

Fooo#
#return the final projection plane
Xp

175

A.2 The full Grand Tour

The main wrapper function that is used as the user interface, a typical call

to this might be

GT(x, x1lim=c(-1000,1000), ylim=c(-500,500))

The parameters to the function are

1. x The file name for the data,
2. step default value sqrt(5) the rotation step size,

3. xlim default value ¢(-0.02, 0.02) the x-axes limits, ylim default value
¢(-0.02, 0.02) the x-axes limits,

4. square default value T if True display the orientation square,

5. gui default value ”openlook” select the GUI, allows use of the functions

on other platforms, e.g. MS Windows,

6. xp if present, specifies the start position for the axes, the function
returns the final value of the axes when it exits, this allows breaking

the session and starting again in the same projection,
7. grey default value F start up in Greyscale projection if True,

8. cont default value F start up in Contour plot if True.

176

GT(x, step = sqrt(5), xlim = c(-0.02, 0.02), ylim = c(-0.02, 0.02),

square = T, gui = "openlook", xp, grey = F, cont = F)

{
rotate project and display latest at 30/4/95
mouse control a la spin, on windows at least
some of this is inspired by the progdraw library
package, it used to rely on the two functions box and
frame from that package - but not now 30/4/95 ;-}.
the gui default seems a bit dodgey
#

plotarea <- c(0.1, 0.75, 0.1, 0.75)

indarea <- ¢(0.75, 0.95, 0.1,

0.3)

allarea <- c(0, 1, 0, 1)

flag <- 0 #
count the columns in the input file

size <- ncol(x) #

+*

generate an n indicator
sq <- indicator(size) #
centre the sq, a better visual solution might be possible
for(i in 1:ncol(sql[1]]1)) {
mn <- (mean(sq[[1]][, i]) + mean(sql[2]][, i]1))/2
sql[11]1[, i] <- sql[[1]]1[, i] - mn
sqll[2]1]1[, i] <- sql[2]]1[, i] - mn
b
xn <- as.matrix(x) #
xp 1s the matrix that is used as the plane to project onto
in this case 2d, starting at a nice simple 1,1
type of direction
if (missing(xp)) {
xp <- rep(0, 2 * size)
dim(xp) <- c(2, size)
xpl[l, 1] <- 1
xpl[2, 2] <- 1

177

}
temp <- xn #
centre the data by subtracting the mean
for(i in 1:ncol(temp)) {
temp[, i] <- temp[, i] - mean(temp[, i])
}
test is the matrix R - the composite n-dimensional rotation
test <- rotation(size, step = step) #
set the display
switch(gui,
athena = X110,
motif = motif(),
openlook = openlook(),
windows = win.graph(),
stop("Unsupported graphical interface")) #
save the par settings and set up the exit cleanup
oldpar <- par(pty = "s")
on.exit(par(oldpar))
assign("Draw.window", dev.cur(), where = 0)
on.exit({
dev.off (Draw.window)
remove ("Draw.window", where = 0)
}
) i
project the first frame and display it
xx <- t(xp %*% t(temp))
par(new = F, fig = c(0, 1, 0, 1), plt = plotarea)
newpar <- par()
if(grey) {
xk <- kernel(xx, xx)
image.xyz(xx[, 1], xx[, 2], xk, x1lim = x1lim, ylim = ylim)
}
else if (cont) {

xk <- kernel(xx, xx)

178

contour.xyz(xx[, 1], xx[, 2], xk, xlim = xlim, ylim = ylim)

}
else {

plot(xx[, 1], xx[, 2], xlim = xlim, ylim = ylim)
}

par(new = F, fig = allarea, plt = indarea)
if (square)
indicate(xp, sq)
par(new = F, plt = allarea)
DrawPalette() #
go round looking at mouse clicks
repeat {
get the mouse position when clicked
pos <- locator(1) #
quit
if (pos$x > 0.9) {
if (pos$y > 0.9) {
return(xp)
}
else if(pos$y > 0.8) {
step forward once

rotate the axes

xp <- t(test %x% t(xp)) #
project and display
xx <- t(xp %*% t(temp))
par(new = F, plt = plotarea)
if (grey) {
xk <- kernel(xx, xx)
image.xyz(xx[, 1], xx[, 2], xk, xlim = xlim,
ylim = ylim)
}
else if(cont) {
xk <- kernel(xx, xx)

contour.xyz(xx[, 1], xx[, 2], xk, xlim = xlim,

179

ylim = ylim)
}
else {

plot(xx[, 1], xx[, 2], xlim = xlim, ylim =

ylim)
}
par(new = F, fig = allarea, plt = indarea)
if (square)
indicate(xp, sq)
par(new = F, fig = allarea, plt = allarea) #

redraw the switches
DrawPalette ()
next
}
else if(pos$y > 0.7) {

step backwards once

invert the rotation matrix if needed
if('flag) {
invtest <- solve(test)
flag <- 1
}
project and display etc, same as above
xp <- t(invtest %x% t(xp)) #
project and display
xx <- t(xp %*% t(temp))
par(new = F, plt = plotarea)
if (grey) {
xk <- kernel(xx, xx)
image.xyz(xx[, 1], xx[, 2], xk, xlim = xlim,
ylim = ylim)
}
else if(cont) {
xk <- kernel(xx, xx)

contour.xyz(xx[, 1], xx[, 2], xk, xlim = xlim,

180

ylim = ylim)
}
else {
plot(xx[, 1], xx[, 2], xlim = xlim, ylim =
ylim)
}
par(new = F, fig = allarea, plt

indarea)
if (square)

indicate(xp, sq)

par(new = F, fig = allarea, plt = allarea)
DrawPalette()
next
}
else if(pos$y > 0.6) {
step forward 3 times
project and display etc, same as above 10 times
for(i in 1:3) {
rotate the axes
xp <- t(test %% t(xp)) #
project and display
xx <- t(xp %*% t(temp))
par(new = F, plt = plotarea)
if (grey) {
xk <- kernel(xx, xx)
image.xyz(xx[, 1], xx[, 2], xk, xlim = xlim,
ylim = ylim)
}
else if(cont) {
xk <- kernel(xx, xx)
contour.xyz(xx[, 1], xx[, 2], xk, xlim =
xlim, ylim = ylim)
}
else {
plot(xx[, 1], xx[, 2], xlim = xlim, ylim =

181

ylim)
}
par(new = F, fig = allarea, plt = indarea)
if (square)
indicate(xp, sq)
}
par(new = F, fig = allarea, plt = allarea) #
redraw the switches
DrawPalette ()
next
}
else if(pos$y > 0.5) {
step back 10 times
invert the rotation matrix
if('flag) {
invtest <- solve(test)
flag <- 1
}
project and display etc, same as above 10 times
for(i in 1:3) {
project and display etc, same as above
xp <- t(invtest %x% t(xp))
project and display
xx <- t(xp %*) t(temp))
par(new = F, plt = plotarea)
if(grey) {
xk <- kernel (xx, xx)
image.xyz(xx[, 1], xx[, 2], xk, x1lim = xlim,
ylim = ylim)
}
else if(cont) {
xk <- kernel (xx, xx)
contour.xyz(xx[, 1], xx[, 2], xk, xlim =

xlim, ylim = ylim)

182

}
else {
plot(xx[, 1], xx[, 2], xlim = xlim, ylim =
ylim)
}
par(new = F, fig = allarea, plt = indarea)
if (square)

indicate(xp, sq)

}

par(new = F, fig = allarea, plt = allarea)
DrawPalette()

next

}
else if(pos$y > 0.4) {
step forward 100 times
project and display etc, same as above 10 times
for(i in 1:10) {
rotate the axes
xp <- t(test %% t(xp)) #
project and display
xx <- t(xp %*% t(temp))
par(new = F, plt = plotarea)
if (grey) {
xk <- kernel (xx, xx)
image.xyz(xx[, 1], xx[, 2], xk, x1lim = xlim,
ylim = ylim)
}
else if(cont) {
xk <- kernel (xx, xx)
contour.xyz(xx[, 1], xx[, 2], xk, xlim =
xlim, ylim = ylim)
}
else {
plot(xx[, 1], xx[, 2], xlim = xlim, ylim =

183

ylim)
}
par(new = F, fig = allarea, plt = indarea)
if (square)
indicate(xp, sq)
}
par(new = F, fig = allarea, plt = allarea)

redraw the switches

DrawPalette ()
next
}
else if(pos$y > 0.3) {
if(grey) {
grey <- F
}
else {
grey <- T
cont <- F
}
}
else if(pos$y > 0.2) {
if(cont) {
cont <- F
}
else {
cont <- T
grey <- F
}
}

else if(pos$y > 0.1) {
par(new = F, plt = plotarea)
if (grey) {
xk <- kernel(xx, xxX)

image.xyz(xx[, 1], xx[, 2], xk, xlim = xlim,

184

ylim = ylim)
}
else if(cont) {
xk <- kernel(xx, xx)

contour.xyz(xx[, 1], xx[, 2], xk, xlim = xlim,

ylim = ylim)
}
else {
plot(xx[, 1], xx[, 2], xlim = xlim, ylim =
ylim) #
}

par(new = F, fig = allarea, plt = indarea)
if (square)

indicate(xp, sq)

par(new = F, fig = allarea, plt = allarea) #
redraw the switches
DrawPalette ()
next
}
else if(pos$y > 0 && pos$y < 0.1) {
redraw without the switches
DrawPalette(col = 0)
dev.print ()
DrawPalette()

next

by

#this is a test else break

}

The next function “rotation” produces the n-dimensional rotation matrix

that is applied to the axes on each step.

185

The rotation matrix is derived as follows:
cos 0 sin 6

A rotation in 2D looks like in p dimensions it is made
—sin 0 cos 0

up of a product of matrices like

oS Y12 SiN Y19 0

—Sin Y12 COS Y12

1

1

with the general form
1

1

COS ij . SN Y5

1
1
—SIN Vi . COS ij
1

The matrix for the total rotation is given by Ria(712), - - -, Rip(71p), Rasz(723), - - - s Rap(72p)
where R;;(7;;) is the matrix that rotates the subspace (X;, X;) through the

angle v;; and corresponds to the identity matrix except for the elements:

(i,1) = (4, 4) = cos (i)

186

(Zvj) = _(jvl) = SZTL(’)/U)

Labeling vi2, ..., Yip, Y23, - - - Y2p @S Y1,...,7vr with L = 2p — 3, the angles
are given by

v, =STEP\/P;,i1=1,...,L
where P; is the i"* prime number and STEP is any irrational number.
R is the product of all the I?;; matrices.

