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Chapter 8 

Table 8.1. Conditions used for the ERP Experiment 10.  

Table 8.2. Average peak latencies in ms (± SD) derived from N100 and P200 components of 

interest comprising EOR, POR1 and POR2 at Cz sensor site for Experiment 10. 

 

Chapter 9 

Table 9.1. Trial types for all conditions in the pitch and timbre discrimination tasks for 

Experiment 12.  
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ABSTRACT 

EXAMINING THE EVIDENCE FOR A PITCH CENTRE IN 

HUMAN AUDITORY CORTEX: A MULTI-METHOD APPROACH 

Karima Susi 

Doctor of Philosophy 

NOTTINGHAM TRENT UNIVERSITY 

This PhD used a combination of psychophysical, functional magnetic resonance imaging 

(fMRI) and electroencephalography (EEG) methods to evaluate the evidence for a pitch 

centre within auditory cortex according to the four pitch criteria: 1) pitch selectivity, 2) pitch 

constancy, 3) covariation with pitch salience, and 4) accounting for confounding factors, that 

were described in an article by Hall and Plack (2009). An fMRI study re-examined pitch 

criteria 1, 3 and 4 using stimuli and a subtractive study design informed by Penagos et al. 

(2004), but extended this work by addressing some of their limitations. Results indicated that 

the representation of pitch compared to noise is widely distributed across auditory cortex, 

while the evidence for an effect of pitch salience was questionable given that the weak pitch 

salience condition was not significantly different from matched noise at a group level. These 

findings raise concerns regarding fMRI‟s sensitivity to pitch salience effects in the context of 

high individual variability. An ERP „adaptation‟ study evaluated pitch criteria 1, 2 and 4 using 

pitch and timbre stimulus parameters that had been previously matched for discriminability, 

and sequences either varied in pitch, timbre or both across listeners. Findings from both 

sensor and source-based analyses suggested that pitch responses may be influenced by 

timbre (i.e., non-invariant); although further research is required. Thus, evidence failed to 

support the notion of pitch constancy at the level of the auditory cortex. Further studies 

using psychophysical listening paradigms continued this work, and again seemed to confirm 

a lack of evidence for pitch constancy. Reaction times and accuracy data demonstrated that 

timbre changes (non-target stimulus) interfered with listener‟s ability to discriminate pitch 

(target stimulus), and vice versa. Overall, these convergent results suggest that there is no 

modular representation of pitch (pitch centre), but rather pitch processing sites are 

distributed throughout multiple areas of primary and non-primary auditory cortex and are 

seemingly non-invariant to other stimulus parameters related to its perception (e.g., timbre). 

Under this assumption, the spatio-temporal model of pitch perception may best describe the 

neural mechanism underpinning pitch perception. Several recommendations are made to 

address challenges to interpretation identified throughout this PhD, which are likely to guide 

further research in this area.  
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Chapter 1. Thesis overview 

Pitch is generally defined as “that attribute of auditory sensation in terms of which sounds 

may be ordered on a musical scale” (American Standards Association, 1960), or somewhat 

more broadly, “that attribute of sensation whose variation is associated with musical 

melodies” (Plack, Oxenham, & Fay, 2005, p.1) Why do auditory researchers care so much 

about pitch? Pitch is arguably one of the most important perceptual attributes of any auditory 

stimulus. Pitch plays a fundamental role in the perception of music and speech, which are 

vital for defining, differentiating and communicating in our complex acoustic environment. 

Evaluation of the pitch research to date has shown that despite over 100 years of research 

on the psychophysics of pitch, and several decades of research on the neural basis of pitch, 

we still know relatively little about how we actually perceive pitch. This may be frustrating, 

but is also exciting in that the way it provides opportunities for researchers to make new 

major breakthroughs in the field. Unanswered questions include: 

 What is the neural code which extracts pitch information from the incoming auditory 

signal? 

 How is pitch represented perceptually in the central auditory system? 

 Where in the auditory pathway does a „unified‟ pitch representation first occur? 

 What populations of neurons are involved (and are these modular or distributed)? 

 Are these populations of neurons invariant to other attributes of sound such as timbre 

or spatial location? 

The topic of interest for my PhD considers some of these unanswered questions, particularly 

questions about the nature of those neural populations (modular or distributed) and whether 

they are responsive to other attributes of sound, such as timbre or spatial location. My 

approach to studying the perceptual mechanisms of pitch and the underlying coding 

mechanisms combines both behavioural and neuroimaging methods (i.e., 

electroencephalography, EEG; functional magnetic resonance imaging, fMRI). This „three 

pronged‟ attack enables me to examine questions about neural coding at the same time as 

gaining increased confidence in the interpretation of results; if findings are convergent 

across multiple methods.  

This thesis builds on previous work published by the Nottingham group in collaboration with 

Prof. Plack, University of Manchester (e.g., Barker, Plack, & Hall, 2011; Garcia, Hall, & 

Plack, 2010; Hall & Plack, 2009). Hall and Plack (2009) defined four criteria for establishing 

the existence of a „pitch centre‟ dedicated for coding this perceptual property. These have 

been used to inform and guide the design of my own PhD experiments and so they are 

described in detail below. 
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1.1. Pitch selectivity  

The first criterion relates to pitch selectivity, where the cortical response to a pitch-evoking 

stimulus should be greater and distinct from a spectrally matched noise control baseline. 

The only difference between the baseline and the pitch stimulus should relate to the „pitch‟. 

As illustrated in a number of neuroimaging studies (e.g., Hall & Plack, 2009; Krumbholz, 

Patterson, Seither-Preisler, Lammertmann, & Lütkenhöner, 2003) this criterion can be 

assessed experimentally by contrasting cortical responses to „pitch > noise‟. Using fMRI as 

an example, if a region is involved in coding pitch rather than sound in general, it would be 

expected that significantly differential activity for pitch would occur. 

1.2. Pitch constancy 

The second criterion relates to pitch constancy, whereby cortical responses to pitch should 

be the same irrespective of their temporal, spectral, binaural, and perceptual characteristics 

(e.g., pitch value, timbre, loudness, spatial location; see Bizley, Walker, Silverman, King, & 

Schnupp, 2009; King & Nelken, 2009; Walker, Bizley, King, & Schnupp, 2011a; Walker, 

Bizley, King, & Schnupp, 2011b). Subsequently this criterion can be assessed 

experimentally by manipulating the timbre or spatial location of pitch-evoking sounds and 

observing the cortical responses. Given that the contrast between pitch and noise may 

reflect differential activity relating to a perceptual difference (i.e., timbre, loudness, spatial 

location), it is advisable to replicate experiments with a range of pitch-evoking stimuli, where 

possible (e.g., Huggins pitch, resolved, unresolved; see Hall & Plack, 2009). 

1.3. Covariation with pitch salience 

The third criterion relates to covariation with pitch salience. Pitch salience or strength refers 

to how distinctive the pitch percept is. Cortical sensitivity to pitch salience is best assessed 

using a parametric design (e.g., see Barker et al., 2011). Similar to loudness, pitch-selective 

neurons have been found to increase their neural firing rate in marmoset auditory cortex as 

a function of salience (Bendor & Wang, 2005, 2010). Human fMRI studies are inconclusive, 

but one study that used well-controlled stimuli did report to find a pitch salience 

representation in anterolateral Heschl‟s gyrus (HG; Penagos, Melcher, & Oxenham, 2004). 

A number of recent electrophysiological experiments have found that the latency and 

amplitude of pitch-related responses are influenced by the salience of pitch stimuli, and 

these correlate to behavioural responses (e.g., Krishnan, Bidelman, Smalt, 

Ananthakrishnan, & Gandour, 2012; Krumbholz et al., 2003). However more recent fMRI 

evidence has failed to find a definitive representation of pitch salience in auditory cortex 

(e.g., Barker et al., 2011), casting doubt on whether fMRI is sensitive enough to detect small 

changes relating to pitch salience.  
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1.4. Accounting for confounding factors 

The fourth criterion, relates to avoiding explanations of pitch-related activity that may be 

attributable to confounding factors such as cochlear distortion products and the use of an 

appropriate baseline control. Study designs should ensure that the only difference between 

pitch and baseline conditions relates to the pitch, especially when relying on subtraction 

analysis. Many neuroimaging studies have used a particular type of pitch stimulus known as 

iterated ripple noise (IRN). IRN is created by iteratively adding delayed broadband noise 

(Yost, 1996). The process gradually builds up temporal regularity in order to evoke a pitch 

stimulus with a frequency of 1/delay. IRN has become a popular choice of stimulus because 

the greater the number the iterations, the more salient the pitch percept is.   

These studies have several limitations in their interpretation of the results ascribing the 

responses specifically to pitch perception. First, the synthesis of IRN either includes pitch 

information corresponding to the low-frequency harmonics, fails to mask the energy in the 

signal in this cochlear region, and/or there is uncertainty as to whether the contribution of 

distortion products can be completely ruled out in some studies (e.g., Bendor & Wang, 2005, 

2010; see Abel & Kössl, 2009; Briley, Breakey, & Krumbholz, 2013; McAlpine, 2004; Plack, 

Barker, & Hall, 2014). For instance, when one wants to filter a 200 Hz complex tone into a 

1000-2000 Hz spectral region (i.e., harmonics 5-10), it is important to mask the spectral 

region encompassing the lower frequency harmonics (including F0, i.e., harmonics 1-4) with 

noise otherwise these can be reintroduced back into the stimulus percept by distortions in 

the cochlea, giving a percept of a 200 Hz tone that has been filtered using harmonics 

consisting of a 200-2000 Hz spectrum (i.e., harmonics 1-10; Pressnitzer & Patterson, 2001). 

Second, the synthesis of IRN introduces slow spectro-temporal modulations in the noise 

(Plack et al., 2014), which is unrelated to pitch and is not present in the noise control 

stimulus (see Barker, Plack, & Hall, 2012, 2013; Hall & Plack, 2009; Steinmann & 

Gutschalk, 2012). Although it has been suggested that the cortical responses reported in 

anterolateral HG for IRN stimuli may be driven by spectro-temporal modulations present in 

the stimulus (e.g., perceived as a timbre change), these longer–term modulations are not 

likely to affect transient EEG and magnetoencephalography (MEG) responses because the 

responses set in milliseconds (ms) after the stimulus onset and do not give the longer-term 

modulations time to unfold (Briley et al., 2013). This has been recently confirmed by 

Steinmann and Gutschalk (2012) who found that only sustained fMRI and MEG theta 

responses were sensitive to slow spectro-temporal fluctuations present in IRN.  

Nevertheless, these results highlight the inherent limitations of using subtractive 

methodology and the need to precisely match baseline controls to conditions of interest. 
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1.5. Aims of PhD 

The main aim of my PhD was to evaluate the evidence for a pitch centre within auditory 

cortex, focusing on the four pitch criteria described above, using a combination of 

psychophysical, fMRI and EEG approaches. I was especially interested in exploring whether 

the neural representation of pitch is modular or distributed, and whether this representation 

is invariant to other stimulus features, such as timbre, at the level of auditory cortex. 

1.6. Thesis Overview 

Chapter 2 describes some of the key concepts underpinning pitch research.  

Chapter 3 is primarily comprised of an original manuscript submitted in contribution to an 

invited book chapter which was co-authored with my PhD co-supervisor (see Appendix for 

the final version). I contributed to approximately 50% of the writing of Hall & Susi (2015). 

This chapter provides a comprehensive and focused reference on the neuroscience of 

hearing and the associated neurological diagnosis and treatment of auditory disorders, and 

is primarily aimed at students and researchers who are not experts in the field. 

Chapter 4 describes a short series of feasibility studies, Experiments 1, 2, and 3, aimed at 

determining the optimal echo time (TE) and voxel resolution for the auditory fMRI 

experiment described in Chapter 5.  

Chapter 5 describes a pitch-salience rating task (active listening), and an fMRI passive 

listening experiment (Experiments 4 and 5, respectively) which evaluated pitch criteria 1, 3 

and 4. These experiments investigated the neural representation of pitch and pitch salience 

using harmonic complex tones that were either resolved (strongly pitch salient) or 

unresolved (weakly pitch salient).  I used the same stimuli and a subtractive study design 

informed by Penagos et al. (2004), but extended this work by addressing some of their 

limitations. These limitations are discussed in Chapter 5. Contrasts of interest included 

sound > silence, pitch > noise, strong pitch salience > weak pitch salience, and weak pitch 

salience > matched control noise. The location, magnitude and distribution of activity were 

analysed accordingly. Findings indicated that the representation of pitch compared to noise 

is widely distributed across auditory cortex, and the evidence for pitch salience was 

questionable, but was also co-localised to the same regions as the pitch response. The 

findings raise concerns regarding fMRI‟s sensitivity to pitch salience effects in the context of 

high individual variability. 

Chapter 6 comprises the event-related potential (ERP) and adaptation methodology chapter 

which briefly describes the main analysis approaches used for Experiment 10 in Chapter 8. 

This chapter is much shorter than the corresponding fMRI Chapter 3 because it was written 

specifically for Experiment 10 and not as a pedagogic chapter for teaching purposes. 
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Chapter 7 describes of series a feasibility studies aimed at matching discriminability for pitch 

and timbre stimulus parameters. Experiments 6-8 focused on identifying pitch and timbre 

parameters that were equally discriminable.  

Chapter 8 uses EEG methodology to evaluate the criteria 1, 2 and 4. Experiment 9 used the 

chosen parameters identified in Chapter 7 to match discriminability for pitch and timbre 

discrimination tasks across listeners for the corresponding ERP Experiment 10. The findings 

showed that discriminability between pitch and timbre tasks were well-equated across 

experiments. Experiment 10 was primarily aimed at investigating pitch constancy in relation 

to pitch‟s invariance to timbre, using a novel adaptation design. Here the method and 

paradigm were changed because, as described in Plack et al. (2014), fMRI is known to be 

insensitive to neuronal populations which encode pitch in terms of their 1) temporal firing 

patterns, 2) relative rates of responses at a neuron-to-neuron level, and 3) within neuronal 

assembles that are distributed among other neurons that encode other sound attributes 

(e.g., timbre), particularly when using conventional subtraction designs (see Chapter 3). 

Therefore an ERP adaptation design was employed here as it is a direct measure of neural 

activity and can be used to address the three points outlined above. Harmonic complex 

sequences were used which transitioned from noise to two pitch tones (adaptor and probe). 

Sequences either varied in pitch, timbre or both. Findings suggested that pitch is non-

invariant to timbre, and thus failed to find evidence of pitch constancy at the level of the 

auditory cortex using this experimental approach,  although further research is required. 

Chapter 9 uses a dual-pair (four-interval same-different) discrimination task to further 

investigate pitch constancy, more specifically, evidence for pitch invariance to timbre. 

Experiment 11 used the chosen parameters identified in Chapter 7 to match discriminability 

for pitch and timbre discrimination tasks across listeners for the corresponding reaction time 

Experiment 12. The findings showed that discriminability between pitch and timbre tasks 

were well-equated across experiments.  Experiment 12 uses the same four conditions used 

in Chapter 8, and the same stimuli as that reported in Chapter 7. Findings indicated that 

timbre changes (non-target stimulus) interfered with listener‟s ability to discrimination pitch 

(target stimulus), and vice versa. These results therefore also failed to find evidence for 

pitch constancy. 

Chapter 10 summarises the main thread of the argument regarding the four pitch criteria 

that has built up through the thesis chapters, highlighting any key areas for discussion and 

suggested future directions for the field. 
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Chapter 2. Key concepts in pitch research 

This chapter describes some of the key concepts underpinning pitch research to provide a 

scientific context for my thesis work. Pitch is determined by physical acoustic cues that 

repeat over time. Pure tones consist of a sinusoidal variation over time, where the repetition 

rate of a pure tone is identical to its spectral frequency (Plack et al., 2005, p. 8-9). However, 

pure tones are extremely rare in our acoustic environment, with musical melodies and 

voiced speech being much more common and consisting of harmonic complex tones.  

2.1. Importance of pitch 

In music, pitch sequences produce musical melodies and concurrent combinations of pitch 

give rise to harmonies (Oxenham, 2012). In speech communication, pitch provides cues for 

sound source segregation (i.e., stream segregation; Darwin & Carlyon, 1995) and 

identification, allowing us to separate out different sounds that occur at the same time (e.g., 

two people talking simultaneously), and group together sounds that originate from the same 

acoustic source (e.g., sentence spoken by same person; Oxenham, 2008).  Variations in the 

pitch contours of vowel sounds can also be used to convey prosodic information in 

languages such as English (where a rising intonation at the end of a sentence may indicate 

an interrogative statement), or semantic information in tone languages such as Mandarin 

(where changing the pitch contour of a word can change its meaning entirely; Hall & Plack, 

2009; Plack et al., 2005, p. 2-3).  

In our everyday lives, the majority of people with normal hearing are able to perceive music 

and speech effortlessly, even in the noisiest of places. Whilst such hearing abilities appear 

effortless, the auditory neuroscience community knows surprising little about how the 

peripheral and central auditory systems actually achieve such a seamless perception of our 

acoustic world. Subsequently, gaining a greater understanding of pitch perception, and 

sound more generally, does not just have scientific or academic importance, but also has 

several practical translational benefits that may eventually benefit clinical populations. For 

instance, hearing aids and cochlear implants for hearing loss are generally found to have 

poor frequency selectivity which evades sufficient coding of harmonic pitch sounds given 

that they are unable to accurately represent individual harmonics (McDermott, 2004;  

Oxenham, 2008). The same can be said for individuals with brainstem implants and 

individuals with pitch disorders, such as congenital amusia. In time, understanding how pitch 

is represented in normally hearing listeners is therefore likely to aid development and 

improvements to future auditory prostheses. 
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2.2. The psychophysics of pitch  

The choice of stimuli used in my PhD experiments was guided by knowledge about the 

physics of sound and psychophysical models of pitch coding. Harmonic complex tones are 

one of the most common pitch-evoking sounds used in research experiments because they 

can be well controlled. A harmonic complex tone is a periodic waveform that repeats at the 

rate corresponding to the fundamental frequency (F0; see Figure 2.1; Oxenham, 2012). 

Harmonic complex tones are therefore essentially a series of pure tones, in which the 

frequency of each sinusoidal harmonic component or overtone is a multiple integer of the 

F0. For example, for a complex tone with an F0 of 100 Hz, the first harmonic is 100 Hz, the 

second harmonic is 200 Hz, and the third harmonic is 300 Hz etc. Generally, one perceives 

a harmonic complex tone as a single unified sound because the harmonics are „perceptually 

fused‟, for instance, it only takes two consecutive harmonics to evoke a pitch perception 

(Plack et al., 2014). 

Harmonic complex tones are often referred to as either being „resolved‟ or „unresolved‟. 

These distinctions relate to whether the harmonics are individually represented by a single 

auditory filter (resolved) or not (unresolved) on the basilar membrane. Generally, 

components up to around the 10
th
 harmonic of a complex tone are said to be resolved 

(Glasberg & Moore, 1990; Shackleton & Carlyon, 1994). For resolved harmonics, the 

excitation pattern displays a series of marked peaks at filters with centre frequencies 

(Oxenham, 2008). Conversely, at increasingly higher frequencies, the bandwidth of filters 

begins to exceed the spacing between adjacent harmonics (Oxenham, 2008). These 

harmonics interact with multiple filters and so the peak responses across filters become 

gradually less distinct and eventually disappear altogether (unresolved). Corresponding 

waveforms appear extremely complex, due to the interaction effects of multiple harmonics, 

with a temporal envelope repeating at the F0 rate. Subsequently, tones comprised of 

resolved harmonics elicit a much stronger pitch perception (i.e., greater in pitch salience) 

than unresolved harmonics. 

A number of pitch perception models of complex pitch perception are based on knowledge 

of such excitation pattern responses (Cohen, Grossberg, & Wyse, 1995; Goldstein, 1973;      

Terhardt, Stoll, & Seewann, 1982; Wightman, 1973; see Oxenham, 2008, 2012). The most 

common pitch coding theories based on computational models which relate to the 

representation of sound within the auditory nerve, include a „place‟ code (Goldstein, 1973), a 

„temporal‟ code (Licklider, 1951), and more recently a synthesis of the two, resulting in a 

„hybrid‟ spatial-temporal code (Loeb, White, & Merzenich, 1983; see Oxenham, 2012 for a 

review).  
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Figure 2.1. Third party copyright material removed. Schematic illustration of the 

relationship between acoustic frequency and periodicity and perceived pitch for pure and 

complex tones. A pure tone (top panels, blue) and a harmonic complex tone (lower panels, 

red) are shown, which both produce the same pitch (A above middle C or 440 Hz). This 

figure has been taken from Oxenham, Micheyl, Keebler, Loper, & Santurette (2011).  

2.2.1 Place model of pitch coding 

According to the “place” or “rate-place” model (von Helmholtz, 1948), the pitch of a given 

tone is determined by the specific auditory nerve fibre, and hence which particular place on 

the basilar membrane, is maximally excited (Plack & Oxenham, 2005). Figure 2.2A shows 

how for the low frequency tone (top row) the largest vibration along the basilar membrane is 

at position 1, and corresponding action potentials only occur for auditory nerve fibres 

connected to position 1. The converse is true for the high frequency tone. Peaks identified in 

the excitation pattern provide information regarding which frequencies are present and this 

information can later be combined to calculate the underlying F0 (Oxenham, 2008), for 

example, by matching spectral information to pre-existing „harmonic templates‟ (Cedolin & 

Delgutte, 2005; Cohen et al., 1995; Goldstein, 1973; Schroeder, 1968; Terhardt, Stoll, & 

Seewann, 1982; Wightman, 1973). 

Figure 2.2. Third party copyright material removed. A schematic illustration of auditory 

nerve firing in response to two different acoustic signals. Panels A) and B) depict the pattern 

of firing along the auditory nerve according to a place or temporal model, accordingly. 

Adapted from Heeger (n.d.).  

2.2.2 Temporal model of pitch coding 

According to the “temporal” model, the pitch of a tone is determined by the timing of action 

potentials, or spiking rate, that occurs in the auditory nerve fibres (Cariani & Delgutte, 1996; 

Licklider, 1951; Meddis & O‟Mard, 1997; Schouten, 1962). The location of activity along the 

basilar membrane is less relevant. Neurons fire in synchrony with the phase of the acoustic 

waveform (Plack et al., 2005, p.11-13), for instance, tones with low frequencies (typically 

<~4-5 kHz; Oxenham, 2012), spikes are more likely to occur at one phase in a sinusoid 

cycle, than for another. This is called phase locking because the response of the neuron is 

locked to a particular phase of stimulation (i.e., vibration of basilar membrane) and the time 

between pairs of spikes are likely to be multiple integers of the period of the sinusoid (see 

Rose, Brugge, Anderson, & Hind, 1967; Oxenham, 2008). For instance a 500 Hz pure tone 

with a 2ms period will produce spikes sequentially separated by 2ms, 4ms, 6ms, 8ms and 

so on. Figure 2.2B shows how unlike the place code, tones with high and low frequencies 
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evoke responses at both positions 1 and 2, but there is more firing in response to the high 

frequency tone in the lower panel.  

2.2.3 Spatio-temporal ‘hybrid’ model of pitch coding 

According to the “spatio-temporal” model, the pitch of a tone is determined by both place 

and time information (Carlyon, Long, & Micheyl, 2012; Cedolin & Delgutte, 2007, 2010; 

Larsen, Cedolin, & Delgutte, 2008; Loeb, White, & Merzenich, 1983; Oxenham et al., 2011; 

Shamma, 1985; Shamma & Klein, 2000). Specifically, as described by Oxenham (2008), 

this theory posits that, in the auditory nerve, temporal information is used to extract pitch, 

however it must be presented and encoded in the appropriate place (i.e., tonotopic location) 

along the basilar membrane (Oxenham, Bernstein, & Penagos, 2004; Shamma, 2004). For 

a travelling wave in the cochlea, different parts of the basilar membrane will be in different 

phases of the acoustic waveform sinusoidal cycle, whereby the rate of change in phase is 

generally rapid near the peak of stimulation. However the specific frequency of the sound 

stimulus determines the precise locations along the basilar membrane that are in or out of 

phase with one another. Such patterns in phase differences could then potentially be used 

by the auditory system to extract F0 (Oxenham, 2008). 

2.2.4 Psychophysical evidence for pitch perception models  

Psychophysical studies have attempted to provide support for the proposed pitch models. 

While both appear to play roles in pitch perception, auditory research to date has been 

unsuccessful in confirming one pitch model over another as providing a complete 

explanation of pitch perception (Oxenham, 2008; Oxenham et al., 2011). For instance, the 

precision of the temporal code deteriorates as it travels through the auditory system (Plack 

& Oxenham, 2005). Once the signal has reached the inferior colliculus the maximum level of 

phase locking is approximated to be around a few hundred Hz (rather than a few thousand; 

Plack et al., 2005). This casts doubt on a purely temporal code. 

In summary, resolved harmonics may be represented by a place or a temporal code (or 

both). Unresolved harmonics can only be explained by a temporal code because the long 

term excitation pattern provides no cues (Schouten, 1962; see Plack et al., 2014). It is still 

unclear what type of code is used to represent pitch in the central auditory system 

(Oxenham, Micheyl, & Keebler, 2009; Oxenham et al., 2011). 

Over the last few decades, the temporal model has been favoured over the place model. A 

number of psychophysical studies have shown that high-numbered unresolved harmonics 

elicit a much less salient pitch than low-numbered resolved harmonics (Bernstein & 

Oxenham, 2003; Houtsma & Smurzynski, 1990; Oxenham, 2012). Moreover, unresolved, 

but not resolved harmonics, are susceptible to phase distortions caused by acoustics of the 

room which interfere with the waveform of these complex tones (Qin & Oxenham, 2005; 
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Oxenham 2012). Recent findings from Oxenham et al. (2011) have called into question a 

purely temporal code in favour of a place or spatial-temporal code. Oxenham and 

colleagues were able to evoke a clear pitch percept corresponding to an F0 of 1.2 kHz using 

tones whose harmonics components were above the frequency range limit of phase locking 

(i.e., >5 kHz). This implies that high frequencies at least cannot be represented by a purely 

temporal code or that phase locking extends much higher than previously thought. However, 

high-numbered harmonics that are too close together to be represented by a particular place 

on the basilar membrane can still evoke a musical pitch, suggesting that a purely place code 

cannot be used in such instances.  

2.3. Hierarchical framework for conceptualising pitch coding 

The perception of pitch coding can be conceptualised in the framework shown in Figure 2.3: 

i) Sensation of the physical signal and its transduction into neural impulses, ii) Perception of 

sound attributes, and ii) Interpretation of the sound (i.e., cognition). This section explains this 

framework in more detail, paying particular attention to pitch perception. 

 

Figure 2.3. Hierarchical framework for conceptualising pitch coding. 

2.3.1 Pitch sensation and transduction 

The challenge for the auditory system is to sense the external sound energy from both ears, 

receive, transform and combine the information into meaningful neural signals and interpret 

it so that it can be used to guide future behaviour (Nelken, 2008).  

The sounds we hear in our everyday environment enter and travel through our ear canal as 

a physical stimulus before being transduced into the electrical signal that is carried and 

perceived by the central auditory system. The major hearing sense organ responsible for 

this is the cochlea within the inner ear, where the sound energy is transduced into neural 

signals that pass through the auditory nerve. This section briefly explains those processes 

and explains how they are relevant for pitch coding. 

The acoustic waves are captured by the pinna and travel through the ear canal causing 

vibration at the ear drum. Sound waves are transformed into pressure variations in the 

cochlea fluid by the ossicles (three tiny bones) within the middle ear. The cochlea consists 

of two membranes, the Reissners membrane and the basilar membrane. The different 

frequency components of a given sound cause different parts of the basilar membrane to 
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vibrate. Each place on the basilar membrane has a characteristic frequency which it 

maximally responds to (i.e., a series of auditory filters; optimal characteristic frequency 

excitation extends throughout auditory pathway). The cochlea can therefore be thought of as 

a band-pass filter, where high frequency sounds excite areas towards the base of the basilar 

membrane, and low frequency sounds excite areas towards the apex of the basilar 

membrane. This forms the basis of the place code where frequency-to-place, or tonotopic 

mapping, is preserved throughout the auditory pathway, from the cochlea to the auditory 

nerve and up to at least the primary auditory cortex (see Figure 2.4).  

Figure 2.4. Third party copyright material removed. Schematic diagram illustrating the 

hierarchy of sound processing. This diagram represents the ascending pathways only, and 

has been taken from Nelken (2008).  

The Organ of Corti is a specialised structure containing hair cells that is located on the inner 

surface of the basilar membrane of the cochlea. The excitation vibrations in the Organ of 

Corti causes a „shearing‟ motion (up and down) between the basilar and tectorial 

membranes,  where tiny hair cells (stereocilia) of the basilar membrane sway side-to-side at 

the same rate, causing depolarisation in the inner hair cells leading to a release of 

neurotransmitters that facilitate action potentials along the auditory nerve (Plack, 2005, p.72-

73). The design and formation of stereocilia are vital for transduction. Each bundle of 

stereocilia is arranged in a staircase like formation, where each row is organised in 

ascending height. Each stereocilia contains actin filaments where the positive end is at the 

„tip‟ of the structure, and the converse for the negative end. Rows of stereocilia are 

connected to one another by filamentrous structures known as „tip links‟. These tip links run 

from the top end of a given stereocilia to its taller neighbour, and resemble a „slinky‟. When 

there are stretched towards scala media (i.e., towards the outside of the cochlea), this 

causes cation selective channels in the membrane of the sterocilia to open causing 

potassium (K+) and some calcium (Ca2+) ions to flow into the hair cell, causing the electric 

potential of the hair cell to become more positive (known as depolarisation because typical 

resting state of cell is -45 mV). Depolarisation causes a neurotransmitter to be released in 

the gap (synapse) between the stereocilia and the auditory nerve, and causes action 

potentials or firing in spiral ganglion neurons (neural spiking). When sterocilia are bent in the 

opposite direction, these ion channels remain closed and therefore depolarisation does not 

occur. This is where physical pressure waves are transduced into electrical impulses that 

travel along the auditory nerve fibres (transduction). Each auditory nerve fibre represents a 

particular place on the basilar membrane, so each nerve fibre also has a characteristic 

frequency it is most sensitive to (i.e., place code, where nerve fibres at centre of the auditory 

nerve represent low frequency sounds, and nerve fibres in periphery represent high 

frequency sounds).  
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Although a given sound stimulus will cause the sterocilia to bend from side to side, the 

electric potential change in hair cells only occurs when the stereocilia are bent in the correct 

direction (towards the outside of the cochlea), and therefore the spiral ganglion neurons will 

only fire during a particular phase of the acoustic waveform (i.e., particular phase in the 

vibration of the basilar membrane), which is known as phase locking.  For any given sound, 

the peak of activity in the nerve fibre occurs for onset of the stimulus, and then declines with 

time.  

2.3.2 Pitch perception  

Listeners experience a unified percept of pitch, irrespective of whether the stimulus contains 

resolved or unresolved harmonics, and irrespective of the neural code used in its 

transduction. This section reviews evidence for perceptual invariance indicating that there 

must be an abstract „higher level‟ representation somewhere in the auditory system.  

2.3.2.1 Models of pitch perception - supporting evidence 

A pitch percept is only evoked when the periodicity is between approximately 30 Hz to 

~4000/5000 Hz (Krumbholz, Patterson, & Pressnitzer, 2000; Oxenham, 2012; Pressnitzer, 

Patterson, & Krumbholz, 2001). It has been well established that even when the lowest 

harmonic component (i.e., the F0) is removed or masked by noise in a stimulus, the tone will 

evoke the same pitch percept (Fletcher, 1924; Licklider, 1954; Pressnitzer & Patterson, 

2001; Schouten, 1940). This is known as the „missing fundamental‟ phenomenon (see 

Figure 2.5C), and suggests that based on information obtained from higher numbered 

harmonic components, the auditory system can extract and reinstate F0 (e.g., harmonic 

templates; Houtsma & Goldstein, 1972; Oxenham et al., 2011).  

Figure 2.5. Third party copyright material removed. Schematic representation of pitch 

invariance. For instance Panel C illustrates the ‘missing fundamental phenomenon’ where 

the same pitch percept (e.g., 200 Hz) is evoked when the lowest harmonic (F0; present in 

Panels A and B) is absent. All panels also depict the relationship between pitch and timbre, 

where one sound can have the same pitch but a different timbre or spectral frequency 

composition (A, B and C), or vice versa (C and D). Panels C and D depicts stimuli that have 

different pitch but similar timbre because they have similar spectra. Panel E: Different 

spectral distributions of tones played on a violin and piano which share the same F0. Panels 

A-D have been adapted from Langner, Sams, Heil, & Schulze (1997), and Panel E has been 

adapted from Shamma (2004).   

Tones also evoke a common pitch percept even when they are composed of markedly 

different physical and perceptual characteristics (Plack et al., 2014). For example, separated 

harmonic information delivered to the two ears can be combined into a unified percept 

(Houtsma & Goldstein, 1972). For instance, if you present one ear with a 400 Hz pure or 
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complex tone, and the other with a 600 Hz pure or complex tone, this will evoke a pitch 

percept of a 200 Hz tone (Deutsch & Roll, 1976). If pitch is encoded by place alone than 

how can two different sounds be combined to yield a single pitch percept? This result 

indicates that harmonics must somehow be combined physiologically at least at, or above, 

the level of the superior olivary complex (Plack et al., 2014).  

Pitch can also be evoked using two sounds presented to each ear respectively that do not 

contain any pitch information. This is known as binaural or dichotic „Huggins pitch‟ (Cramer 

& Huggins, 1958). It is created by presenting the same random signal (broadband noise) to 

each ear except for a narrow frequency band in which the noise is different across the two 

ears (decorrelated; Gockel, Carlyon, & Plack, 2011). Combining correlation patterns 

between the two ears means that listeners report hearing a musical pitch within the centre of 

the narrow frequency band (Akeroyd, Moore, & Moore, 2001). Gockel et al. (2011) showed 

that a pitch can be evoked using two Huggins pitch harmonics (e.g., decorrelated bands with 

centre frequencies of 600 and 800 Hz, evoke a 200 Hz pitch). Furthermore, they also 

demonstrated it is possible to combine a Huggins pitch harmonic with a conventional 

complex tone harmonic to produce a pitch, suggesting a combination of harmonics is likely 

to occur at the level of the inferior colliculus or later. Their findings cast doubt on a purely 

temporal model because, as mentioned earlier, higher numbered harmonics with 

frequencies above around 2 Hz are poorly represented at this stage in the auditory system.  

Pitch perception also appears to have some perceptual invariance with other perceptual 

attributes of sound, such as timbre and loudness, such as two tones will evoke the same 

pitch percept as long as the F0 is the same or masked, irrespective of the timbre or 

loudness (Langner et al., 1997; McDermott, Lehr, & Oxenham, 2008).  Timbre “allows one to 

distinguish among tones having the same pitch, loudness and duration” (American National 

Standards Institute, 1994). Timbre refers to the „quality‟ of a tone and is determined by the 

spectral envelope (distribution of energy over frequency); see Figure 2.5, Panels C and D 

(Seither-Preisler et al., 2007; Shamma, 2004). Consequently, a piano and violin can play the 

same pitch, but each musical instrument has a particular timbre. This allows one to 

distinguish that the same note played on each musical instrument has been generated by 

different sources. Generally speaking, individuals find it very difficult to ignore timbre 

changes, and this has also been demonstrated to be equally the case for musicians (and 

non-musicians alike) when participants are asked to discriminate small changes in pitch 

when the timbre of the pitch tones dramatically varies (Moore & Glasberg, 1990; Borchert, 

Micheyl, & Oxenham, 2011). Although pitch and timbre are independent sound cues, given 

that two tones can sound very different despite sharing the same pitch (F0) illustrates how 

timbre may also be inherently related to the neural mechanisms responsible for encoding 

pitch (Langner et al., 1997; McDermott et al., 2008), and place (spectrum) and temporal (F0) 

information may be important for providing listeners with a unified pitch percept. It also 
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raises the question as to whether there is a unified module in the brain that is responsible for 

such invariant representations. This possibility is discussed further in the following section. 

2.3.2.2 Neurophysiological evidence for pitch invariance and the spatio-

temporal model 

Precisely where in the central auditory system information is combined to form a pitch is still 

unknown. Any of the ascending brainstem and midbrain nuclei are potential candidates. 

Animal electrophysiological recordings have located neurons in auditory cortex which 

appear to be selective to F0, irrespective of the stimulus presented. Using single-unit 

recording, a seminal study by Bendor and Wang (2005; see also 2010) investigated the 

neural representation of pitch responses in marmoset auditory cortex. Through presenting 

pure tones and missing fundamental harmonic complex tones they identified a number of 

pitch-selective neurons in the anterior lateral border of area A1 (primary auditory cortex; see 

Figure 2.6). This led them to suggest that perhaps a purely pitch-specific mechanism for 

pitch perception exists, where there are specific neurons that represent pitch regardless of 

its non-pitch features. Human neuroimaging investigations have attributed analogous pitch-

specific neurons to a region of the human auditory cortex called lateral Heschl‟s gyrus (HG; 

e.g., Briley, Breakey, & Krumbholz, 2013; Butler & Trainor, 2012; Griffiths, Büchel, 

Frackowiak, & Patterson, 1998; Griffiths, Uppenkamp, Johnsrude, Josephs, & Patterson, 

2001; Gutschalk, Patterson, Rupp, Uppenkamp, & Scherg, 2002; Gutschalk, Patterson, 

Scherg, Uppenkamp, & Rupp, 2004; Patterson, Uppenkamp, Johnsrude, & Griffiths, 2002; 

Penagos et al., 2004; Puschmann, Uppenkamp, Kollmeier, & Thiel, 2010; Ritter, Dosch, 

Specht, & Rupp, 2005).  

Figure 2.6. Third party copyright material removed. Pitch-selective coding in marmoset 

auditory cortex.  (A) shows the distribution of sound-evoked responses, where pitch 

selective neurons (black squares) can be seen in border between primary auditory cortex 

(area A1) and belt region (area R) of marmoset monkey (Bendor & Wang, 2005). 

2.3.3 Pitch cognition 

Cognition refers to the mental manipulation of pitch which supports a range of listening tasks 

such as the recognition of familiar melodies, discriminating changes in pitch contour over 

time, and perceiving speech. 

Whereas pitch perception typically involves bilateral areas of A1, tasks requiring higher-level 

pitch processing typically involve non-auditory regions and may be more lateralised. This 

has been described by some as a processing hierarchy (Nelken, 2008); shown in Figure 2.4. 

The human auditory regions showing spatial layout and terminology used for regions of 

interest throughout this thesis are shown in Figure 2.7. FMRI findings have allowed auditory 

neuroscientists to map the auditory hierarchy, particularly using pitch processing tasks. For 
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instance, Warren & Griffiths' (2003) fMRI study investigated the brain regions involved in 

processing pitch and spatial location changes in pitch sequences using IRN stimuli with 

fixed and variable F0. Sound sequences with changing pitch activated non-primary auditory 

regions (lateral HG, anterior planum temporale (PT; immediately posterior to HG), planum 

polare (PP; anterior to HG). Sound sequences with changing spatial location specifically 

activated more posteriomedial parts of PT. This dissociation within parts of the belt and 

parabelt area of auditory cortex (Figure 2.4) provides some evidence for distinct processing 

mechanisms for pitch sequences with changing pitch and spatial location in humans 

(Warren, Uppenkamp, Patterson, & Griffiths, 2003; Zatorre, Belin, & Penhune, 2002).  

Figure 2.7. Third party copyright material removed. Panel A: Surface of human left 

hemisphere with a cut through the Sylvian fissure to reveal the macroanatomical structure of 

the auditory cortex on the inner surface, including Heschl’s gyrus, planum polare and 

planum temporale. In this panel, the position of Heschl’s gyrus (the core region) is shown by 

the dotted gray region, and how belt and parabelt regions might be organised is shown in 

dark (belt) and light gray (parabelt) shading. Panel B: Microanatomical structure of Heschl’s 

gyrus (see Morosan et al., 2001). This figure has been adapted from Hall and Barker (2012). 

Patterson et al. (2002) found that while fixed pitch sequences activated lateral HG when 

compared with spectrally matched noise, melodic-type pitch sequences differentially 

activated areas extending beyond HG, namely anterior activation in PP and superior 

temporal gyrus (STG). They also found evidence suggesting that melodic sequences should 

engage right hemisphere processing more than left (right hemisphere advantage for 

melody). They claimed that this is evidence in favour of a pitch processing hierarchy where 

low-level pitch perception engages regions in and near to primary auditory cortex, while 

more complex pitch listening engages regions further away across auditory cortex.  

2.4. The modularity of pitch perception 

Fodor‟s theory of modularity (1983) is the most well-known modular theory of perception and 

cognition, and argues that certain psychological processes are „self-contained‟ or modular. 

Specifically modular systems must fulfil certain properties, namely, domain specificity, 

encapsulation, mandatory operation (automaticity), inaccessibility to consciousness, speed, 

shallow outputs, fixed neural localisation, and characteristic breakdown patterns. It is clear 

that some of these criteria are similar to, and likely underpin, the pitch criteria identified in 

Chapter 1. The question of modularity has been well-studied in the visual system. There are 

purported to be a number of distinct neural regions that encode different perceptual visual 

features. For instance, in the primary visual cortex (V1) there are specialised neurons 

responsible for detecting the orientation of edges (Hubel & Wiesel, 1962), while V4 is the 

main visual colour processing area (Zeki, 1983). The evidence for a modular organisation in 

the auditory system has been less well substantiated. In some respects, frequency can be 
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considered as having a modular organisation in primary auditory cortex (i.e., tonotopy; 

Humphries, Liebenthal, & Binder, 2010). Nevertheless, evidence relating to a modular 

organisation of other sound attributes, such as pitch, still remains highly debated (Bendor, 

2012). The following section describes neuroimaging support for localised responses to 

pitch in human auditory cortex. 

2.4.1 ‘Modular’ sustained pitch-sensitive responses in lateral HG? 

A number of human positron emission tomography (PET), fMRI, EEG and MEG studies 

have localised sustained pitch responses to a brain region in lateral HG (e.g., Hall, Barrett, 

Akeroyd, & Summerfield, 2005; Griffiths et al., 1998, 2001; Patterson et al., 2002; Penagos 

et al., 2004; Puschmann et al., 2010; Seither-Preisler, Patterson, Krumbholz, Seither, & 

Lütkenhöner, 2006; Steinmann & Gutschalk, 2012). Many of these studies have used IRN 

as a pitch-evoking stimulus. PET and fMRI studies that attribute pitch activity to lateral HG 

typically report that this region is maximally activated for pitch versus other sounds such as 

a spectrally matched noise control (e.g., Griffiths et al., 1998, 2001; Patterson et al., 2002; 

Puschmann et al., 2010). 

2.4.2 ‘Modular’ onset pitch-sensitive responses in lateral HG?  

The energy onset of any sound stimulus creates a large transient neural response that can 

mask more subtle stimulus-specific transient responses (e.g., Garcia et al., 2010). For 

example, an MEG study by Krumbholz et al. (2003) used the „continuous stimulation 

paradigm‟ to present a novel sound sequence that progressed from spectrally matched 

noise to an IRN stimulus (see Chapter 6 for more detail). This allowed them to identify and 

isolate a pitch-onset response (POR) which occurred approximately 150ms after pitch onset 

from the N100m component evoked for the energy onset of any sound stimulus. The 

authors localised PORs to the medial portion of HG which they argued was in support of HG 

being a „pitch centre‟. Chait, Poeppel, and Simon (2006) also conducted an MEG study 

using the continuous stimulation design, and found that two different types of pitch stimulus 

(i.e., Huggins pitch and tone in noise) evoked similar pitch-onset responses with a latency of 

~150ms after stimulus onset in HG. The authors postulate that this is further evidence in 

favour of an all-inclusive „pitch centre‟ (also see Butler & Trainor, 2012; Ritter et al., 2005). 

An intracranial recording study by Schönwiesner and Zatorre (2008), that used depth 

electrodes, have confirmed separate neural sources for noise and pitch onsets, with pitch 

onsets generally being more consistently associated with activity in lateral HG. 

A more recent fMRI study by Steinmann and Gutschalk (2012) has shown that sustained 

responses can reflect a combination of evoked activity to the energy onset and pitch onset 

as well as sustained activity to a long duration steady-state pitch sound (24 seconds; s). 

Greater sustained activity was localised in lateral HG for IRN versus noise, but not for 

regular click trains versus jittered click trains or silence. This not only casts doubt on the 
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reliability of IRN as a pitch-evoking stimulus but also on HG as a pitch centre. A true pitch 

centre should encode pitch regardless of other stimulus characteristics. This was not the 

case. A somewhat different interpretation could be given to the MEG data collected in the 

same participants. Sustained field responses evoked by IRN and click trains produced 

similar pitch responses which were consistently localised to lateral HG. Time-frequency 

analysis of the MEG data revealed that disparity in activation between stimulus types in 

fMRI was related to theta band activity. Specifically sustained fMRI responses and MEG 

theta activity were both associated with slow-moving stimulus fluctuations unrelated to pitch, 

suggesting that fMRI activation in auditory cortex may be much more sensitive to slowly 

varying stimulus fluctuations than to the pitch. An additional interpretation is that this might 

contaminate pitch-related responses (i.e., like those associated with the creation of IRN). 

Conversely, theta activity relating to slow stimulus fluctuations can be eliminated from 

evoked MEG or EEG responses. However, like Steinmann and Gutschalk (2012) point out, 

problems choosing an appropriate pitch stimulus are not confined to IRN. For example when 

using a harmonic complex sound, fluctuations in the noise baseline, used for subtraction 

designs, may reduce sensitivity for pitch-specific activity. Therefore this work highlights the 

importance of avoiding the use of confounding parameters of the pitch stimuli when using 

any neuroimaging technique, but is perhaps especially important for fMRI studies. 

2.4.3 Sensitivity to pitch salience as evidence for ‘modular’ organisation in lateral 

HG? 

Sensitivity to pitch salience can be demonstrated by an increase in activation as a function 

of the salience of the pitch. Neuroimaging findings for sustained pitch responses as a 

function of salience are rather inconsistent. Griffiths et al. (1998, 2001) respective PET and 

fMRI studies reported greater activation for IRN stimuli with increasing temporal regularity 

(and hence pitch salience). Sensitivity to pitch salience for transient pitch responses has 

been found for MEG onset responses to pitch for different types of pitch-evoking stimuli 

(e.g., IRN: Krumbholz et al., 2003; Click trains: Gutschalk et al., 2002). For instance, an 

MEG study by Krumbholz et al. (2003) not only localised POR to medial HG (adjacent to 

anterolateral HG) but also found that the latency and amplitude of the POR for IRN stimuli 

varied with the pitch strength (i.e., number of iterations). Stimuli with greater pitch salience 

(i.e., greater number of iterations) evoked a more robust POR (with shorter latencies) 

compared to stimuli with a weaker pitch salience. Similarly an EEG study by Krishnan et al. 

(2012) found that the magnitude of cortical pitch responses increased and behavioural pitch 

discrimination performance improved as a function of increasing pitch strength (i.e., 

increasing temporal regularity of the IRN stimuli). However, using jittered pulse trains and 

unresolved harmonic complex tones with different levels of phases to create three levels of 

pitch salience (i.e., strong, medium, and weak), Barker et al. (2011) found no evidence for 

differential fMRI activation anywhere in auditory cortex that could indicate a sensitivity to 

pitch salience (but see Barker et al., 2013).  
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The most intriguing fMRI evidence for pitch salience comes from Penagos and colleagues 

(2004) who, unlike some previous studies, used well-controlled stimuli that accounted for 

temporal regularity or periodicity, by keeping this fixed for each condition (i.e., the number of 

waveforms that repeated over time were the same for all conditions), but whose pitch 

salience differed across conditions. They used harmonic complex tones, where low (80-95 

Hz) and high F0s (240-285 Hz) were either filtered into high (1200-2000 Hz) or low (340-

1100 Hz) spectral regions to create three strong pitch salience (resolved) conditions and 

one weak pitch salience (unresolved) condition (i.e., strong condition 1 (low F0 and low 

spectrum), weak condition 2 (low F0 and high spectrum), strong condition 3 (high F0 and 

low spectrum), and strong condition 4 (high F0 and high spectrum). Two control conditions 

(5 and 6) were created using white noise (12 kHz) that were filtered into high and low 

spectral regions. Stimulus sequences for each condition were 32s in duration, and tones 

were presented as 300ms bursts (including 10ms onset and offset cosine ramps), where the 

F0 for each tone burst within a given condition varied randomly (e.g., 80-95 Hz for low F0) 

every 1.67s, within a background of continuous Gaussian noise (to mask distortion 

products). Sound conditions were presented randomly, and each sound condition was 

interleaved with a period of silence which lasted the same duration (classical „on-off‟ 

stimulation paradigm, but with continuous Gaussian noise running in the background). They 

explored differential effects across conditions in cortical and subcortical brain regions, using 

a 1.5 T fMRI system coupled with cardiac gating techniques (see Chapter 3). Through 

contrasting conditions with high and low pitch salience, they found no differential activation 

for pitch salience in the primary auditory cortex or in subcortical areas (i.e., inferior colliculi 

and cochlea nuclei). Nevertheless, they did find that the majority of cortical activity across 

the 5 listeners was greater for strong versus weak pitch salience conditions in anterolateral 

HG (i.e., nonprimary auditory cortex). These effects were still significant after controlling for 

F0 and frequency and therefore provided some support for the role of lateral HG as a pitch 

centre. This result is questionable, however, because of the relatively few subjects scanned, 

the high inter-subject variability and the rather lenient correction statistics used. Chapter 5 

re-examines the question of pitch salience using a study design informed by Penagos et al. 

(2004). 

There are a number of differences between published studies, mostly relating to the type of 

stimuli used and imaging method (e.g., Griffiths et al., 2010; Hall & Plack, 2009; Penagos et 

al., 2004). It may not be that sensitivity to pitch salience does not exist, but rather the 

sensitivity to detect such differential activation may be reduced or insufficient for current 

neuroimaging techniques and corresponding designs. It would be informative if studies 

opted to: 1) employ at least two types of pitch stimulus when undertaking their research, 

which would address the criterion of pitch constancy, and/or 2) auditory neuroscientists 

could decide on a „gold standard‟ pitch stimulus that should be included in all future 

investigations, which would address the reliability of findings. 
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2.5. Pitch perception as a distributed process 

So far my review highlights findings that lend support to the HG as being a „pitch centre‟. 

More recently however a shift towards a distributed explanation of pitch coding has emerged 

(Bizley et al., 2009; Griffiths et al., 2010; Hall & Plack, 2009; Kumar et al., 2011; Walker et 

al., 2011a). A number of experimental findings provide evidence supporting distributed pitch-

sensitive representations in auditory cortex. Hall and Plack (2009) was the first fMRI study to 

evaluate the evidence for a pitch centre (criteria described in Chapter 1) in auditory cortex, 

by measuring pitch-related activation arising from a number of different pitch stimuli (i.e., 

pure tone, wideband complex tone, resolved harmonic complex tone, unresolved harmonic 

complex tone, Huggins pitch, and IRN), across 2 experiments. They also obtained 

psychophysical measures of pitch discriminability (and therefore pitch salience) for each 

stimulus condition, in the same listeners, using a Two-Interval Two-Alternative-Forced-

Choice (2I-2AFC), two-up, one-down, adaptive procedure that targeted 70.7% performance 

(task: in which interval was the pitch higher?), and compared these with fMRI measures of 

the pitch response for each stimulus condition. The first experiment explored fMRI and 

psychophysical measures for all stimulus conditions except IRN, in 16 listeners. The second 

experiment was a follow up experiment which explored the activation effects and 

psychophysical measures of IRN, with and without the use of a low-pass noise masker, in 9 

listeners. Hall & Plack (2009) used random effects analysis, as well as incidence 

“probability” mapping to explore between-subject fMRI activation. Results from experiment 1 

revealed that activity was most consistently found posterior to HG, in PT; however, they 

failed to identify a single pitch center that was common to all pitch stimuli across listeners. 

Instead, there was a wide variability in the pattern of cortical responses across multiple 

areas of primary and nonprimary auditory cortex, with no auditory area fulfilling all of the 

pitch criteria. This led them to conclude it may be too presumptuous to accept HG as a 

definitive pitch centre, and PT is more likely to be involved in pitch processing, and a more 

likely candidate for a pitch centre (see Figure 2.8; see also Barker et al., 2011; Garcia et al., 

2010; Steinmann & Gutschalk, 2012). Nevertheless, the evidence is more consistent with 

the distributed processing perspective. Findings from single-unit recordings from ferret 

auditory cortex also report no evidence in favour of a specialised cortical field for pitch, but 

rather multiple non-invariant and overlapping areas of primary and non-primary auditory 

cortex sensitive to pitch, timbre and spatial location (Bizley et al., 2009; Walker et al., 

2011a).  

Hall and Plack (2009) found no correlation between psychophysical discrimination (differing 

levels of pitch salience) and fMRI bold activation, highlighting a potential disparity between 

pitch perception measured behaviourally and that measured using fMRI. In experiment 2, 

they found that activation for IRN stimuli, with and without a low pass masker, was localised 

to both HG and PT; however, when no low pass masker was used, IRN activity was centred 

on lateral HG. This finding, in conjunction with findings from experiment 1 and spectrograms 
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showing the stimulated cochlea response to IRN, led them to conclude that IRN might 

contain features unrelated to pitch, notably spectro-temporal fluctuations due to increasing 

pitch salience, that have contributed to earlier studies reporting activation predominantly in 

lateral HG. 

Figure 2.8. Third party copyright material removed. Incidence maps illustrating the 

localised pattern of results from Hall & Plack (2009). Panel A) Depicts the location of the 

lateral HG (left) and the distribution of activity for all pitch conditions (right), i.e., how many 

people (N = 1-25) had that particular voxel activated. Panel B) Depicts the widely distributed 

stimulus-specific pitch-related activity for each of the 5 stimuli. The location of concordance 

across subjects varies for each stimulus. Note that HG is defined by a yellow border and PT 

is defined by a white border.  

It is important to note that many human studies tend to show activity in lateral HG and 

anterior PT (e.g., Barrett & Hall, 2006; Hall, Barrett, Akeroyd, & Summerfield, 2005; Hall, 

Edmondson-Jones, & Fridriksson, 2006; Penagos et al., 2004; Plack, Barker, & Hall, 2014). 

One explanation for this can be provided by referring to the findings from Steinmann & 

Gutschalk (2012). Recall earlier that their results implied fMRI responses may be more 

sensitive to slow-varying fluctuations present within pitch stimuli. In this regard, it could be 

argued that slowly varying spectral-temporal modulations present in IRN evoke greater fMRI 

responses in HG, but the „true‟ underlying activity relating to the pitch of the stimulus is 

observed in the non-primary area typically observed as PT, but to a lesser extent due to 

such responses being contaminated by these spectro-temporal modulations. However, it 

should be noted that confounds introduced by using IRN may not necessarily be observed 

when using relatively short stimulus sequences, like those typically adopted for EEG or 

MEG (Briley et al., 2013).  

2.6. Summary and concluding remarks  

Overall, there is still much debate surrounding the representation of pitch throughout the 

auditory pathway. There are a number of psychophysical models purported to describe how 

pitch is represented in the auditory nerve (i.e., place, temporal or a hybrid spatio-temporal 

model). Furthermore, whether the neural representation of pitch is organised in a modular 

manner (i.e., pitch centre), or involves a pattern of activation widely distributed across 

auditory cortices, is still highly controversial. Animal studies have demonstrated pitch 

selective neurons that are tuned to F0 instead of spectrum in primates, but conversely ferret 

studies have shown that neurons throughout several auditory cortical areas are non-

invariant to the pitch value (F0), spectrum (timbre) and spatial location. This discrepancy is 

also apparent in human studies, with both transient and sustained pitch responses being 

localised to the purported human pitch centre, lateral HG. Others argue in favour of the 

possibility of PT being a more likely pitch centre, if any, although the concept of a pitch 
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centre is still highly contentious given the variability in pitch responses across different types 

of stimuli, methods and species.  
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Chapter 3. Third party copyright material removed. 

See Hall, D. A., & Susi, K. (2015). Hemodynamic 

imaging of the auditory cortex. In G. G. Celesia & G. 

Hickok (Eds.), Handbook of Clinical Neurology (Vol. 

129, pp. 257–275). http://doi.org/10.1016/B978-0-444-

62630-1.00015-9 

 

Chapter 4. Optimising voxel resolution and TE 

parameters for auditory fMRI  

4.1. Introduction 

The review of fMRI methodology (Chapter 3) described the important scanning parameters 

that can influence the quality of the fMRI data and sensitivity to detecting brain activity of 

interest. These were summarised in Table 3.1. This chapter considers those parameters 

described in Table 3.1, for the fMRI studies conducted in Chapters 4 and 5.  

Some of the hardware parameters were pre-determined across all scanning sessions; a 

Philips 3 T Intera Achieva whole-body MR scanner, which was equipped with a 32-parallel 

channel sensitivity encoded (SENSE) head coil. These were available at the Sir Peter 

Mansfield Magnetic Resonance Imaging Centre, where the new 32-channel SENSE head 

coil boasted accelerated image acquisition (reduction in total scan by a factor up to number 

of coil elements, i.e., 32), improved SNR and facilitated higher spatial resolution compared 

to more conventional 8-channel phased array coils. Because the 32-channel SENSE head 

coil was new at the time of scanning, it had not been formally tested for fMRI studies of 

central auditory processing prior to this study. Scanning across all sessions was also 

completed with a fixed bandwidth of acquisition (details not recorded). 

Two other scanning parameters were chosen based on previous auditory fMRI experience; 

time to repeat (TR) values (required for sparse imaging), and number of acquisitions. TR 

varied slightly across the different studies reported here depending on the number of 

acquisitions required within a given time period. 

Scanning parameters that were yet to be decided were voxel resolution and TE, because I 

did not have the benefit of previous experience to decide accordingly. The impact of voxel 

http://doi.org/10.1016/B978-0-444-62630-1.00015-9
http://doi.org/10.1016/B978-0-444-62630-1.00015-9
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resolution and TE parameters were introduced and described in Chapter 3. The appropriate 

choice of voxel size can have an important impact on SNR and often involves a trade-off 

between ability to detect activity (BOLD contrast sensitivity) and ability to detect activity that 

is specifically localised within the gray matter (spatial specificity).  It was not clear whether a 

high (2mm³) or more standard (3mm³) voxel resolution would yield the best balance 

between BOLD contrast sensitivity and spatial specificity in the auditory ROIs, nor what was 

the optimal TE that would best contribute to this result.  

This chapter outlines a series of feasibility studies to optimise voxel resolution and TE, 

before proceeding to conduct the main fMRI study of pitch processing. To summarise, the 

aims of Experiments 1-3 were: 

Objective 1) Determine optimal TE for scans acquired at a high voxel resolution (2mm³) by 

evaluating a range of possible TEs during auditory activation (Experiment 1) and at rest 

(Experiment 2 and 3). 

Objective 2) Determine optimal voxel resolution for scans acquired at 2mm³ and 3mm³ using 

the same range of TE values (Experiment 3). 

4.2. Common methodology 

The studies were approved and performed in accordance with the Medical School Research 

Ethics Committee, University of Nottingham (ref: I12012012, Pitch Salience Coding). 

Scanning was conducted at the Sir Peter Mansfield Magnetic Resonance Imaging Centre, 

University of Nottingham. All scanning was performed on a Philips 3 T Intera Achieva whole-

body MR scanner equipped with a 32-channel SENSE head coil. All scanning data were 

converted from raw format (PAR/REC) into image format (IMG/HDR) using bespoke 

software. Further image quantification and analysis was conducted using MATLAB v7.10.0 

(The Mathworks, Natick, MA), MRIcro (www.mccauslandcenter.sc.edu/mricro/) and SPM8 

(www.fil.ion.ucl.ac.uk/spm/). 

4.3. Experiment 1: examining optimal TE for auditory fMRI 

A short pitch experiment was conducted to establish at which TE value (TE 40, 50 or 60ms) 

provided the best BOLD contrast sensitivity and spatial specificity for images acquired using 

a 2mm³ voxel resolution.  

A 2mm³ voxel resolution was chosen for three reasons. First, a quick single T2*-weighted 

scan at voxel resolutions 1.5mm³, 2mm³ and 3mm³ revealed that 3mm³ provided rather poor 

tissue contrast which failed to clearly distinguish gray mater from white matter. Second, 

there was no visible benefit from using 1.5mm³ over 2mm³ resolution, and third, 1.5mm³ 

would have increased time for data acquisition.  

http://www.mccauslandcenter.sc.edu/mricro/
http://www.fil.ion.ucl.ac.uk/spm/
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TEs 50 and 60ms were chosen because a recent auditory fMRI study (Paltoglou et al., 

2009) conducted using the same 3 T MR scanner equipped with an 8-channel SENSE head 

coil and high voxel acquisition (1.5 x 1.5 x 2.5mm) reported an optimal TE of 60ms in 

auditory cortex at rest. However, later identification of a data processing error which may 

have inflated estimates led them to conclude and use a TE of 55ms in their fMRI study of 

frequency selectivity. TE 40ms was mainly chosen so that I could also directly compare high 

resolution (2mm³) activation in the current experiment with comparable data acquired using 

more conventional imaging parameters (3mm³ resolution with a TE of around 36-40ms 

according to a number of previous studies; see Garcia et al., 2010; Warren et al., 2003). 

4.3.1 Methods 

4.3.1.1 Participants   

One right-handed (Oldfield, 1971) female participant (#01: 41 years old) was tested. She 

reported no history of neurological, psychological, hearing impairment, use of medication or 

substance misuse. Hearing thresholds for participant #01 were within normal range (≤ 25 dB 

HL) for the audiometric frequencies tested (250 to 8000 Hz). The participant gave written 

informed consent prior to scanning. 

4.3.1.2 Stimuli and task  

The functional study involved passive listening to sounds presented at approximately 88 dB 

SPL (measured by post-experiment calibration, see Section 5.4.2). The participant was 

instructed to attend to the sounds and remain alert. The sound condition, which was taken 

from Penagos et al. (2004), was a 32s sequence of harmonic complex tone bursts that 

varied in pitch and were embedded in a background of continuous noise. Condition 1 from 

Penagos et al. (2004) was used in this experiment because the fMRI and ratings task 

described in Chapter 5 used the exact same stimuli from Penagos et al. (2004), and the 

results from this chapter would ultimately inform the voxel resolution and TE used in Chapter 

5. The same stimuli from Penagos et al. (2004) was chosen because this was a highly 

influential paper at the time, and has been one of the only studies to find encouraging 

evidence of pitch salience in lateral HG using harmonic complex tones, that appropriately 

controlled for various stimulus confounds, such as temporal regularity, pitch and spectrum; 

most pitch salience studies have been limited by their use of IRN (see Section 1.4). 

Nevertheless, results from studies that don‟t use IRN are very inconsistent, which is one of 

the reasons that warrants replication of Penagos et al. (2004) in Chapter 5 (see Section 

5.1.1). 

It is important to note that the assumption here, and throughout the experimental chapters in 

this thesis, was that any pitch stimulus should evoke auditory processing areas or a pitch 

centre, and therefore it was not deemed necessary to use a series of different pitch-evoking 
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stimuli and/or differing F0s. Therefore for the purposes of this chapter, only one stimulus 

condition was used. Details of sound Condition 1 are described in Section 2.4.3 (i.e., 300ms 

tone bursts that varied randomly in pitch within a low F0 range (80-95 Hz) and band-pass 

filtered into a low spectral region (340-1100 Hz; see Figure 4.1)). 

 

Figure 4.1. Fast Fourier Transform (FFT) of the tone burst, shown on a logarithmic Hz scale.  

For each scanning run, participant #01 was presented with 8 repeats of this sound condition 

interleaved with 8 repeats of a silent „baseline‟ condition in an on-off stimulation paradigm. 

Both sound and silent conditions were presented for 32s, with a 2s inter-stimulus interval 

(ISI). A custom-built MR compatible system was used to deliver distortion-free sound using 

high-quality electrostatic headphones (Sennheiser HE60 with high-voltage amplifier HEV70). 

The headphones had been specifically modified for auditory fMRI (i.e., acoustically padded) 

to attenuate ambient scanner noise by approximately 30 dB. 

Imaging protocol  

Each of the functional runs acquired 66 T2*-weighted gradient echo echo-planar imaging 

(EPI) scans. Scans were positioned centrally and angled parallel to the STG (see Figure 

4.2). A single saturation band (rest slab thickness = 43mm, power = 2) was placed in the 

anterior position (front of head, outside FOV) to reduce aliasing and Nyquist artefacts 

(ghosts) from the eyes (Figure 4.2). This is because the eyes contain a high proportion of 

water which can cause Nyquist artefacts to arise because of the phase differences between 

gradients. These artefacts can manifest as reproductions of the eyes that have been shifted 

by half the field of view, for example a reflection of the eyes would appear around the middle 

of the brain in the STG. To avoid aliasing, the maximum Nyquist frequency to be identified is 

equal to one-half of the sampling rate. Each scan had 20 (2mm³ data) or 36 slices (3mm³ 

data) and no inter-slice gap. The matrix size for all 2mm³ scans was 168 x 168 x 40mm 

(reconstructed voxel size = 1.75 x 1.75 x 2mm, reconstructed matrix size = 96 x 96 x 

20mm). The matrix size for all 3mm³ scans was 80 x 80 x 36mm. Additional scanning 

parameters included a flip angle = 90˚ and a SENSE factor = 2 (to reduce image 

distortions). To reduce the impact of background scanner noise on stimulus evoked BOLD 



51 
 

changes, the time between successive scans (TR) was set to 8.5s (see Hall et al., 1999) 

and a SofTone factor of 2 was used to further attenuate scanner noise by approximately 9 

dB (Hall and Plack, 2009). Each run lasted approximately 10 minutes, with the total session 

running approximately 60 minutes.  