A sequence of rotations is obtained by repeatedly applying the matrix R with
a fixed angle and projecting each result onto a plane (Xi, X3). Marriott and
Eslava Marriott and Eslava (1994) use a step of STEP = /5 which “is large

enough to produce pseudo-random projections”.

rotation(n, step = sqrt(5))
{
p<-2x%xn-3
primes <- primen(p)
rot <- diag(n)
test <- 0
count <- p
for(j in n:3) {
gammai <- step * sqrt(primes[count])
current <- diag(n)
current[2, 2] <- cos(gammai)
current[j, j] <- cos(gammai)
current[2, j] <- sin(gammai)
current[j, 2] <- - sin(gammai)
rot <- current %*}), rot
count <- count - 1
}
for(j in n:2) {

gammai <- step * sqrt(primes[count])

187

current <- diag(n)

current[1, 1] <- cos(gammai)
current[j, j] <- cos(gammai)
current[1, j] <- sin(gammai)
current[j, 1] <- - sin(gammai)
rot <- current %*J, rot

count <- count - 1

rot

In this example if x is of dimension 5 then the projection matrix used is

10
0 1
0 0
0 0
0 0

It is suggested in several papers that the use of the first 1, 2 or 3 rows of the
data matrix as a projection matrix is possible, however as it is convenient if

the axes are orthogonal I prefer the above technique.

The next function does an extremely simple kernel density estimation on the
projection. It generates h the smoothing parameter of the estimation from

the variance/co-variance matrix of the projection. See Silverman [Silverman

(1986)] for more details.

kernel(a, x, h)
{
p <- nrow(a)
s <- nrow(x)

y <= rep(0, p) #

188

#1if there is no h specified, make one up

if (missing(h))
h <- 2 * sqrt(var(x)) * 1.06 *x p~(-0.2)
h <- solve(h) #

#treat x as a scalar
for(i in 1:p) {
ex <- (x - ali, 1) %*% h
ex <- ex * ex
tx <- ex[, 1] + ex[, 2]
y[i] <= sum(1 - tx[tx < 1], na.rm = T)

The next two functions wrap the standard S-Plus functions image and con-
tour and combine them with interp that is used to obtain a regular grid for

their estimations.

contour.xyz(x, y, z, ...)
{
i <- interp(x, y, 2z)
contour (ix, iy, iz, labex = 0, ...) #
}
image.xyz(x, y, z, ...)
{
i <- interp(x, y, 2z)
image (ix, iy, i$z, labex = 0, ...) #
}

finally, “DrawPalette” and “indicate” simply draw the indicator and the

mouse menu.

DrawPalette(...)

189

Draw the palette for the drawing tools, including

quit - to provide exit from the function:

text(0.95, 0.95, "quit", ...) #
step - to advance the tour
text(0.95, 0.85, "step", ...) #
back - to go back one step
text(0.95, 0.75, "back", ...) #
+10 to step 10 times
text(0.95, 0.65, "+3", ...) #
-10 to back 10 times
text(0.95, 0.55, "-3", ...) #
+10 to step 10 times
text(0.95, 0.45, "+10", ...) #
toggle greyscale
text(0.95, 0.35, "grey", ...) #
toggle contour
text(0.95, 0.25, "contour", ...) #
redraw
text(0.95, 0.15, "redraw", ...) #
print
text(0.95, 0.05, "Print", ...) #

indicate(xp, ind)
{
xp 1s a rotation matrix,
ind is the indicator, endpoint list
size <- nrow(ind[[1]])
xx <- t(xp %»*% t(ind[[1]1]1))
plot(xx[, 1], xx[, 2], xlim = c(-1.3, 1.3), ylim = c(-1.3, 1.3), axes
= F, xlab = "", ylab = "")
lines(c(xx[1, 1], xx[size, 1]), c(xx[1, 2], xx[size, 2]), type = "1")
for(i in 2:(size - 1)) {

190

lines(c(xx[i, 1], xx[size, 1]), c(xx[i, 2], xx[size, 2]), type
= "1")

}
points(xx[size, 1], xx[size, 2], pch = 15)
points(xx[1, 1], xx[1, 2], pch = 15)
xx <= t(xp %»*% t(ind[[2]1]1))
points(xx[, 1], xx[, 21)
lines(c(xx[1, 1], xx[size, 1]), c(xx[1, 2], xx[size, 2]), type = "1")
for(i in 2:(size - 1)) {

lines(c(xx[i, 1], xx[size, 11), c(xx[i, 21, xx[size, 2]), type = "1")

191

Appendix B

The One and Two dimensional
Tour using BKDE

B.1 The one dimensional Tour

Likelihood for the BKDE estimation of the bandwidth discussed in chapter
6 is supplied by the two functions 1ik1 and 1ik2. 1ik1 takes a vector of h
values and uses a for loop to generate the log-likelihood of the data set with
respect to each value. kdel.1l and its associated functions use the apply

command to split up the vector and return a vector of corresponding values.
destl and dest1.2 supply a BKDE for a data set given a value for h.

Comments within the functions give the operating instructions.

1ik1 version 1 by W K Kaye 4/8/99

a set of functions that provide the likelihood used
in igh to get the posterior for h

likl, kdel.1l and kdel.2

and a second set, destl and destl.2 that do a kde

H O HF HF OH OH OH

192

once h has been found

finally rmlikl rmoves all the above and itself

#
#
#
parameters are:
h bandwidth or a vector of bandwidths
x a point
X a data set
#
"lik1"<-function(h, X=data)
{
main likelihood for BKDE 1D
n<-length(X)
dim(X)<-n
dim(h)<-length(h)
ret<-rep(0,length(h))
call kdel.1l for each data element i>1
likelihood depends on previous values
for(i in 2:n)
ret<-ret+log(kdel.1(h,X[i],X[1:1i-1]))
ret<-ret-max(ret)

the kde routines work in log_n

exp(ret)

#ret
}
"kdel.1"<-function(h, x, X=data)
{

apply here separates the components of the h vector
dim(X)<-length(X)
dim(h)<-length(h)
ret<-rep(0,length(h))
ret<-apply(h,1,kdel.2,x,X)
ret
b
"kdel.2"<-function(h, x, X=data)

193

{
apply here separates the components of the data vector
note that this needs a symmetrical kernel
and that h is actually log(h)
dim(X)<-length(X)
ret<-sum(apply(X,1,dnorm,x,exp(h)))
ret
b
#density estimation once igh has been used to find h
#postm$mu should be passed to dest, note it expects the log of h
"destl"<-function(x, h, X = data)

{
dim(X) <- length(X)
dim(x) <- length(x)
ret <- apply(x, 1, destl.2, h, X)
ret
}
"destl.2"<-function(x, h, X = data)
{

#note that this needs the LOG of h !ttt
dim(X) <- length(X)
ret <- sum(apply(X, 1, dnorm, mean = x, sd = exp(h)))

ret
}
"rmlik1"<-function()
{
rm(1likl, kdel.1, kdel.2, destl, destl.2, rmlik1)
}

The functions for BKDE use the Gauss-Hermite integration functions written

by Naylor (1982). The S-Plus versions of these follow for reference:

"igh"<- function(pdf, n = 4, postm = list(mu = 0, sd = 1), ...)

194

xw <- ighRule(n, postm$mu, postm$sd)

dim(xw$x) <- length(xw$x)

fO <- pdf (xw$x, ...)

fO <- £f0/sum(f0 * xwwt)

f1 <- xw$x * £0

postm$mu <- sum(fl * xwwt)

f2 <- (xw$x - postm$mu) * f1

postm$sd <- sqrt(sum(f2 * xwdwt))

postm
}
".ighConst"<-
list(key = c(1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65, 73, 82,

91, 101), x = structure(.Data = c(0, 0.70710678120000003, O,
.2247448714, 0.52464762330000003, 1.6506801239, 0, 0.95857246460000001,
.0201828704999998, 0.43607741189999999, 1.335849074,
.3506049736999999, 0, 0.81628788289999998, 1.6735516288000001,
.6519613567999998, 0.38118699020000002, 1.1571937124,
.9816567567000001, 2.9306374203000001, 0, 0.72355101879999995,
.4685532891999999, 2.2665805845000002, 3.1909932018, 0.34290132722,
.0366108297900001, 1.7566836493, 2.5327316742299999, 3.43615911884, O,
.65680956688000003, 1.3265570844900001, 2.0259480158300001,
.7832900997799999, 3.66847084656, 0.31424037625000001,
.94778839124000003, 1.59768263515, 2.2795070805000002,
.0206370251200001, 3.8897248978699999, 0, 0.60576387916999996,
.22005503659, 1.8531076516, 2.5197356856800002, 3.2466089783699998,
.1013375961799996, 0.29174551066999999, 0.87871378733000005,
.4766827311399999, 2.0951832585100001, 2.7484707249899998,
.4626569335999999, 4.30444857047, 0, 0.56506958326000001,
.13611558521, 1.71999257519, 2.3257324861700002, 2.9671669279100001,
.6699503733999999, 4.4999907073100003, 0.27348104614000002,
.82295144913999996, 1.3802585392, 1.95178799092, 2.5462021578499998,
.17699916198, 3.8694479048599999, 4.6887389393100003, O,
.53163300134000002, 1.06764872574, 1.61292431422, 2.1735028266700001,

O W O W r WKk d P, WO N O F K NDNMDND -

195

O O O O O O O O O O O O O O O O O+ O O O O FF FH I N O B N O W = BN

.7577629156999999, 3.3789320911399998, 4.0619466758799998,
.8713451936699999, 0.25826775052000001, 0.77668291926999999,
.30092085839, 1.83556316042600001, 2.38629908917, 2.9613775055299998,
.5737690684899999, 4.24811787357, 5.0483640088700001, O,
.50352016342000006, 1.01036838713, 1.52417061939, 2.0492317098499999,
.5911337897900002, 3.1578488183500002, 3.7621873519600002,
.4285328065999998, 5.2202716905399997, 0.24534070829999999,
.73747372855000004, 1.2340762154, 1.7385377121200001, 2.25497400209,
.7888060584300001, 3.3478545673800002, 3.9447640401199999,
.6036824495499999, 5.38748089001), .Dim = 110), w = c(
.7724538482000001, 1.4611411827, 1.1816359005999999, 1.3239311752,
.05699644828999999, 1.2402258177000001, 0.94530872050000003,
.9865809968, 1.1814886254999999, 0.87640133440000001,
.93558055760000003, 1.1369083327, 0.81026461760000001,
.82868730329999996, 0.89718460020000002, 1.1013307295999999,
.76454412869999999, 0.79289004839999999, 0.86675260659999998,
.0719301442, 0.72023521560000003, 0.73030245270000005,
.76460812509999998, 0.84175270150000003, 1.047003581,