 

Figure 4.2. Anatomical scans showing the orientation (parallel to superior temporal plane) 

and slices implemented in Experiments 1 and 5. Panel A: Position of scans for 2mm³ scan is 

shown in red. Note that because the field of view at this resolution is smaller than the head, 

a saturation band (depicted as a blue rectangle) was placed at the anterior edge of the scan 

to reduce aliasing and Nyquist artefacts. Panel B: Position of scans for 3mm³ scan is shown 

in red. Note that because the field of view at this resolution extends beyond the head, no 

saturation bands were required. Position of scans 1.5mm³ prior to study 1 are not shown, 

but were the same as A). 

The functional study comprised four runs, manipulating voxel resolution and TE respectively: 

(Run 1) 2mm³ and 40ms, (Run 2) 2mm³ and 50ms, (Run 3) 2mm³ and 60ms, and (Run 4) 

3mm³ and 40ms.   

4.3.1.3 Analysis of fMRI runs 

Analysis of fMRI time series data typically requires a lot of spatial pre-processing and 

statistical analysis (for full description, see Section 3.5). Each functional run was pre-

processed and analysed separately using SPM8. Not all the analysis steps reported in 

Section 3.5 were necessary, and therefore only the following steps were undertaken: 

Spatial pre-processing: 

 Reorientation of the functional scans to ensure that they were all displayed in the 

same 3 dimensional brain space (i.e., in the same x, y and z plane) as the 

standardised MNI brain template (Evans et al., 1993). 

 Realignment to correct for any spatial mismatch of functional scans in the time series 

that occurred due to head movement during the experimental session. To reduce the 



52 
 

influence of head movement within and between runs (Friston et al., 1995) a rigid 

body transformation is applied to all images in the time series so that they are 

realigned to match a single reference image (i.e.,. the middle scan, scan #33). 

Acceptable amounts of translational and rotational head movements were limited to 

3mm and 3 degrees, respectively. These guidelines were taken from a comparable 

study (Paltoglou et al., 2009).  

 Spatial smoothing involves applying a Gaussian filter to the data, removing high 

frequency information and helping to increase SNR and sensitivity within the auditory 

cortex (Friston et al., 2000). The smoothing kernel parameters were 3.5 x 3.5 x 4mm 

full width at half maximum (FWHM) for the 2mm³ dataset, and 6 x 6 x 6mm FWHM for 

the 3mm³ dataset.  

Analysis of auditory activity: 

As previously described (Section 3.5.2.1), GLM estimation was used to model the BOLD 

signal change separately for each functional run. A design matrix specified which scans 

were acquired during the sound condition using a coding of „1‟ (present) and „0‟ (absent). 

The baseline condition was implicitly specified in the model. To eliminate low frequency 

artefacts, such as physiological fluctuations due to breathing and heartbeat, a high-pass 

filter cut-off of 136 s was applied. The appropriate value for the high-pass cut-off was 

calculated using the general rule of thumb formula based on Nyquist sampling theorem 

(Huetell et al., 2009): two times the TR period multiplied by the max number of scans 

between two repeated presentations of a condition (i.e., 2*8.5*8 = 136). The sparse 

sampling fMRI sequence used a relatively long TR (8.5 s) which ultimately meant the high-

pass cut-off was also correspondingly high (over 2 minutes). The trade-off of using sparse 

sampling is that a high filter does not remove much of the extremely low frequency temporal 

noise in the data. Despite the potential for more noise to be included in the signal, I did not 

anticipate that this would negatively impact the activation results to a significant degree. 

Using a fixed-effects analysis (Friston et al., 1999), the effect of „pitch sounds > silence‟ was 

computed with a one-sample T-test (p < .001, uncorrected, extent threshold = zero) 

separately within each functional run. As mentioned earlier, I had two criteria for determining 

the optimal TE for auditory fMRI: 1) BOLD contrast sensitivity, and 2) spatial specificity. The 

first stage of analysis allowed evaluation of BOLD contrast sensitivity by creating statistical 

activation maps for each run. This analysis is performed on each and every voxel but was 

not corrected for multiple comparisons here because it was judged to be too stringent for 

these pilot data. To facilitate further comparison between TEs for the 2mm³ functional runs, 

all three TEs were modelled collectively so patterns of activation using pairwise 

comparisons could be directly compared between runs (p < .001, uncorrected, extent 

threshold = zero; see Figure 4.3). This allowed evaluation of spatial specificity. 
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4.3.2 fMRI results 

4.3.2.1 Objective 1: Determining optimal TE from visual inspection of the BOLD 

fMRI activity maps   

Visual inspection of the four maps for sound-related activation (Figure 4.3A-D) revealed that 

scans acquired at 2mm³ using TE 40ms seemed to produce a relatively large spread and 

greatest magnitude of BOLD activity within auditory cortex. The peak of activity with the 

greatest t statistic was localised in the right hemisphere (x = 42, y = -20, z = 2mm, t = 19.77; 

see Figure 4.3A).  

For the other two runs acquired at 2mm³, TE 50ms yielded greater activity (peak at x = 41, y 

-20, z = 2mm, t = 9.94) than TE 60ms (peak at x = 41, y =- 21, z = 0, t = 9.12), but the 

spread of activity for TE 60 was visibly larger and more distributed. Note the smaller t 

statistic values for these two runs (see Figure 4.3B and 4.3C). 

Scans acquired using a 3mm³ voxel resolution (TE 40ms; Figure 4.3D) showed the largest 

spread of activity approximately located in auditory cortex (peak at x = 43, y = -25, z = 4mm, 

t = 17.28). The peak t statistic value for the 3mm³ (TE 40ms) scans was slightly lower than 

those obtained for the corresponding 2mm³ TE 40ms run.  

 

Figure 4.3. Activation maps for ‘sound versus silence’ contrasts (p < .001, uncorrected) for 

each functional run overlaid onto a T2*-weighted functional scan for 2mm³ TE 40ms (x = 
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0.32, y = 0.02 and z = -1). A = 2mm³ TE 40ms (peak cluster size = 1062 voxels), B = 2mm³ 

TE 50ms (peak cluster size = 429 voxels), C = 2mm³ TE 60ms (peak cluster size = 607 

voxels), and D = 3mm³ TE 40ms (peak cluster size = 401 voxels). Note neurological 

convention left = left, which is also the case for all figures in this chapter unless otherwise 

stated. Coloured bar represents range of t statistic values. 

The „sound versus silence‟ pairwise comparisons for each of the three different TE values 

assessed at 2mm³ are shown in yellow in Figure 4.4. The pairwise comparisons between 

the three different TE values assessed at 2mm³ are also shown below in red. For example, 

panel A shows where there is statistically greater activity in the TE 40ms and TE 50ms runs 

(red), relative to the underlying activity for TE 50ms  „sound versus silence‟ contrast alone 

(yellow). Although the two TE runs detect broadly equivalent activity across auditory cortex, 

there is significant differential activity (40>50ms, shown in red) localised to the right lateral 

part of HG, most likely in both gray and white matter. Personal communication with physicist 

and fMRI expert Dr Sue Francis (Sir Peter Mansfield Resonance Centre, University of 

Nottingham, 12
th
 April 2012) confirmed that the peak of activity from the TE 40 run was likely 

to be attributable to nearby lying veins (using specialist software). Other studies using 

gradient echo acquisitions also report that pial signal and its veins give the strongest BOLD 

contrast sensitivity (e.g., Zhao, Wang, & Kim, 2004). 

The direct contrast between 40 and 50ms is displayed in panel B, where statistically greater 

activity in the TE 50ms run compared to TE 40ms run is shown in red. Although there are a 

few voxels that reach statistical significance, this comparison yields no differential activity in 

auditory cortex and therefore does not represent any functional importance.  

Figures 4.4C and 4.4D show the direct comparisons between the 50ms and 60ms TE runs. 

Both panels show that although there are some voxels that reach statistical significance, 

these are scattered across the slice and lie primarily outside auditory cortex (blue arrows in 

Figure 4.4 highlight examples). Such differential activation is most likely attributable to 

random noise (i.e., false positive errors) given that we did not correct for multiple 

comparisons here, and therefore have no functional relevance. Specifically comparing the 

spread of activity between „sound versus silence‟ and TE 60ms > TE 50ms in panel C, 

revealed that, relative to the TE 50ms run, TE 60ms  exhibited significantly greater „random 

noise‟ activity outside of auditory cortex. This is further illustrated in panel D, where the 

direct contrast reveals comparable less activity outside of the auditory cortex for the TE 50 

ms compared to TE 60ms run.  

Given that the likely sources of differential activity for TE 40ms (veins) and TE 60ms 

(random noise) lie outside auditory cortex implies that the TE 50ms run had the greatest 

spatial specificity to auditory activation overall. 
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Figure 4.4. Difference maps for ‘sound versus silence’ contrasts from direct pairwise 

comparisons between TE values. Difference maps are shown in red (p < .001, uncorrected). 

For comparison, the underlying effect of a single ‘sound versus silence’ contrast measured 

for one TE value is shown in yellow. Activity is overlaid onto the corresponding slice of a T2* 

functional scan. The figure conforms to neurological convention where left = left. Blue 

arrows depict random noise.  

4.3.3 Summary 

Overall these results show that the TE 40ms run detects the most significant sound-related 

activity in the auditory cortex when using a 2mm³ voxel resolution (hence greatest BOLD 

contrast sensitivity), but the peak of activity in the right is most likely coincidental with a large 

draining vein than with gray matter neural activity (hence reduced spatial specificity). This 

evidence therefore suggests that TE 50ms might be a better choice of TE with a 2mm³ voxel 

resolution, given that this TE value had the second highest BOLD contrast sensitivity and 

greatest spatial specificity. Nevertheless, further validation work is needed to lend weight to 

this decision. 

4.4. Experiments 2 and 3: calculating optimal TE in human auditory 

cortex at rest 

As discussed in Section 3.2.3, the greatest BOLD signal changes are known to occur when 

TE is approximately equal to T2* in a given ROI as these parameters are influenced by the 

tissue properties of the brain regions being scanned. Methods are available for quantifying 
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A 
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the average T2* value for tissue within a particular ROI in order to provide an objective 

estimate of the optimal TE. Experiments 2 and 3 achieved this by acquiring a series of 2mm³ 

T2*-weighted functional scans at a series of TE values (Experiment 2: 26-50ms, and 

Experiment 3: 30-80ms) in two participants. A wide range of TE values were used (26-80 

across Experiments 2 and 3) to obtain a better estimate of the T2* values across our ROIs, 

whereby using more data points enabled a more reliable estimate of the noise window (by 

providing a better measure of the standard deviation).  

Experiments 2 and 3 involved a partial factorial design in which conditions were not 

repeated identically across the two participants, or across voxel resolutions. Experiment 2 

assessed a relatively small range of TE values (26-50ms) used in published auditory fMRI 

studies (Garcia et al., 2010; Warren et al., 2003) with a 2mm³ voxel resolution. This is 

because Experiment 1 results showed that this resolution had the greatest BOLD contrast 

sensitivity. Experiment 3 assessed a much broader range of TE values (30-80ms) in order to 

re-estimate T2*, across 2mm³ and 3mm³ resolutions. Plotting the MR signal across a 

broader range of TE values provides a more reliable estimate of T2*, and hence more 

weight was placed on the results of Experiment 3 in deciding the optimal TE. Two different 

analysis methods were used; manual calculation of T2* relaxation values and T2*-weighted 

mapping. 

4.4.1  Methods 

4.4.1.1 Participants 

The participant for Experiment 2 was a right-handed (Oldfield, 1971) female (#02: 24 years 

old). She reported no history of neurological, psychological, hearing impairment, use of 

medication or substance misuse. Hearing thresholds for participant #02 were identified to be 

within normal range (≤ 25 dB HL) for standard audiometric frequencies (250 to 8000 Hz). 

The participant gave written informed consent prior to scanning. Participant (#01) that took 

part in Experiment 1 also participated in Experiment 3 (see Section 4.3.1.1 for details). 

4.4.1.2 Stimuli and task  

All measures were made at rest and so throughout the scanning session each participant 

was only required to lie still in the bore of the MR scanner in the absence of any sound 

stimulation.  

4.4.1.3 Imaging protocol  

Scanning sessions for participants #01 and #02 were conducted on different days and 

lasted approximately 60 minutes each. The imaging protocol for Experiments 2 and 3 varied 

slightly, but unless otherwise stated the scanning parameters were the same as those 

reported in Experiment 1. 
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For Experiment 2, a series of 26-sliced T2*-weighted EPI gradient echo scans using a TR = 

8 s were acquired at 2mm³ across a range of TEs (26, 30, 35, 40, and 50ms). The acquired 

voxel and matrix size for Experiment 2 was the same as Experiment 1, but the reconstructed 

voxel and matrix size was slightly different (1.5 x 1.5 x 2mm and 112 x 112 x 20mm, 

respectively). This does not affect study results or interpretation. Two sets of scans were 

acquired for each TE and were averaged for T2*-weighted mapping only.  

For Experiment 3, a series of T2*-weighted EPI images were also acquired at 2mm³ and 

3mm³ voxels resolutions across TEs (30, 40, 50, 60, 70, and 80ms) using the same TR as 

Experiment 2. Again, two sets of scans were acquired for each TE and were averaged for 

T2*-weighted mapping.  

4.4.1.4 Analysis of T2*-weighted images  

Spatial pre-processing   

Co-registration was implemented for Experiment 3 only, ensuring both 2mm³ and 3mm³ 

datasets were spatially comparable. Co-registration maximised the mutual information 

between the 2mm³ and 3mm³ scans by adjusting the 2mm³ scans to fit the same 3mm³ brain 

space (MNI; Evans et al., 1993). This meant the same ROI could be implemented during 

analysis in order to compare T2* values accordingly. For the manual calculation of T2* 

relaxation values, coregisteration of the 2mm³ to 3mm³ TE series was conducted prior to T2* 

quantification. For T2*-weighted mapping, coregisteration of the TE data series from 2mm³ 

to 3mm³ was conducted after both T2*-weighted maps had been created 

 Quantifying the T2* relaxation values and calculating optimal TE in different auditory 

ROIs  

MRIcro software was used to create ROIs which were used to select specific voxels for MR 

signal quantification and analysis. In Experiment 2, three ROIs within the auditory cortex 

were manually drawn based on the T2*-weighted functional scan at TE 26ms for participant 

#02 (see Figure 4.5).  

T2* values in three different types of auditory ROIs were quantified. ROI #1 was restricted to 

the gray matter along bilateral HG (391 voxels) to ensure that any potential contribution of 

veins was excluded from the T2* estimates. Wald's (2012) recent review discusses the 

importance of reducing pial vein contamination by limiting the analysis to voxels which did 

not directly encroach the pial border. ROI #2 was larger and included both gray and white 

matter around HG and the anterolateral parts of PT (729 voxels). ROI #3 was larger still and 

included the STG (4559 voxels). Within each ROI, a bespoke MATLAB script was used to 

calculate mean signal intensities across the TE series.  
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There was no specific directional hypothesis about how the T2* relaxation values and 

optimal TE would vary across these different focal regions. However, based on the previous 

published evidence, it would be expected that pitch-related activation should map most 

closely onto ROI #2 around HG (see Hall and Plack, 2009). Hence, more weight was placed 

on the results for ROI#2 in deciding the most optimal TE.  

 

Figure 4.5. Illustration of the three ROIs overlaid onto a slice acquired for participant #2 (TE 

= 26ms, central slice z = 9mm, scan 1). Display follows radiological convention, left = right.  

For Experiment 3, a new ROI was manually drawn because participants #01 and #02 had 

visible individual differences in cortical morphology. For quantification of T2* relaxation, only 

one ROI was used because it specifically focused around HG as did previous maps of pitch-

related activation (see Hall and Plack, 2009). The ROI was similar in size (559 voxels) and 

shape to ROI #2 in Experiment 2 and extended across the gray and white matter.  The ROI 

was manually drawn from the 2mm³ scan at TE 30ms that had been co-registered to 3mm³ 

average scan (TE 30ms; see Figure 4.6). 
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Figure 4.6. Graph illustrating 2mm³ functional data that were co-registered to the 3mm³ data 

so that the same ROI could be applied. Display follows radiological convention, left = right. 

Two slices are chosen through the ROIs. 

 Estimating T2* relaxation values: manual calculation  

Recall that the T2* relaxation value in a given ROI is approximately equal to the optimal TE. 

To estimate the T2* relaxation values (i.e., where *2/

0)( TteSTES  ) we used the following 

formula: T2* = -1/gradient ~ optimal TE = *)2/(ln 0 TTES  , where S refers to the signal, 

and S0 refers to the signal strength or intensity immediately following the RF pulse. For any 

given brain region, the T2* relaxation value is the reciprocal of the slope of the regression 

line (y = ax+b; where a is the gradient and b is the intercept) plotted through the natural 

logarithm (LN) of the mean signal intensity within the ROI (see Results, Section 4.4.2). 

 Estimating T2* relaxation values: T2*-weighted mapping   

Advice from Drs Francis and Mullinger at the Sir Peter Mansfield Magnetic Resonance 

Imaging Centre suggested using an alternative „automated‟ approach to estimate T2* 

relaxation values across ROIs. This involved fitting T2* curves to a given data series to 

obtain a weighted map of T2* first, and then averaging over each ROI. This method 

computes T2* separately for each voxel, concatenating the data series to fit a linear 

regression to the plot of the LN of the MR signal collapsed across TEs (Clare et al., 2001).  

T2*-weighted mapping is considered to be better at estimating optimal TE, than previously 

described manual calculations, for two main reasons. First, it weights data at earlier TEs 

(e.g., 30ms) higher than at later TEs (e.g., 80ms). This takes into account the fact that the 

MR signal at later TEs may be approaching or superimposed by the noise window because 

it has much lower intensities as a result of the decay in transverse magnetisation. Second, 

once the T2*-weighted maps are created they can be easily thresholded to exclude voxels 

with a T2* and/or noise intensity above a given value, to account for the unwanted 
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contribution from CSF or noisy data. This prevents CSF and noise dominating, and hence 

skewing, the T2* average measures. 

Only a handful of auditory fMRI studies have implemented this TE optimisation method, 

because it typically requires specialist expertise and software to complete (see Clare et al., 

2001). In this case, Dr Francis used some in-house software to create a single T2*-weighted 

map for each TE data series acquired in Experiments 2 and 3. I was then able to apply 

thresholds to exclude selected voxels and ROI masks to calculate the optimal TE for a given 

ROI. Both T2*-weighted maps were thresholded to exclude voxels with a noise intensity 

value of above 500. Furthermore, T2* values greater than 200 (Experiment 2) or 150 

(Experiment 3) were set to zero to account for CSF. In each case, the cut off for CSF was 

manually selected according to the dynamic range of the voxel intensities across the whole 

head.  

4.4.2 Results 

4.4.2.1 Objective 1: Determining optimal TE from manual calculations of T2* 

relaxation estimates  

The MR signal intensity decreased with increasing TE in a linear manner (Figure 4.7A). The 

data were highly replicable across scans 1 and 2 in each time series and did not vary 

markedly across the different auditory ROIs. The R² values obtained for the linear 

regressions were extremely high in all cases indicating a good fit to the data.  
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Figure 4.7. Graph showing the manual calculation of optimal TE across ROIs in Experiment 

2 and 3. Panel A depicts 2mm³ data series from Experiment 2 plotted over TE for scans 1 

and 2 and for each ROI. Panels B and C respectively illustrate the co-registered 2mm³ and 

3mm³ data series from Experiment 3 for one ROI plotted as a function of TE. For each 

panel, the line of best fit and R² (goodness of fit) has been plotted through LN of the mean 

signal intensity across the range of TEs. 

For Experiment 2, the estimated T2* relaxation values for the different ROIs were 61.35ms 

(ROI #1), 56.18ms (ROI #2), and 56.50ms (ROI #3), with an average fit of T2* across all 

three ROIs of 57.80ms (see Figure 4.7A). Given that most weight should be placed on the 

findings from the ROI based around HG and the anterolateral parts of PT (ROI#2 for 

Experiment 2, and the ROI for Experiment 3), these results for the manual calculation 

support an optimal TE of around 56ms for data acquired at a high 2mm³ resolution. This 

figure is based on averaging results across ROIs (i.e., ROI#2 for Experiment 2, and results 

from the only 2mm ROI in Experiment 3) i.e., 56.50+55.25/2 = 55.87. Note that these results 

are similar to the optimal TEs reported by Paltoglou et al. (2009; i.e., TE 55-60ms). 
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4.4.2.2 Objective 1: Determining optimal TE from T2*-weighted mapping  

Experiment 2 (2mm³) results confirmed those from the manual calculation, with an optimal 

TE of around 58ms. For Experiment 2, when ROIs #1-3 were applied to the T2*-weighted 

map, they yielded a T2* mean estimate of 63.46ms, 60.17ms, and 59.59ms, respectively 

(average = 61.07ms; data not shown). For Experiment 3, T2*-weighted maps gave a T2* 

mean estimate of 54.96ms and 53.15ms, for 2mm³ and 3mm³ voxel resolutions respectively 

(data not shown). Again, the range of estimated optimal TE was quite narrow across the 

three ROIs.  

4.4.2.3 Objective 2: Determining optimal voxel size from calculations of T2* 

relaxation estimates  

Again, the MR signal intensity decreased with increasing TE in a linear manner (Figure 

4.7A). The data were highly replicable across scans 1 and 2 in each time series and did not 

vary markedly across the different auditory ROIs. The R² values obtained for the linear 

regressions were extremely high in all cases indicating a good fit to the data. For 

Experiment 3, in the single auditory ROI, the estimated T2* relaxation values for the 2mm³ 

series was 55.25ms, and for 3mm³ series it was 52.63ms (see Figures 4.7B and 4.7C, 

respectively). Again, the range of estimated optimal TE was quite narrow across the two 

voxel resolutions. 

4.5. Conclusion 

To arrive at one optimal TE, findings from Experiments 1-3 were drawn together to ensure I 

chose a TE that optimised BOLD contrast sensitivity whilst still maintaining spatial 

specificity. An intermediate TE value of 50ms was chosen for the subsequent fMRI study, as 

this value fell approximately in the middle of TE 40 and TE 57ms. This decision was 

primarily driven by the auditory fMRI results in Experiment 1 showing good BOLD activation 

that was less influenced by veins and random noise.  
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Chapter 5. Re-examining the neural representation 

of pitch and pitch salience in auditory cortex 

5.1. Introduction 

This chapter describes Experiments 4 and 5 which were particularly interested in 

investigating the third pitch criterion, „covariation with pitch salience‟ (see Section 1.3), in 

addition to the first pitch criterion of pitch selectivity. This is because there has been variable 

support for pitch salience sensitivity in cortical and subcortical areas of the auditory system 

(see Section 2.4.3; Barker et al., 2011, 2013; Bendor & Wang., 2010; Griffiths et al., 2010; 

Hall & Plack, 2009; Krumbholz et al., 2003; Norman-Haignere, Kanwisher, & McDermott, 

2013; Penagos et al., 2004; Kumar et al., 2011; Soeta, Nakagawa, & Tonoike, 2005). 

Despite Penagos et al. (2004) using well-controlled stimuli, there are a number of notable 

limitations to the original study that need to be addressed. The fMRI work in the present 

chapter describes attempts to address some of these limitations to re-examine the evidence 

for pitch salience sensitivity in the auditory cortex. 

5.1.1 Conflicting evidence for a representation of pitch salience 

Penagos et al. (2004) conducted a seminal fMRI study to investigate whether there is a 

neural representation of pitch salience in human auditory cortex and/or midbrain. 

Determining this is important because it has been long associated as an essential variable 

for improving listener‟s ability to make pitch discriminations (Houtsma & Smurzynski, 1990).  

To date, it is one of very few fMRI studies that have successfully addressed pitch salience 

using non-confounding stimuli, such as IRN, that were well controlled for F0 and spectral 

dimensions, as well as temporal regularity. Specifically, they used harmonic complex tones 

with low or high F0s that were filtered into low and high frequency bands to create strong 

(resolved harmonics) and weak (unresolved harmonics) pitch salience conditions, but where 

the temporal regularity was always fixed (i.e., the number of waveforms that repeated over 

time were the same for all conditions). The study purported to find a region in the anterior 

non-primary auditory cortex (i.e., the anterolateral HG) sensitive to pitch salience. These 

effects were still significant after controlling for F0 and frequency differences. This region 

has been long implicated in the processing of pitch or a possible „pitch centre‟ (Bendor & 

Wang, 2005, Bendor & Wang, 2010; Griffiths et al., 1998, 2001; Patterson et al., 2002; 

Krumbholz et al., 2003; Kumar et al., 2011; Norman-Haignere et al., 2013; Puschmann et 

al., 2010; Warren et al., 2003), providing some support that neurons processing pitch and 

pitch salience are located within the same focal region.  

fMRI work (previously described in Section 2.5) by Hall and colleagues have challenged this 

claim (see Hall & Plack, 2009; Barker et al., 2011), failing to find any evidence supporting a 
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representation of pitch salience in auditory cortex, but rather finding evidence for distributed 

pitch processing over a number of auditory areas (but see Barker et al., 2013; Norman-

Haignere et al., 2013). This was further corroborated by Barker et al. (2011), who 

investigated whether fMRI activity covaried as a function of pitch salience. Pitch salience 

was parametrically varied along three levels (strong, medium and weak pitch salience) for 

two different types of pitch-evoking stimuli (i.e., pulse trains and unresolved complex tones). 

These differing levels of pitch salience were confirmed in psychophysical measures in the 

same 16 listeners, using a 3 alternative forced-choice, two-down, one-up, design, with an 

adaptive procedure that targeted 70.7% performance (task: in which interval was the pitch 

higher?). They found no evidence of a neural representation of pitch salience in auditory 

cortex (i.e., a decrease in activity was observed for increasing pitch salience). They did, 

however, localise the majority of pitch related responses to PT.  

More recent fMRI evidence from Norman-Haignere et al. (2013) found that pitch-sensitive 

regions in more anterior areas of auditory cortex (i.e., anterolateral HG and PP) showed 

greater pitch-related activation to resolved harmonic compared with unresolved harmonic 

complex tones, providing evidence in favour of pitch salience sensitivity.  

It should be noted that there are a number of differences between these fMRI studies, 

mostly relating to the type of stimuli used. For instance, Hall & Plack (2009) used a similar 

pitch-evoking stimuli (resolved and unresolved) but in a fixed pitch sequence, attributing the 

majority of pitch related activity to PT, and not HG. Barker et al. (2011) also used a fixed 

pitch sequence (reported above). Findings from Patterson et al. (2002) suggest that the 

location of pitch related activity may be influenced by the stimulus presentation context. 

Specifically they reported more anterior pitch activity in PP and STG when melodic pitch 

sequences were used compared with fixed pitch sequences. Penagos et al.‟s (2004) stimuli 

were more melodic where the pitch varied across a narrow range (as were Norman-

Haignere et al., 2013), compared with Hall & Plack (2009) and Barker et al. (2011), which 

might be one explanation for the differential patterns of activation and inconsistencies within 

the literature (see limitations of cognitive subtraction, Section 3.4.1). Specifically, given that 

Penagos used melodic sequences, more anterior activation might have been observed, 

however this was not addressed in their analyses. 

5.1.2 Limitations of Penagos et al. (2004) 

Despite Penagos et al.‟s (2004) promising findings, there are notable grounds that motivate 

replication of their study. The study obtained imaging data from a small number of 

participants (i.e., 5 listeners), which did not permit more rigorous RFX group analysis. As a 

guide, Desmond & Glover (2002) found that for a liberal threshold of p < .05, approximately 

12 subjects are required to achieve 80% statistical power at the single voxel level for typical 

activations (however this sample size is contentious; see Button et al., 2013; Friston, 2012; 

Friston et al., 1999). A second weakness of the previous work was that they used relatively 
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unconventional fMRI analysis techniques that displayed individual activation maps on 

inflated brain views for each listener, which further obviated any form of group-based 

statistics. High inter-subject variability was also evident, where exact locations purportedly 

sensitive to pitch salience were considerably different across listeners. Although this is a 

problem that arises in many fMRI studies (see Bendor, 2012; Griffiths & Hall, 2012), the lack 

of group-based statistics makes it impossible to determine the degree of commonality in 

activation across listeners. Although individual analysis provides valuable information about 

fixed-effects within participants, group data are necessary to address a number of more 

generalisable hypotheses. Moreover, for individual subjects the statistical threshold was 

extremely lenient and thus made their findings much more susceptible to type 1 errors. 

Lastly, no perceptual ratings of pitch salience were obtained for their stimuli to confirm their 

perceptual pitch salience (subjective or otherwise). 

Subsequently, a pitch salience rating task (Experiment 4) and an fMRI study (Experiment 5) 

aimed to re-examine the neural representation of pitch and of pitch salience in auditory 

cortex by using the same stimuli and a study design informed by Penagos et al. (2004), in 

collaboration with one of the original authors (Prof. Andrew Oxenham). To address some of 

the aforementioned methodological issues surrounding the original paper, novel aspects of 

the current experiments included recruiting a large number of participants (Button et al., 

2013), and thus allowing sufficient data to conduct more conventional group-based analyses 

(e.g., ROI analysis, and incidence „probability‟ mapping), as well as using corrected statistics 

(where appropriate), a higher field scanner and a 32-channel head coil for improved SNR, 

and optimised TE. Although the fMRI experiment constituted the main study in this chapter, 

subjective ratings of pitch salience were obtained beforehand in the same listeners for the 

same stimuli. 

5.1.3 Objectives and hypotheses 

The research objectives and hypotheses were as follows: 

Objective 1) Where in auditory cortex is there greater activity for pitch-evoking sounds than 

for noise controls? To address the pitch criterion 1 (pitch selectivity) there should be 

significantly greater auditory cortical activity (and higher behavioural ratings) for pitch-

evoking sounds than for their spectrally matched noise control.  

Objective 2) Is there sensitivity to pitch salience located in auditory cortex, and it is co-

localised with the pitch-related response? To address pitch criterion 3 (covariation with pitch 

salience) there should be significantly greater auditory cortical activity (and higher 

behavioural ratings) for strongly pitch salient than weakly pitch salient conditions. 

Objective 3) In addition to replication of the same questions that motivated Penagos and 

colleagues, the impact of the melodic sound sequence was also explored (see Patterson et 
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al., 2002). Given that the sound sequences used contained random changes in pitch (which 

are inherently more melodic) does this stimulus context promote a right hemisphere 

preference?  Melodic sequences should engage right hemisphere processing more than the 

left hemisphere, and activity should extend more anteriorly. For this objective, analysis was 

restricted to only looking at those auditory brain regions reported by Patterson et al. (2002), 

specifically the lateral HG, PP and PT.  

5.2. General methods and materials  

5.2.1 Listeners  

A total of 18 right-handed listeners (#01-#18) participated in both the behavioural 

(Experiment 4) and fMRI (Experiment 5) phases of the experiment (9 male, 9 female; Mage = 

23.94, SD = 5.98, age-range = 19-42 years). The laterality quotient (LQ; Oldfield, 1971) for 

listeners was +93% (Decile R.8), where values between +75 and +100 indicated extreme 

right handedness. A medical and musical screening questionnaire, the Edinburgh 

Handedness Inventory (Oldfield, 1971) and a hearing test assessed the eligibility of 

participants (described in the experiment-specific procedure Section 5.3.2 below). These 

three screening measures were also used throughout experiments described in Chapters 8 

and 9. All participants reported normal or corrected-to-normal vision, and had clinically 

normal hearing (≤25 dB hearing thresholds for audiometric frequencies between 250-8000 

Hz). No listeners reported a history of hearing, neurological, and/or psychological 

impairment, nor use of psychiatric medication or substance misuse. Four listeners (#05, 

#07, #08 and #16) were formally musically trained on the clarinet, drums, keyboard and 

piano, achieving grades 3-7 across 5-25 years. Seven listeners (four of whom were not 

musically trained; #02, #05, #08, #09, #13 #14, and #16) reported informal musical 

experience on the bass guitar, guitar, keyboard and piano, gained over 2-3 years.  

Nine subjects (#19-27, not reported above) were excluded or withdrew from Experiment 5. 

One listener was excluded from the fMRI study because their hearing thresholds were too 

high (i.e., ≥25 dB HL). The other listener was excluded because they had metal body 

adornments that could not be removed for scanning. The remaining seven listeners, 

although eligible, failed to arrange an appropriate date to participate in the next stage 

(withdrawn). Listeners gave written informed consent, and the experiment was approved 

and performed in accordance with the College Research Ethics Committee (ethics code 

2011/46), Nottingham Trent University, and the Medical School Research Ethics Committee, 

University of Nottingham (ethics code I12012012).  
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5.2.2 Stimuli  

 

Figure 5.1. A Fast Fourier Transform of the six sound conditions used for Experiments 4 

(active listening ratings task) and 5 (fMRI passive listening task), shown on a logarithmic 

scale. 