.68708185394999999, 0.70329632310000001, 0.74144193193999997,
.82066612640000003, 1.02545169137, 0.65475928690999996,
.66096041943999995, 0.68121188106999997, 0.72195362473000002,
.80251686884999995, 1.00652678617, 0.62930787437000002,

.63962123201999999, 0.66266277327000001, 0.70522036611000005,
. 78664393946, 0.98969904709000001, 0.60439318791999996,
.60852958369999999, 0.62171605528999996, 0.64675946332000001,
.69061803483999995, 0.77258082335, 0.97458039563999999,
.58406169052000001, 0.59110666704000003, 0.60637973912999998,
.63290060647000002, 0.67770675919000001, 0.75998708739999998,
.96087870303, 0.56410030873000006, 0.56702115345000004,
.57619335027999996, 0.59302744975999999, 0.62066260353000002,
.66616600511000001, 0.74860736602, 0.94836897083000005,
.54737520504000003, 0.55244195737000001, 0.56321782908999996,
.58124727539999999, 0.60973695825999996, 0.65575567288000003,
.73824562228000001, 0.93687449288000002, 0.53091793761999995,

196

0.53307065457000002, 0.53976311390999998, 0.55177735307999998,
0.57073929412000002, 0.59989273266999998, 0.64629170021000004,
0.72874837058999997, 0.92625413998999995, 0.51684583648000004,
0.52063494667999999, 0.52858944291999999, 0.54157867865999998,
0.56127904554999997, 0.59095300346000001, 0.63763017201000005,
0.71999338311000005, 0.91639353754999997, 0.50297488828000003,
0.50461533135000003, 0.50967937510000005, 0.51863319370000005,
0.53240236055000001, 0.55269462096999999, 0.58277952976000003,
0.62965663264000005, 0.71188187434000005, 0.90719879608999998,
0.49092150067000001, 0.49384338526999999, 0.49992087134000002,
0.50967902712000002, 0.52408035095000005, 0.54485174236,
0.57526244285000006, 0.62227869618999998, 0.70433296117999999,
0.89859196144999998))

"ighRule"<-

function(n, mu = 0, sigma = 1)

{
x <= c(rep(0, n))
wt <- x
i <- seq(0, ceiling(n/2) - 1)
j <- .ighConst$key[n] + i
left <- ceiling(n/2) - i
right <- floor(n/2) + i + 1
root2s <- 1.4142135618 * sigma
x[right] <- .ighConst$x[j]
x[left] <- - x[right]
wt [right] <- .ighConst$w[j]
wt[left] <- wt[right]
list(n = n, x = mu + root2s * x, wt = root2s * wt)

}

"rmigh" <- function()

{
rm(igh, ighRule, .ighConst, rmigh)

}

197

Finally the tourl function carries out the Grand Tour with the BKDE esti-

mation of the density.

0.30
|

0.25
|

plotdata$y
0.15
|

0.10
|

+10
step
quit

0.05
|

0.0

Figure B.1: Typical screen-shot of the tourl display.

"tourl"<-function(X=data, xp, m = 10, step = sqrt(5), gui = "windows")
this will display projections in sequence

{

#

#

X is data

xp 1s projection matrix
m is number of points for the plot

step is the tour step, should be irrational
#
#
#

gui is the window system being used

number of dimensions

size<-ncol (X)

++

projection matrix

198

if (missing(xp))

{
xp <- rep(0, size)
dim(xp) <- size
xpl1] <- 1

}

rotation matrix
rot <- rotation(size, step = step)
open a window with 16 frames
switch(gui,
athena = X11(),
motif = motif(),
openlook = openlook(),
windows = win.graph(),
stop("Unsupported graphical interface"))
setup clean up at exit time
save the par settings

oldpar<-par()

on.exit(
{
dev.off ()
par (oldpar)
b

plotdata<-project(rot, xp, X, m)
par (fig=c(0,1,0,1) ,plt=c(0.1,0.8,0.1,0.8))
plot(plotdata, type = "n", bty = "n", xaxs = "e", yaxs = "e")
lines(spline(plotdata), col = 1)
redraw <- 1
while(redraw > 0)
{
redraw <- redraw - 1
if (redraw == 0)

{

199

DP1()
redraw<-mouseclick()
if (redraw == 0)
return(list(xp = xp, x = plotdata$x, y = plotdata$y))
}
rotate the axes
xp <- t(rot %x*% t(xp))
plotdata<-project(rot, xp, X, m)
par(fig=c(0,1,0,1),plt=c(0.1,0.8,0.1,0.8), new = F)
plot(plotdata, type = "p", bty = "n", xaxs = "e", yaxs = "e")

lines(spline(plotdata), col = 1)

}

"project"<-function(rot, xp, X, m)

{

project the data
xx <= t(xp %*% t(X))
dim(xx) <- length(xx)

calculate h
postm <- igh(likl, X=xx)
pl<-ighRule(m/2, mean(xx), sqrt(var(zx)))
p2<-ighRule(m/2-1, mean(xx), sqrt(var(xx)))
plotdata<-list(x=sort(c(pl$x,p2$x)))
plotdata$y<-destl(plotdata$x,postm$mu,xx)
plotdata

}

"mouseclick"<-function()

{
par(fig=c(0,1,0,1),plt=c(0.8,0.95,0.1,0.95))
pos<-locator (1)
if (pos$y > 0.7)

ret <- 10
else if(pos$y > 0.5)
ret <- 1

200

else

ret <- 0
ret
}
"DP1"<-function()
{
par(fig=c(0,1,0,1),plt=c(0.8,0.95,0.1,0.95))
plot(c(0,1),c(0,3),type="n",xlab="",ylab="",bty="n",axes=F)
text(0.5,0.4,"quit")
text(0.5,0.6,"step")
text(0.5,0.8,"+10")
}

"tourls"<-function(X=data, xp, n = 16, m = 10, step = sqrt(5), gui = "windows")
this will display the first n projections 4 at a time

X is data

Xp 1s projection matrix

{

#

#

#

#

n is number of projections

m is number of points for the plot
step is the tour step, should be irrational
gui is the window system being used
#

number of dimensions

size<-ncol (X)

+*

projection matrix
if (missing(xp))
{
xp <- rep(0, size)
dim(xp) <- size
xpl1] <- 1
+
rotation matrix

rot <- rotation(size, step = step)

201

open a window with 4 frames
switch(gui,
athena = X11(),
motif = motif(),
openlook = openlook(),
windows = win.graph(),
stop("Unsupported graphical interface"))
par (mfrow=c(2,2))

setup clean up at exit time

on.exit(
{

dev.off ()
b

redraw <- n
while(redraw > 0)
{
project the data
xx <= t(xp %*% t(X))
dim(xx) <- length(xx)
calculate h
postm <- igh(likl, X=xx)
plotdata<-ighRule(m, mean(xx), sqrt(var(zx)))
plotdata$y<-dest(plotdata$x,postm$mu,xx)
plot(plotdata, type = "n", ask = T, bty = "n", xaxs = "e", yaxs = "e")
lines(spline(plotdata))
redraw <- redraw - 1
rotate the axes
if (redraw > 0) xp <- t(rot %*% t(xp))
}
pos <- locator(1)
list(xp = xp, x = plotdata$x, y = plotdata$y)
}
"rmtourl"<-function()

{

202

rm(tourl, tourls, DP1, mouseclick, rmtourl, project)

203

Appendix C

A Bayes4 implementation of
Bayesian Kernel Density

Estimation

In order to implement the Bayesian Kernel Density Estimation (BKDE) tech-
nique the results from chapter 6 equations (6.7) and (6.9) are needed. These
are obtained using the Bayes4 system developed by Naylor and Smith (1982),
(see also Naylor, 1982; Naylor and Shaw, 1983). The Bayes4 system has been
ported to C++ from the original Fortran 77 version. Versions of the BKDE
are given both for the original Fortran libraries and for the newer C++ ver-
sions. The older version allows better comparison with the Bayes4 manual

(Naylor and Shaw, 1983).

These programs implement 1D kernel density estimation (KDE) and are the
basis for the much simpler version used in S-Plus to integrate with the Grand

Tour.

The documentation within the code should be sufficient to enable implemen-

tation given the Bayes4 system.

204

C.1 Fortran 77 libraries

These require a single, user written ¢ program that is then compiled and
linked with the Bayes4 header file and library. This code follows a set pattern
and is simply modified from the sample code supplied with the Bayes4 system.

C.1.1 Fixed bandwidth KDE

This version implements a simple fixed bandwidth KDE, giving densities for
both the mean and standard deviation of the final value of nh. In addition
it gives a predictive density for the data on a series of points chosen to span

the effective range of the density but with more points towards its ‘centre’.

[FAKAF KKK KK KA KK KA KA KKK KKK KKK KKK KKK KKK KKK KK KKK
/% */
/* Bayes 4 analysis returning an estimate for */
/* h the bandwidth for a KDE given a data sample. */

/* with predictive routines and data standardised */

/* with mu and sd */
/* Tidied up a lot */
/* 16/5/96 D. Kaye */
/% */

/**/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include "bayes.h"

/**/
/% */

/* constants */

205

/* */

/**/

#define ASIZE 5000 /* size for input arrays*/
#define PREDNO 100 /* number of predictive points*/

/* const for 1/root(2 pi) */
const double S2MPI = 0.3989422804 ; /* 1 / root(2pi)*/

/**/

/* */
/* functions x/
/% */

/**/

/* Bayes4 - set up file pointers */

extern FILE *getfilep_(int *);

/* Normal pdf */

double K(double, double, double);

/* kde */

double kernel(float, float [], int, double);

/**/

/* x/
/* global variables */
/* x/

/**/

char titlel76]; /* array for titlex/ float
x [ASIZE], /* input array */
xt [ASIZE], /* transformed input array */
xpred [PREDNQO] ; /* array for predicted values*/
int nx; /* number of input points*/

206

double h,
/* bandwidthx*/

mu = 0.0, /* prior parameters*/
sd = 1.0, /* prior parameters*/
dmu = 0.0, /* data parametersx/
dsd = 0.0, /* data parametersx*/
dmin = 0.0, /* data parameters*/
dmax = 0.0, /* data parameters*/
drange = 0.0; /* data parametersx*/
FILE *sout, *pin; /* io channels for ip and logx/