The stimuli and conditions for the ratings task for Experiment 4 and the fMRI listening task 

for Experiment 5 were identical to those used in Penagos et al. (2004; see Figure 5.1). Pitch 

conditions were comprised of a 32s sequence of harmonic complex tone bursts that varied 

in pitch and were embedded in a background of continuous noise. The four pitch conditions 

were created by filtering harmonic complex tones into high and low spectral regions to 

create stimuli with strong pitch salience (conditions 1, 3, and 4), and weak pitch salience 

(condition 2). Complex tones used in conditions 1 and 2 (resolved and unresolved, 

respectively) were created by band-pass filtering harmonic tones with F0s between 80 and 

95 Hz into low (340-1100 Hz) or high (1200-2000 Hz) spectral regions, respectively (see 

Penagos et al., 2004). Complex tones used in conditions 3 and 4 (both resolved) were 

created by band-pass filtering harmonic tones with F0s between 240 and 285 Hz into the 

same low and high spectral regions, respectively (see Penagos et al., 2004). This yielded 

four conditions that varied in resolvability and hence perceived pitch salience (3 strong, 1 

weak), but were controlled for temporal regularity (i.e., the number of waveforms that 

repeated over time were the same for all conditions). The pitch conditions were therefore 

comprised a series of tonal sounds that gave rise to a random melody sequence. Low 

frequency Condition 1 approximately (depending on combination of F0s) included 

predominantly resolved harmonics 4, 5, 6, 7, 8, 9, 10, 11, and 12.  Low frequency Condition 

3 approximately (depending on combination of F0s) included resolved harmonics 2, 3 and 4. 

High frequency Condition 2 included approximately (depending on the combination of F0s) 

unresolved harmonics 15 16, 17, 18, 19, 20, 22, 22, 23, 24 and 25. High frequency 

Condition 4 included approximately (depending on the combination of F0s) resolved 

harmonics 5, 6, 7 and 8. To control for spectral differences between pitch conditions, two 
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additional noise conditions (no pitch salience; 12 KHz wide-band white noise) were filtered 

into the same low and high spectral regions as the pitch conditions (conditions 5 and 6, 

respectively). Both pitch and noise conditions were presented as 300ms bursts (with 10ms 

cosine onset and offset ramps) at a rate of 1.67 per s within a 32s sound sequence. A 

continuous Gaussian wide-band background noise masker was embedded in all of the pitch 

stimuli at approximately 20 dB above their masked threshold to mask distortion products 

(estimated by Penagos et al. (2004) from their pilot psychophysical data) (fulfilling the fourth 

pitch criterion, „accounting for confounding‟ variables; see Section 1.4).  All sounds were 

originally sampled at 24 kHz, but were resampled to 20.05 KHz for stimulus presentation. All 

filtering used a 256 point Hanning window in the frequency domain, and cut-off frequencies 

were determined by the point at which the filter gain was attenuated by 6 dB (see Penagos 

et al., 2004).  

5.2.3 Procedure and Design 

All 18 participants took part in both screening and behavioural (Experiment 4) and fMRI 

listening (Experiment 5) tasks. Participants‟ completion of Experiment 4 always preceded 

Experiment 5, and generally on a different day (i.e., between 2-4 weeks depending on 

participant availability). All participants for the current studies, as well as for all subsequent 

experiments, were recruited via Nottingham Trent University‟s online Research Participation 

Scheme or via email. Both experiments took approximately 2 hours in total. Participants 

were awarded psychological research credits based on their length of participation (i.e., 

awarded 1 credit per 10 minutes of participation, where appropriate). 

5.3. Experiment 4: Ratings of pitch salience  

5.3.1 Stimuli  

The same sound stimuli and conditions were used in Experiment 4 as for fMRI sequences in 

Experiment 5 and Penagos et al. (2004). This was to ensure that the sound context was the 

same. However, to aid listeners in the ratings task, reference stimuli were created in Adobe 

Audition (version Cs6, Adobe Systems Incorporated) using the same high and low F0s as in 

Experiment 5 and Penagos et al. (2004). The pitch reference stimuli were therefore 

comprised to match the pitch conditions as closely as possible (i.e., a series of tonal sounds 

that gave rise to a random melody sequence). For the low F0 reference sound, F0s between 

80-95 Hz were used (i.e., 80, 82.5, 85, 87.5, 90, 92.5, and 95 Hz). For the high F0 reference 

sound, F0s between 240-285 Hz were used (i.e., 240, 245, 250, 255, 260, 265, 270, 275, 

280, and 285 Hz). Tones were 300ms in duration (with 5ms onset and offset ramps), and 

were randomly combined together and interleaved with 300ms of silence (i.e., 10 random 

repetitions of nominal F0s and 10 repetitions of silence) to create two melodic-like 

sequences (i.e., 6 s in duration) which were comparable to the experimental stimuli but had 

no background noise (i.e., one low F0 reference sound, and one high F0 reference sound).   
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5.3.2 Procedure and Design 

Experiment 4 was completed in a sound attenuated booth at Nottingham Trent University. 

Part-way through testing, the booth become no longer available due to on-going building 

works, and so a small number of participants had to be tested in a quiet room at Nottingham 

Trent University. This also extended to all studies that followed the present chapter. 

However, ambient noise was not anticipated to affect the results for the rating task as 

listening was conducted at suprathreshold levels. Nevertheless audible thresholds during 

screening may have been affected by ambient noise, but not to a significant degree. All 

psychophysical measures were conducted on 17 inch MacBook Pro laptop computer using 

a Windows 7 professional operating system. Listeners were positioned approximately 60 cm 

from the centre of the computer screen. A high-fidelity sound card delivered stimuli 

binaurally using Sennheiser HD-280 circumaural headphones. Sound level was measured 

prior to testing using a Brüel & Kjær 4231 Sound Calibrator, affixed with a Brüel & Kjær 

2250 Sound Level Meter, Brüel & Kjær 4153 artificial ear, and Brüel & Kjær 4192 Half Inch 

Microphone. Sound pressure levels were calibrated for the MacBook Pro laptop computer 

using the “LAF” setting, which simulates hearing in a real listener whilst presenting a 1 kHz 

tone at maximum amplitude, and measuring dB sound pressure level (SPL) outputs for the 

left (117.3 dB SPL) and right (118.6 dB SPL) side of the headphones. The sound level on 

the laptop was then attenuated to present sounds over headphones at an overall level of 70 

dB SPL. 

Participants first completed an experimental consent form as well as three screening 

measures. The „medical and musical screening‟ questionnaire asked a series of questions 

relating to health and hearing history, as well as previous musical experience. The 

Edinburgh Handedness Inventory (Oldfield, 1971) assessed listener‟s handedness and 

degree of right handedness, whereby LQ values between +75 and +100 indicated extreme 

right handedness. Participants who did not meet any of the exclusion criteria identified from 

the screening questionnaires then completed a hearing test. A hearing test ensured 

listener‟s hearing thresholds were within normal range (≤25 dB HL). Hearing screening 

reported here, and throughout the thesis, were conducted using bespoke software known as 

Earlab (i.e., not a clinical audiometer; provided by Prof. Chris Plack). Specifically, the 

hearing test required participants to listen to two observation intervals (time periods) and 

indicate in which interval they heard a sound, pressing buttons 1 or 2 accordingly. Each ear 

was tested separately at audiometric frequencies between 250 and 8000 Hz. 

The main purpose of Experiment 4 was to obtain perceptual ratings in the same subjects 

who participated in the following fMRI study and to confirm that the ratings corresponded to 

the expectation of Penagos et al. (2004) that condition 2 was perceived as a weak pitch, and 

conditions 1, 3 and 4 were a strong pitch. Participants were firstly asked to listen to a 

reference sound for a given block to give them an indication of what a highly salient pitch 
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stimulus sounded like. Reference sounds represented 10 on the rating scale (the most 

salient pitch stimulus). For conditions 1, 2 and 5 the corresponding low F0 reference sound 

was used (block 1), and for conditions 3, 4, and 6 the corresponding high F0 reference 

sound was used (block 2). Participants were then required to listen to the three experimental 

sounds for a given block and individually rate how salient the pitch was relative to the 

reference sound for the corresponding F0. Participants recorded their responses on the 

answer sheet provided by placing a tick under the number that corresponded to how salient 

they thought the experimental sequences were, from 0 (i.e., no pitch) to 10 (i.e., very salient 

pitch). Participants listened to a random version of each experimental condition, where each 

stimulus was presented three times (i.e., total of six blocks) to obtain an average rating for 

each condition. Participants always completed blocks 1 and 2 in the same alternating order 

(i.e., 1, 2, 1, 2, 1, and 2). Experiment 4 took approximately 1 hour in total for each listener. 

Upon completion, participants were granted the appropriate research credits. 

5.3.3 Statistical Analysis 

The average rating for each condition was subjected to 2 x 3 repeated measures ANOVA. 

The first factor related to the spectral property of the pitch stimuli (Frequency: low or high 

frequency band), whilst the second factor related to the pitch percept (Pitch: low pitch, high 

pitch, no pitch). To determine an effect of pitch salience, whether the interaction term 

between spectral frequency and pitch was significant was of particular interest here. Based 

on the hypotheses outlined previously, it was expected that conditions that had a more 

salient pitch (conditions 1, 3 and 4) would be rated higher than conditions that had a weaker 

pitch salience (condition 2), or no pitch salience at all (conditions 5 and 6), fulfilling the 

„covariation with pitch salience‟ (Objective 2) and „pitch selectivity‟ criteria (Objective 1). A 

significance level alpha criterion of p < .05 was used. All post hoc paired sample t-tests were 

Bonferonni corrected to control for multiple comparisons. If Mauchly's test of sphericity was 

violated a Greenhouse-Geisser correction was used.  

Here, and throughout this thesis, difference-adjusted Cousineau-Morey 95% confidence 

intervals were calibrated, specifically for the repeated-measures ANOVA designs used, so 

that the absence of an overlap accurately reflected a confidence interval for a difference 

between two means (see Baguley, 2012). 

 

 

 

 



71 
 

5.3.4 Results 

 

Figure 5.2. Mean subjective ratings of pitch salience for conditions 1-6 across all listeners. 

Dark gray bars depict strong pitch salience conditions (conditions 1, 3, and 4), light gray 

bars depict the weak pitch salience condition 2, and white bars depict low and high 

frequency noise conditions 5 and 6. Within-subjects Cousineau-Morey 95% confidence 

intervals are plotted.  

The main objective for Experiment 4 was assessed by the interaction term from the 2 x 3 

ANOVA (see Figures 5.2 and 5.3). There was a significant interaction between frequency 

and pitch, F(1.49, 25.31) = 25.99, p < .001, partial eta squared (  
 ) = .605. As a rule of 

thumb,   
  values .01, .08, and .14 reflect small, medium and large effects, respectively (see 

Richardson, 2011). Planned comparisons (paired sample t-tests) revealed that listeners did 

rate condition 2 (M = 3.67, SD = 1.23) as weaker in pitch salience than condition 1 (M = 

6.59, SD = 1.94), condition 3 (M = 6.67, SD = 2.13), and condition 4 (M = 5.13, SD = 1.73); 

t(17) = 10.47, p < .001, t(17) = 6.56, p < .001, and t(17) = 5.48, p < .001, respectively. This 

indicates that there is a perceptible difference in pitch salience between the conditions, 

satisfying the „covariation with pitch salience‟ criterion (Objective 2).  

Furthermore, there was no significant difference in ratings between strong pitch salience 

conditions 1 and 3 (low F0 conditions), t(17) = -0.25, p = .808, but there was a significant 

difference between strong pitch salience conditions 1 and 4 and conditions 3 and 4; t(17) = 

4.80, p < .001] and t(17) = 3.84, p < .001, respectively. There was also no significant 

difference between subjective ratings for low and high frequency noise condition 5 (M = 

0.74, SD = 0.81) and condition 6 (M = 0.67, SD = 0.70), t(17) = 0.57, p = .579, suggesting 
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that the difference in ratings between pitch conditions was much more marked. All pitch 

conditions (1-4) were significantly different from their matched noise counterparts 

(conditions 5 or 6), t(17) = 11.49, p < .001, t(17) = 9.55, p < .001, t(17) = 9.70, p < .001, and 

t(17) = 9.40, p < .001 respectively, satisfying the „pitch selectivity‟ criterion (Objective 1).  

 

Figure 5.3. Interaction plot for frequency and F0 (pitch). Within-subjects Cousineau-Morey 

95% confidence intervals are plotted. 

The ANOVA also revealed a significant main effect of frequency, F(1, 17) = 69.11, p < .001, 

  
  = .803, where listeners rated low frequency sounds (conditions 1, 3, and 5) significantly 

higher in pitch salience (M = 4.67, SD = 3.40), than high frequency sounds (M = 3.15, SD = 

3.15).  

There was also a significant main effect of pitch, F(1.33, 22.61) = 106.79, p < .001,   
  = 

.863, where subjective ratings for conditions with a low F0 (M = 5.13, SD = 2.07) or a high 

F0 (M = 5.90, SD = 1.09) were significantly different from each other (p < .01) and also 

greater (p < .001) than noise conditions with inherently no pitch (M = 0.70, SD = 0.05). 

Pairwise comparisons revealed that the „no pitch‟ sounds were rated significantly lower in 

pitch salience compared to the other sounds, which was expected given that these sounds 

did not contain a pitch. Typically the no pitch condition was given a rating of 0 or 1.  

5.3.5 Conclusion  

Overall, listeners rated all pitch conditions as higher in pitch salience compared to noise, 

satisfying the pitch selectivity criterion for these stimuli (Objective 1). Listeners also rated the 
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weak pitch salience condition as lower in salience compared to the other strong pitch 

salience conditions, satisfying the criterion for pitch salience sensitivity (Objective 2). It 

appears that subjectively at least, listeners could discern between weak pitch and matched 

noise as well as weak pitch salience and strong pitch salience. 

5.4. Experiment 5: fMRI passive listening task  

5.4.1 fMRI protocol 

Eligible participants from Experiment 4 were invited to undergo the fMRI passive listening 

task comprising Experiment 5, at the Sir Peter Mansfield Resonance Centre, University of 

Nottingham. All scanning was performed using the same hardware as described in Chapter 

4, namely the Philips 3 T Intera Achieva whole-body MR scanner. Functional data were 

acquired over three sequential scanning sessions over three separate days.  

There were six different versions of random melody sequences generated for conditions 1-4. 

Noise conditions (conditions 5 and 6) were represented by only one version of each 

because only one version was used in the original Penagos et al. (2004) study, and I wanted 

to keep the stimulus conditions exactly the same. Sounds were presented using a quasi-

continuous stimulation paradigm (see Krumbholz et al 2003, Section 2.4.2). The design of 

the current study gave careful consideration to optimise the statistical reliability of within-

single subject inferences about condition-specific effects (e.g., sufficient number of data 

points per condition). Sixteen different stimulus lists were created and sequentially assigned 

to each listener. For a given list, each stimulus version was presented at least once, each 

sound condition was presented 8 times, and an additional „silent‟ condition (32s of silence) 

was included and presented at least 8 times for a given listener (totalling seven conditions). 

Conditions were presented quasi-randomly but the same condition was never repeated 

twice in a row (to avoid adaptation effects). Each sequence lasted 32s and had an ISI of 2 s 

(34 s in total). Within each 34s sequence, a scan was acquired every 8.5 (TR) s (i.e., 4 

times per sequence), totalling 32 scans per condition (totalling 224 scans per listener, plus 

5-9 additional scans at the beginning of the session to account for the active noise 

cancellation system and stabilising of the MR signal). The active noise cancellation system 

aims to reduce unwanted ambient scanner noise by introducing an additional signal that is 

appropriately matched (i.e., antiphase) to effectively „cancel‟ out the unwanted signal (see 

Section 3.3.1.2). However during testing the active noise cancellation system did not appear 

to be working properly for the first two listeners (#01 and #02), and therefore was discarded 

for the following 16 listeners.  

A T1-weighted image (1mm³ resolution, matrix size = 256mm x 256mm, 160 sagittal slices, 

TE = 3.9ms, and TR = 8.5ms) comprised the high-resolution anatomical scan on which to 

overlay functional analyses. The anatomical scan also helped to position the functional 

scans centrally on HG, include the entire STG, avoid inclusion of the eyes (which can cause 
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Nyquist artefacts) and position the saturation band (avoid aliasing for EPI functional scans; 

see Section 4.3.1.2, Figure 4.2).  

A maximum of 233 T2*-weighted functional images were acquired for each listener using a 

gradient echo EPI sequence (acquired voxel resolution 2mm³; reconstructed 1.75 x 1.75 x 

2mm; acquired matrix size = 84 x 84mm; reconstructed 96 x 96mm), 20 oblique-axial slices 

oriented parallel to the supra-temporal plane with no inter-slice gap, optimised TE = 50ms, 

flip angle = 90˚, SENSE factor = 2, and dynamic stabilisation to reduce signal drift over 

time). A single saturation band (rest slab thickness = 43mm, power = 2) was placed in the 

anterior position (front of head and perpendicular to EPI scans) to reduce aliasing and 

Nyquist ghosts from the eyes (see Section 4.3.1.2, Figure 4.2). An additional image using 

the same scanning parameters as the functional scans (with the exception of TE = 30ms, 70 

slices) was acquired to help re-orient fMRI images during the pre-processing stage (see 

Section 3.5.1).  

5.4.2 Sound Presentation Protocol 

Functional scanning used a modified pulse sequence (i.e., SofTone factor 2) to reduce the 

impact of the ambient scanner noise on patterns of stimulus-evoked auditory activation and 

further attenuated the background scanner noise level by approximately 9 dB (Hall & Plack., 

2009). Furthermore, scans were collected at regular intervals using a clustered acquisition 

mode; scans were clustered into a 1902ms acquisition time with a TR of 8.5 s, known as 

sparse imaging (Edmister, Talavage, Ledden, & Weisskoff, 1999; Hall et al., 1999; see 

Section 3.3.1.1). Conditions were presented predominantly in the quiet periods between 

each scan.   

Sounds were delivered using custom-built MR compatible system delivered distortion-free 

sound using high-quality electrostatic headphones (i.e., Sennheiser HE60 with high-voltage 

amplifier HEV70) that had been specifically modelled with no ferromagnetic components to 

be safe for use in fMRI. The headphones had also been specifically modified for auditory 

fMRI (i.e., acoustically padded) to further attenuate ambient scanner noise by approximately 

30 dB. Sound level was measured prior to testing using a Brüel & Kjær 4231 Sound 

Calibrator, affixed with a Brüel & Kjaer 2250 Sound Level Meter, Brüel & Kjær 4153 artificial 

ear, and Brüel & Kjær 4192 Half Inch Microphone. Sound pressure levels were calibrated for 

the MR compatible system using the “LAF” setting, which simulates hearing in a real 

listener, whilst presenting a 1 kHz tone at maximum amplitude and measuring dB SPL 

outputs for the left (99.6 dB SPL) and right (98.3 dB SPL) side of the headphones. Once the 

electrostatic headphones had been calibrated, the dB SPL output for the six sound 

conditions across headphone sides was measured using the “LAS” slow broadband scale. 

The average sound level measured across left and right sides was 88 dB SPL. The sound 

level on the MR sound presentation system was therefore rescaled and attenuated by -16 

dB (using the MR sound presentation software) to avoid clipping, and have an overall root 
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mean square sound level of approximately 72 dB SPL over headphones. This was 

purposefully chosen to be 3 dB SPL more than that presented in the Penagos et al. (2004) 

scanner setup (doubling in sound intensity) because piloting revealed that sounds were too 

quiet in the MR scanner when presented at 69 dB SPL over headphones (which is the 

sound level at which Penagos and colleagues presented stimuli). 

Listeners were instructed to listen to the sounds being presented to them over the 

headphones but were not required to perform any task. Experiment 5 lasted approximately 1 

hour in total for each listener, with functional scans being acquired in 35 minutes, and 

anatomical scans being acquired within 5 minutes. Upon completion, participants were 

granted the appropriate research credits, if applicable, and also sent a Digital Versatile Disc 

(DVD) of their anatomical brain scan.  

All scanning data was converted from raw format (PAR/REC) into image format (IMG/HDR) 

using a bespoke programme known as „ptoa‟. The following fMRI pre-processing, analysis 

and image generation were conducted primarily using SPM8 (www.fil.ion.ucl.ac.uk/spm/), 

which is supported by MATLAB R2010a Student v7.10.0 (The Mathworks, Natick, MA). 

MRIcro/MRIcron (Neuroimaging Informatics Tools and Resources Clearinghouse), and 

Adobe Photoshop CS6 (Adobe Systems Incorporated) software programmes were used to 

generate some images after the initial analysis had been carried out in SPM. 

5.4.3 fMRI pre-processing   

The anatomical and functional data were pre-processed following conventional procedures 

in SPM8 (e.g., realignment to smoothing) as described in Section 3.5.1. Slight differences in 

the pre-processing of images related to: 

 Re-orientation: This was conducted by reorienting the more detailed functional 70 

slice TE 30 image to match the MNI EPI (functional) template, and then reorienting 

the gradient echo EPI functional images to the same values. The 70 slice TE 30 

functional image (reference) was then co-registered with the experimental functional 

images (source) to allow for better spatial normalisation later. The anatomical images 

were re-oriented to match the MNI T1 (anatomical) template as normal.  

 Re-alignment: Using a rule of thumb, movements did not exceed a translation of 2mm 

and a rotation of 2 radians, because functional scans were acquired at a voxel size of 

2mm³. Pre-processing did not include the optional „slice timing correction‟ as 

described in Section 3.5.1, however six multiple regressors were included in the GLM 

comprising subsequent fMRI analysis to correct for temporal differences/residual error 

variability between slices (acquired from the realignment translational parameters of 

x, y, z, and rotational parameters of pitch, roll and yaw, see Section 3.5.1, Figure 3.8).  

 Co-registration: The first step in co-registration involved co-registering the 70 slice TE 

30 functional (reference) image with the anatomical (source) image. The 70 slice 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.photoshop.com/
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functional image was used instead of the mean functional image to maximise mutual 

information (i.e., more data points for SPM to estimate and coregister) and enabled 

better normalisation.  

 Smoothing: The kernel used during spatial smoothing was different depending on the 

nature of the subsequent analyses. A smoothing kernel of 4mm³ at FWHM was used 

for individual-based analysis (i.e., incidence maps, and conjunction analysis). A larger 

smoothing kernel of 8mm³ FWHM was used for group-based analyses (i.e., group-

wise activation maps and ROI analysis) as a trade-off between spatial resolution and 

inter-subject variability.   

Normalised anatomical images for each individual were averaged to create one group-

averaged anatomical image that could be used to overlay functional analyses. 

5.4.4 fMRI analysis 

Image analysis was conducted using GLM estimation and procedures described in Sections 

3.5.2.1 to 3.5.2.5, some of which describe an example derived from the present fMRI study. 

A design matrix was firstly created for each participant, and individually reviewed to confirm 

it was correct at both individual (first level specification) and group level (second level 

specification). When estimating the GLM, a high–pass filter of 476 s was applied to the fMRI 

time series to alleviate the effects of variable amplifier gain and scanner drift during image 

acquisition (low frequency artefacts).  

The GLM was used to create SPM activation maps in MNI brain-space. This approach 

performs a voxel-wise analysis of statistical contrasts of interest to determine whether there 

is consistent activity across the individual or group. Through carrying out an F test (non-

directional test) and/or T-test (directional test), activity in each voxel in the normalised brain 

scan can be tracked across scans, and the β-values compared to create activation images. 

Where F tests were conducted in SPM8 (e.g., group-wise activation described below) at the 

second level specification stage, a 2 x 3 repeated measures ANOVA was conducted. The 

first factor related to the spectral property of the pitch (frequency band: high, low), whilst the 

second factor related to the pitch percept (pitch; high pitch, low pitch, no pitch). Individual 

paired sample t-tests for each condition (1-6) > silence were used to create the 2 x 3 

ANOVA in SPM8. „Offline‟ analysis was also conducted in SPSS for ROI analysis described 

below; a 2 x 6 repeated measures ANOVA. The first factor related to the laterality of 

activation (hemisphere; left and right), while the second factor related to the condition 

(conditions 1-6). Main effects of interest from the F tests (non-directional) included: 

1. The main effect of frequency (low frequency conditions 1, 3 and 5 ≠ high frequency 

conditions 2, 4, and 6). 
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2. The main effect of pitch (low F0 conditions 1, 2 ≠ high F0 conditions 3, 4 ≠ no pitch 

noise conditions 5, 6). 

3. The interaction term between frequency and pitch (and corresponding post hoc t-

tests). 

4. The main effect of hemisphere (left hemisphere ≠ right hemisphere). 

5. The main effect of condition (condition 1 ≠ condition 2 ≠ condition 3 ≠ condition 4 ≠ 

condition 5 ≠ condition 6). 

6. The interaction term between hemisphere and condition (and corresponding post hoc 

t-tests). 

Where t-tests were performed at an individual (first level specification), group-level analyses 

(second level specification), or offline in SPSS (e.g., post hoc paired sample t-tests for ROI 

analysis), the main statistical contrasts of interest were:  

7. Sound > Silence (conditions 1-6 > silence) 

8. Pitch > Noise (conditions 1-4 > conditions 5-6 (OR conditions 1 > 5, conditions 2 > 6, 

conditions 3 >  5 and conditions 4 > 6, for ROI analysis)) 

9. Strong Pitch Salience > Weak Pitch Salience (conditions 1, 3, & 4 > condition 2 (OR 

conditions 1 >  2, conditions 3 >  2 and condition 4 > 2, for ROI analysis))  

10. Weak Pitch Salience > Matched Noise (condition 2 > condition 6) 

11. To control for frequency and F0 differences between stimuli and ensure that they had 

no influence on the patterns of activity (see Section 5.4.5.1 or Penagos et al. (2004) 

for more details); control for spectral differences: conditions 3 > 4 and conditions 4 > 

3; control for F0 differences: conditions 1 > 3 and conditions 3 > 1.  

In SPM8, some of the above t-test contrasts of interest were embedded as planned 

comparisons in the 2 x 3 ANOVA, or conducted as part of a planned paired sample t-test 

comparison (i.e., for ROI analysis). Throughout the results section the number (#N) reported 

above for each effect/contrast of interest for a given F test or t-test is provided. 

For the present fMRI study, robust group-level analyses were particularly important because 

they provided a measure of inter-subject variability; something which Penagos and 

colleagues (2004) did not address in their study. Four approaches were employed to provide 

different statistical information regarding the nature of pitch-related activation, namely group-

wise activation, incidence mapping, ROI analysis, and comparing activation with a previous 

pitch salience study (i.e., Barker et al., 2011). The use of four different types of analysis 

necessitated the use of different statistical thresholds and different corrections for multiple 

comparison methods where appropriate (see Section 3.5.2.4). The specific details for each 

analysis approach are therefore described in the corresponding sections below.  
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Group-wise activation from the SPM analysis   

Statistical group analysis was performed using a mixed effects model (see Section 3.5.2.2). 

Fixed effects analysis of the above contrasts of interest was computed first for single-subject 

analysis (first level specification) and then a RFX analysis was conducted across all 18 

participants (second level specification). Specifically, contrast images (t-tests) were first 

computed for each participant, and then subjected to a one-sample t-test or an F-test 

(ANOVA) across the group.  

An RFX analysis was conducted by specifying a 2 x 3 repeated measures ANOVA at the 

second level specification stage. The first factor related to the spectral property of the pitch 

(Frequency band: high, low), whilst the second factor related to the pitch percept (Pitch; high 

pitch, low pitch, no pitch). From this, activation from each contrast (whether t-test or from an 

F test) was separately mapped onto MNI brain-space and a table was created displaying 

information about all the peak supra-threshold voxels, z-values, xyz coordinates, corrected 

and uncorrected p-values (at voxel and cluster level), as well as number of activated voxels 

per cluster, for each main effect, interaction and/or contrast (previously identified above and 

embedded within the 2 x 3 ANOVA). Only the top two clusters (corresponding to left and 

right hemispheres) of activated voxels were selected. The top three peaks of activity per 

cluster which survived FDR correction (at the peak voxel level p < .05, zero voxels extent 

threshold, SVC for auditory cortex which included all ROIs; Section 3.5.2.4, see Table 5.1, 

and „ROI analysis‟ section below)) were displayed where applicable (see Table 5.2). 

However, it should be noted that some peaks of activity did not survive FDR-correction (p > 

.05), but were significant at the p < .001 uncorrected voxel-level and so are included in 

Table 5.2 for illustrative purposes, but are denoted by an asterisk. 

In order to obtain the probable (%) locations of significant clusters of activity for contrasts of 

interest, a SPM-based software programme, known as the Anatomy Toolbox v1.8 (see 

Eickhoff et al., 2005), was used to compare statistical images with cytoarchitectonic maps of 

the human brain. Using probability maps for a given contrast of interest, I was able to 

determine the likelihood of a given cluster of significant activation being located in, or 

„assigned‟ to, a labelled area(s), for example „cluster 1 is located in Te1.0 (central HG) with 

a 70% probability‟. This information is therefore also included in Table 5.2. One main 

drawback of using the template brain is that the toolbox did not have some brain regions 

specified, such as PT or PP, with activity in some areas being labelled as STG or 

unassigned completely. In addition, because it is a probabilistic atlas, activity could also be 

assigned to more than one brain region at a time (not mutually exclusive). Although we can 

use the ROI analysis (described later) to explore activation across conditions within PT or 

PP, because these regions are not defined in the toolbox we were unable to obtain 

corresponding probability values for clusters within these regions. In addition, inherent high 

inter-subject variability increases the likelihood of mapping activity to brain regions that do 
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not actually correspond to the functional activity observed (Brett, Johnsrude, & Owen, 2002). 

The localisation information should therefore be interpreted with caution. 

Incidence maps   

The RFX analysis described above can be problematic if the mean activation is weak and 

the variability across subjects is high (Thirion et al., 2007). Given the inherent individual 

variability in group-averaged fMRI data, I employed the same approach that has been used 

previously within the Nottingham group to create incidence maps to visually plot the 

distribution of activity for the contrasts of interest (i.e., planned paired sample t-tests) across 

the group of listeners (see Hall & Plack, 2009; Hall & Griffiths, 2012). This was achieved by 

summing individual binary maps (p < .01, uncorrected; zero voxel extent threshold) obtained 

from each subject to form a group activation map which was overlaid onto a group-averaged 

anatomical image (see Figure 5.2). This meant that the number (and corresponding 

percentage) of listeners showing activity within a voxel for a given contrast could be 

examined. Therefore a less stringent threshold and t-test was used here to explore the 

distribution of sound (contrast of interest #07) and pitch-related (contrast of interest #08) 

activity across listeners. Slices were chosen based on co-ordinates from the most significant 

peak identified for the pitch-related paired sample t-tests, and are encompassed within the 

incidence maps (i.e., peak in right hemisphere). Central HG (area Te1.0), medial HG (area 

Te1.1), lateral HG (area Te1.2), PP and PT ROIs are outlined on the incidence map for 

reference (see also Figure 2.7, Section 2.3.3). 

Regions-of-interest 

ROI analysis was performed across a number of sub-regions in auditory cortex (see Section 

3.5.2.5). Unlike the SPM contrasts described above, ROI analysis has the advantage of 

being able to quantify the magnitude and evaluate the overall activation within a given 

region for a stimulus condition, rather than at the voxel or cluster level across the whole 

brain over time. Five regions were chosen for analysis, which included three subdivisions of 

HG, namely central HG (area Te1.0), medial HG (area Te1.1) and lateral HG (area Te1.2), 

PT and PP (see Figure 2.7, Section 2.3.3). Each ROI acted like a mask image in which 

individually averaged β-values were extracted. The three HG masks were based on 

cytoarchitectonic probability maps created by Morosan et al. (2001) and were the same 

masks as those used by some researchers at the Nottingham group (e.g., Barker et al., 

2011; Garcia et al., 2010). The PT mask was initially based on the morphological details 

provided by Westbury, Zatorre, & Evans (1999) who quantified the variability in PT. PP was 

also initially based on morphology and constructed in-house by the Nottingham group by 

tracing the outline of the anterior portion of the STG using a group-averaged normalised 

anatomical image. During specification, any ROIs with overlapping voxels were attributed to 

the area with which they had the highest probability of membership, therefore ensuring all 

ROI masks were mutually exclusive (i.e., not overlapping). This need for mutual exclusivity 
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was the main difference between the ROIs and the Anatomy Toolbox, where a given voxel 

could be assigned to multiple brain areas at any one time with differing probabilities. Where 

SVC is used here and throughout this refers to the summed image of these five ROIs, 

unless otherwise stated (i.e., Te1.0, Te1.1, Te1.2, PP and PT). 