/**/

/% */
/* standard Bayes4 main x/
/* */

/**/

main()

{
f_init(Q;
bayld_Q);
bayes_();
bayend_() ;
f_exit();

}

/**/

/* */
/* set up file handles - standard Bayes4 */
/% */

/**/

void bfgpio_c(FILE **ppin, FILE *xpsout)
{

207

int kpin, ksout;
bfgpio_(&kpin, &ksout);
xpsout = getfilep_(&ksout);
*xppin = getfilep_(&kpin);

/**/

/* */
/* required by Bayes4 */
/* set up the problem */
/* */

/**/

void probld_(char *vname, int *npar, int lname)
{
int i = 0;

double x2sum = 0.0, xsum = 0.0, u;

/* set up file pointers */

bfgpio_c(&pin, &sout);

/* initialise range variables */
fscanf (pin,"%f ", &x[0]);

dmin = x[0];
dmax = x[0];
dmu = x[0];

/* input data and find range etc */

for (nx=1; fscanf(pin,"%f ", &x[nx])==1; nx++)
{
if (x[nx] < dmin)
dmin = x[nx];

if (x[nx] > dmax)

dmax = x[nx];

208

u = x[nx] - dmu;
Xsum += u;
x2sum += u * u;
}
dmu += xsum / nx;

dsd = sqrt(1.0 / (nx - 1) * (x2sum - xsum * xsum / nx));

/* output count and mean etc */

printf(" %d items read: (%7.2f) ... (%7.2f)\n",
nx, x[0],
x[nx-11);

printf("sample mean (%7.4f), sample sd (%7.4f)\n", dmu, dsd);

/*normalise */
for(i = 0; i < nx; i++)
{
xt[i] = (x[i] - dmu) / dsd;
}

drange = dmax - dmin;
printf("\n");
*npar = 1;

(void) strncpy(&vname[0],"h-width",lname);

/**/

/* */
/* required by Bayes4 */
/* inverse transforms */
/* */
/* in this case h must be positive so we work */
/* with log(h) */
/* */

209

/**/

void btftrn_(float *theta, int *npar, float *rcon)

{
h = exp(thetal0]);

*rcon = 1;

/**/

/* */
/* normal density at point xx, N(u,s) */
/% */
/* */
/* the kernel */
/* */

/**/

double K(double xx, double u, double s)
{

double z = (xx - u) / s;
return S2MPI / s * exp(-0.5 * z * z);

/**/

/* */
/* KDE */
/* at point xi, using set of n points X and */
/* normal kernel N(X[i],hh) */
/* */

/**/

double kernel(float xi, float X[], int n, double hh)
{

int i = 0;

210

double sum = 0.0;

for(i = 0; i < n; i++)

{

sum += K(xi, X[i], hh);
}
sum /= n;

return sum;

/**/

/%
/%

prior, required by Bayes4
input parameter vector and number

return prior for theta, default =1

the normal prior allows expressing belief in
the smoothness of the density, mu is

smoothness sd is strength of belief

*/
*/

/**/

float prior_(float *theta, int *npar)

{

return K(theta[0], mu, sd);

/*return 1;*/

/**/

log likelihood of data
uses answer to rturn log likelihood of data

given theta and number of parameters

211

/**/

void loglik_(float *theta, int *npar, float *answer, int *ok)

{

int i, j;
double sum = 0.0;
double 1lik = 0.0;

for (i = 1; i < nx; i++)

{

1lik = 1lik + log(kernel(xt[i], xt, i, h));
}

*answer = lik;

/**/

/* all the following are optional for predictive x/

/* or special function analysis The default */
/* versions of these functions are useful, so */
/* leave as here only uncomment the next line */
/* to define some specific predictive analysis */
/* */

/ okok sk sk sk sk ok ok ok ok sk sk sk sk ok ok ok sk ok sk sk sk ok ok sk sk sk ook ok sk sk ok ok sk sk sk ok ok ok sk ok ok k ok /
#define PREDICTIVE_FUNCTIONS
#ifdef PREDICTIVE_FUNCTIONS

/**/

/% */
/* required for Bayes4 special functions */
/* output routine */
/* */

/**/

212

double bxval_c(int j)

{

extern float bxval_();
float x;

int tmp = j+1;

x = bxval_(&tmp);

return(x);

/**/

/%
/* required for Bayes4 special functions

/* initialise special function system

/%

/**/

void bxinit_(int *nofun)

{

/* step for the alternative to bcher */
double step = drange / (PREDNO - 1);

int i = 0;

*nofun = PREDNO;

/* set up the xpred values */
xpred[0] = dmin;

for(i = 1; i < PREDNQO; i++)

{

xpred[i] = xpred[i-1] + step;

/**/

/%

213

*/

/* required for Bayes4 special functions */
/* compute gi */
/% */

/**/

void bxfun_(float *theta, int *npar, float *funs, int *nofun)

{

int 1i;

h *= dsd;

for (i = 0; i < PREDNO; i++)
{

funs[i] = kernel(xpred[i], x, nx, h);

3

/**/

/* */
/* required for Bayes4 special functions */
/* output routine */
/% */

/**/

void bxout_(int *pnfun)
{
int i;
float density[PREDNO];
float max = 0;
int temp = PREDNO;

char title[] = "predx";
for(i = 0; i < PREDNQO; i++)

{

214

density[i] = bxval_c(i);

if (density[i] > max) max = densityl[i];
}
fprintf (stdout, "Predictive distribution for X\n");
bodenl_(xpred, density, &temp, &max, title, 8);

#endif

C.1.2 Variable bandwidth KDE

This version implements a variable bandwidth KDE in which bandwidth
depends on an inverse relationship with a simple fixed bandwidth KDE. It
gives a predictive density for the data on a series of points chosen to span

the effective range of the density but with more points towards its ‘centre’.

[FAFA A A A A A A KA KA KA KA KK KKK KA KA KA A A KA KA KKK KK
/* */
/* Bayes 4 analysis returning an estimate for */
/* h the bandwidth for a KDE given a data sample. */
/* with predictive routines and data standardised */
/* with mu and sd using variable kernel */

/* \propto 1/sqrt(\hat f) as a second parameter */

/* \hat f used in a simple non adaptive kernel */
/* Tidied up a lot */
/* 15/5/96 D. Kaye */
/* */

/**/

#include <stdio.h>
#include <math.h>
#include <string.h>

215

#include "bayes.h" /* local version!

/**/

/% x/

/* constants x/

/* x/

/s koksksksk ok ok skok sk ok sk sk sk ok sk ok sk ok sk sksk sk ok skok sk ok sk sk sk ok skok sk ok sk sk sk ok sk ok /

#define ASIZE 5000 /* size for input arrays
#define PREDNO 50 /* number of predictive points

/**/

/% */
/* functions x/
/* */

/**/

/* Bayes4 - set up file pointers */

extern FILE *getfilep_(int *);

/* Normal pdf */

double K(double, double, double);

/* kde */

double kernel(float, float [], int, double);

/**/

/* x/
/* global variables */
/* x/

/**/

char titlel76]; /* array for titlex/

float x[ASIZE], /* input arrayx/
xt [ASIZE], /* transformed input array
xpred [PREDNQO] , /* array for predicted values
ht, /* fixed h

216

*/
*/
*/

hv; /* variable h
int nx; /* number of input points*/
double mu = 0.0, /* prior meanx*/

sd = 1.0, /* prior sd

1h = 0.0, /* prior for hf

1sd = 1.0, /* prior for hf

dmu = 0.0, /* data mean

dsd = 0.0, /* data parameters

dmin = 0.0, /* data minimum

dmax = 0.0, /* data maximum

drange = 0.0; /* data range
FILE *sout, *pin; /* io channels for filesx*/

/* const for 1/root(2 pi) */
const double S2MPI = 0.3989422804 ;

/**/

/* */
/* standard Bayes4 main */
/* */

/**/

main()

{
f_init();
bayld_QO);
bayes_Q);
bayend_();
f_exit();

}

/**/
/% */
/* set up file handles - standard Bayes4 */

217

/* */

/**/

void bfgpio_c(FILE **ppin, FILE *x*psout)
{

int kpin, ksout;

bfgpio_(&kpin, &ksout);

xpsout = getfilep_(&ksout);

*ppin = getfilep_(&kpin);

/**/

/* */
/* required by Bayes4 */
/* set up the problem */
/% */

/**/

void probld_(char *vname, int *npar, int lname)
{
int i = 0;

double x2sum = 0.0, xsum = 0.0, u;

/* set up file pointers */

bfgpio_c(&pin, &sout);

/*printf ("\ninput - mean sd mean sd\n");
scanf ("%f %f %f %", &mu, &sd, &lh, &lsd);*/

/* initialise range variables */
fscanf (pin,"%f ", &x[0]);

dmin = x[0];
dmax = x[0];
dmu = x[0];

218

/* input data and find range etc */
for (nx=1; fscanf(pin,"%f ", &x[nx])==1; nx++)
{
if (x[nx] < dmin)
dmin = x[nx];
else if(x[nx] > dmax)
dmax = x[nx];
u = x[nx] - dmu;
Xsum += u;
x2sum += u * u;
}
dmu += xsum / nx;

dsd = sqrt(1.0 / (nx - 1) * (x2sum - xsum * xsum / nx));

/* output count and mean etc */

printf(" %d items read: (%7.2f) ... (47.2f)\n",
nx, x[0],
x[nx-11);

printf("sample mean (%7.4f), sample sd (%7.4f)\n", dmu, dsd);

/* normalise */
for(i = 0; i < nx; i++)
{
xt[i] = (x[i] - dmu) / dsd;
}

drange = dmax - dmin;
printf("\n");
*npar = 2;

(void) strncpy(&vname[0],"h-var",lname);

(void) strncpy(&vname[8],"h-fix",lname);

219

/**/

/* */
/* required by Bayes4 */
/* inverse transforms */
/* */
/* in this case h must be positive so we work */
/* with log(h) */
/* */

/**/

void btftrn_(float *theta, int *npar, float *rcon)

{

hv = exp(thetal0]);
hf = exp(thetall]);
*rcon = 1;

/**/

/% */
/* normal */
/* density at point xx, N(u,s) */
/* */

/**/

double K(double xx, double u, double s)
{

double z = (xx - u) / s;

return S2MPI / s * exp(-0.5 * z * z);

/**/
/% */
/* KDE */

220

/* at point xi, using set of n points X and */
/* normal kernel N(X[i],hh) */
/% */