After the initial ROI analysis had been conducted, a decision was made to subdivide the 

ROIs PP and PT. For PT, this decision was driven by finding that the majority of consistent 

sound and pitch-related activity was located in the anterolateral parts of PT in the initial 

incidence maps (not shown), revealing that the majority of the posterior part of PT was not 

activated by sound. Given that a high-number of voxels unresponsive to sound was being 

included in the average, this essentially diluted any potential statistically significant effects 

across conditions for this ROI. Activation in PP was at floor level and was similarly attributed 

to the inclusion of voxels unresponsive to sound. To circumvent these problems, both PT 

and PP ROIs were subdivided to only include voxels that were active for sound. This was 

achieved by using the „Sound vs. Silence‟ contrast (p < .001, uncorrected, SVC) to create a 

mask image that was then applied to the given ROI. Table 5.1 shows the original size of all 

five ROI masks, as well as the reduced sizes for PT (left hemisphere: -64%; right 

hemisphere: -57%) and PP (left hemisphere: -96%; right hemisphere: -92%). It is 

appreciated that there are problems associated with defining ROIs from the data (i.e. 

circularity; see Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). However given that the 

PT region is known to be highly variable (Westbury et al., 1999) and that both PT and PP 

ROIs were partly-based on morphological details, this was not envisaged to be a major 

problem. It might be the case of PT, the voxels that did not respond to sound may have 

been activated by active listening conditions. 

Table 5.1  

 
  Voxel size (N) of the five ROIs (and % reduced for revised ROIs PP and PT) for the left and 

right hemisphere 

 

  Voxel size (N) 

ROI 
 Left hemisphere Right hemisphere 

Te1.0 (central HG)  377 459 

Te1.1 (medial HG)  433 312 

Te1.2 (lateral HG)   230 267 

Original PP  1087 1667 

Revised PP  47 (96% reduction) 127 (92% reduction) 

Original PT  4510 3472 

Revised PT  1608 (64% reduction) 1479 (57% reduction) 

 

A MATLAB batch script was applied to extract the region-averaged β-values for each 

stimulus condition, for each listener, and for each ROI mask. For a given ROI there were 

corresponding left and right hemisphere masks that were run separately (as shown in Table 
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5.1). The output of this extraction process was a text file that included the mean 

standardised β-values (arbitrary values) of the response size for a given listener, condition 

and ROI hemisphere that could be input into a spread sheet to produce tables and graphs to 

compare activation across the six experimental conditions for each ROI.  

A 2 x 6 repeated measures ANOVA was conducted separately for each region. The first 

factor related to the laterality of activation (hemisphere; left and right), while the second 

factor related to the condition (conditions 1-6). A significance level alpha criterion of p < .05 

was used. Post hoc t-tests were collapsed across hemispheres (unless otherwise stated) for 

ROIs central HG, medial HG, lateral HG, PT, and PP because there was no significant 

interaction between hemisphere and condition. Planned comparisons and post hoc paired 

sample t-tests were Bonferonni corrected to account for FWE associated with multiple 

comparisons. If Mauchly's test of sphericity assumption of sphericity was violated a 

Greenhouse-Geisser correction was used.  

Comparing activation with a previous pitch salience study 

Imaging data obtained from Barker et al. (2011; see paper for details), who used fixed pitch 

stimuli (unresolved harmonic complex tones), was compared to the current study‟s findings 

to explore any differences in pitch and pitch-salience related activation patterns, which may 

possibly relate to the context of pitch stimuli. Contrasts carefully selected (p < .05, 

uncorrected) from Barker et al. (2011) for comparison included: 

1) „Schroeder phase + Random phase > Gaussian Noise‟, which was comparable to 

„Pitch > Noise‟ contrast (contrast of interest #08) in the current experiment.  

2) „Schroeder phase > Random phase‟, which was comparable to „Strong > Weak Pitch 

Salience‟ contrast (contrast of interest #09). 

Contact was made with Daphne Barker to obtain electronic versions of these contrast 

images thresholded at p < .05 and p < .001, so a comparative assessment could be 

conducted. A less stringent threshold at the p < .05 level was used for the contrast images 

because the data taken from Barker et al. (2011) did not show much pitch-related activation 

at the p < .001 level. Slices were chosen according to peak coordinates identified in SPM8 

for the 2 x 3 ANOVA (see Table 5.2) and paired sample t-tests (not embedded in the 2 x 3 

ANOVA).  
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5.4.5 Results 

5.4.5.1 Objective 1: fMRI findings for pitch selectivity  

Group-wise activation from the SPM analysis   

Probability maps were used to localise the peaks of activity from the 2 x 3 repeated 

measures ANOVA in SPM8 (see Table 5.2). For sound (conditions 1-6) > silence (contrast 

of interest #07), there was a significant cluster in the left hemisphere (3693 voxels) with a 

peak of activity at coordinates x 50, y -16, z 6mm, t(102) = 32.25, p < .05 FDR-corrected 

and SVC, and a significant cluster in the right hemisphere (3351 voxels) with a peak of 

activity at coordinates x 40, y -26 z 6mm, t(102) = 28.30, p < .05 FDR-corrected and SVC. 

Overall activation was widespread, with multiple auditory areas being responsive to sound > 

silence, namely lateral HG, central HG and STG. However across hemispheres, the central 

HG was most consistently assigned as being attributable for significant peaks of activity for 

sound > silence. 

The effect of pitch (F0; conditions 1-4) > noise (conditions 5-6; contrast of interest #08) was 

statistically significant for a cluster of activity (304 voxels) in the right hemisphere, with a 

peak at x 50, y 4, z -8mm, t(102) = 5.52, p < .05 FDR-corrected and SVC. There was also a 

cluster of significant activity in the left hemisphere (106 voxels), with a peak at x -66, y -14, z 

4mm, t(102) = 4.35, p < .001, uncorrected. For this hemisphere, peak voxels did not survive 

FDR-correction and SVC. Nevertheless the results showed that activation to pitch was 

greater than noise, and that pitch-related activity was widespread across subdivisions of 

auditory cortex (e.g., lateral HG, central HG and STG), indicating that multiple auditory 

areas were more sensitive to pitch than sound in general. 

There were no significant voxels (p > .05, FDR-corrected and SVC) found for the main effect 

of frequency (contrast of interest #01; see Table 5.2).  

Not shown in Table 5.2, but as an additional control for frequency effects (contrasts of 

interest #11) also included the t-test comparison between condition 3 vs. condition 4 (see 

Penagos et al., 2004), as these were the only conditions that could control for low and high 

spectral differences between stimuli (respectively) without being different in F0 or pitch 

salience (resolvability). This contrast also revealed no suprathreshold voxels (p > .05). To 

control for F0 differences, condition 3 vs. condition 1 were compared (see Penagos et al., 

2004) as these were the only conditions that could control for high and low F0 between 

stimuli without differing in spectra or pitch salience (resolvability). This t-test comparison 

also revealed no suprathreshold voxels. Comparing conditions 3 vs. 4 (frequency control) 

and conditions 3 vs. 1 (F0 control) were also employed as appropriate controls during ROI 

analysis (see ROI analysis sections below). 
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Table 5.2  
Significant clusters of activity, information relating to the peak voxels and locality from the 
2-by-3 repeated-measures ANOVA specified in SPM8, for the main effects, interaction 
and contrasts of interest (#N) 
 Left hemisphere Right hemisphere 
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Notes: Here significance refers to those clusters of activated voxels which survive FDR correction 
for multiple comparisons (p < .05) at the peak voxel level. Asterisk (*) denotes peaks that did not 
survive FDR-correction, but were significant at an uncorrected level of p < .001. Peak voxels within 
those clusters are reported for local maxima more than 4mm apart within left and right hemispheres, 
respectively. Te3 = area of non-primary auditory cortex overlapping with parts of PP and PT (see 
Morosan et al., 2001); OP1-OP4 = Parietal Operculum (see Eickhoff, Schleicher, Zilles, & Amunts, 

2006); IPC = Inferior Parietal Cortex.  
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Incidence maps 

Using paired sample t-test contrasts the incidence map (Figure 5.4, Sound > Silence, row 1, 

contrast of interest #07) depicted that response to sound was much more consistent than to 

pitch (maximum overlap 18/18 listeners in some areas), with activity observed in the majority 

of primary and non-primary auditory areas, and in all of our five ROIs (central HG, medial 

HG, lateral HG, PP and PT). The most significant peaks for this contrast were identified in 

SPM in the left hemisphere at coordinates x -50, y -16, z 6mm, t(17) = 15.17, p < .05 FDR-

corrected and SVC, and for the right hemisphere at coordinates x 40, y -16, z 16mm, t(17) = 

12.65, p < .05 FDR-corrected and SVC. 

Response to pitch > noise (see Figure 5.4, row 2, contrast of interest #08) revealed less 

extensive activity across listeners (compared to sound) with a maximum overlap in 

approximately 13/18 listeners (~72%) across left and right auditory cortices (both primary 

and non-primary areas).  Pitch-related activation was widely distributed and evident in all 

ROIs, however activation was most consistently observed in HG and PT. Significant peaks 

for pitch > noise were identified in SPM in the right hemisphere at coordinates x 58, y -6, z 

4mm, t(17) = 9.12, p < .05 FDR-corrected SVC, and in the left hemisphere at coordinates x -

56, y -18, z 4, t(17) = 8.15, p < .05 FDR-corrected and SVC. 

Data presented in rows 3 and 4 of Figure 5.4 are described later in Section 5.4.5.2, as these 

findings relate to the second experimental objective, pitch salience. 
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Figure 5.4. Incidence maps showing the consistency of activation across 18 listeners for the 

four contrasts of interest (#07: Sound > Silence, #08: All Pitch > All Noise, #09: Strong Pitch 

Salience > Weak Pitch Salience, and #10: Weak Pitch Salience > Matched Noise; p < .01, 

uncorrected) across three oblique-axial slices (z = -2, 4 and 10mm) and one right 

hemisphere sagittal slice (x = 58mm) of auditory cortex. The colour bar (range 1-18) 

indicates the number of listeners showing brain activity overlap (i.e., how many listeners had 

that voxel as active for a given contrast; red = high spatial concordance, purple = low spatial 

concordance). Activation has been smoothed and overlaid onto a group averaged 

anatomical image conforming to neurological convention (left = left). ROI outlines have been 

overlaid onto contrasts to aid interpretation. 
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ROI analysis 

 

Figure 5.5. Group ROI analysis depicting BOLD activation for sound conditions (1-6) > the 

implicit ‘no sound’ baseline. Activation is plotted separately for left and right hemispheres for 

the five ROIs (panels A-E; with within-subjects Cousineau-Morey 95% confidence intervals 

plotted). Panel A depicts central HG (area Te.1.0), Panel B depicts medial HG (area Te.1.1), 

Panel C depicts lateral HG (area Te.1.2), Panel D depicts PT, and Panel E depicts PP. 

These five ROIs have been overlaid onto a group-averaged anatomical image (shown in 

purple) oblique-axial slice (z = -2mm) for illustration purposes conforming to neurological 

convention (left = left). Bars have been grayscale colour-coded to aid interpretation. Solid 

coloured bars indicate the left hemisphere; striped bars indicate the right hemisphere. Dark 

gray bars (solid and striped) indicate strong pitch salience (conditions 1, 3 and 4). Medium 

gray bars (solid and striped) indicate the weak pitch salience (condition 2). White and light 

gray (solid and striped) bars indicate noise (conditions 5 and 6). 
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β-values were used to conduct a separate two (hemisphere; left and right) by six (conditions; 

1-6) repeated measures ANOVA for each of the five ROIs. 

Central HG (area Te1.0)  

A significant main effect (#04) of hemisphere, F(1, 17) = 5.08, p = .380,   
  = .230, indicated 

significantly greater activation across conditions in the right hemisphere (M = 1.73, SD = 

0.65) compared with the left hemisphere (M = 1.54, SD = 0.53).  

There was also a significant main effect (#05) of condition, F(5, 85) = 14.45, p < .001,   
  = 

.459. For Te1.0 (see Figure 5.5), post hoc t-tests revealed that all strong pitch salience 

(conditions 1, 3 and 4; individual contrasts of interest #08) produced significantly greater 

activation than their spectrally matched noise (conditions 5 or 6) across hemispheres, t(17) 

= -3.97, p = .001, t(17) = 4.62, p < .001, and t(17) = 4.50, p < .001, respectively for 

conditions 1, 3 and 4). Therefore responses to pitch were greater than to noise.  

There was no significant interaction (#06) between hemisphere*condition; F(3.26, 55.46) = 

0.78, p = .519,   
  = .044. 

Activation was comparable across all three strong pitch salience conditions (p > .05) 

indicating that previously described controls for frequency differences (i.e., condition 3 vs. 4) 

and F0 differences (i.e., condition 3 vs. 1) between stimuli were satisfied. The weak pitch 

salience condition (2), was not significantly different from its spectrally matched noise 

(condition 6); t(17) = -0.85, p = .409. In summary for Te1.0, although all strong pitch salience 

conditions fulfilled the first pitch criterion relating to pitch selectivity (Objective 1), the weak 

pitch salience condition did not.  

Medial HG (area Te1.1) 

As shown in Figure 5.5, activation across conditions was comparable for this ROI.  There 

was no significant main effect of hemisphere, F(1, 17) = 3.69, p = .072,   
  = .178, or 

condition, F(5, 85) = 0.70, p = .626,   
  = .039, and no interaction between 

hemisphere*condition, F(2.64, 44.92) = 2.00, p = .134,   
  = .105. Therefore responses to 

pitch were not significantly different from noise. In summary for Te1.1, none of the pitch 

conditions fulfilled the first pitch criterion relating to pitch selectivity (Objective 1). Because of 

these null results, it was not necessary to analyse data from medial HG with respect to 

Objective 2. 

 

 

 



88 
 

Lateral HG (area Te1.2) 

There was a significant main effect of hemisphere, F(1, 17) = 12.13, p = .003,   
  = .416, 

where greater activation occurred across conditions in the right hemisphere (M = 1.12, SD = 

0.55) compared with the left hemisphere (M = 0.92, SD = 0.44).  

There was also a significant main effect of condition, F(5, 85) = 26.88, p < .001,   
  = .613. 

For Te1.2 (see Figure 5.5), post hoc t-tests revealed that all strong pitch salience (conditions 

1, 3 and 4) produced significantly greater activation (p < .05) than their spectrally matched 

noise (conditions 5 or 6) across hemispheres, t(17) = 5.33, p < .001, t(17) = 7.94, p < .001, 

and t(17) = 6.21, p < .001, respectively for conditions 1, 3 and 4. Therefore responses to 

pitch were greater than to noise. 

There was no significant interaction between hemisphere*condition, F(2.09, 35.53) = 2.01, p 

= .147,   
  = .106, but see Section 5.4.5.3 regarding further exploration of possible laterality 

effects within this ROI. 

Activation was comparable across all three strong pitch conditions (p > .05) indicating that 

previously described controls for frequency differences (condition 3 vs. 4) and F0 

differences (condition 3 vs. 1) between stimuli were satisfied. Again the weak pitch condition 

(2) was not significantly different from its spectrally matched noise condition (6); t(17) = 

0.66, p = .519. In summary for Te1.2, although all strong pitch salience conditions fulfilled 

the first pitch criterion relating to pitch selectivity (Objective 1), the weak pitch salience 

condition did not. This is the same pattern as in Te1.0.  

PP 

There was no significant main effect of hemisphere; F(1, 17) = 3.85, p = .066.  

There was a significant main effect of condition, F(5, 85) = 19.20, p < .001,   
  = .530. For PP 

(see Figure 5.5), post hoc t-tests revealed that all strong pitch salience (conditions 1, 3 and 

4) produced significantly greater activation than their spectrally matched noise (conditions 5 

or 6) across hemispheres, t(17) = 4.51, p < .001, t(17) = 6.27, p <.001, and t(17) = 5.15, p < 

.001, respectively for conditions 1, 3 and 4). Therefore responses to pitch were greater than 

to noise.  

There was no significant interaction between hemisphere*condition, F(3.18, 54.00) = 2.49, p 

= .067,   
  = .128,  but see Section 5.4.5.3 regarding further exploration of possible laterality 

effects within this ROI 

Activation was comparable across all three strong pitch conditions (p > .05) indicating that 

previously described controls for frequency differences (condition 3 vs. 4) and F0 

differences (condition 3 vs. 1) between stimuli were satisfied. The weak pitch condition (2), 
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was not significantly different (p > .05) from its spectrally matched noise condition (6); t(17) 

= 1.24, p = .232. In summary for PP, although all strong pitch salience conditions fulfilled the 

first pitch criterion relating to pitch selectivity (objective 1), the weak pitch salience condition 

did not.  Again, this is the same overall pattern as the other ROIs. 

PT 

A significant main effect of hemisphere, F(1, 17) = 7.67, p = .013,   
  = .311, revealed 

greater activation occurred across conditions in the right hemisphere (M = 1.18, SD = 0.53) 

compared to the left hemisphere (M = 0.98, SD = 0.40).  

There was also a significant main effect of condition; F(5, 85) = 10.82, p < .001,   
 =.389. 

For PT (see Figure 5.5), post hoc t-tests revealed that all strong pitch salience (conditions 1, 

3 and 4) produced significantly greater activation than their spectrally matched noise 

(conditions 5 or 6) across hemispheres, t(17) = 3.66, p = .002, t(17) = 3.77, p = .002, and 

t(17) = 3.77, p = .002, respectively for conditions 1, 3 and 4. Therefore responses to pitch 

were greater than to noise.  

There was no significant interaction between hemisphere*condition, F(2.72, 46.30) = 0.88, p 

= .450,   
  = .049, but see Section 5.4.5.3 regarding further exploration of possible laterality 

effects within this ROI. 

Activation was comparable across all three strong pitch conditions (p > .05), indicating that 

previously described controls for frequency differences (condition 3 vs. 4) and F0 

differences (condition 3 vs. 1) between stimuli were satisfied. The weak pitch condition (2), 

was not significantly different (p > .05) from its spectrally matched noise condition (6); t(17) 

= 1.02, p = .320. In summary for PT, although all strong pitch salience conditions fulfilled the 

first pitch criterion relating to pitch selectivity (objective 1), the weak pitch salience condition 

did not.  Again, this is the same pattern as Te1.0. 
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Summary of ROI analysis for Objective 1 

In summary (see Table 5.3) there was a significant overall effect of pitch in four auditory 

ROIs, fulfilling the first pitch criterion relating to pitch selectivity (Objective 1), but not in 

medial HG (area Te1.1). However, this was driven by the strong pitch salience conditions. 

There was no significant effect of pitch for the weak pitch salience comparison. 

Table 5.3   
Summary of pitch selectivity across ROIs (individual contrasts of interest #08; pitch > noise) 

  Pitch selectivity (Objective 1) 

ROI  Strong pitch salience  Weak pitch salience  

Te1.0    

Te1.1    

Te1.2    

PP    

PT    

Note: PP and PT ROIs refer to the revised versions, as defined in Table 5.1. 
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Directly comparing activation with a previous pitch salience study  

 

Figure 5.6. Activation maps (p < .05, uncorrected) taken from the current study (shown in 

red) and Barker et al., 2011 (shown in cyan) for comparable contrasts Pitch > Noise (#08) 

and Strong Pitch Salience > Weak Pitch Salience (#09).  Activation has been smoothed and 

overlaid onto three oblique-axial slices (z = -2, 4 and 10mm) and three sagittal slice (x = 52, 

58 and 62mm) of a group averaged anatomical image conforming to neurological 

convention (left = left).  
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As shown in Figure 5.6, activation for pitch > noise for the current experiment was generally 

more widespread, covering multiple primary and non-primary areas of auditory cortex. 

Visual inspection indicated that activation for pitch > noise for Barker et al. (2011) was more 

confined to the PT, but did overlap with activity for the current experiment in posterior parts 

of PP and HG. 

 Summary of evidence for pitch selectivity (Objective 1) from the four analysis 

approaches  

Overall activation to sound is much more widespread across auditory cortex and consistent 

across listeners, than is activation to pitch. However findings from the current study indicate 

that there are multiple primary and non-primary auditory regions that selectively responded 

to pitch over noise, namely central and lateral HG, PP and PT. Although activation for all 

strong pitch salience conditions was significantly greater than for noise, this was not the 

case for the weak pitch salience condition. This finding was therefore interrogated further in 

other types of analyses that follow by exploring the weak pitch salience > matched noise 

contrasts.  

5.4.5.2 Objective 2: fMRI findings for sensitivity to pitch salience (and it is co-

localised with the pitch response)?  

Group-wise activation from the SPM analysis   

The effect of strong pitch salience > weak pitch salience (contrast of interest #09) for both 

hemispheres did not survive FDR-correction for multiple comparisons (see Table 5.2) after 

SVC, but was significant at an uncorrected level of p < .001, with a cluster of activity (261 

voxels) in the left hemisphere, peaking at x -52, y -16, z 8mm, t(102) = 4.73, p < .001, 

uncorrected. There was also a cluster in the right hemisphere (190 voxels), peaking at x 62, 

y 4, z 0mm, t(102) = 4.58, p < .001, uncorrected. Activation for strong pitch > weak pitch 

(contrast of interest #10) occurred across multiple subdivisions of auditory cortex (e.g., 

lateral HG, central HG and STG). These results seem to suggest that there was some 

differential pitch-salience related activity that was co-localised to the same regions that was 

previously identified for pitch > noise (contrast of interest #08). Given that the previous ROI 

analysis (see Section 5.4.5.1) indicated the weak pitch salience condition was not 

significantly different from matched noise for any of the ROIs, this contrast was explored in 

SPM again. Findings revealed no suprathreshold voxels. This null result was therefore 

further explored in the incidence map. 

Incidence maps  

The incidence map (see Figure 5.4, row 3) revealed activation across subjects for strong 

pitch salience > weak pitch salience (contrast of interest #09) had a maximum overlap in 
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approximately 15/18 listeners (~83%) across left and right auditory cortices (both primary 

and non-primary areas). Activation was most consistently observed in central and lateral HG 

and anterolateral parts of PT. The most significant peaks for this contrast were identified by 

SPM in the left hemisphere at coordinates x -54, y -14, z 6mm, t(17) = 11.93, p < .05 FDR-

corrected and SVC, and in the right hemisphere at coordinates x 56, y -14, z 4mm, t(17) = 

8.38, p < .05 FDR-corrected and SVC. A maximum of ~50% of listeners showed pitch 

salience-related activity overlapping with the pattern of pitch-related activity involving central 

and lateral HG, PP and PT. This result seems to suggest a sensitivity to pitch salience which 

is co-localised to the same four ROIs which showed a pitch-related response in Section 

5.4.5.1. This does provide some evidence in favour of pitch constancy (see Section 1.2).  

However, the ROI analysis described in Section 5.4.5.1 revealed that the weak pitch 

salience condition did not exhibit any statistically significant differential activation compared 

to spectrally matched noise (contrast of interest #10). In other words, condition 2 failed to 

satisfy the first pitch criteria of pitch selectivity (Objective 1). This contrast was further 

explored using incidence maps here. It is possible that pitch salience was co-localised to the 

same regions identified in Section 5.4.5.1 because the strong pitch salience conditions are 

driving the pitch-related response (see Figure 5.4, rows 2 and 3). Unlike the group-wise 

activation observed using SPM8, the incidence map (see Figure 5.4, row 4) did show some 

significant activation for a maximum of 5 listeners (~28%) for weak pitch salience > matched 

noise (#10). This was the least consistent activation observed across all contrasts and 

involved fewer auditory regions (i.e., lateral HG and PT). Although the group-based 

analyses (activation maps and ROI analysis) failed to find a significantly differential 

activation for weak pitch salience > matched noise (contrast of interests #10), the incidence 

map did indicate 5 listeners who did display differential responses in favour of the weak 

pitch salience condition.  

This finding prompted individual-level conjunction analysis of „Strong > Weak‟ (contrast of 

interest #09) AND „Weak > Matched Noise‟ (contrast of interest #10) on the activation data, 

which would reveal any brain regions that show a parametric change in relation to pitch 

salience. The conjunction revealed no suprathreshold voxels when using a stringent 

threshold (p < .05, FWE-corrected). As shown in Figure 5.7, when a more lenient threshold 

(p < .001, uncorrected) was used, 14/18 (~78%) listeners showed a small number of voxels 

of mutual activation across left and right hemispheres of auditory cortex, suggesting that 

there are some voxels, across primary and non-primary auditory cortex, that were truly 

responsive to pitch salience in the parametric sense (see Section 3.4.3). Activity occurs 

across the same auditory regions as identified in Objective 1 for pitch selectivity, providing 

evidence for pitch constancy (Section 1.2). Figure 5.8 shows that when an even more 

lenient threshold was used (p < .05, uncorrected), all 18 listeners showed pitch salience-

related activation across auditory cortex. 
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Figure 5.7. Individual activation maps for the Strong > Weak’ (#09) AND ‘Weak > Matched 

Noise’ (#10) conjunction for the 14 listeners (#01-#06, #09-#15, and #17) who showed 

significant activation at the p < .001, uncorrected level. Activation has been overlaid onto the 

group averaged anatomical oblique-axial plane (z) that had the greatest peak of activity for a 

given listener. Approximate ROI locations are denoted and the activation maps conform to 

neurological convention left = left.  
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Figure 5.8. Individual activation maps for the Strong > Weak’ (#09) AND ‘Weak > Matched 

Noise’ (#10) conjunction for all listeners (#01-#18) who showed significant activation at the p 

< .05, uncorrected level. Activation has been overlaid onto the group averaged anatomical 

oblique-axial plane (z) that had the greatest peak of activity for a given listener. Approximate 

ROI locations are denoted and the activation maps conform to neurological convention left = 

left.  
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ROI analysis 

Table 5.4 
Summary of pitch salience across ROIs (individual contrasts of interest #09; strong  > 
weak) 
  Salience (Objective 2) 

Strong pitch salience > Weak pitch salience (#09) 

ROI  Condition 1 vs. condition 2 Condition 3 vs. condition 2 Condition 4 vs. condition 2 

Te1.0     

Te1.1  (Not conducted) (Not conducted) (Not conducted) 

Te1.2     

PP     

PT     

Note: PP and PT ROIs refer to the revised versions, as defined in Table 5.1. 

For central HG (see Figure 5.5), post hoc t-tests (Bonferroni corrected) revealed that all 

strong pitch salience (conditions 1, 3 and 4) produced significantly greater activation (p < 

.05) than the weak pitch salience (condition 2). T-test statistics were t(17) = 5.87, p < .001, 

t(17) = 7.70, p < .001, and t(17) = 4.54, p < .001, respectively for conditions 1, 3, and 4. This 

was also found for lateral HG (area Te1.2), where t-test statistics were t(17) = 5.86, p < 

.001, t(17) = 8.27, p < .001, and t(17) = 4.44, p < .001, respectively for conditions 1, 3 and 4. 

For PP, all strong pitch conditions also produced significantly greater activation compared to 

the weak pitch condition, where T statistics were t(17) = 4.29, p < .001, t(17) = 6.21, p < 

.001, and t(17) = 3.62, p < .001, respectively. For PT, only condition 1, t(17) = 4.00, p = 

.001, and condition 3, t(17) = 4.81, p < .001, were significantly greater than the weak pitch 

condition. These results suggest that there is sensitivity to pitch salience throughout primary 

and non-primary areas of auditory cortex, seemingly satisfying the third pitch criterion 

relating to sensitivity to pitch salience (Objective 2). However, as discussed in Section 

5.4.5.1, although all strong pitch salience conditions fulfilled the first pitch criterion relating to 

pitch selectivity (Objective 1), the weak pitch salience condition did not. Condition 2 may 

therefore not be sufficient to drive reliable pitch-related activation in an fMRI experiment. 

Directly comparing activation with a previous pitch salience study 

Activation for strong pitch salience > weak pitch salience (#09) for my data (see Figure 5.6) 

was comparable to the pitch > noise contrast (#08) for my data, whereby activation was 

widespread and covered multiple primary and non-primary areas of auditory cortex. 

Comparatively, activation for broadly the same contrast for Barker et al. (2011) was not 

visible on any oblique-axial slices and only evident in areas outside STG in the sagittal 

slices. This is consistent with the fact that Barker et al. (2011) did not report any pitch-

salience related activation anywhere in auditory cortex for their stimuli.  
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Summary of evidence for pitch-salience sensitivity (Objective 2) from the four 

analysis approaches 

At initial face value, the results support pitch salience sensitivity. The results showed that 

there were differential responses to strong and weak pitch salience conditions, across 

multiple areas of auditory cortex. These results were co-localised to pitch-related response 

identified for Objective 1, which also provides some evidence of pitch constancy, see 

Section 1.2.  However the weak pitch salience condition did not satisfy the first objective 

(pitch selectivity), because it failed to drive any detectable activation at the group level, and 

only occasionally at the individual level (i.e., N = 5 listeners in incidence map, and N = 14-18 

for conjunction analysis) when lenient and uncorrected statistics were used. This has called 

into question the reliability of the initial interpretation. Subsequently these results need to be 

approached with caution. 

5.4.5.3 Objective 3: fMRI findings for high-level ‘cognitive’ responses to melodic 

sound sequences?  

 Incidence maps  

The sagittal view in the right hemisphere shown in Figure 5.4 (rows 1 and 2) indicates a 

more anterior-ward pattern of activation for pitch > noise (contrast of interest #08) than for 

sound > silence (contrast of interest #07). Pitch-related activity extended more anteriorly 

towards PP in approximately 39% of listeners. The oblique-axial view for this contrast 

(Figure 5.4, row 2) also depicts a larger area of greater consistency on the right hemisphere 

(maximum overlap in approximately 61% of listeners across the three oblique-axial slices) 

compared with the left hemisphere, and a smaller area of pitch-related activity (maximum 

overlap in approximately 61% of listeners) which was more lateralised towards PP 

compared to the sound > silence contrast (i.e., z = -2mm oblique-axial slice).  

 ROI analysis 

ROI analysis is the only way to directly test Objective 3 because it enables a direct statistical 

comparison of sides. As described briefly in Section 5.1.3, only the laterality issue in regions 

where Patterson et al (2002) reported melodic vs. fixed pitch context effects were explored 

(see Table 5.5 below). Therefore although there was no significant interaction between 

hemisphere*condition for lateral HG, PP or PT (effect of interest #06; see Section 5.4.5.1), 

planned comparisons paired sample t-tests for effect of interest #06 were conducted to 

examine any laterality effects across pitch conditions (see Figure 5.5; e.g., left hemisphere 

condition 1 vs. right hemisphere condition 1, left hemisphere condition 2 vs. right 

hemisphere condition 2 etc.). It was expected that there would be a greater right hemisphere 

preference for strong pitch (conditions 1, 3 and 4), than for weak pitch (condition 2), given 

that the melody is more prominent for these conditions. 
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Lateral HG (area Te1.2) 

Paired sample t-tests revealed activation for 2 out of 4 of the pitch conditions (conditions 2 

and 4) was significantly greater in the right hemisphere compared to the left hemisphere 

after Bonferonni correction, t(17) = -3.65, p = .002, and t(17) = -3.77, p = .002, respectively. 

There was no significant difference in activation across hemispheres for noise conditions, 

indicating that a right hemisphere dominance was isolated to pitch-related conditions.  

PP 

Paired sample t-tests (Bonferroni corrected) revealed no statistically significant differential 

activity (p > .05) between left and right hemispheres across all six conditions. 

PT 

Paired sample t-tests conducted showed 1 out of 4 of the pitch conditions (condition 2) was 

significantly greater in the right hemisphere compared to the left hemisphere after 

Bonferonni correction; t(17) = -3.42, p < .003. There was no significant difference in 

activation across hemispheres for noise conditions.  

Table 5.5 
Summary of right hemisphere preference for melodic sequences across restricted ROIs 
(paired sample t-tests for effect of interest #06)  

  Right hemisphere preference (Objective 3) 

Left condition n vs. right condition n (#06) 

ROI 

 

 
Strong pitch 
condition 1  

 

Strong pitch  
condition 3 

Strong pitch 
condition 4 

Weak pitch  
condition 2 

Te1.2      

PP      

PT      

Note: PP and PT ROIs refer to the revised versions, as defined in Table 5.1. 
 

 Directly comparing activation with a previous pitch salience study 

Interestingly, pitch-related activation in the current study appears to extend more anteriorly 

in both hemispheres towards lateral HG and PP than that previously reported by Barker et 

al. (2011), as shown in Figure 5.6 for the pitch > noise contrast. This is evident across both 

oblique-axial and sagittal slices. Whilst it suggests that slightly different patterns of pitch 

related activity (i.e., more anterior) might be observed for melodic pitch compared to fixed 

pitch stimulus contexts, it does not support the notion of a right hemisphere preference. 
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 Summary of evidence for laterality effects for melodic sound sequences from 

the four analysis approaches 

The findings provide partial support a right hemisphere preference, but perhaps what was 

most surprising was that there was a right hemisphere preference for the weak pitch 

condition in which the melody would be more difficult to perceive than for the strong pitch 

conditions. Moreover, the findings failed to support a greater anterior focus of activity in right 

than in left auditory cortex since PP showed null results for all pitch conditions. However the 

activation data was more anterior than that reported by Barker et al. (2011). The findings are 

not compelling in favour or against a right hemisphere preference for melody and the 

emergence of a pitch processing hierarchy. It is important to highlight that the ROI analysis 

indicated greater activation for the right hemisphere for all stimulus conditions (including 

noise conditions) and therefore wasn‟t specific to pitch. Subsequently, it might be 

reasonable to suggest that because the noise was also pulsed this created a type of melody 

context. Further research is therefore needed to explore these further.  

5.5. Discussion 

The current experiments used the same stimuli and a study design informed by Penagos et 

al. (2004) to re-examine pitch-related and pitch-salience related effects by addressing some 

methodological limitations identified in the original study. To recap, the main experiment of 

interest (Experiment 5) examined the evidence for pitch selectivity (Objective 1), pitch 

salience sensitivity (Objective 2) and a right hemisphere preference implying a pitch 

processing hierarchy (Objective 3), using four main analysis approaches. The subjective 

pitch salience rating task (Experiment 4) examined the first two objectives by getting 

listeners to rate the stimuli across the six conditions.  Listeners could discern between weak 

pitch and matched noise, as well as weak pitch salience and strong pitch salience, satisfying 

both Objectives 1 and 2 on a behavioural level. 

5.5.1 Evidence of multiple regions of auditory cortex selective to pitch over noise 

Pitch-related activity was widely distributed and localised to central HG, lateral HG, PP and 

PT, confirming previous results (Barker et al., 2011; Bizley et al., 2009; Garcia et al., 2010; 

Hall & Plack, 2009; Griffiths et al., 2010; Staeren, Renvall, De Martino, Goebel, & 

Formisano, 2009). This result broadly supported Penagos et al (2004), but highlights how 

pitch effects were not restricted to the anterolateral end of HG. This finding appears contrary 

to studies that propose a pitch centre (e.g., Bendor & Wang, 2005, 2010; Griffiths et al., 

1998, 2001; Krumbholz et al., 2003; Patterson et al., 2002; Puschmann et al., 2010). 

Instead, the representation of pitch appears to be widely distributed. Griffiths & Hall (2012) 

plotted the individual maps of pitch activation originally from Hall & Plack (2009), and 

illustrate large variability across individual listeners. Individual‟s exhibited highly variable 

activation in a number of sites, including PT, PP, superior temporal sulcus and inferior 
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frontal gyrus. High spatial variability of the pitch response across listeners exemplifies the 

risks of generalising from only a small number of participants. 

5.5.2 Is fMRI able to detect small or variable pitch-related activations for a weak pitch 

stimulus? 

Activation for pitch and pitch-salience activity was seemingly comparable and co-localised to 

the same regions as the pitch response. This result appears to contradict previous studies 

from the Nottingham group (i.e., Barker et al., 2011; Hall & Plack., 2009; but see Barker et 

al., 2013). However, both studies used fixed pitch stimuli so were more susceptible to 

adaptation effects. It is important to note, however, the credibility of this apparent pitch 

salience effect is called into question by the observation that activation for the weak pitch 

salience condition was broadly comparable to the matched noise condition at the group level 

(i.e., not significantly different). This equivalent activation for weak pitch and matched noise 

was also observed by Penagos and colleagues, but was not specifically discussed. This 

condition failed to fulfil the criteria for pitch selectivity at the group-level, but did fulfil this 

criteria for some listeners at the individual-level. Specifically, the incidence map and 

individual conjunction analyses revealed differential activity (5/18 and 14-18/18 listeners, 

respectively) for pitch > noise, this was not significant across the group. This might have 

also been because the incidence maps and individual conjunction analyses reported here 

used a lenient uncorrected statistics of p < .001 and/or p < .05, whilst the group-based 

activation analysis did not. Alternatively it may also be reflective of the spatial variability 

across individuals (see Griffiths and Hall, 2012). However, in the subjective ratings pitch 

task, listeners reliably rated the weak pitch condition as significantly weaker in salience than 

the strong pitch salience conditions, but greater in pitch salience than noise. This means 

that perceptually at least, there was a perceptual difference in pitch salience, but this was 

not reflected or detectable in the fMRI signal.  

This result is contrary to what one would expect given that a number of EEG and MEG 

studies have found that stimuli with stronger pitch salience (namely IRN) evoke larger pitch 

onset responses (PORs) that have shorter latencies (see Krishnan et al., 2010, Krishnan et 

al., 2012; Krishnan & Plack, 2011; Krumbholz et al., 2003; Kumar et al., 2011). Evidence 

from intracranial recordings using IRN stimuli have also found that the magnitude of both 

evoked responses and induced gamma power increased as a function of pitch salience 

throughout all areas of HG (Griffiths et al., 2010). Krishnan and colleagues (2010; 2012) 

have proposed several reasons that might explain the disparity in findings between fMRI 

and EEG, MEG and behavioural experiments in identifying representations of pitch salience 

in cortical and subcortical areas of the auditory pathway. Namely, that using fMRI to 

investigate representations of pitch salience is confounded because subcortical and cortical 

representations of pitch or pitch salience have a much finer temporal resolution (i.e., ms) 

than is afforded by fMRI (i.e., s; Krishnan et al., 2012). fMRI is much more sluggish than 
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other neuroimaging methods, and is not a direct measure of neural activity (see Chapter 3). 

The incidence maps confirm a wide distribution of pitch activity across the 18 subjects.  It 

might not be that there is no representation of pitch salience in the midbrain or auditory 

cortex, but instead that the fMRI methodology used hitherto is not sensitive enough to detect 

changes in response sensitivity to more detailed features of an auditory stimulus (Ernst, 

Verhey, & Uppenkamp, 2008; Krishnan et al., 2012) particularly on a group level, thus 

reflecting a type 2 error. This coupled with high inter-subject variability (see Griffiths and 

Hall, 2012) would make it extremely difficult to isolate such activity. As proposed by Barker 

et al. (2011), who failed to find an area sensitive to pitch salience, fMRI may only be able to 

reveal auditory areas which are maximally responsive to the presence or absence of pitch, 

rather than the perceptual pitch salience per se. 

5.5.3 No strong evidence of a right hemisphere preference, but some evidence for 

more anterior activation dependent on the stimulus context (melodic pitch vs. fixed 

pitch) 

Findings reported for Experiment 5 did not show compelling evidence in favour of a right 

hemisphere preference or emergence of a pitch processing hierarchy, since PP showed null 

results for all pitch conditions. However comparison of my data with Barker et al. (2011) did 

confirm that activation in my study was more anterior, thus suggesting that the context of the 

pitch stimuli used (i.e., melodic or fixed) can affect the distribution of pitch-related activity 

observed. These results support other passive listening experiments which have also 

reported that stimuli which vary in pitch (melodic type sequences), show more anteriorly 

distributed representations than compared to fixed pitch stimuli (Patterson et al., 2002; 

Warren & Griffiths, 2003). However more research is still needed to confirm whether 

presenting pitch signals as random melody sequences promotes involvement of the right 

anterior temporal lobe, providing support of a pitch processing hierarchy, as reported in 

Patterson et al. (2002).   

5.5.4 Alternative explanations for results 

5.5.4.1 Are pitch responses only related to the melody (context) of the pitch 

percept? 

One alternative explanation for the fMRI results that could be argued is whether the pitch 

responses were driven by the pitch of the stimuli, or just the melody of the pitch (i.e., 

context). Although the pitch > noise (contrasts of interest #08) had a melody difference (i.e., 

melody > no melody), the strong > weak contrast (#09) did not (i.e., both included a 

melody). This contrast still gave rise to differential activation even when the melody was 

present for both stimulus conditions (strong and weak). If the results were driven by melody 

alone, I would have not expected to see a significant result for this contrast. Subsequently it 
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seems reasonable to assume that the activation was attributable to pitch coding (pitch-

specific) effects and not melody (context) coding alone. 

5.5.5 Summary 

Overall the results reported here satisfied the first pitch criterion of pitch selectivity, but 

provided important convergent evidence in favour of a distributed representation of pitch in 

auditory cortex, which is contrary to a designated pitch centre. Although a representation of 

pitch salience was found (for some listeners at least) seemingly fulfilling the third pitch 

criterion of covariation with pitch salience, these results should be taken with caution until 

further work has confirmed whether or not fMRI methods are sensitive enough to detect 

pitch salience effects. It seems vital that this future work involves exploring the use of more 

advantageous experimental and analysis approaches that can be used to tease apart any 

pitch salience effects using fMRI, and this should be carried out in conjunction with other 

methods (e.g., electrophysiological and behavioural). 
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Chapter 6. ERP and adaptation methodology 

6.1. Introduction 

This chapter briefly describes the ERP and adaptation methodology used in Chapter 8. 

Please note that, given that this chapter has been specifically written to describe the 

methodology used in Chapter 8 alone, it is much shorter than the fMRI methodology 

described in Chapter 3, which was written for more general purposes. 

6.1.1 What is EEG and ERPs? 

Electroencephalogram, or EEG, uses multiple electrodes placed on the scalp and amplifies 

the electrical activity of the human brain (signal) to graphically plot changes in voltage 

between two different electrode locations over time (Luck, 2005, p. 3). Since its inception by 

Hans Berger in 1929, EEG has grown in popularity amongst researchers and clinicians 

alike, mainly because it noninvasively measures direct neural activity with excellent temporal 

resolution (i.e., ms; unlike fMRI, see Chapter 3) by recording the electromagnetic fields 

generated by certain neuronal populations. For instance, through averaging, it is possible to 

extract neural responses to specific sensory, cognitive or motor events relating to specific 

experimental conditions or events that are time-specific, and these are known as event-

related potentials, or ERPs (Sanei & Chambers, 2007, p. 127). ERPs, therefore, provide a 

continuous measure of covert, as well as overt, processing of stimuli of interest, making it 

possible to determine which stage(s) of mental processing are affected by different 

independent variables that have been manipulated.  

The electric potential from a single neuron is considered far too small to be detectable by 

EEG. Therefore, the EEG signal is generally considered to reflect the summation of 

thousands or millions of synchronised inhibitory and excitatory postsynaptic potentials in the 

cortex of the brain, which fire instantaneously and are spatially aligned, and mainly confined 

to the dendrites and cell body of neurons (Kropotov, 2009, Part I, p. 11-19; Sanei & 

Chambers, 2007, p. 4-8). It is postulated that if an excitatory transmitter is released from the 

presynaptic terminals, this causes positive ions to flow into the postsynaptic neuron, creating 

a net negative extracellular voltage in the other parts of the neuron (depolarisation), which 

ultimately yields a small electrical dipole between the soma (body of neuron) and apical 

dendrites (neural branches). The dipoles from large populations of neurons summate and 

the resulting voltage is measurable at the scalp (Kropotov, 2009, Part I, p. 11-19; Sanei & 

Chambers, 2007, p. 4-8). Multiple dipoles can be measured using an equivalent current 

dipole, although some dipoles can partially cancel each other out if they are more than 90 

degrees from each other, and completely cancel each other out at a 180 degree difference 

(Luck, 2005, p. 31). Pyramidal cells are aligned perpendicularly to the surface of the cortex 

and fire together, forming an extracellular cortical dipole layer, and therefore activity from 



104 
 

these cells are considered to be the most likely source of the EEG signal that is measurable 

at the scalp (Luck, 2005, p.31). The EEG signal is primarily generated by the large, vertically 

oriented pyramidal neurons located in cortical layers II, III, V, and VI (Kropotov, 2009, Part I, 

p. 18). The EEG signal can also be modified by the current flow or conductive properties of 

the tissues (e.g., brain, CSF, skull and scalp) between the electrical source and the 

recording electrode site on the scalp, the electrode itself, and the orientation of the cortical 

generator of the recording electrode (known as volume conduction; Kropotov, 2009, Part I, 

p.147-148). Subsequently, EEG has poor or undefined spatial sensitivity (two-dimensional 

projection of a three-dimensional reality) because it is not possible to accurately localise the 

source of ERP components using sensor-based EEG information alone, known as the 

inverse problem (Kropotov, 2009, Part I, p. 148); but source localisation can help to solve 

this problem (see Section 6.2.4). 

The spectral content or rhythmic activity of the EEG signal can also be used to measure 

different brain waves that are subdivided into different frequency bandwidths, such as alpha 

(8-13 Hz), beta (13-31 Hz), delta (>4 Hz), theta (4-8 Hz) and gamma waves (32+ Hz; 

Kropotov, 2009, Part I, p. 2-3). These are associated with specific locations and cognitive 

states (e.g., alpha activity is typically observed in posterior regions when someone is closing 

their eyes or at rest; Kropotov, 2009, Part I, p. 3-4). 

Given that auditory perception is remarkably fast, EEG is a particularly useful method for 

investigating auditory processing. For example, EEG has been used to measure early 

Auditory Brainstem Responses or brainstem Frequency Following Responses (Krishnan et 

al., 2012; Krishnan & Plack, 2011), motion onset responses in auditory space perception 

(Kreitewolf, Lewald, & Getzmann, 2011), selective attention to sound location and pitch 

perception (Dergerman et al., 2008), and even oscillatory EEG activity in patients with 

chronic tinnitus (Moazami-Goudarzi, Michels, Weisz, & Jeanmonod, 2010). More recently, 

EEG has been used in combination with adaptation methodology to investigate frequency 

(Briley & Krumbholz, 2013; Lanting, Briley, Sumner, & Krumbholz, 2013), spatial location 

(Briley, Kitterick, & Summerfield, 2012; Briley & Summerfield, 2014), and pitch processing in 

auditory cortex (Briley et al., 2013; see Section 6.3).  

6.2. EEG data acquisition and analysis 

EEG data acquisition and analysis broadly involves attaching electrodes to the scalp of 

participants to pick up the EEG signal, filtering and amplifying the signal so it can be stored 

as a set of discrete voltage measurements on the computer, removing various artifiacts that 

can contaminate the EEG signal (e.g., eye blinks) before averaging the data to extract the 

ERPs from the overall EEG for each condition, and then applying various signal processing 

techniques (e.g., digital filters) to remove noise and isolate specific ERP components. The 

following sections describe the procedures used in Chapter 8.  
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6.2.1 EEG data acquisition 

The section highlights the main procedures used for recording ERPs using a 64-channel 

Active-Two acquisition system (BioSemi; see Figure 6.1), sampled at 2048 Hz, with a 

bandwidth of 417 Hz and digitised at 24-bit, and describes the approaches used to analyse 

data from Experiment 10.  

 

Figure 6.1. Schematic of the BioSemi 10-20 montage with the 64 electrode positions 

labelled plus two additional grounding electrodes Common Mode Sense (CMS) and Driven 

Right Leg (DRL). 

Various craniometric measurements were obtained (longitudinal: nasion-to-inion; lateral: left 

(PAL) and right (PAR) pre-auricular points). The half-way point of these two measurements 

is known as the vertex. The specialised BioSemi head-cap is comprised of 64 pin-type 

Active electrodes placed according to the standard 10-20 arrangement. This system refers 

to the actual distance between electrodes, either 10% or 20%, and is based on the 

relationship between the location of a given electrode and the underlying area of the 

cerebral cortex. Eight additional silver/silver chloride (Ag/AgCl) electrodes that were 

positioned at F9, F10, F11, F12, T9, T10, back of neck and chin, to provide greater 

coverage of the lower part of the head surface to aid reconstruction of topographic voltage 

maps and facilitate source localisation. The head-cap was fitted so that the Cz electrode fell 

directly on the vertex and so the Fpz, Fp1 and Fp2 electrodes are on the 10% midline from 
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the nasion. Signa (conductive) gel was to fill the electrode holders before the Active-Two 

electrodes were pushed in to the corresponding electrode holders. Given that high electrode 

impedances can be tolerated, the system can be used without having to prepare the skin in 

the conventional manner (i.e., alcohol and/or abrasive scrubbing of the skin). Skin-electrode 

impedances were kept below 5 kOhms throughout data acquisition, which is common good 

practice (Luck, 2005, p.119). 

Signals were amplified using ActiveTwo (BioSemi) Analogue-to-Digital-box (AD-box) 

channel which consists of a low noise Direct Current (DC) coupled post-amplifier with an 

anti-aliasing filter. The digital outputs of the Analogue-to-Digital Converter (ADC) are digitally 

multiplexed and sent to the recording personal computer via a single optical fibre without 

compression or data reduction. The receiver then converts the optical data coming from the 

AD-box to an USB2 output, which in turn delivers the data to the recording personal 

computer which can be viewed online using an acquisition system. The BioSemi system 

typically replaces the „ground‟ electrode used in conventional systems with two separate 

electrodes known as a Common Mode Sense (CMS) active electrode and a Driven Right 

Leg (DRL) passive electrode (“BioSemi EEG reference,” n.d.). These two electrodes (see 

Figure 6.1) form a feedback loop which drives the average potential for the subject (CMS 

voltage) as close as possible to the ADC reference voltage in the AD-box. With this BioSemi 

system, every electrode or a combination of electrodes can be used as a „reference‟, with 

the choice being selectable in the given acquisition or analysis software used. Incoming 

signals from the Active-Two channels are monitored online and saved (in BDF format) using 

a complete acquisition program called ActiView (v. 6.05, BioSemi). Therefore all data 

collected uses the average reference from all connected electrodes. The incoming data was 

then low-pass filtered at 100 Hz, and high-pass filtered at 0.16 Hz. before offset values and 

any visible problems (e.g., excessive alpha waves, slow voltage shifts, amplifier saturation, 

muscle and heart activity) were manually checked by „eyeballing‟ the data before running 

the experiment. 

Participants were seated approximately 60 cm from the stimulus presentation monitor. To 

correct for signal artefacts, data collection began with an artefact recording experiment. 

Specifically, a 10 minute artefact correction experiment was run to record muscle 

movements which can contaminate the signal, notably eye blinks and horizontal eye-

movements (i.e., horizontal electro-oculograph). Participants had to perform these 

movements when instructed to do so by the experimenter. Next, a 26 minute passive pitch 

listening task was employed. Here participants were instructed to remain alert whilst 

listening to the sounds sequences and watching a silent cartoon DVD. A passive task was 

implemented as task-dependent effects can alter the sensitivity of neurons to the stimulus 

attributes of pitch (see Alho et al., 2013; Walker et al., 2011b). A „paradigm‟ file was used to 

define the conditions and trials at the same time as the data recording.  

http://www.biosemi.com/ad-box_activetwo.htm
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Once data collection was completed, the data were analysed using Brain Electrical Source 

Analysis Software (BESA Research v. 5.3.7, Gräfelfing), although a number of different EEG 

analysis software packages are available. The following sections describe pre-processing 

and analysis steps involved when using BESA to analyse Experiment 10 (described in 

Chapter 8), where there were three main stages: 1) Pre-processing, 2) Sensor-based 

analysis, and 3) Source-based analysis, which are described below. 

6.2.2 Pre-processing 

Pre-processing prepared the data for analysis by correcting and rejecting artefacts, filtering 

and averaging. It involved a number of conventional steps described in the BESA manuals 

for data pre-processing and analysis (available online at 

http://www.besa.de/downloads/training-material/tutorials/):   

i) Low-pass and high-pass filtering the data for artefact correction.  

The raw EEG data were high-pass (0.5 Hz ~ 6 dB/octave, forward shift) and low-pass 

filtered (35 Hz ~ 24 dB/octave, zero-phase shift) to aid manual identification of blink and 

horizontal electro-oculograph artefacts only.  

ii) Artefact correction for blinks and horizontal electro-oculograph  

Artefact correction aims to extract unwanted signals like blinks, horizontal electro-

oculograph or external noise from the data, while leaving all brain activity of interest as 

undisturbed as possible. To achieve this, artefact and brain topographies must be separated 

because they are typically spatially correlated. For artefact correction without distortion, it is 

better to create a model or spatial description of the brain topographies to be retained, 

rather than define and reject artefact topographies (Scherg, Berg, & Hoechstetter, 2010). 

Blinks and horizontal electro-oculograph artefacts were removed following the principle 

components analysis procedure proposed by Ille, Berg, and Scherg (2002). This is an 

„adaptive‟ method which models both artefact topographies and underlying brain activity. 

Artefact data collected prior to Experiment 10 (see in Chapter 8) was used to individualise 

artefact correction for each participant. Blinks and horizontal electro-oculograph 

topographies individually explained between 94.1% and 99.8% of the total variance.  

iii) Re-referencing to the average reference  

Whenever artefact correction is applied in BESA, the data is automatically re-referenced to 

the average reference. 
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iv) Segmenting trials into epochs  

A „paradigm‟ file was used to define the conditions and trials at the same time as the data 

recording. The paradigm file was then used to define the conditions and trials in BESA, 

which segments the data into time epochs ranging from the onset of the first stimulus (e.g., 

noise stimulus) and a given period after the onset of the last stimulus (if more than one 

stimulus event in the sequence; e.g., pitch stimulus). Trials were segmented into an epoch 

window of 2520ms, which began from the onset of the first noise stimulus to 500ms after the 

onset of the last stimulus (POR2; probe). 

v) Baseline correcting epochs 

Segments are usually baseline corrected to a given pre-stimulus interval. Handy (2005, p. 

39) recommends using a pre-stimulus intervals greater than 200ms because shorter 

baselines are more sensitive to residual voltage fluctuations which have a negative effect on 

ERP amplitudes. Segments were baseline corrected to a 300ms pre-stimulus interval for 

averaging.  

vi) Artefact scanning and artefact rejection  

The BESA system allows you to apply low- and high-pass filters for the artefact correction 

scan only so you can essentially evaluate the quality of the data, and reject trails prior to 

averaging. These digital filters can sometimes help to improve artefact detection, and 

function by supressing the frequencies that are attributeable to noise and artefacts that are 

not of interest (Sanei & Chambers, 2007, p. 18). Low-pass filters attenuate high frequencies 

and pass low frequencies, whereas high-pass filters attenuate low frequencies and pass 

high frequencies. The high-pass filter (i.e., 0.2 Hz) was kept on for averaging because this 

can have a negative effect on relatively short data epochs if applied after averaging 

(Hoechstetter, Berg, & Scherg, 2010). Unlike the high-pass filter, low-pass filters (i.e., 35 Hz, 

24 dB zero phase) do not need continuous data for these filters to work properly and can be 

applied at any time. The low-pass filter was therefore switched off for averaging, and applied 

after averaging.  

It should be noted that artefact scanning and averaging was conducted on the EEG data on 

two separate occasions, mainly to increase the number of trials accepted for averaging and 

thus to improve SNR. The BESA system allows you to apply low- and high-pass filters for 

the artefact correction scan only so that you can evaluate the quality of data before 

averaging. The low-pass filter was not applied on the first attempt and thus meant that many 

trials were rejected from averaging, and/or electrodes needed to be set to „bad‟ or 

interpolated. The BESA manual advises that it is however generally best practice to change 

the data as little as possible (e.g., avoid interpolation unless absolutely necessary, try not to 

interpolate sensors on edges). The artefact scan indicates any noisy channels that could 
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either be set to bad or interpolated. Any trials that had maximum amplitude greater than 120 

µV, gradient jumps of greater than 75 µV, and/or a low signal of less than 0.01 were rejected 

from averaging (although users can manually override this process and accept reject trials 

for averaging if desired). On the first attempt 29.55% (2364/8000) of trials were rejected. On 

the second attempt only 10.25% (820/8000) of trials were rejected across the 20 initial 

subjects, thus confirming my motivation to have to re-run this step. 

vii) Individual averaging across epochs 

Averaging was conducted separately for each subject to obtain the averaged ERP waveform 

files for each condition (collapsed across trial types) per subject. Artefact correction (i.e., 

blink and horizontal electro-oculograph topographies) were switched off for averaging 

because they can distort brain topographies. Individually averaged ERP waveforms for each 

condition per participant were then low-pass filtered (i.e., 35 Hz ~ 24 dB/octave, zero-phase 

shift). These were inspected according to the expected cortical responses to noise, adaptor 

and probe stimuli. After inspecting individual ERP waveforms, two subjects (#29 and #36) 

who had participated in both studies were excluded from Experiment 11 during the ERP 

analysis stage. They both failed to exhibit typically large and distinguishable cortical 

responses to noise (i.e., EOR). 

viii) Grand averaging 

A grand average (GA) waveform collapsed across the remaining 18 participants for each 

condition was also compiled. This was then be low-pass filtered (i.e., 35 Hz ~ 24 dB/octave, 

zero-phase shift). The GA served as a visual aid for the overall pattern of results, as well as 

a guide for latency ranges for later peak-to-peak analysis and dipole model fitting epochs. 

6.2.3 Sensor-based analysis 

Sensor-based analysis for Experiment 10 described in Chapter 8 involved manual 

quantification of ERP components of interest. The source-based analysis also involved the 

same quantification procedure, but after the source waveforms had been obtained (see 

source-based analysis section below).  

6.2.3.1 ERP components of interest  

The onset of any sound stimulus elicits a cascade of ERP responses, whereby there is an 

onset response, a sustained field and an offset response (Poeppel & Hickok, 2015, p. 248-

249). ERP waveforms consist of a number of positive (denoted by P prefix) and negative 

(denoted by N prefix) voltage deflections in amplitude. The most common components of 

interest in auditory ERP studies relate to transient responses, such as the robust and large 

evoked components, known as the P100, N100 and P200, and are described below in more 

detail.  
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The P100 is typically observed as a frontally positive deflection which peaks around 50ms 

after the onset of a sound stimulus (Luck, 2005, p. 39). Generators of the P100 are thought 

to be located in the central part of HG, in primary auditory cortex (Butler & Trainor, 2012). 

The P100 is usually followed by the N100. 

The N100 is the auditory component that is the most prominent and the one that has been 

the most extensively studied. The N100 is typically observed as a frontally negative 

deflection which peaks around 100ms after the onset of a sound stimulus, and is thought to 

have multiple subcomponents and neural generators located in secondary auditory areas, 

such as lateral HG and PT (Butler & Trainor, 2012; Näätänen & Picton, 1987). The N100 is 

considered to reflect stimulus representation or simple feature detection, such as a change 

in the energy or physical properties of the stimulus (Näätänen & Picton, 1987). Stimulus 

repetition is also known to diminish the amplitude of N100 (i.e., adaptation; Näätänen & 

Picton, 1987).  

The P200 is a positive deflection that peaks at approximately 200ms; however, little is 

known about the neural generators of P200, although these are probably different to N100 

generators (Lanting et al., 2013). Generally, the P200 generators are found to be more 

anterior in auditory cortex than N100 (see Lütkenhöner & Steinsträter, 1998; Krumbholz et 

al., 2003), and suggested to involve mechanisms that involve stimulus feature evaluation 

(Behroozmand, Korzyukov, & Larson, 2012). Lanting et al. (2013) found that the P200 

amplitudes are more strongly influenced by adaptation effects (something which was 

confirmed in my data reported in Chapter 8). 

The N100 can be evoked by the onset of any sound stimulus, regardless of its physical or 

perceptual properties. This can contaminate pitch responses, because areas of the brain 

that responds to noise onset in general will saturate the cortical signal of interest (Garcia et 

al., 2010; Krumbholz et al., 2003; Näätänen & Picton, 1987; Seither-Preisler, Krumbholz, 

Patterson, Seither, & Lütkenhöner, 2004). Krumbholz et al. (2003) used MEG to employ a 

novel stimulus paradigm using IRN stimuli which varied in pitch strength (increasing pitch 

salience as a function of increasing iterations; 2, 4, 8, 16 and 32). This was known as the 

„continuous stimulation paradigm‟ and involved presenting a sound sequence which 

transitioned from a spectrally matched white noise (2000ms) to a pitch stimulus (1000ms). 

The energy-onset response (EOR) is an automatic response which can be evoked by any 

sound stimulus, and is comprised of components N100-P200 (large negative deflection at 

around 100ms after stimulus onset, followed by a large positive deflection at around 200ms 

after onset). The continuous stimulation paradigm therefore allowed the EOR to be isolated 

from the transition response that is observed for pitch specifically, known as the pitch-onset 

response (POR). This is because the initial segment of noise evokes only the noise onset 

components and is then followed by the pitch-eliciting segment. Generally the time windows 

for EORs peak between 70-120ms for the N100 (Bosnyak, Eaton, & Roberts, 2004; Seither-
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Preisler et al., 2004; Shahin, Roberts, Miller, McDonald, & Alain, 2007), and 170-220ms 

(Lütkenhöner & Steinsträter, 1998; Seither-Preisler et al., 2004; Shahin et al., 2007) for the 

P200, after stimulus onset. PORs are broadly determined by the most negative peak 

occurring between 100-200ms (Seither-Preisler et al., 2004), but have been found to 

typically peak around 150ms after pitch stimulus onset (Chait et al., 2006; Krumbholz et al., 

2003). Krumbholz et al. (2003) conducted three experiments, where in the first two 

experiments the noise preceded the pitch stimulus, whereas in the third experiment the pitch 

stimulus preceded the noise. They found that the POR was only evoked for noise-to-pitch 

stimulus transitions, and not for pitch-to-noise transitions. The authors located the source of 

the POR in the medial HG.  

The sensitivity and consistency of POR has been studied across a number of MEG studies 

that have utilised the continuous stimulation paradigm (e.g., Chait et al., 2006; Gutschalk et 

al., 2004; Krumbholz et al., 2003; Ritter et al., 2005; Seither-Preisler et al., 2004, 2006). 

These studies suggest that the POR offers an excellent window for studying early cortical 

representations of pitch (Krishnan et al., 2012). For example, a follow-up study by the same 

authors (i.e., Seither-Preisler et al. 2004) further investigated the POR, as well as whether 

its neural generators were similar to that of EOR. They used stimuli similar to Krumbholz et 

al. (2003) except that the duration of noise segments varied from 500 to 4000ms (i.e., 500, 

1000, 2000 and 4000ms). The duration of the IRN pitch stimulus was always 1000ms, so 

the total length of the stimulus sequences (for noise and pitch) were either 1500, 2000, 3000 

or 5000ms. They found prominent PORs in all subjects when the latency of the noise 

segments was 1000-4000ms. When the 500ms noise segment was used, a POR was only 

found in four out of seven listeners. The latency of PORs did not appear to be affected by 

noise duration, but the amplitude increased as a function of increasing noise duration.  Ritter 

et al. (2005) also managed to evoke the POR using sounds sequences which transitioned 

between two IRN pitch stimuli.  

Chait et al.‟s (2006) study involved presenting listeners with pure tones embedded in noise 

as well as Huggins pitch stimuli. They found PORs for both these types of pitch-evoking 

stimuli, thus confirming the pitch constancy of POR. This was mainly because the inclusion 

of binaural Huggins pitch stimuli (where two noises are presented to each ear and it is the 

combination of noises that creates a pitch percept) provided support that similar pitch 

extraction mechanisms are involved. Gutschalk et al. (2007) also measured MEG responses 

to regular and irregular click trains and reported similar results as Krumbholz et al. (2003). 

The POR is therefore thought to reflect synchronised cortical activity related to pitch, and 

depends on specific features, such a F0 or salience (Chait et al., 2006; Krumbholz et al., 

2003; Seither-Preisler et al., 2006). Some MEG studies have also found that the amplitude 

of the POR response increases and the latency decreases as a function of pitch value and 

salience (Krumbholz et al., 2003; Seither-Preisler et al., 2003; Soeta, Nakagawa, & Tonoike, 
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2005), further suggesting POR‟s involvement in pitch processing. This illustrates why it is 

important to match stimulus parameters for discriminability, which can be considered as one 

indicator of stimulus salience (see Chapter 7).  

It should be noted that the POR, although visually similar to, it is probably not the same as 

the N100-P200 elicited by the onset of sound because it only occurs for the perception of an 

emerging pitch in an on-going sound sequence (Poeppel & Hickok, 2015, p. 249), although 

it is likely that POR shares some neural structures involved in the EOR (Seither-Preisler et 

al., 2004). Some have postulated the POR and N100 have partially overlapping neural 

generators (Seither-Preisler et al., 2004, 2006), but Krumbholz et al. (2003) has argued that 

the neural generators of N100m and POR are functionally independent. Schönwiesner and 

Zatorre (2008) also confirmed separate neural sources for noise and pitch onsets using 

depth electrodes, with pitch onsets being localised most consistently to lateral HG. Some 

have also suggested the POR and P200 have more similar neural generators than POR and 

N100. One hypothesis is that the POR and P200, whilst having different polarities and 

different latencies, are actually generated from the same location but in different cortical 

layers (Seither-Preisler et al., 2004). However, it is impossible to determine the precise 

location of MEG sources with absolute certainty. Nevertheless, in Experiment 10 the 

temporal windows for N100 and P200 components were used to guide analysis in order to 

obtain a negative and positive peak-to-peak measure for PORs (like EOR), and are 

subsequently referred to throughout as the N100 and P200 of the POR response, for 

simplicity.  

Sound sequences from Experiment 10 consisted of three stimulus events (i.e., noise, pitch 

stimulus 1 (adaptor) and pitch stimulus 2 (probe), which were measureable in the ERPs as 

EOR, POR1 and POR2. For each participant across conditions, the EOR, POR1, and 

POR2, were individually computed (see Section 6.2.3.2).  