/**/

double kernel(float xi, float X[], int n, double hh)
{

int i = 0;
double sum = 0.0;

for(i = 0; i < n; i++)

{

sum += K(xi, X[i], hh);
}
sum /= n;

return sum;

/**/

/* */
/* prior, required by Bayes4 */
/* input parameter vector and number */
/* return prior for theta, default = 1 */
/* */
/* the normal prior allows expressing belief in */
/* the smoothness of the density, mu is */
/* smoothness sd is strength of belief */
/* */

/**/

float prior_(float *theta, int *npar)

{
return K(thetal[0] ,mu,sd)*K(theta[1],1lh,1sd);

/*return 1;*/

221

/**/

/% */
/* log likelihood of data */
/* uses answer to rturn log likelihood of data */
/* given theta and number of parameters */
/* */

/**/

void loglik_(float *theta, int *npar, float *answer, int *ok)
{

int i;

double 1lik = 0.0;

for (i = 2; i < nx; i++)
{
1lik += log(kernel(xt[i], xt, i,
hv/sqrt(kernel(xt[i], xt, i, hf))));
}

*answer = lik;

/**/
/**/
/% */

/* all the following are optional for predictive x/

/* or special function analysis The default */
/* versions of these functions are useful, so */
/* leave as here only un-comment the next line */
/* to define some specific predictive analysis */
/* */

/**/

#define PREDICTIVE_FUNCTIONS

222

#ifdef PREDICTIVE_FUNCTIONS

/**/

/% */
/* required for Bayes4 special functions */
/* output routine */
/% */

/**/

double bxval_c(int j)

{
extern float bxval_();
float x;
int tmp = j+1;
x = bxval_(&tmp);
return(x);

}

/**/

/* */
/* required for Bayes4 special functions */
/* initialise special function system */
/* */

/**/

void bxinit_(int *nofun)

{
/* step for the alternative to bcher */

double step = drange / (PREDNO - 1);
int i = 0;
*nofun = PREDNO;

/* set up the xpred values */

223

xpred[0] = dmin;
for(i = 1; i < PREDNO; i++)
{
xpred[i] = xpred[i-1] + step;

/**/

/* */
/* required for Bayes4 special functions */
/* compute gi */
/% */

/**/

void bxfun_(float *theta, int #*npar, float *funs, int *nofun)

{

int i;
hv *= dsd;
hf *= dsd;

for (i = 0; i < PREDNO; i++)
{

funs[i] = kernel(xpred[i], x, nx,
hv/sqrt (kernel (xpred[i], x, nx, hf)));

/**/

/% */
/* required for Bayes4 special functions */
/* output routine */
/* */

/**/

224

void bxout_(int *pnfun)

{
int i;
float density[PREDNO];
float max = O;
int temp = PREDNO;
char title[] = "predx";
for(i = 0; 1 < PREDNO; i++)
{
density[i] = bxval_c(i);
if (density[i] > max) max = density[i];
}
fprintf (stdout,"Predictive distribution for X\n");
bodenl_(xpred, density, &temp, &max, title, 8);
}
#endif

C.2 C++ libraries

The C++ libraries were converted from the original Fortran 77 using a me-
chanical translator. The requirement is for a header file (for example bkde.h)
containing class definitions specific to the problem and an accompanying c++
file (for example bkde.cc) containing the function definitions for the class as

well as the main function for the program.

225

C.2.1 Fixed bandwidth KDE

This version implements a simple fixed bandwidth KDE, giving densities for
both the mean and standard deviation of the final value of nh. In addition
it gives a predictive density for the data on a series of points chosen to span

the effective range of the density but with more points towards its ‘centre’.

First bkde.h

// bkde.h
// Define class for bkde problem

#ifndef BKDE
#tdefine BKDE
#include <math.h>

const int ASIZE = 5000;

const int PredPoints = 19;

const int nPred = 1;

const double SNCON = M_2_SQRTPI/(2*M_SQRT2);
const double S2MPI = M_2_SQRTPI/(2*M_SQRT2);
// 1/sqrt(2pi) = 2/sqrt(pi) / (2*sqrt(2))

class bkde : public Bayes4
{
int nx;
double x[ASIZE];
double xt[ASIZE];
double xpred[ASIZE];
double h;
double mu;
double sd;
double dmu;
double dsd;

226

double dmin;
double dmax;

double drange;

//
// normal at (xx)
//
// the kernel
//
double K(double xx, double u, double s)
{
double z = (xx - u) / s;
return S2MPI/s * exp(-0.5 * z * z);
}
// KDE

double kernel(double xi, double X[], int n, double hh);
// special function analysis stuff
double pm;
double psd;
public:
bkde () :mu(0), sd(1) {};
void load(char*, int&);
double log_likelihood();
double prior(Q);
double ftran(float*);
// special function analysis stuff
void spec_start(int&);
void spec_fun(float*);
void spec_out();
I
#endif

227

Followed by bkde.cc

#include "/home/danny/bayes4/b4/include/Bayes4.h"
#include "bkde.h"

#include <stdio.h>

#include <math.h>

#include <string.h>

int main()

{

bkde regcoef;
doBayes (®coef) ;
return O;

}
#include <stdio.h>

void bkde::load(char* pnames, int& npar)
{
char title[80];
int i=0;
double x2sum=0.0, xsum=0.0, u;
// set up title
fgets(title, 80, pin);
fprintf (sout,"%s\n",title);
printf ("%s\n",title);
// initialise range variables
fscanf (pin,"%1f", &x[0]);

dmin = x[0];

dmax = x[0];

dmu = x[0];

// input data and find stats

for (nx=1; fscanf(pin,"%1lf", &x[nx])==1 ; nx++)

228

{

if (x[nx] < dmin) dmin = x[nx];
if (x[nx] > dmax) dmax = x[nx];
u = x[nx] - dmu;

Xsum += u;

x2sum += u * u;
}
dmu += xsum / nx;
dsd = sqrt(1.0 / (nx - 1) * (x2sum - xsum * xsum / nx));
printf(" %d items read: %1f ... %1f\n", nx, x[0], x[nx-1]);
printf (" sample mean = %7.4f, sample standard deviation = %7.4f \n", dmu,
dsd) ;
// normalise

for(i = 0; i < nx; i++) xt[i]

(x[i] - dmu) / dsd;
drange = dmax - dmin;
printf(" drange = %7.4f, dmin

dmax) ;

%7.4f, dmax = %7.4f\n\n", drange, dmin,

npar = 1;

Load_Name ("h-width",0, pnames);

//
// inverse transforms

//
// h must be positive so work with log h

//

double bkde::ftran(float* theta)
{

h = exp(thetal0]);

//printf ("\ntheta = J7.4f\n",h);
return 1;

3

//

229

// KDE
//

// at point xi, using set of points X and
// Normal Kernel

//

double bkde::kernel(double xi, double X[], int n, double hh)
{

int i = 0;

double sum = 0.0;

for(i = 0; i < n; i++) sum += K(xi, X[i], hh);
sum /= n;
return sum,;

3

//
// Prior

//

// Normal prior

//
double bkde::prior()

{
//double n = K(h, mu, sd);
return 1;

}

//
// Log likelihood of data

//
double bkde::log_likelihood()

{

//printf ("\n\nxxx\n\n") ;
int i;

double 1lik = 0.0;

230

for(i = 1; i < nx; i++) lik += log(kernel(xt[i], xt, i, h));
return 1lik;

}

// Now for Member Functions for predictive analysis

void bkde::spec_start(int& number_funs)
{
double step = drange / (PredPoints - 1);

int 1 = 0;

number_funs nPred * PredPoints;

xpred[0] = dmin;
for (int i = 1; i < PredPoints; i++) xpred[i] = xpred[i - 1] + step;

by

void bkde::spec_fun(float* funvals)
{
int 1 = 0;

for (int i = 0; i < PredPoints; i++)

*funvals++

¥

kernel (xpred[i], x, nx, h);

void bkde: :spec_out()

{

int 1 = 0;

double density[PredPoints];
double max = 0.0;

int temp = PredPoints;

char title[] = "predx";

fprintf (sout, "Predictive Distribution for X\n");

231

for (i = 0; i < PredPoints; i++)

{

density[i] = SpecValue(i);

if (max < density[i]) max = density[i];

}

Output_Density(xpred, density, PredPoints, "Length");
}

It is apparent that even with the inconvenience of two files the C++ version

is both shorter and easier to use.

C.2.2 Variable bandwidth KDE

This version implements a variable bandwidth KDE in which bandwidth
depends on an inverse relationship with a simple fixed bandwidth KDE. It
gives a predictive density for the data on a series of points chosen to span

the effective range of the density but with more points towards its ‘centre’.

First vbkde.h

// bkde.h
// Define class for bkde problem

#ifndef BKDE
#define BKDE

#include <math.h>

const int ASIZE = 5000;

232

const int PredPoints = 19;

const int nPred = 1;

const double SNCON = M_2_SQRTPI/(2*M_SQRT2);
const double S2MPI = M_2_SQRTPI/(2*M_SQRT2);
// 1/sqrt(2pi) = 2/sqrt(pi) / (2*sqrt(2))

class bkde : public Bayes4
{

int nx;

double x[ASIZE];

double xt[ASIZE];

double xpred[ASIZE];

double h;

double mu;

double sd;

double dmu;

double dsd;

double dmin;

double dmax;

double drange;

//

// normal at (xx)

//

// the kernel

//

double K(double xx, double u, double s)

double z = (xx - u) / s;
return S2MPI / s * exp(-0.5 * z * z);
}
// KDE
double kernel(double xi, double X[], int n, double hh);
// special function analysis stuff

double pm;

233

double psd;

public:
bkde () :mu(0), sd(1) {};
void load(char*, int&);
double log_likelihood();
double prior();
double ftran(floatx*);

// special function analysis stuff
void spec_start(int&);
void spec_fun(float*);
void spec_out();

};

#endif

Finally vbkde.cc

#include "/home/danny/bayes4/b4/include/Bayes4.h"
#include "bkde.h"

#include <stdio.h>

#include <math.h>

#include <string.h>

int main()

{
bkde regcoef;
doBayes (®coef) ;

return O;
+

#include <stdio.h>

void bkde::load(char* pnames, int& npar)

234

{

char title[80];

int i=0;

double x2sum=0.0, xsum=0.0, u;

// set up title

fgets(title, 80, pin);
fprintf (sout,"%s\n",title);
printf ("%s\n",title);
// initialise range variables
fscanf (pin,"%1f", &x[0]);

dmin = x[0];

dmax = x[0];

dmu = x[0];

// input data and find stats

for (nx=1; fscanf(pin,"%1lf", &x[nx])==1 ; nx++)
{

if(x[nx] < dmin) dmin = x[nx];

if (x[nx] > dmax) dmax = x[nx];

u = x[nx] - dmu;
xsum += u;
x2sum += u * u;
}
dmu += xsum / nx;
dsd = sqrt(1.0 / (nx - 1) * (x2sum - xsum * xsum / nx / nx));
printf(" %d items read: %1f ... %1f\n", nx, x[0], x[nx-1]);
printf(" sample mean = %7.4f, sample standard deviation = %7.4f \n", dmu,
dsd) ;
// normalise

for(i = 0; i1 < nx; i++) xtl[i]

(x[i] - dmu) / dsd;
drange = dmax - dmin;
printf (" drange = %7.4f, dmin

dmax) ;

%7.4f, dmax = %7.4f\n\n", drange, dmin,

npar = 1;
Load_Name ("h-width",0, pnames);

235

//

// inverse transforms

//

// h must be positive so work with log h
//

double bkde::ftran(float* theta)
{

h = exp(thetal0]);

return h;

}

//

// KDE

//

// at point xi, using set of points X and

// Normal Kernel

//

double bkde: :kernel(double xi, double X[], int n, double hh)
{

int 1 = 0;

double sum = 0.0;

for(i = 0; 1 < n; i++) sum += K(xi, X[i], hh);
sum /= n;
return sum;

3

//
// Prior
//

// Normal prior

//

236

double bkde: :prior()

{

double n = K(h, mu, sd);
return 1;

}

//

// Log likelihood of data
//

double bkde::log_likelihood()
{

//printf ("\n\nxxx\n\n") ;
int 1, j;

double sum = 0.0;

double 1lik = 0.0;

for(i = 1; i < nx; i++) 1lik += log(kernel(xt[i], xt, i, h));
return 1lik;

}
// Now for Member Functions for predictive analysis
void bkde::spec_start(int& number_funs)

{
double step = drange / (PredPoints - 1);

int 1 = 0;

number_funs nPred * PredPoints;

xpred[0] = dmin;
for (int i = 1; i < PredPoints; i++) xpred[i] = xpred[i - 1] + step;

3

void bkde::spec_fun(float* funvals)

237

{
int 1 = 0;

for (int i = 0; i < PredPoints; i++)

funvals[i]

3

kernel (xpred[i], x, nx, h);

void bkde: :spec_out()

{

int 1 = 0;

double density[PredPoints];
double max = 0.0;

int temp = PredPoints;

char title[] = "predx";

fprintf (sout, "Predictive Distribution for X\n");

for (i = 0; i < PredPoints; i++)

{

density[i] = SpecValue(i);

if (max < density[i]) max = densityl[i];

}

Output_Density(xpred, density, PredPoints, "Length");
}

238

C.3 Building the system

A sample makefile is given here, it is able to check on the state of the Bayes4

system and rebuild if necessary.

bkde
PROG = bkde
BOME = ../..

default_target: $(PROG)

include $(BOME)/common.makefile

0BJ = bkde.o

$(PROG) : $(0BJ) $(LIB)
g++ -o $@ $(0BJ) $(LIBS)

$(0BJ): bkde.h Normal2.h $(INCFILES)

clean:
-$(RM) $(PROG) *.o0

clean_all:
$ (MAKE) -C$(BOME) clean

239

Appendix D

Benchden KDE test densities

Alain Berlinet and Luc Devroye Berlinet and Devroye (1994) published a
set of 28 test densities for density estimation, in the following each of the
densities is shown in six views:

1. A histogram.

2. An estimated density for a sample of 10000 points using the inbuilt R

function density().
3. An estimated density for a sample of 1000 points using BKDE.
4. An estimated density for a sample of 1000 points using adaptive BKDE.
5. An estimated density for a sample of 100 points using BKDE.
6. An estimated density for a sample of 100 points using adaptive BKDE.

The densities were chosen to be a test of an estimators ability to deal with

difficult densities and the overriding message from the paper (Berlinet and

240

Devroye, 1994) is that there is no density estimator that handles all estima-

tion problems well.

In the examples here a histogram and the estimator built in to R are given to
provide comparisons to the four BKDE outputs. In some of the densities, for
example the inverse exponential density, dnum=20, the values are so widely
spaced that it is not possible to estimate the density without an extremely
large number of samples. In these cases a limited range has been used to

allow the estimation of the “interesting” portion of the density.

For each diagram the value of dberdev(seq(-3,3,0.01) ,dnum=1)! is over-

laid on the estimate.

In Berlinet and Devroye Berlinet and Devroye (1994) each density estimator
is tested by averaging the results of 20 tests each using a sample of n = 100.
Here the estimators were tested against a single sample with n = 1000 for
the Histogram, another with n = 1000 for the R estimator and two samples
with n = 100 and n = 1000 for the two BKDE estimators. No particular
selection was made and each sample was as generated, this can lead to some
difference from the reference density as in the n = 100 samples used with the

BKDE estimators (e.g. D.5).

'Where the value of dnum varies from 1 to 28 giving the appropriate line for each

density.

241

D.1 Uniform Density

20

00 05 10 15

2.0

2.0

uniform uniform
o
N
|"|||I | s
r T T T T 1 < T T T T T T T T
0.0 0.2 04 0.6 0.8 1.0 -0.2 0.0 0.2 0.4 0.6 08 1.0 12
rberdev(1000, dnum = 1) N=1000 Bandwidth = 0.06484
uniform uniform
o
N
o
T T T T T T ° T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
uniform uniform
o
N
o
T T T T T T ° T T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Bayes KDE, n=100

Figure D.1:

Variable Bayes KDE, n=100

Uniform density.

242

D.2 Exponential Density

exponential exponential
° o
< S
@ 0
S 2
«@ ©
S B
< i
S =
o ~
S o 7
=] . o 4
° r T T T 1 < T T T T T T
0 2 4 6 8 0 2 4 6 8 10
rberdev(1000, dnum = 2) N=1000 Bandwidth = 0.1917
exponential exponential
o o 4
<]
o @
S] 2
© ©
s S
= | =
S S
N ~
o 7 o 7
o | o
° T T T T ° T T T T
0 2 4 6 0 2 4 6
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
exponential exponential
o o
<]
@ @
S] ©
© ©
S S
= | = |
S S
o &
o 7 o 7
o | o |
° T T T T T T T ° T T T T T T T
0.0 05 10 15 20 25 30 0.0 05 10 15 20 25 3.0
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.2: Exponential density.

243

D.3 Maxwell Density

Maxwell Maxwell
@
©
©
e
= |
S
o
o 4
o 4 —
° T T T
0 1 2 3 0 1 2)
rberdev(1000, dnum = 3) N=1000 Bandwidth = 0.1472
Maxwell Maxwell
o @
c 7 S 7
© ©
o 7 o 7
= | = |
S S
o o
s S
o | o
° T T T T ° T T T
0 1 2 3 0 1 2
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
Maxwell Maxwell
o @
S 7 S 7
© ©
o 7 o 7
< | = |
S S
o o
s S
o | ° 4
° T T T T T T ° T T T T T T
05 1.0 15 2.0 25 3.0 05 1.0 15 20 25 30
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.3: Mazwell density.

244

D.4

Double Exponential Density

double exponential double exponential
0
3 i °
b4 <
S |' N S
«) o
S S
o~ " { S
° il N =]
- il - | -
: il ll :
° - = J...-in‘.ﬂﬁ"” [| I“"Illllum. : o | _
° r T T T T T 1 ° T T T T T T
-6 -4 -2 0 2 4 6 -8 -6 -4 -2 0 2
rberdev(1000, dnum = 4) N=1000 Bandwidth = 0.2404
double exponential double exponential
0 0
o 7 o 7
< <
S] g
o @
S S
o o
S S
- -
o 7 o 7
o | ° 4
° T T T T T T T ° T T T T
-6 -4 -2 0 2 4 6 -6 -4 -2 0
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
double exponential double exponential
0 0
o 7 o 7
< <
S] =4
o @
s S
~ ~
S IS
- -
o 7 o 7
o | ° 4
° T T T T T ° T T T T
-4 -2 0 2 4 -4 -2 0 2
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.4: Double Exponential density.

245

D.5 Logistic Density

logistic logistic
° 4
8
c 8
S
o 4
N o
s] 4
S
- 4
o
S 2
s °
8 8
=1 o T T
-5 0
tberdev(1000, dnum = 5) N'=1000 Bandwidth = 0.3781
logistic logistic
3 =
8 8
S S
o °
] 4] 4
s S
S o
S 4 S
s s
s °
8 8
© T T T T T T T © T T T T T
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
logistic logistic
3 =
8 8
S S
o °
] 4] 4
s s
S o
S 4 S
s S
s °
8 8
© T T T T T T © T T T T
-6 -4 -2 0 2 4 -6 -4 -2 0
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.5: Logistic density.

246

D.6 Cauchy Density

0.00 0.02 0.04 0.06 0.08

02 03 04

00 01

02 03 04

00 01

Cauchy Cauchy
°
B
@
S
©
S
i
S
~
° //\\\
o
r T T T 1 < T T T T T
-40 -20 0 20 40 -6 -4 -2 0 2
rberdev(1000, dnum = 6) N=1000 Bandwidth = 0.3235
Cauchy Cauchy
<
S
©
5
o
IS
-
=
o
T T T T T ° T T T T T
-6 -4 -2 0 2 -6 -4 -2 0 2
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
Cauchy Cauchy
<
S
©
15
o
IS
-
=
o
T T T T T ° T T T T T
-6 -4 -2 0 2 -6 -4 -2 0 2

Bayes KDE, n=100

Variable Bayes KDE, n=100

Figure D.6: Cauchy density.

247

D.7 Extreme Value Density

extreme value extreme value
<
2
©
pa
N
o
-
2
o
° T T T T
-2 0 2 4
tberdev(1000, dnum = 7) N'=1000 Bandwidth = 0.2589
extreme value extreme value
< <
S] =4
o ©
o 7 o 7
N o
S S
- -
S S
o | o
° T T T T T T ° T T T T
-2 0 2 4 6 8 -2 0 2 4
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
extreme value extreme value
< <
S] g
o «
o 7 o 7
N N
S S
- -
S S
o | o |
° T T T T T T ° T T T T
-1 0 1 2 3 4 -1 0 1 2
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.7: Extreme Value density.