6.2.3.2 ERP quantification 

ERPs are measured in terms of units or amplitudes, specifically microvolts (µV) for sensor-

based analysis, and dipole moment (i.e., strength) in nano amp metres (nAm) for source-

based analysis. Latencies (time point in ms) for a given component of interest (e.g., POR) 

are also used for both sensor and source-based analyses. A peak amplitude measure 

quantifies the time point (i.e., peak latency) a given component reaches its maximum 

amplitude (Handy, 2005, p.38).  

Peak-to-peak measure 

A peak-to-peak measure was used for Experiment 10, which measures one peak (N100) 

relative to an adjacent peak (P200). Peak-to-peak difference measures were computed 

separately for each listener and condition by taking the peak amplitude for each component 
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of interest (i.e., N100 and P200) comprising each of the EOR, POR1 and POR2 responses, 

and inputting these into an excel spread sheet. These values were then used to calculate 

peak-to-peak measures for EOR, POR1 and POR2 per listener per condition. 

This peak-to-peak approach has been used by several other studies that have measured 

stimulus selectivity of adaptation in ERPs (recently, Briley et al., 2013; but see Näätänen & 

Picton, 1987 for a review). This is because the N100 and P200 deflections have opposite 

polarities and partly overlapping time courses which mean they might partially cancel each 

other out (Makeig, Jung, Bell, Ghahremani, & Sejnowski, 1997; Näätänen & Picton, 1987). 

Using a peak-to-peak, rather than a baseline-to-peak measure subsequently avoids this 

potential cancellation effect. Furthermore, the peak-to-peak measure remains free from 

residual noise, DC shifts, and other confounding artefacts that might exist for the pre-

stimulus baseline (see Handy, 2005, p.40; Luck, 2005, p. 237; Picton et al., 2000).  

All sensor-based peak-to-peak analysis was conducted at the Cz electrode because the GA 

waveforms had demonstrated that the Cz sensor displayed the most robust responses to 

the noise, adaptor and probe stimuli. It is acknowledged that analysing the data from 

multiple electrode sites would have possibly made the data more robust; however Shahin, 

Bosnyak, Trainor, & Roberts (2003) used Cz and T8 electrode sites but only found  large N1 

and P2 responses for Cz. Auditory papers also tend to report data from the Cz vertex as it is 

known to be highly responsive to auditory-evoked stimuli (e.g., Briley et al., 2013; 

Krumbholz et al., 2003).  Therefore for the purposes of Experiment 10, and because source 

analysis was conducted which used the data from all electrodes, it was felt that analysis for 

one electrode site for the sensor-based analysis would be sufficient. Voltage distribution 

maps were also the most negative and positive at the top of the head for N100 and P200 

(Figure 6.2) for the Cz electrode site, respectively. This was also true for the source-based 

analysis (not shown).  
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Figure 6.2. A representative example of the topographical maps observed for N100 and 

P200 components across subjects and conditions taken from the GA sensor-based data for 

one condition. 

The peak-to-peak amplitudes for POR1 and POR2 for each listener and condition were then 

used to calculate the amount of adaptation occurring from POR1 (adaptor) to POR2 (probe), 

by taking the P200-N100 amplitudes of the probe (i.e., peak amplitude of P200 minus peak 

amplitude N100), and subtracting this from the P200-N100 amplitudes of the adaptor (see 

Figure 6.3). The pre-stimulus interval baseline corrected the EOR waveforms and so an 

absolute difference in peak amplitudes could be taken. The POR responses for the adaptor 

and probe are far from the pre-stimulus interval baseline and appeared to drift slightly in 

relation to the baseline. This is probably because the ERP source and sensor-based 

waveforms were of long duration. However, digital filtering did appear to improve the 

situation. In this case, an absolute peak amplitude measure was therefore not appropriate 

(Luck, 2005, p.237). Nevertheless, rather than using a baseline to peak measure (which 

may have not been appropriate to use), a relative peak-to-peak measure was obtained (see 

Figure 6.3, and Briley et al., 2013). This also helped to reduce possible contributions arising 

from the P200 waveform, given that N100 and P200 have overlapping time courses 

(Bosnyak, Trainor, & Roberts, 2003; Näätänen and Picton 1987; Makeig et al. 1997). It is 

important to note that given that for the „same pitch, same timbre‟ condition  the response 

was expected to be near zero, only measurements from the largest two peaks in the 

appropriate time epoch were taken. 
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Figure 6.3. Illustration based on grand mean data from Cz of how the peak amplitudes for 

noise (EOR), adaptor (POR1) and probe (POR2), as well as the amount of adaptation from 

POR1 to POR2 were calculated for sensor (and source-based analyses). Black vertical 

arrows depict peak-to-peak amplitudes, but for illustration the peak-to-peak vertical arrow 

that appears next to POR2 responses represents the POR1 response for a given condition. 

The gray vertical arrows for POR2 relative to this black vertical arrow highlights adaptation 

(POR2 relative to POR1) for the ‘blue’ condition; smaller response for POR2 than for POR1 

(for reference compare the gray dashed horizontal line with black dashed horizontal line). 

The green vertical arrows (and dashed) highlights release from adaptation (POR2 relative 

to POR1) for ‘red’ condition; greater response for POR2 than for POR1 (for reference 

compare the green dashed horizontal line with the black dashed horizontal line). Note that 

negative voltage is plotted upwards at this electrode site.  

6.2.4 ERP localisation (source-based analysis) 

ERPs have excellent temporal resolution but lack the spatial specificity afforded by other 

methods, such as fMRI. Given that currents spread laterally when they encounter resistance 

from the scalp, ERPs generated in one brain region may lead to substantial voltages at 

different parts of the scalp. Therefore it is important to use approaches that attempt to 

alleviate the inverse problem. The inverse problem refers to trying to determine the locations 

and orientations of dipoles by using the observed distribution of voltage over the scalp 

(Handy, 2005), when there are infinite set of dipoles that could give rise to the observed 

voltage distribution. Several approaches have been proposed (see Luck, 2005, p. 269), but 

here only the „equivalent current dipole‟ approach to source localisation in BESA is 

discussed (see Luck, 2005, p.271-278), as this was the programme used for conducting 

source localisation in Experiment 10.  
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i) Using the Grand Average ERP waveform to derive the source model 

A source model is typically created based on the GA data. This is because the GA model 

explains the data variance in all conditions and across all subjects, and therefore can be 

used to calculate the source activity in each subject across all experimental conditions 

(Hoechstetter et al., 2010). The average source location of the GA functions as a good 

model for each individual data set because a change in source location of 1-2 cm has little 

effect on the temporal course of source waveforms (Hoechstetter et al., 2010). Fitting 

individual data sets usually results in a large uncertainty in source location, especially in 

depth, due to the poorer SNR, so BESA recommends using a GA source model to stabilise 

the individual solutions. BESA advise three different ways of how to achieve a robust 

source model (see Hoechstetter et al., 2010) and was applied to the procedure used for 

Experiment 10 described in Chapter 8. Specifically, the source model should use a model 

with fixed sources and individual orientations (locations from the GA; Hoechstetter et al., 

2000). Individual orientations were permitted in order to optimise the source model for all 

subjects given that the optimal orientation for each subject will vary and is dependent on 

the cortical folding, gyral anatomy and functional representation of each subject. 

ii) Fitting procedure for discrete source analysis 

When a discrete source analysis model is used, this relies on the assumption that each 

equivalent current dipole represents an extended brain region. Each dipole separates and 

mutually contrasts dipole activities with minimal cross talk, but requires users to manually 

fit dipoles and select appropriate fit intervals.  

Two equivalent current dipoles were placed approximately in the left and right hemispheres 

of the auditory cortex (Morosan et al., 2001) using a four shell ellipsoidal volume conductor 

as a head model; this is a common procedure used for auditory ERP studies (e.g., Briley et 

al., 2013). These dipoles were then be used to estimate source locations of the ERPs for 

the probe responses across conditions and participants. Therefore, dipole orientations 

were fitted to average POR2 probe responses across conditions (during GAing an “all 

conditions” condition had been created). The resulting source model acted as a spatial filter 

for each condition and participant per hemisphere, which spatially restricts all conditions. 

Dipoles were subjected to a symmetrical constraint because both left and right auditory 

cortices were assumed to be approximately symmetrical. Given that individual data are 

generally much less stable than GA data, this symmetrical constraint also meant that 

erroneously placed dipoles were avoided. However orientations were unconstrained to 

account for individual variability in cortical folding, etc. The fitting window was chosen to 

encapsulate the POR2 response (0-300ms; 1810-2110 in the stimulus sequence ms). The 

POR2 probe response was chosen as the fit interval because it contained the adaptation-

related activity of interest (pitch invariant/non-invariant responses). The fitting procedure 

auto-fits both sources to selected/highlighted fit interval. For example, in Briley et al. (2013) 
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dipole orientations were fitted to average probe responses across conditions; the same 

procedure employed in Experiment 10. The fitting procedure for Experiment 10 revealed 

two equivalent and symmetrical dipoles located in x = 40.2, y = -14.2, and z = 16.4mm (see 

Figure 6.4; approximately located in medial HG like Krumbholz et al., 2003). The residual 

variance of 12.57% revealed a good model fit. The resulting GA solution was used as a 

master model. 

 

Figure 6.4. Dipoles fitted during source analysis. Display follows radiological convention, left 

= right. 

iii) Running the batch script 

A batch script was created and applied to the GA master model to all the individual data 

sets, orienting the sources individually and extracting the individual source waveforms for 

each condition. Unlike sensor-based analysis, artefact corrected data should not be loaded 

in the source analysis window. Instead, artefact correction should be turned off, and the 

individually saved artefact topography files (saved during artefact correction in the sensor-

based analyses) should be individually appended to each subject‟s source model solution 

whilst running the source analysis batch script. This is because the use of already artefact 

corrected data can distort source activities. Using this „optimising method‟ (Scherg et al., 

2010) instead meant that correct source localisation could be obtained whilst taking 

account of blink and horizontal electro-oculograph artefact topographies in the averaged 

data segments, so that further statistical analysis can be performed.  

The resulting source waveforms were then averaged together before conducting peak-to-

peak quantification of the EOR, POR1 and POR2, as well as the calculation of the amount 
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of adaptation from POR1 to POR2 were undertaken by following the same procedures 

described for the sensor-based analysis. 

6.2.5 Statistical Analysis  

The peak-to-peak amplitudes for EOR, POR1 and amount of adaptation for POR2 relative to 

POR1 (for both sensor and source-based analyses) were subjected to statistical analysis 

using a 2-by-2 repeated-measures ANOVA. The first factor reflected pitch congruence from 

adaptor to probe (same, different), and the second factor reflected timbre congruence 

(same, different). ANOVA is the most dominant statistical approach for analysing ERPs. 

ANOVA assumes that the data are normally distributed, and that there is compound 

symmetry and sphericity, specifically that the variances of the differences between all 

conditions are identical (homogeneity of variance) and the correlations between them are 

also equal (homogeneity of covariance). However, these assumptions are typically violated 

by the majority of ERP studies (Luck, 2005, p.258). For instance, the assumption of 

homogeneity of covariance is violated in ERP studies because the data from nearby 

electrodes tend to be more correlated than data from more distant electrodes. Nevertheless, 

given the robustness of this analytic technique, mild to moderate violations of normality do 

not typically influence type I error rates (Luck, 2005, p.258). However, for repeated 

measures designs, when violations to sphericity occur, a Greenhouse-Geisser correction 

should be used (Luck, 2005, p. 259). For all ANOVA testing an alpha criterion of p < .05 was 

used to test for statistical significance. All planned and post hoc paired sample t-tests were 

Bonferonni corrected to account for FWE associated with multiple comparisons. If Mauchly's 

test of sphericity assumption of sphericity was violated a Greenhouse-Geisser correction 

was used. 

6.3. Combining ERP with an adaptation design 

The following sections describe ERP methods for adaptation designs (as in Chapter 8). The 

ubiquitous phenomenon of adaptation was broadly discussed in Section 3.4.4, where it has 

been reported by numerous studies, across methods, species and senses, that when a 

stimulus is repeated, neural activity is reduced (see Grill-Spector et al., 2006, for a review). 

This section describes adaptation and the underlying neurophysiological basis for 

adaptation in a bit more detail, as well as reviewing how ERP and adaptation methodology 

that has been used to investigate auditory processing, and in particular, pitch constancy 

(i.e., Briley et al., 2013). 

Adaptation has been widely used in behavioural and neuroimaging studies to probe the 

functional properties of sensory neuronal populations in humans. This is based on the 

assumption that processing is more efficient for a repeated stimulus feature. For example, 

when the adaptor and probe are identical, there will be adaptation which is known as a 

reduction in the cortical or behavioural response (e.g., reduced ERP amplitudes, reduced 
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fMRI activation, or shorter reaction times). However, when the adaptor and probe differ 

along a given stimulus feature, if neurons are selective for the feature along which the 

adaptor and probe differed, the different probe will recruit new unadapted neurons to 

process the probe change, and subsequently show a release in adaptation compared to 

when the probe is identical. The first human fMRI study to use adaptation was conducted by 

Grill-Spector et al. (1999). They found that posterior object-selective regions of lateral 

occipital cortex showed sensitivity to many object transformations including size and 

position; however, more anterior object-selective regions were to some extent invariant to 

size and position, but sensitive to object rotation or illumination. In the auditory system, 

adaptation has mostly been studied at single-neuron level and is purported to play a role in 

change detection, such as that indexed by mismatch negativity (Jääskeläinen et al., 2004; 

Nelken & Ulanovsky, 2007). Nevertheless, the adaptation paradigm relies on temporal 

rather than spatial properties of the neural signal, so is particularly suited to ERP studies. 

EEG and MEG studies typically reflect changes in the amplitude and/or synchrony of ERPs 

and/or local field potentials (LFPs) caused by transmembrane currents in large numbers of 

neurons (Grill-Spector et al., 2006).  

Adaptation offers a unique approach for examining questions relating to cortical responses 

in auditory cortex that cannot be addressed using conventional methods (i.e., subtraction). 

However, little is known about the neural mechanisms underlying this phenomenon. To 

account for repetition-related reductions (adaptation) in neural activity, three models have 

been proposed and discussed in Grill-Spector‟s (2006) review paper, namely facilitation, 

sharpening and fatigue models. The fatigue model is based on the assumption that the 

amplitude of firing of stimulus-responsive neurons decreases, the sharpening model 

assumes fewer neurons respond, and the facilitation model assumes the latency and or 

duration of neural activity is shortened (see Grill-Spector et al., 2006). The Sharpening 

model supported by Desimone (1996) and Wiggs and Martin (1998) suggests that repetition 

results in sparser representations of stimuli. Importantly it is neurons that code features 

irrelevant to the identification of that stimulus that exhibit adaptation. This is because the 

repetition-related changes are considered to be part of a learning process whereby 

representations (e.g., tuning curves) are sharpened and the distributed representation 

becomes sparser resulting in fewer responsive neurons in total (Grill-Spector et al., 2006). 

This sharper representation means that the tuning curves become narrower, the neurons 

become more sensitive to change, and this may ultimately lead to faster processing (Grill-

Spector et al., 2006). A key difference between the fatigue and sharpening models is that 

according to the sharpening model neurons that are optimally tuned to a stimulus that is 

repeated should show little or no response reduction, whereas according the fatigue model 

neurons that are optimally tuned should exhibit maximal response reduction (Grill-Spector et 

al., 2006).  
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Only the fatigue model is based on the assumption that neurons that respond most strongly 

to the adaptor stimulus will be most adapted by it, and so the amount of adaptation from 

adaptor to probe determines the overlap and selectivity between neuronal populations (Grill-

Spector et al., 2006). The fatigue model has recently been confirmed in an auditory EEG 

adaptation study (Briley & Krumbholz, 2013). They attempted to investigate whether 

adaptation in the auditory cortex is caused by neural fatigue/reduction in neural 

responsiveness, or by sharpening of the neural tuning of the adaptor stimulus. They used 

pure tones where the frequency separation between the adapter and probe stimuli and the 

stimulus onset asynchrony (SOA) varied. In their first experiment they examined the 

relationship between the degree of specificity of adaptation as a function of frequency 

separation and the rate of decay of adaptation with increasing SOA. They used one adaptor 

that preceded the probe, and this was either the same frequency or varied by 1/6, ½ or 1.5 

octaves above the probe frequency (~1 kHz). The SOA varied in doublings from 125-

1000ms (i.e., 125, 250, 500 and 1000ms). Through fitting the data with population models of 

neural fatigue and neural sharpening, the results from experiment one showed 

independence between adaptation specificity and decay rate, and therefore fitted the fatigue 

model much better. The second experiment enabled them to measure adaptation specificity 

after multiple presentations of the adaptor stimulus (i.e., two or three adaptors, mimicking 

the oddball paradigm), but the SOA remained fixed at 500ms. They found that multiple 

adaptors did lead to more adaptation overall, but this was specific to the adapting frequency 

(i.e., the adaptation tuning curves were much sharper for multiple adaptors, compared to 

single adaptor). 

Using adaptation, investigators are enabled to search for suppression of cortical responses 

in neuronal populations to a repeated pitch value, regardless of the stimulus with which the 

pitch is associated (Griffiths & Hall, 2012). The adaptation technique can therefore be used 

to effectively address questions relating to pitch constancy because stimulus manipulations 

are not confined to one acoustic feature, and can reveal neuronal populations that are 

invariant or non-invariant to multiple acoustic features independently of the stimulus context. 

Consequently, studies using ERP adaptation designs to investigate auditory processing 

have increased in the last few years. For example, recent EEG investigations have proven 

fruitful in exploring frequency (Briley & Krumbholz, 2013; Lanting, Briley, Sumner, & 

Krumbholz, 2013), spatial location (Briley, Kitterick, & Summerfield, 2012; Briley & 

Summerfield, 2014) and pitch tuning in auditory cortex (Briley et al., 2013). Lanting et al. 

(2013) investigated the temporal properties of adaptation in late auditory-evoked 

components. The first experiment used a single adaptor, and the SOA and ISI varied 

between adaptor and probe. The adaptor and probe were the same frequency (i.e., 1 kHz), 

and the duration of both was fixed to 100ms in Experiment 1A, but the adaptor duration 

varied in Experiments 1B and 1C (100-975ms). The SOAs could either be doublings from 

125ms to 1000ms (125, 250, 500 and 1000ms; in Experiments 1A and 1B) or stayed the 

same in Experiment 1C (1000ms). ISI varied from 25-900ms (25, 150, 400 and 900ms). 
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They found greater recovery of adaptation with increasing ISI, but adaptation increased with 

increasing adaptor duration (i.e., SOA). They claim that this finding suggests that adaptation 

is caused by on-going, rather than onset, responses to the adaptor, and recommended that 

future studies use long adaptors and short ISIs between adaptor and probe to maximise the 

likelihood of finding stimulus-specific adaptation effects. In their second experiment, which 

used multiple adaptors, they found that adaptation decayed quickly after the adaptor was 

repeated. 

Briley et al. (2013) also conducted a study that explored how pitch is represented in the 

auditory cortex. Specifically they wanted to determine whether adaptation of auditory cortical 

responses is selective to pitch, and if so, does the representation of pitch reflect the physical 

or perceptual characteristics of pitch. Physical aspects of pitch relate to the repetition rate 

(i.e., single monotonic dimension ranging from low to high). Perceptual aspects of pitch can 

be described along two dimensions, namely pitch height (single monotonic dimension 

reflecting the octaves in which given notes can reside) and pitch chroma (cyclical; accounts 

for similarity of cycle notes across different octaves). They used IRN complex tones that 

were similar to most musical instruments or voiced speech to create adaptor and probe 

stimuli which varied in repetition rate (i.e., pitch). They also used pure tones that differed in 

frequency to compare the results for different pitch-evoking stimuli.  

Briley et al. (2013) hypothesised that if pitch is represented by its physical dimension then 

the probe stimulus should increase monotonically with increasing pitch separation from 

adaptor to probe. Nevertheless, if pitch is represented in terms of the perceptual dimensions 

of pitch height and chroma, the adaptation effects of the probe should be nonmonotonic with 

a dip at octave pitch separations. They also predicted that if pitch processing neurons are 

invariant to the spectrum or timbre of the stimuli, the pattern of adaptation effects for pure 

tones should be similar as the results for complex (i.e., demonstrating evidence for pitch 

constancy).  

In Briley and colleagues study, the long adaptor stimulus (1500ms) was always immediately 

followed by a short probe stimulus (250ms). For the probe stimuli, the IRN stimuli had a 

repetition rate of 125 Hz and 500 Hz, and pure tones had a frequency with the same 

nominal values. For the adaptor stimuli, repetition rate or frequency was varied relative to 

that of the probe (i.e., pitch separations varied between 0.5, 1.0 and 1.5 octaves across 

experiments). Both stimulus types were presented in a continuous background of masking 

noise.  

As mentioned previously, the analytic approaches used by Briley et al. (2013) were used as 

a guide for the analysis of Experiment 10 described in Chapter 10, and are detailed in 

Section 6.2.3. They found that for IRN stimuli, adaptation effects were nonmonotonic, 

whereby adaptation was greater (i.e., the probe response was smaller), when the adaptor 

and probe were separated by octave, than half an octave or 1.5 of an octave. They claim 
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that this suggests that a particular note and its octave share more overlap in their neural 

representations than a note and its half octave. These EEG adaptation effects therefore 

mirrored the cyclicality of the pitch chroma dimension and the authors argue that this 

suggests that there is a representation of pitch chroma in the auditory cortex. Results from 

source analysis of IRN responses localised the source of this pitch chroma representation to 

somewhere between the anterior or lateral primary auditory cortex. In contrast, pure tones 

showed a monotonic increase with increasing pitch between the adaptor and probe, 

suggesting that pure tones have different neural generators to IRN stimuli (i.e., non-invariant 

to timbre), and therefore provided evidence against the idea of pitch constancy or a pitch 

center. The source of pure tone responses was located in medial HG. 

6.4. Summary 

In summary, EEG provides a continuous measure of electrical activity recorded at the scalp 

and plots changes in voltage between two different electrode locations over time. A number 

of preprocessing steps are required to extract the ERPs relating to specific sensory, 

cognitive or motor events relating to experimental conditions. Once these ERPs have been 

extracted for each condition and listener, a number of source and sensor-based analytical 

steps can be undertaken, before statistical analyses is employed to test the null hypothesis. 

Most EEG and MEG studies of auditory processing have concentrated on examining 

specific auditory-evoked components, such as the P100, N100, P200, EOR and POR, using 

conventional subtraction designs. However, following advancements in the visual modality, 

adaptation methodology has now grown in popularity in the auditory domain. This is 

because it enables researchers to investigate questions relating to perceptual invariance. 

Recent auditory ERP methodology combined with adaptation has been used to examine to 

frequency, spatial location, and importantly, pitch. This has led to novel insights into their 

neural representations, and it is hopeful that future efforts in this regard will yield the same. 
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Chapter 7. Identifying parameters for pitch and 

timbre to equate perceptual salience 

7.1. Introduction 

This chapter describes how the pitch and timbre parameters were chosen and matched to 

create the stimuli used to investigate pitch invariance to timbre for the experiments reported 

in Chapters 8 and 9 (ERP Experiment 10, reaction time Experiment 12). Pitch invariance or 

pitch constancy is defined as the ability to discriminate a pitch regardless of the spectral, 

temporal and binaural characteristics. Appropriate selection of these parameters is vital  

given that changes in one non-target or task-irrelevant perceptual dimension (e.g., timbre) 

are known to have detrimental effects on the discrimination of the other dimension of 

interest (e.g., pitch; Borchert et al., 2011; Steele & Williams, 2006). Identifying stimulus 

parameters that yield equivalent discrimination performance across pitch and timbre tasks 

ensures that the perceptual salience of both parameters is well matched.  This is based on 

the assumption that discrimination thresholds provide an objective surrogate marker for 

perceptual salience. Throughout, I will use the terms discriminability and perceptual salience 

interchangeably, as they both relate to a signal being discriminable from noise. 

Discriminability is an important control, especially for examining pitch invariance to timbre, 

given that both behavioural and neurophysiological findings can be influenced by the 

salience of the stimulus parameters used (see Krumbholz et al., 2003; Krishnan et al., 2012; 

see my own data in Chapter 5). However, such attempts at controlling perceptual salience 

or discriminability, prior to human investigations of pitch invariance, are seldom seen (if at 

all) in the pitch coding literature to date. 

Three experiments (Experiments 6, 7 and 8) were employed to identify the stimulus 

parameters for pitch and timbre that yielded matched discrimination performance across 

pitch and timbre tasks. Materials and methods, results, and conclusions across Experiments 

6-8 are discussed in turn, highlighting the cumulative evidence which led to the final 

parameters being chosen, and the evidence that pitch and timbre was appropriately 

matched before undertaking Experiment 10 and 12. First, a brief literature review of how 

irrelevant changes in timbre or pitch affect pitch or timbre discrimination respectively, the 

importance of matching discriminability when searching for pitch invariant representations in 

the human auditory cortex, as well as the objectives and criteria for equating discrimination 

performance, is given. 

7.1.1  Timbre changes affect pitch discrimination and vice versa 

Sounds are multidimensional, varying across physical and perceptual dimensions. Humans 

and non-humans alike are able to demonstrate perceptual constancy, for example matching 
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the pitch of a musical note, irrespective of the instrument playing it. Pitch discrimination is 

achieved effortlessly when all other feature dimensions remain fixed. Typically 

psychophysical experiments vary one dimension with the assumption that the parameter 

being manipulated corresponds to a unique sensory attribute or perceptual dimension (Dai & 

Micheyl, 2012).  F0 difference limens are less than 1% for tones containing resolved 

harmonics. For example, Moore's (1974) study reported F0 difference limens of less than 

0.2%, however in reality, this is rarely the case because changes in one dimension, often 

induce changes in other dimensions (see Dai & Micheyl, 2012). For instance, differences in 

spectral region (timbre) may cause tones with the exact same F0 to sound like they have a 

different pitch (i.e., pitch shifts; Chuang & Wang, 1978; Singh & Hirsh, 1992; Vurma, 2014) 

Furthermore, as demonstrated in the following sections, pitch discrimination is often 

impaired when another irrelevant dimension, like timbre, is varied across intervals (and vice 

versa).  

7.1.2 Timbre changes impair pitch discrimination 

Most of the work conducted in this area has focused on the timbre effects on pitch 

perception, with studies rarely exploring the effects of both parameters on one another. 

Pitch is always associated with timbre. Timbre is also an important perceptual attribute of 

sound that “allows one to distinguish among tones having the same pitch, loudness and 

duration” (ANSI, 1994), and is vital for speech and music perception (e.g., allows us to 

group together belonging to the same source, such as same person talking or the same 

instrument playing a melody) . As mentioned previously, timbre is specifically determined by 

the distribution of energy over harmonics (i.e., spectral envelope), but perceptually, timbre 

refers to the unique „quality‟ of a sound (see Town & Bizley, 2013 for a detailed discussion 

about timbre perception). As demonstrated in Figure 2.5 (Chapter 2), a piano and a violin 

can play a tone with the same pitch (at the same loudness and duration), but each musical 

instrument has a particular timbre which allows one to distinguish that the same notes 

played has been generated by different musical sources. Given that humans and non-

humans show pitch constancy, some researchers have argued that there are pitch selective 

neurons or a putative pitch centre which codes the F0 of a sound regardless of other 

perceptual characteristics (Bendor & Wang, 2005; Krumbholz et al., 2003). This pitch 

constancy criterion for a pitch centre is more rigorously addressed in Chapters 8 and 9, but 

first, the following sections illustrate how, on a perceptual level at least, changes in one 

dimension affect the perception of the other. For example, listeners are not able to 

discriminate task-relevant pitch and timbre changes as effectively when task-irrelevant 

differences are introduced for timbre and pitch dimensions, such as by using non-

overlapping harmonics to create a timbre difference or changing the F0 between intervals.  

A growing number of psychophysical studies have found that timbre changes impair pitch 

discrimination performance on psychophysical tasks (e.g., Borchert et al., 2011; Krumhansl 
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& Iverson, 1992; Micheyl & Oxenham, 2004; Moore & Glasberg, 1990; Warrier & Zatorre, 

2002). Moore & Glasberg (1990) conducted a series of pitch discrimination (F0 difference 

limens) studies in which they manipulated timbre differences of complex tones by using 

overlapping and/or non-overlapping harmonics. When referring to overlapping harmonics, 

this indicates that two given complex tones shares all (or some) harmonic numbers in 

common (e.g., tone 1 harmonics = 1, 2, 3, 4, 5, 6; tone 2 harmonics = 1, 2, 3, 4, 5, 6), 

whereas non-overlapping harmonics indicate that all (or some) of the harmonic numbers are 

different (e.g., tone 1 harmonics = 1, 4, 5, 8, 9 and 12, and tone 2 harmonics = 2, 3, 6, 7, 10, 

11). Complex tones can also have a mixture of both overlapping and non-overlapping 

harmonics (e.g., partially overlapping, where harmonics 1-6 are overlapping and harmonics 

7+ are non-overlapping;  tone 1 harmonics = 1-6, 7, 9, and tone 2 harmonics = 12, and 1-6, 

8, 10, 11). Two research questions that were of particular interest to the current chapter 

were, i) whether non-target timbre differences (i.e., different harmonics/spectra) impair the 

ability to discriminate pitch (Experiment 1), and ii) how good is pitch discrimination when the 

two tones comprise no common harmonics (different timbre), versus when the tones have 

harmonics in common (same timbre; Experiment 3). They used an adaptive Two-Interval 

Two-Alternative-Forced-Choice (2I-2AFC) task using a range of nominal F0s (43.75-400 

Hz). A 2I-2AFC usually involves presenting a tone in one interval, followed by another tone 

presented in another interval. The participant is usually required to decide in which interval 

the pitch was different (higher or lower). An adaptive psychophysics task refers to 

presenting trials based on a staircase method (up/down rule) based on the listener‟s 

performance, for example if they get more trials correct the harder the task becomes (i.e., 

signal decreases). Thresholds are obtained at targeted accuracy levels (see Section 

7.4.3.1). There is only one pitch change the participant needs to identify, such as „was the 

pitch higher in the first or second interval?‟. Any other non-target dimension changes, such 

as simultaneous timbre change occur across both intervals. The output is typically given as 

a geometric threshold metric or percentage correct. For example, a F0 difference limen 

threshold of 1% for a 200 Hz tone indicates that the F0 of the other tone needs to be at least 

202 Hz for the listener to be able to detect a difference in pitch. Lower F0 difference limen 

thresholds or greater accuracy indicate listeners are better at discriminating that dimension.  

Moore & Glasberg (1990) asked listeners to discriminate which interval contained the higher 

F0. As shown in Figure 7.1, across intervals tones could either have: condition 1) all 

harmonics in common, to produce the same timbre (e.g., same harmonics 1, 2, 3, 4, 5, 6), 

condition 2) some harmonics in common, which creates a small timbre difference across 

intervals (e.g., partial overlap yields interleaved harmonics 1-6, 7, 9 and 12, and 1-6, 8, 10, 

11), and condition 3) no harmonics, in common to produce a somewhat larger timbre 

difference (e.g., non-overlapping harmonics 1, 4, 5, 8, 9 and 12, and 2, 3, 6, 7, 10, 11). 

Harmonics for condition 3 were either low (1-12) or high (7-17). 
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Figure 7.1. Schematic diagram illustrating how the harmonics (vertical bars) were 

manipulated to create three timbre conditions for the F0 task in Moore & Glasberg (1990). 

Panel A: Condition 1; both tones have all harmonics in common (different pitch, same 

timbre). Panel B: Condition 2; both tones have some of the harmonics overlapping and 

some are non-overlapping (different pitch, different timbre). Panel C: Condition 3; for both 

tones all the harmonics are non-overlapping (different pitch, very different timbre). In this 

example, interval 1 always contained the higher F0 target. For illustration purposes gray 

bars = overlapping harmonics, and red bars = non-overlapping harmonics. 