248

D.8 Infinite Peak Density

infinite peak infinite peak
@
©
<
~
°
T 1 T T T T T T T T
08 1.0 -0.2 0.0 0.2 0.4 0.6 08 1.0 12
rberdev(1000, dnum = 8) N=1000 Bandwidth = 0.06708
infinite peak infinite peak
o @
o ©
<+ <
o~ ~
o A= o ~\
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 06 08 1.0
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
infinite peak infinite peak
o @
o ©
<+ <
o~ ~
o \ ° \|
T T T T T T T T T T T T
0.0 0.2 0.4 06 08 1.0 0.0 0.2 0.4 0.6 08 1.0

Bayes KDE, n=100

Variable Bayes KDE, n=100

Figure D.8: Infinite Peak density.

249

O
©

Pareto Density.

Pareto Pareto
0 0
S S
< <
= p
o o
o s 7
o o
o S 7
- -
S S
) o | P
< r T T T T 1 < T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
RS_rberdev(n = 1000, min = -5, max = 150, dnum = 9) N=1000 Bandwidth =1.238
Pareto Pareto
< <
S 7 =
m o
S S
o o
c 7 c 7
- -
c 7 o 7
o | o |
° T T T T T T e T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
Pareto Pareto
< <
S 7 =
m o
S S
o o
o 7 c 7
o -
c 7 o 7
o | o |
° T T T T T T e T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.9: Pareto density.

250

D.10

symmetric Pareto

Symmetric Pareto

Density

symmetric Pareto

0 0
S °
< <
S S
o @
S 5
o o
S 5
- -
s o
° o N _ -
° r T T T 1 < T T T T T
-40 -20 0 20 40 -40 -20 0 20 40
RS_rberdev(n = 1000, min = ~50, max = 50, dnum = 10) N=1000 Bandwidth = 0.7223
symmetric Pareto symmetric Pareto
0 0
o 7 =}
< <
s S
o @
S 5
o o
S 5
- -
o 7 =}
o | o
° T T T T T ° T T T T T
-40 -20 0 20 40 -40 -20 0 20 40
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
symmetric Pareto symmetric Pareto
0 0
o 7 =}
< <
s S
o @
s 5
o o
S IS
- -
o 7 =}
o | o
° T T T T T ° T T T T T
-40 -20 0 20 40 -40 -20 0 20 40

Bayes KDE, n=100

Variable Bayes KDE, n=100

Figure D.10: Symmetric Pareto density.

251

D.11 Normal Density

0.2 0.4 0.6

0.0

0.2 0.4 0.6

0.0

0.2 0.4 0.6

0.0

normal normal
©
2
<
=4
| .
TN S
[t]
[o
r T T T T 1 < T T T T T
-2 -1 0 1 2 3 -3 -2 -1 0 1
rberdev(1000, dnum = 11) N'=1000 Bandwidth = 0.223
normal normal
©
i 2
<
i =4
o
i o
4 ° 4
T T T T T T T ° T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
normal normal
©
i 2
<
i =4
&
i o
- © 4
T T T T T ° T T T
-2 -1 0 1 2 -2 -1 0

Bayes KDE, n=100

Figure D.11

Variable Bayes KDE, n=100

: Normal density.

252

D.12 Lognormal Density

lognormal lognormal
- ,
5 ©
b4 °
= i
m <
5 3
8 i
© o
- ° 7
=) i
° o | _
° r T T T T 1 < T T T T T
0 5 10 15 20 25 0 5 10 15 20
rberdev(1000, dnum = 12) N =1000 Bandwidth = 0.2428
lognormal lognormal
© ©
o 7 o 7
< <
S 3
o o
o 7 o 7
o | o |
° T T T T T T ° T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
lognormal lognormal
© ©
o 7 o 7
< <
S 3
o o
o 7 o 7
o | o |
° T T T T T ° T T T T T T T
0 2 4 6 8 0 1 2 3 4 5 6
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.12: Lognormal density.

253

D.13 Uniform Scale Mixture Density

uniform scale mixture uniform scale mixture
@
S ,
©
2
Il n i
i)
<
= S
S
o o~
g IS
o o
° ° T T T T
-4 -2 0 2
rberdev(1000, dnum = 13) N=1000 Bandwidth = 0.1522
uniform scale mixture uniform scale mixture
© ©
S S
< <
S 3
~ ~
s IS
o | ° 4
° T T T T T ° T T T T
-4 -2 0 2 4 -4 -2 0 2
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
uniform scale mixture uniform scale mixture
© ©
S S
< <
S 3
o &
S S
o | o |
° T T T T T ° T T T T
-4 -2 0 2 4 -4 -2 0 2
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.13: Uniform Scale Mixture density.

254

D.14 Matterhorn Density

Matterhorn Matterhorn
3
8
o 0
8 8
) &
3
0
° b
< g
Ei
o
] 0 4
" 2
° o A
r T T T 1 T T T T T T T
-0.10 -0.05 0.00 0.05 0.10 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
rberdev(1000, dnum = 14) N'=1000 Bandwidth = 0.006286
Matterhorn Matterhorn
2 3
8 8
e 0
g 8
o 9 4
|]
o 0
9 b
o g 4
Ei Ei
w - 0 4
e\
o \4 o
T T T T T T T T T T
-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
Matterhorn Matterhorn
2 3
8 8
e 0
g g
o S 4
|]
o] 0
] b
o g
E| Ei
© M © N
P e — N\ o v
T T T T T T T T T T
-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.14: Matterhorn density.

255

D.15 Logarithmic Peak Density

logarithmic peak logarithmic peak
v
<« 4
o
~ 4
-
° T T T T T T
0.0 0.2 0.4 0.6 08 1.0
rberdev(1000, dnum = 15) N=1000 Bandwidth = 0.0483
logarithmic peak logarithmic peak
0 v
<« <
o ©
«~ ~
- -
© T T T T T © T T T T T
0.0 02 0.4 0.6 08 0.0 0.2 0.4 06 08
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
logarithmic peak logarithmic peak
0 v
<« <
o o
~ ~
- -
© T T T T T © T T T T T
0.0 0.2 0.4 0.6 08 0.0 02 0.4 06 08
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.15: Logarithmic Peak density.

256

D.16 Isosceles Triangle Density

isosceles triangle isosceles triangle

0.8 12
I I

0.4

0.0
I

T T T T
-1.0 -05 0.0 05

rberdev(1000, dnum = 16) N =1000 Bandwidth = 0.0928

isosceles triangle isosceles triangle

1.0

0.8 12
I I
0.8 12
I I

0.4
0.4

0.0
I
0.0
I

T T T T T T T T
-1.0 -05 0.0 05 1.0 -1.0 -05 0.0

Bayes KDE, n=1000 Variable Bayes KDE, n=1000

isosceles triangle isosceles triangle

05

1.0

0.8 12
I I
0.8 12
I I

0.4
0.4

0.0
\
0.0
\

T T
-05 0.0 05 1.0 -0.5 0.0

Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.16: Isosceles Triangle density.

257

05

D.17 Beta (2,2) Density

20

00 05 10 15

00 05 1.0 15 20 25

00 05 1.0 15 20 25

beta (2,2) beta (2,2)
0
N
o
||||| I ;
0
b i ML 1
i N °
H —
0
o

r T T T T 1 < T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 12
rberdev(1000, dnum = 17) N=1000 Bandwidth = 0.05137

beta (2,2) beta (2,2)
0
h o
g °
«
i 0
-
°
1 Ei
0
h =3
i o

T T T T T T ° T T T T T T
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 04 0.6 0.8 10
Bayes KDE, n=1000 Variable Bayes KDE, n=1000

beta (2,2) beta (2,2)
0
h o
g °
«
i 0
-
°
1 Ei
0
h =}
i o

T T T T T ° T T T T T
0.2 0.4 0.6 08 1.0 0.2 04 0.6 0.8 10

Bayes KDE, n=100

Figure D.17:

Beta

258

Variable Bayes KDE, n=100

(2,2) density.

D.18 Chi-square (1) Density

00 05 1.0 15 20 25 00 05 10 15 20 25

00 05 1.0 15 20 25

chi-square (1)

00 05 1.0 15 20 25

chi-square (1)

Bayes KDE, n=100

0 6 8 10 12 0 2 4 6 8 10 12
rberdev(1000, dnum = 18) N'=1000 Bandwidth = 0.2099
chi-square (1) chi-square (1)
0
N
°
N
0
<
°
=
0
o
— S 4—
T T T T T ° T T T T T T T
0 6 8 10 12 0 2 4 6 8 10 12
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
chi-square (1) chi-square (1)
0
N
°
N
0
S
°
=
0
S
— S 4—
T T T T ° T T T T T
0 4 6 8 0 2 4 6 8

Variable Bayes KDE, n=100

Figure D.18: Chi-square (1) density.

259

D.19 Normal Cubed Density

normal cubed normal cubed

~ ~

— -7

@« @

S 5

< <

S o 7

° | o |

° r T T T 1 < T T T

-4 -2 0 2 4 -4 -2 0
rberdev(1000, dnum = 19) N=1000 Bandwidth = 0.09072

normal cubed normal cubed

~ &

- 7 -7

o | o |

S 5

< <

S 7 o 7

o | ° 4

° T T T T T T ° T T T T T T

-15 -10 -5 0 5 10 -15 -10 -5 0 5 10

Bayes KDE, n=1000 Variable Bayes KDE, n=1000
normal cubed normal cubed

~ ~

- 7 -7

o | o |

S 5

< <

S 7 o 7

o _} © 4

° T T T T T ° T T T

-4 -2 0 2 4 -4 -2 0

Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.19: Normal Cubed density.

260

D.20 Inverse Exponential Density

inverse exponential inverse exponential
o o
= =
o @
S @
© ©
S S
= =
S S
o o
=1 o 7
o o 4
° 1 < T T T T T T T T
-1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5 6
RS_rberdev(n = 1000, min = -1, max = 5, dnum = 20) N=1000 Bandwidth =0.274
inverse exponential inverse exponential
o o 4
= =
o @
S 2
© ©
S S
< =
S S
o o
o 7 o 7
o | o |
° T T T T T T T T ° T T T T T T T T
-1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5 6
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
inverse exponential inverse exponential
o o 4
=} =
o @
S @
© ©
S S
< =
S S
o o
o 7 o 7
o | o |
° T T T T T T T T ° T T T T T T T T
-1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5 6
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.20: Inverse Exponential density.

261

S
V)
ok

00 01 02 03 04 05 00 01 02 03 04 05

00 01 02 03 04 05

Marronite Density

Marronite Marronite
0
2 4
<
3
o
2
o
o
-
g
o | /\
r T T T 1 < T T T T
-20 -15 -10 -5 0 -20 -10 0 10
rberdev(1000, dnum = 21) N=1000 Bandwidth =2.174
Marronite Marronite
0
9 4
<
3
o
2
o
o
-
g
° 4
T T T T T ° T T T T T
-20 -15 -10 -5 0 -20 -15 -10 -5 0
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
Marronite Marronite
0
2 4
<
3
o
o
o
8
-
g
o |
T T T T T ° T T T T T
-20 -15 -10 -5 0 -20 -15 -10 -5 0
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.21: Marronite density.

262

D.22 Skewed Bimodal Density

0.2 0.4

0.0

00 01 02 03 04 05

00 01 02 03 04 05

skewed bimodal

skewed bimodal

0
o
=
l || [<
\ ©
iy A = 4
|| I i -I,- |l.1 I
o
o H ' I °
P i
el i -
r T T T T T 1 ° T T T T T
-3 -2 -1 0 1 2 3 -4 -2 0 2 4
terdev(1000, dnum = 22) N'=1000 Bandwidth = 0.2472
skewed bimodal skewed bimodal
0
9
=
S
[
S
o
S
-
24
o |
T T T T T T T ° T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
skewed bimodal skewed bimodal
0
o
=
S
[
S
o
s
-
24
o |
T T T T T ° T T T T T
-2 -1 0 1 2 -2 -1 0 1 2

Bayes KDE, n=100

Variable Bayes KDE, n=100

Figure D.22: Skewed Bimodal density.

263

D.23 Claw Density

claw claw
©
Q4
©
S 4
<
S
<
S 4
o
o s
S
o o
° ° T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
terdev(1000, dnum = 23) N'=1000 Bandwidth = 0.1942
claw claw
© ©
o 7 o 7
< | <
S S
~ ~
c 7 o 7
o | o |
° T T T T T T T ° T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
claw claw
© ©
o 7 o 7
< | < |
S S
~ ~
S 7 o 7
o | o |
° T T T T ° T T T T
-1 0 1 2 -1 0 1 2
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.23: Claw density.

264

D.24 Smooth Comb Density

smooth comb smooth comb
g o
=
< S
S A .
I i' l °
o Nl o
° [
-
”lm' l‘ ']
o |]2 o |
S o T T T T T 1 < T T T
-3 -2 -1 0 1 2 3 -4 -2 0
rberdev(1000, dnum = 24) N=1000 Bandwidth = 0.3711
smooth comb smooth comb
0 0
o 7 3
< <
S] g
o @
S S
o o
S o
- -
o 7 S
o | ° 4
° T T T T T T T ° T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
smooth comb smooth comb
0 0
o 7 3
< <
S] =4
o @
s S
o o
S o
- -
o 7 S
o | o |
° T T T T T T ° T T T T
-2 -1 0 1 2 3 -2 -1 0 1
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.24: Smooth Comb density.

265

D.25 Caliper Density

caliper caliper
o
«
o 4
° T T T T T
-1.0 -0.5 0.0 05 10
tberdev(1000, dnum = 25) N'=1000 Bandwidth = 0.1003
caliper caliper
o o
o | o
° T T T T T ° T T T T T
-1.0 -0.5 0.0 05 10 -1.0 -0.5 0.0 05 10
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
caliper caliper
o o
o o 4
° T T T T T ° T T T T T
-1.0 -0.5 0.0 05 10 -1.0 -0.5 0.0 05 10
Bayes KDE, n=100 Variable Bayes KDE, n=100

Figure D.25: Caliper density.

266

D.26 Trimodal Uniform Density

trimodal uniform trimodal uniform
8 Ch
< =
S S
3 @
S 0 S
o A o
S S
- -
=) g
o o | T T
° r T T T 1 < T T T T T T T
-20 -10 0 10 20 -30 -20 -10 0 10 20 30
rberdev(1000, dnum = 26) N=1000 Bandwidth = 3.22
trimodal uniform trimodal uniform
0 0
o 7 o 7
< <
s 3
o o
S S
o o
S S
- -
o 7 o 7
o | o |
° T T T T T ° T T T T T
-20 -10 0 10 20 -20 -10 0 10 20
Bayes KDE, n=1000 Bayes KDE, n=100
trimodal uniform
0
2 4
<
3
o
o
o
o
-
peg
)
ER

-20 -10 0 10 20

Variable Bayes KDE, n=100

Figure D.26: Trimodal Uniform density.

267

D.27 Sawtooth Density

004 008 012

0.00

0.04 0.08 0.12

0.00

0.04 0.08 0.12

0.00

sawtooth sawtooth
~
S
s
@
8
s
<
g
S
°
8
© T T T T T
-15 -10 -5 0 5 10
terdev(1000, dnum = 27) N=1000 Bandwidth =1.316
sawtooth sawtooth
~
S
s
@
8
S
<
g
s
°
8
T T T T T © T T T T T
-10 -5 0 5 10 -10 -5 0 5 10
Bayes KDE, n=1000 Variable Bayes KDE, n=1000
sawtooth sawtooth
~
S
s
@
8
S
<
g
s
°
8
T T T T T © T T T T T
-10 -5 0 5 10 -10 -5 0 5 10

Bayes KDE, n=100

Figure D.27

Variable Bayes KDE, n=100

: Sawtooth density.

268

D.28 Bilogarithmic Peak Density

1.0 2.0 3.0

0.0

3.0

20

1.0

0.0

3.0

20

1.0

0.0

bilogarithmic peak

bilogarithmic peak

o
@
o
«
o |
i
e o o
MR]
el o
r T T T T 1 < T T T
0.0 0.2 0.4 06 08 1.0 0.0 05 1.0
rberdev(1000, dnum = 28) N=1000 Bandwidth = 0.07419
bilogarithmic peak bilogarithmic peak
o
@
o |
«
e 4
i
o |
T T T T T T ° T T T T T T
0.0 0.2 0.4 06 08 1.0 0.0 0.2 0.4 0.6 08 1.0
Bayes KDE, n=1000 Bayes KDE, n=100
bilogarithmic peak
T T T T T T
0.0 0.2 0.4 0.6 08 1.0

Variable Bayes KDE, n=100

Figure D.28:

Bilogarithmic Peak density.

269

Appendix E

Data

E.1 The Old Faithful Data

437 47 168 1.75 435 1.77
425 41 405 19 4 4.42
1.83 1.83 3.95 483 3.87 1.73
3.92 3.2 233 457 3.58 3.7

425 3.58 3.67 19 413 453
41 412 4 493 3.68 1.85
3.83 1.85 3.8 38 333 3.73
1.67 4.63 1.83 2.03 2.72 4.03
1.73 3.1 462 1.88 3.52 3.77
3.43 2 3.73 4.6 293 4.65
4.18 458 3.5 462 403 197
46 4 3.75 4 433 1.82
1.67 35 42 443 19 4.08

270

3.43
2.27
4.07
4.73
1.8

1.77
2.93
4.5

3.72
4.28

4.5
4.63
2.25
4.5
4.33 4

1.8

4.25
4.4
13

3.7

1.97
4.08
4.58
1.95

2.5
3.93
3.92
3.5

271

E.2 Largest canonical variable for 6 teeth An-
drews (1972, Table 2)

Tooth type 1 2 3 4 5 6
A -5.35 -7.07 -9.37 -428 -2.15 -2.93
B 393 -6.04 -8.87 -2.16 -0.5 -1.09
C 3.12 6.66 6.28 4.96 4.13 4.60
D 1.45 1.73 4.82 3.96 3.35 3.63
E 2.83 510 5.11 2.72 1.21 1.49
F 1.49 1.63 3.61 1.29 -0.171 0.0503
G 038 382 346 -1.65 -232 -1.92
H 0.01 0.231 3.05 -225 -2.65 -2.15

—

-4.52 -6.49 -7.79 3.45 4.91 3.72

[

-1.81 -294 -6.63 -0.369 -1.32 1.09

272

Index

A Comparison of Kernel Density Es- Cube indicator, 125
timates, (Berlinet and Devroye,
Density
1994), 102
Andrews plot, 56

conditional, 14

marginal, 14
Averaged Shifted Histogram, 78
Density estimation

Bayes’ Theorem Polygon methods, 77
discussion, 12 Dimension reduction, 47, 158
stated, 13

Bayesd Epanechnikov Density, 84
C++, 225 Gauss-Hermite Integration, 194
Fortran 77, 205 Grand Tour, 122
KDE, 204 in S-Plus, 174
simple example, 26 Univariate tour in S-Plus, 192
system, 5 Grand Tour

Coit Full, 176

compiler, 7 algorithm, 49

Chernoff faces, 60 conditional density, 122

defined as a Projection Pursuit,
52
in S-Plus, 122

Chernoff faces
R code, 60

Comparison of display methods, 72

Cone plot, 55 Parameters, 176

Proiecti 1
Conjugate prior, 16 rojection matrix, 188

273

Rotation matrix, 185 defined, 14
rotation matrix, 123-124 violated, 14

Simple, 174 i
Manufacturing problem results, 28

Histogram, 75 MCMC

example R code, 24
Kernel density estimation
Metropolis-Hastings
bivariate, 113
Independence Chains, 43
in Bayes4

C++, fixed h, 226
C++, variable h, 232
Fortran 77, fixed h, 205

intro, 40
Random Walk Chains, 43
Resampling, 44

Monte Carlo Markov Chain
defined, 31
Gibbs sampler, 34

Fortran 77, variable h, 215
Kernel Density Estimation

The kernel, 84
algorithm, 37

Kernel density estimation
in S-Plus, 39-40

adaptive, 82
algorithm, 82-83
bandwidth, 82, 86

intro, 30
Random walk, 33

Bayesian Naive estimator
defined, 88 as a KDE, 81
likelihood for, 89, 116 defined, 78

prior for, 90
defined, 80

Old Faithful Data, 270

frequentist, 75 Parallel coordinate representation, 62

in the Grand Tour, 122 Parameter space, 12
Predictive density, 15

Likelihood function, 12 Principal component analysis, 64

Likelihood principle Prior, 12

274

Projection pursuit, 48

R, 5
Rotation matrix, 185-188

S-Plus, 5, 174
S-Plus
contour, 189
interp, 189
MCMC, 24
Scatterplot, 61
Scatterplot matrix, 61
Simple example - done to death., 18
Sphering, 115
Spin plot, 64
Star diagram, 58

Statistical inference, 13
Tooth data, 57, 272

WinBugs, 6

275