In experiment 1 the harmonics were either completely overlapping (condition 1) or partially 

overlapping (condition 2). They kept the first six harmonic components overlapping for all 

conditions in this experiment because this information provides the greatest cue for the 

residue pitch of the sound (Plomp, 1967; Ritsma, 1967; Moore, Glasberg, & Shailer, 1984; 

Moore, 1985), but also used upper harmonics as far as the 10/11
th
 as these are considered 

to be individually resolved by the cochlea and therefore create a more salient pitch percept. 
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These upper harmonics were either absent or overlapping (condition 1) or non-overlapping 

(condition 2). Overall performance in experiment 1 monotonically improved with increasing 

F0. However, F0 difference limen‟s were larger (approx. 1.6% F0 difference limen) when the 

upper harmonics were non-overlapping (i.e., different pitch, different timbre; condition 2), 

compared to when the upper harmonics were overlapping and/or absent (approx. 0.5-1.2%; 

different pitch, same timbre; condition 1). Moreover, thresholds were actually better for 

condition 1 trials in which harmonics above 6
th
 were used. These results suggest that timbre 

variation has a detrimental effect on pitch discrimination performance, despite irrelevant 

timbre differences being generated by non-overlapping harmonics above the 6
th
. It might be 

possible that timbre affects pitch discrimination regardless of which harmonics are 

manipulated. Despite common upper harmonics leading to improved performance, having 

some partially overlapping harmonics undoubtedly helped listeners with the task to some 

degree, as the timbre differences created were relatively small. Tones which share no 

overlapping harmonics at all would have produced much greater timbre differences, and 

potentially making it much more difficult to discriminate F0. This is likely why the F0 

difference limen thresholds reported in Moore & Glasberg‟s paper were slightly better than 

other studies that have used complex tones with no harmonics in common (e.g., Borchert et 

al., 2011; Faulkner, 1985; Micheyl & Oxenham, 2004; Ritsma, 1963). Nevertheless, it is 

important to note that when greater starting F0 differences were used (i.e., 5-10% of 400 

Hz) performance did improve for all conditions, which suggests that if the F0 cue is large 

enough then the detrimental effects of timbre differences can be diminished to some degree. 

In experiment 3, Moore and Glasberg (1990) investigated the pitch discrimination of tones 

that have no harmonics in common (different pitch, different timbre; condition 3) and all 

harmonics in common (different pitch, same timbre; condition 1). To create a moderate 

timbre difference for condition 3, interleaved harmonics were used. Similarly, F0 difference 

limens also did improve with increasing F0 value (e.g., F0 difference limens were smaller for 

the 400 Hz condition than for 50 Hz condition). Additionally, F0 difference limens were larger 

(approx. 1.5-4% F0 difference limen) for tones with non-overlapping harmonics (condition 3) 

than for tones with the same harmonics (approx. 0.5% F0 difference limen; condition 1). 

Thresholds were also worse in experiment 3, compared with those reported in experiment 1 

(where tones were comprised of some common harmonics). This might be because 

interleaved harmonics created a somewhat larger timbre difference which listeners may 

have found more difficult to ignore. However the authors also reported large inter-subject 

variability, with listeners being affected by timbre differences to varying degrees. For 

example, one listener (BM), performed equally well (F0 difference limens less than 1%) 

across the majority of conditions (at F0s 100 and 200 Hz), which suggests that residue pitch 

discrimination for certain individuals, and at certain stimulus parameters, can be equivalent 

for conditions in which in the timbre is the same (overlapping harmonics) and conditions in 

which the timbre is different (non-overlapping harmonics). However it should be noted that 

BM is the first author and a very experienced psychophysical test participant. 
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Moore & Glasberg‟s (1990) findings that timbre differences impair pitch performance have 

been confirmed by more recent evidence (e.g., Borchert et al., 2011; Micheyl & Oxenham, 

2004; Warrier et al., 2004). Although the majority of psychophysical studies of pitch use 2I-

2AFC designs (Green & Swets, 1966), Borchert et al. (2011) used a dual-pair design 

(Rousseau & Ennis, 2001) to examine pitch discrimination performance for simultaneous 

and sequential tones, whilst varying timbre in a series of experiments. Dual-pair designs are 

a modified version of the same-different paradigm „embedded‟ within a 2I-2AFC design 

(Noreen, 1981). This is also known as the 4-Interval AX (4IAX) paradigm, or the 4-interval 

same-different paradigm (Creelman & Macmillan, 1979; Noreen, 1981; Rousseau & Ennis, 

2001; see Micheyl & Messing, 2006 for an overview). They conventionally involve 

presenting a pair of tones in each of the two observation intervals and assume that the 

listener makes four observations on each trial (Micheyl & Messing, 2006). In one interval, 

the two tones differ in at least one dimension (e.g., different pitch). In the other interval, the 

two tones do not differ along that same dimension (e.g., have the same pitches). However it 

is possible to manipulate both intervals along another dimension (e.g., different timbre). 

Unlike mAFC methods (where m is number of intervals), dual-pair designs (and similar) are 

advantageous because they do not require listeners to specify the direction of the dimension 

difference between the two intervals (e.g., higher and/or lower), as listener‟s are only 

required to indicate in which interval (first or second) the pair of tones differed along the 

relevant dimension (Micheyl & Dai, 2009). Listeners are likely to find this an easier task 

since they do not have to focus on the specific direction of the dimension difference, just 

indicate where one occurs (Rousseau & Ennis, 2001). This is important because a number 

of studies have shown that some listeners find identifying pitch direction changes much 

more difficult than detecting pitch changes alone (e.g., Johnsrude, Penhune, & Zatorre, 

2000; Semal & Demany, 2006; Tramo, Cariani, Koh, Makris, & Braida, 2005).   

Borchert et al. (2011) used the dual pair design and asked listeners to decide in which 

interval a F0 difference occurred between tones. They used 200 Hz (+- 0.5, 1.2 and 4.5 

semitone difference) complex tones which were filtered into low (0-700 Hz) and high (1150-

3500 Hz) spectral regions, to create perceptually large timbre differences. Overall they 

found that listeners were significantly worse at discriminating two spectrally non-overlapping 

tones when they were presented sequentially (i.e., the two tones within each observation 

interval are presented immediately one after the another with no overlap; sensitivity or 

discriminability index D-prime (d‟) = 1, approx. 3.5% F0 difference limen) compared to 

simultaneously (i.e., the two tones presented within each observation interval have the same 

onset and offset; approx. 1.5% F0 difference limen). Large mistuning (F0 difference of 4.5 

semitones) did slightly improve sequential performance, but was still relatively poor. They 

concluded that poorer performance in sequential condition was likely to be due to large 

spectral differences between tones, as opposed to masking or memory decay.  
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It has also been documented that it is difficult for listeners to detect pitch changes when 

there are large changes in timbre (Labuschagne & Hanekom, 2013). Studies using large 

timbre differences often report influences on pitch perception (e.g., Singh & Hirsh, 1992; 

Russo & Thompson, 2005; Vurma & Ross, 2006). However Labuschagne & Hanekom 

(2013) used smaller spectral parameter adjustments and found that pitch balancing was not 

required. Subsequently it was important for the current study to keep timbre changes as 

small as possible in order to avoid any perceived pitch changes. The bigger the timbre 

difference the larger the interference on performance so we would expect there to be a 

monotonic improvement in performance as a function of decreasing timbre difference. 

These findings indicate that for listeners to better discriminate pitch, it is important to create 

a timbre difference that is not too large. Given that complex tones with no common 

harmonics have very different timbres (i.e., Borchert et al., 2011), it was decided that the 

current Experiments 6-8 would employ the partially overlapping and interleaved convention 

used by Moore & Glasberg (1990) as this created a smaller timbre difference. However at 

this moment it was unclear what should be the optimal combination of overlapping and non-

overlapping harmonics. This was determined in the series of feasibility studies reported 

here.  

7.1.3 Pitch changes impair timbre discrimination  

Timbre invariance refers to the ability to discriminate tones that have different F0s but have 

been generated by the same musical instrument. Only a handful of studies have 

investigated how F0 changes affect timbre discrimination (e.g., Handel & Erickson, 2001; 

Pitt, 1994; Steele & Williams, 2006). Steele & Williams (2006) were interested in the 

bandwidth of timbre invariance to F0 changes, and examined listener‟s ability to discriminate 

the timbre of pairs of musical sounds (i.e., horn and bassoon) whilst the pitch was varied 

within a 0-2.5 octave range (in 0.5 steps). Pairs of tones could differ in pitch, timbre or both. 

Listeners had to discriminate whether or not the tones had the same pitch and same timbre, 

as well as provide an indicator of how confident they were in their responses. Overall 

musicians were more accurate (89.8%) than non-musicians (61.8%). They found that non-

musicians could only accurately discriminate timbre when the pitch separation difference 

was below one octave. However when the pitch separation increased, performance dropped 

to chance level above one octave. Although musicians‟ performance also declined, this was 

to a much lesser extent, performing at approximately 80% accuracy at 2.0 and 2.5 octave 

separations. Nevertheless, musicians and non-musicians showed similar error patterns. 

Judgments for smaller octave separations (e.g., 0.5 octaves) were more often misjudged as 

the same instrument when it was different, and conversely, larger separations (e.g., 2.5 

octaves) were more often misjudged as a different instrument when it was the same. Both 

groups also misjudged identical pitches as being different when they were played on 

different musical instruments. The authors suggest that these findings indicate that 
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increasing octave separations led to a loss of timbre invariance. However, the tolerance of 

timbre invariance in musicians appears broader than that for non-musicians. Importantly the 

authors acknowledged that the shape of this bandwidth might change depending on other 

factors, such as musical experience, instruments used and stimulus parameters. Steele & 

Williams‟ (2006) results not only demonstrate that pitch changes impair timbre 

discrimination, but also that musical training can alleviate these effects to a certain degree.  

Although overall musicality does not seem to make a significant improvement in listener‟s 

ability to do such tasks (but see Zarate, Ritson, & Poeppel, 2013), training appears to be 

important for learning how to separate pitch and timbre dimensions. It might be that 

individuals who have exposure to musical training regarding pitch and timbre dimensions 

have developed better listening skills to be able to separate out these dimensions (Pitt, 

1994). Therefore it seems reasonable to suggest that if listeners are given sufficient training 

for a given set of stimulus parameters, they may be able to reliably discriminate pitch and 

timbre. 

7.1.4 Summary of the evidence 

Although the precise interactions between pitch and timbre are unknown, overall cumulative 

evidence highlights that: 1) both timbre and pitch differences impair pitch and timbre 

discriminability, respectively, 2) pitch discriminability is better when overlapping and partially 

overlapping harmonics are used compared with completely non-overlapping harmonics, 3) 

timbre may not significantly impair pitch discrimination for some listeners, at certain 

parameters, 4) using larger F0s improves pitch discrimination performance, 5) training 

individuals might help facilitate discriminability to some degree, and 6) large timbre 

differences not only impair discrimination but may also lead to pitch shifts. 

7.2.  Importance of equating discrimination performance for pitch 

and timbre parameters 

Given that both F0 and frequency can affect the discriminability of pitch and timbre, it was 

important to match discrimination performance so that the perceptual salience of these two 

dimensions was approximately equal. This is vital for quantifying neurophysiological 

responses to pitch and timbre since it was already described in Section 2.4.3 how 

perceptual salience can affect pitch response magnitude or amplitude (e.g., Griffiths et al., 

1998, 2001; Gutschalk et al., 2002; Krishnan et al., 2010; Krishnan et al., 2012; Krumbholz 

et al., 2003; Penagos et al., 2004; Seither-Preisler et al., 2003; Soeta et al., 2005).  

Studies examining cortical responses to pitch do not always obtain both neurophysiological 

and psychophysical measures in the same listeners (e.g., Penagos et al., 2004), so they are 

unable to associate cortical responses with behavioural results. Despite the body of 

evidence described previously, recent human (Briley et al., 2013) and non-human studies 
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(Bizley et al., 2009) examining neurophysiological findings to pitch and timbre dimensions 

have also failed to control their stimuli for perceptual salience, which may have influenced 

their results. For instance, if the timbre of a stimulus is more salient than the pitch, neuronal 

populations may appear more selective or sensitive to that acoustic feature (e.g., as shown 

in Bizley et al., 2009).  

The studies presented here describe the first attempt to determine stimulus parameters for 

pitch and timbre where the discriminability or perceptual salience is well matched. Given that 

timbre impairs pitch discrimination performance and vice versa, it is of primary importance to 

identify pitch and timbre stimulus parameters that led to equivalent performance on both 

pitch and timbre tasks, specifically, when the non-target dimension is varying from interval to 

interval (i.e., „different pitch, different timbre‟ conditions; see Table 7.1). It was assumed that 

if listeners could discriminate pitch and timbre for these more difficult conditions, then they 

would be able to easily discriminate conditions in which only pitch or timbre targets were 

present, whilst the non-target dimension was the same between intervals (i.e., „different 

pitch, same timbre‟ and „same pitch, different timbre‟ conditions). These conditions 

correspond to those implemented across experiments reported in Chapters 8 and 9 in which 

there is a difference in pitch, timbre or both. Experiments 6-8 (and corresponding 

Experiments 9 and 11) only required listeners to judge a difference in pitch or timbre, 

therefore the „same pitch, same timbre‟ condition reported for the ERP Experiment 10 in 

Chapter 8 and the reaction time Experiment 12 in Chapter 9, could not be implemented 

here. 

Table 7.1 
Conditions for pitch and timbre tasks 

 Task 
 
Condition 

 
Pitch task 

  
Timbre task 

Condition 1 

 

Different pitch, different timbre 

(i.e., One target and one non-
target dimension changes) 

 Different pitch, different timbre 

(i.e., One target and one non-
target dimension changes) 

Condition 2 Different pitch, same timbre 

(i.e., One target change only) 

 Same pitch, different timbre 

(i.e., One target change only) 

7.3. Objectives  

Experiments 6-8 aimed to equate discrimination performance between pitch and timbre 

tasks by: 

 Determining potential stimulus parameters for pitch (i.e., F0) and timbre (i.e., 

minimum number of overlapping harmonics) differences that yields broadly equivalent 
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discrimination performance for both pitch and timbre tasks for „different pitch, different 

timbre‟ conditions for one experienced listener (Experiment 6). 

 Re-assessing those parameters again in two naïve listeners to finalise the most 

appropriate parameters (Experiment 7). 

 Ensuring listeners could be trained on the pitch and timbre tasks for all pitch and 

timbre conditions and trial types, and achieve comparable levels of performance 

across listeners (Experiment 8).  

 

The two requirements for determining stimulus parameters for matching pitch and timbre 

discriminability were that the overall performance for each condition for each pitch and timbre 

task was, 1) comparable and 2) had an approximate d‟ prime of ≥2.  A d‟ criterion of 2 was 

chosen to evaluate the suitability of pitch and timbre stimulus parameters because this 

equates to approximately 85% accuracy and indicated a good level of discriminability.   

 

7.4. General methods and materials  

The following sections describe the general methodology and materials for Experiments 6-8, 

9 and 11. Experiment-specific details are presented in their corresponding sections. 

7.4.1 Listeners  

Three listeners (two right-handed, #02 and #09, one left-handed, #28) volunteered to 

participate in one or more of the psychophysical Experiments 6-8 (1 male; Mage = 24.67, SD 

= 0.58, age-range 24-25 years). Listener #02 served as an experienced listener to test a 

wide range of different stimulus combinations in Experiment 6. The most optimal results 

from Experiment 6 then informed the partial subset of stimuli that naïve listeners #09 and 

#28 would discriminate in Experiment 7. In Experiment 8, the most optimal parameters 

identified in Experiment 7 were then fully tested by listeners #02 and #09. Participant #28 

was musically trained on the piano to grade 8. Listeners #02 and #09 reported no formal 

musical experience, but did however report 2 years of self-taught musical skills on the 

guitar, piano and keyboard. All participants reported normal or corrected-to-normal vision, 

and had clinically normal hearing (≤25 dB HL between 250-8000 Hz). No listeners reported 

any history of hearing, neurological, and/or psychological impairment, and use of psychiatric 

medication or substance misuse. Listeners gave written informed consent, and the study 

was approved and performed in accordance with the College Research Ethics Committee‟s 

guidelines, Nottingham Trent University (ethics no. 2011/46). 

7.4.2 Stimuli   

Presentation and timing of stimuli and trials were controlled using a bespoke MATLAB 

toolbox (The Mathworks, Natick, MA) called EarLab (provided by Professor Chris Plack). 
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EarLab enables users to digitally synthesise a variety of pitch stimuli. Wideband harmonic 

complex stimuli were chosen because they generate a more salient and reliable pitch 

percept compared to IRN, particularly narrow bandwidth IRN (Barker et al., 2012; 2013; Hall 

& Plack, 2009). All stimuli were 200ms in duration (with 10ms onset and offset ramps) and 

were low-pass filtered at 2 kHz to ensure all stimuli were resolved up the 9
th
/10

th
 harmonic. 

A noise masker was not used because all stimuli were matched to activate the same gross 

spectral region, helping to maintain a stable envelope and prevent cochlear distortions 

(fulfilling the fourth pitch criterion, „accounting for confounding‟ variables; see Section 1.4). 

The stimulus parameters used across Experiment 6-8 are shown in Table 7.2. The starting 

F0 was either 200 Hz or 220 Hz, and the F0 difference (%) between the two tones in each 

pair was manipulated to varying degrees depending on the experiment (between 5%-20%). 

Given that small F0 differences and large timbre differences can make stimulus 

discrimination more difficult (see Introduction), the numbers of pitch and timbre differences 

were kept within a reasonable but narrow range to avoid excessive hours of testing. A 

smaller range of F0 differences was also used to ensure that harmonics that were not meant 

to overlap did not overlap. Subsequently the starting F0 was always 200 Hz in Experiments 

6 and 7. The varying timbre differences used across studies were digitally synthesised using 

overlapping and non-overlapping harmonic filter bands (similar convention used in Moore & 

Glasberg, 1990). The default was set so that each tone presented would always have the 

first harmonic number in common (i.e., lowest overlapping component was 1), but the non-

overlapping harmonics could be manipulated to cause changes in the perceived timbre. The 

lowest possible non-overlapping harmonic was 2. Across studies, to create a small but 

perceivable timbre difference, the lowest non-overlapping harmonic component was 2, 3, 5 

and/or 7. For instance, to create two tones required for a given pair, each with a different 

timbre, setting the lowest non-overlapping component to 3 would mean for one tone the 

harmonic components would be 1, 2, 3, 6, 7, and 10, and for the other tone would be 1, 2, 4, 

5, 8, and 9.  
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Table 7.2 
All possible pitch and timbre stimulus parameter combinations used for discrimination tasks 
across Experiments 6, 7 and 8 (both adaptive and/or method of constant paradigms) 

      Discrimination Task 

Stimulus dimension and parameters Pitch Timbre 

Pitch 

 Starting F0 (Hz) 200 or 220 200 or 220 

 
Nominal starting 
difference  
F0 difference (%) 

5, 10, 15, or 20  
(target dimension) 

 
5, 10, 15, or 20  
(non-target 
dimension) 

Timbre 

 Lowest overlapping 
harmonic 

1 1 

 Nominal starting 
difference  
Lowest non-overlapping 
harmonic 

 
2, 3, 5 or 7  
(non-target 
dimension) 

 
2, 3, 5 or 7 
(target dimension) 

Note: The same parameters were used for both pitch and timbre discrimination tasks in 
order to isolate parameters that were equivalently discriminable across both tasks. The 
target for one dimension was always coupled with a non-target dimension from the other 
dimension. For example, for either task a listener could have been presented with a 200 Hz 
starting F0, with a 5% F0 difference where the lowest overlapping harmonic is 1 and the 
lowest non-overlapping harmonic is 3. The F0 difference (%) for the non-target interval for a 
pitch task was always zero (i.e., same F0 repeated) and lowest non-overlapping harmonic 
for the non-target interval for a timbre task was always repeated. 
 

Sounds were generated and presented in EarLab with a DVD quality sampling rate of 48 

kHz and a 16-bit resolution and was calibrated to Sennheiser HD-280 headphones to 

present stimuli with an overall sound level of 70 dB SPL. Sound level was measured prior to 

testing using a Brüel & Kjær 4231 Sound Calibrator, affixed with a Brüel & Kjær 2250 Sound 

Level Meter, Brüel & Kjær 4153 artificial ear, and Brüel & Kjær 4192 Half Inch Microphone. 

Sound pressure levels were calibrated for the MacBook Pro laptop computer using the 

“LAF” setting which simulates a real listener, whilst presenting a 1 kHz tone at maximum 

amplitude and measuring dB SPL outputs for the left (117.3 dB SPL) and right (118.6 dB 

SPL) side of the headphones. The average dB SPL (118 dB SPL) was then input into the 

Earlab code to calibrate the HD 280 headphones accordingly. The sound level on the laptop 

was then attenuated to present sounds over the headphones at an overall level of 70 dB 

SPL. 

7.4.3 Procedure and Design  

All Experiments 6-8 were completed in a quiet booth at Nottingham Trent University. All 

studies were run on a 17 inch MacBook Pro laptop computer using a Windows 7 

professional operating system. Listeners were positioned approximately 60 cm from the 

centre of the computer screen.   

EarLab was used to implement a dual-pair design (Rousseau & Ennis, 2001) in all studies. 

Two 200ms tones were presented in each interval with an ISI of 100ms and an inter-trial 
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interval of 500ms. For either the pitch or timbre task, participants had to make a decision by 

indicating in which interval the two tones in a pair were different, according to the relevant 

dimension (pitch or timbre target). Responses were made by pressing button “1” or “2” 

accordingly. For both pitch and timbre tasks, listeners were required to make a judgement 

within intervals to decide in which interval the target dimension was the same or different. 

Any non-target within pair changes were considered as the source of interference on 

performance.  In the standard version of the dual-pair design, there are two basic stimuli 

known as A and B, which can combined to yield eight possible stimulus sequences (e.g., 

AA-AB, AA-BA etc.; Micheyl & Messing, 2006). However in the current studies, a modified 

version of this paradigm was used where only two possible stimulus sequences were 

employed for simplicity. The interval in which the target appeared was always random but 

equally likely, but the target was always the second tone presented in any given pair (i.e., 

AB-AA, AA-AB).  

 

Figure 7.2. Schematic diagram showing the conditions used in Experiments 6-8 (and 

corresponding Experiments 9 and 11 in Chapters 8 and 9, respectively). Each 

subcomponent denotes an interval (or pair). Increased harmonic spacing and lighter 

coloured bars indicate a higher F0. Missing components indicate different timbre where 

lowest non-overlapping harmonic is 3 (i.e., harmonics 1, 2, and 3 or 1, 2, and 4). In this 

example the second pair was always the target interval and only information for four 

harmonics is shown. Top row denoted 1) Depicts ‘different pitch, different timbre’ conditions. 

Bottom row denoted 2) Depicts ‘different pitch, same timbre’ or ‘same pitch, different timbre’ 

conditions depending on the target dimension.  
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As shown in Figure 7.2, participants listened to two pairs of spectrally overlapping harmonic 

complex tones, with overlapping and non-overlapping harmonics. In condition (1), shown in 

the top row of Figure 7.2, there was only one interval (or pair) where the target differed, 

whilst the non-target dimension varied within each interval in the same manner („different 

pitch, different timbre‟ conditions). In condition (2), shown in bottom row of Figure 7.2, there 

was only one interval where the target differed, whilst the non-target dimension stayed the 

same between and within intervals („different pitch, same timbre‟ and „same pitch, different 

timbre‟ conditions). Condition 1 was used in Experiments 6 and 7. Conditions 1 and 2 were 

used in Experiment 8.  

In the pitch task, the question was „In which interval was there a pitch difference?‟ In the 

timbre task, the question was „In which interval was there a timbre difference?‟ Feedback 

was provided after each trial, where a green bar indicated a correct response and a red bar 

represented an incorrect response. For both pitch and timbre tasks, each condition was 

completed in blocks which made it easier for listeners to complete the task. To keep the task 

for both studies as similar as possible and not affect discriminability, each condition was 

completed in blocks but the order of which task (pitch or timbre) completed first was 

randomised to eliminate any order effects. Each block took approximately 4 minutes to 

complete. If applicable, participants were awarded psychological research credits based on 

their length of participation (i.e., awarded 1 credit per 10 minutes). 

Experiments 6-8 used a mixture of adaptive and constant stimuli methods. The specific 

details of trial types for adaptive and method of constant stimuli designs varied as follows: 

7.4.3.1 Adaptive method  

The adaptive method design used a 2-down-1-up adaptive procedure targeted at 70.7% 

accuracy (Levitt, 1971). On the first trial the pitch or timbre difference was set as the nominal 

starting difference as indicated in Table 7.2.  For every two correct responses, the 

pitch/timbre difference decreased for the subsequent trial, whilst for every incorrect 

response the pitch/timbre difference increased. The percentage difference increased or 

decreased by a factor of two for the first four reversals, and 1.414 for the final 12 reversals. 

In each block, trials continued until 16 reversals (ascending to descending and vice-versa) 

had been recorded. The pitch and timbre thresholds were taken as the geometric means of 

the frequency difference limens (F0 difference limen % and lowest non-overlapping 

harmonic, respectively) of the last 12 reversals. Unless stated otherwise, listeners 

completed three blocks for each pitch and timbre combination to obtain more reliable 

threshold estimates. The pitch/timbre threshold was taken as the average (%) of the three 

runs completed for a given pitch and timbre combination.  
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7.4.3.2 Method of constant stimuli 

For the method of constant stimuli design, there were 49 trials in each block. The method of 

constant stimuli presents the same stimulus parameters on every trial. The order of 

completion of pitch and timbre tasks, were always randomised across participants to 

eliminate order effects. However the order of the respective conditions within a task was 

completed in a fixed order (see Training below). Unless otherwise stated, listeners 

completed three blocks for each pitch and timbre combination to obtain more reliable 

estimates of percentage correct responses for sensitivity estimates, and pitch/timbre 

discrimination performance was taken as the average (% correct) of the runs completed for 

a given pitch and timbre combination.  

7.4.3.3 Training 

Training was completed before and during the experimental session as required. Training 

was not only necessary to ensure that the salience of pitch and timbre were well equated, 

but neurophysiological evidence has also shown that auditory components, such as N100 

and P200, are enhanced in musicians compared to non-musicians (Shahin, Roberts, Chau, 

Trainor, & Miller, 2008). We therefore wanted to ensure that all listeners were familiar with 

the stimuli, and equally good at discriminating pitch and timbre. It was also envisaged that 

this training would help to enhance ERP amplitudes across listeners. Listeners were given 

approximately 1-2 hours of training before their final results were recorded. Although 

Experiments 6 and 7 only employed the „different pitch, different timbre‟ conditions (see 

Figure 7.2, top row), training for all experimental tasks always began on the easier 

conditions where only the relevant dimension was specifically manipulated and the non-

target dimension stayed the same (e.g., pitch task: „different pitch, same timbre‟ condition). 

This allowed listeners to become familiar with identifying the relevant cue. A specific 

procedure for training and equating pitch and timbre discrimination for the more difficult 

„different pitch, different timbre‟ conditions was developed, particularly for more naïve 

listeners like #09 and #28. If discrimination difficulties on the timbre task arose, the timbre 

difference was decreased making the task more difficult. Specifically the lowest non-

overlapping harmonic was changed to 7 for two blocks, then 5 for another 2 blocks, and 

then the original blocks were presented. The idea behind this technique was that by 

gradually increasing the timbre difference (i.e., 7 to 5 to 3), the timbre cue would be greater 

and thus more easily identifiable and participants could use this to aid them when the blocks 

became gradually easier again. Although this approach may seem counterintuitive, initial 

pilots showed that this method worked much better than when the tasks were made easier 

and then gradually made more difficult again. Therefore, based on similar logic, if difficulties 

in discriminating pitch arose, the F0 difference was increased (e.g., 20% for two blocks, 15% 

for another two blocks), until the original blocks were presented again.  
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7.4.4 Analysis  

Accuracy data were analysed using signal detection theory (Macmillan & Creelman, 2005; 

Stanislaw & Todorov, 1999; Wickens, 2002). Signal detection theory is typically employed 

when two possible stimulus types need to be discriminated, such as „same/different‟ (signal 

and noise stimuli; Stanislaw & Todorov, 1999). Listeners are assumed to make decisions 

based upon information derived from two distributions, a „signal present‟ distribution (i.e., 

presence of a difference) which represents an increase to background noise level caused by 

the introduction of a stimulus, and a „signal absent‟ distribution  (i.e., absence of a 

difference), representing a background level of noise. Signal detection theory uses d‟ as a 

discriminability or sensitivity index, and relates to the standardised difference (z units) 

between the means of the internal „signal present‟ and „signal absent‟ distributions of evoked 

activity by the two stimuli that need to be discriminated. A correctly identified signal is 

termed as a „hit‟, whilst misidentifying a noise signal as a hit, is a called a „false alarm‟ 

(Wickens, 2002). D-prime quantifies a participant‟s ability to discriminate the signal (hits; H) 

relative to the noise (false alarms; FA) for a given trial [e.g., d‟ = z(FA) – z(H)]. Larger d‟ 

values indicate greater sensitivity or ability to distinguish signals from noise (i.e., greater 

distance between the means for the signal present and noise distributions, and less 

overlap), whereas d‟ values near zero indicate an inability to distinguish signals from the 

noise, with performance reflecting chance-level (i.e., distance between the means of the two 

distributions is much smaller).  

d‟ value is a common metric which corresponds to proportions of correct responses (PCs; 

see Micheyl & Messing, 2006). In the experiments reported here and throughout, d‟ values 

relate to the number of times a participant identifies the correct target interval (H rate; 

selects the interval that contains a pitch/timbre change). For example, if a participant 

selected the correct interval for a pitch change on 90/100 trials, their PCs would be 0.90 (H 

rate, with a corresponding FA rate of 0.10). The PC value would then be used to calculate 

the corresponding d‟ value for a given task.  

d‟ values were used instead of the raw PCs obtained for each condition. This is because 

PCs are susceptible to floor and ceiling effects, and are often not comparable with PCs 

measured in other experiments using different psychophysical paradigms (e.g., 2AFC, see 

Borchert et al., 2011). Furthermore, sensitivity and response bias typically confound most 

performance measures (e.g., PCs, hit rates, false alarms). However, d‟ is considered to be 

unaffected by response bias as long as assumptions regarding normality and variance are 

met (see Stanislaw & Todorov, 1999). D-prime was therefore calculated for all performance 

data acquired in Experiments 6-8, (as well as for Experiment 9 in Chapter 8 and Experiment 

11 in Chapter 9), because it provided a much more reliable indicator of listener‟s sensitivity 

to pitch and timbre discriminations than percentage correct, and can be used to compare d‟ 

from other studies, where appropriate (see Borchert et al., 2011).  
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The average PCs per condition was used to calculate d’ separately for each listener and 

task using MATLAB. It is extremely important to select correct decision models (i.e., 

formulas for d‟) that are appropriate for the specific tasks employed, especially when 

different designs are used (see Micheyl & Oxenham, 2005). Values of d‟ corresponding to 

PCs can be measured in different ways. Strictly speaking, there is only one d‟ for a given 

experimental design, which is the one obtained using the optimal observer model. However, 

given that it was not known a priori what decision rule (criterion/strategy) listeners would use 

and whether it is optimal or not, the figures from both calculations are presented throughout 

following personal communication with Prof. Christophe Micheyl (personal communication, 

16
th
 November, 2012). It was anticipated that listeners would fall somewhere in between 

sub-optimal and optimal observers (. One relates computing d‟ for conventional dual-pair 

designs with 8 possible stimulus sequence options (see Micheyl & Messing, 2006). 

However, given that the current Experiments 6-8 (and 9 and 11, reported in Chapters 8 and 

9, respectively) used a modified version the dual-pair design with only 2 possible 

sequences, the observer could have taken advantage of this knowledge.  This is because 

the optimal observer uses a decision rule that maximises PC (see Micheyl & Dai, 2009). 

Consequently the distance between the two distributions will be 2d‟/2, which is equivalent to 

the conventional d‟ calculation for a yes-no forced choice paradigm, described above 

(Stanislaw & Todorov, 1999). D‟ was therefore calculated for PCs between 0 and 1.0 using 

the standard formula for the yes-no paradigms. However d‟ corresponding to dual-pair 

designs was also computed, for PCs between 0.5 and 1.0, using a bespoke MATLAB code 

provided by Christophe Micheyl (see Micheyl & Messing, 2006). This is because it reflected 

a situation in which the observer does not take advantage of knowing the order of A and B in 

the different pair (ideal observer), which was referred to as „suboptimal observer‟ because 

performance would be poorer.  

Extreme hit rates and false alarm rates were dealt with using a standard correction 

procedure (Hautus, van Hout, & Lee, 2009; Stanislaw & Todorov, 1999). Any false alarm 

rates of 0 were changed to 1/(2N), and any hit rates of 1 were changed to 1-1/(2N), where N 

was the number of trials for a given condition (Macmillan & Kaplan, 1985).  In rare cases, 

values of d‟ were negative (see Figure 7.3). Negative values of d‟ typically arise through 

sampling error or response confusion (Stanislaw & Todorov, 1999).  

The dependent variable related to the d‟ value for each condition per listener. For a given 

condition, multiple runs (where applicable) were averaged together to obtain an average d‟ 

value for that condition (per pitch and timbre task) for each listener. The averaged d‟ values 

for each condition was then averaged over individuals to create a group average that could 

be used to create figures. Individuals‟ d‟ values for a given condition were also input into 

SPSS to run statistical analyses between pitch and timbre tasks.   
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Paired sample t-tests conducted on the d‟ values for each listener were used to confirm 

stimulus parameters were equally matched between tasks (i.e., accept the null hypothesis), 

and were Bonferonni corrected to account for FWE associated with multiple comparisons. 

Unless stated otherwise, the d‟ optimal observer model and suboptimal observer model 

always yielded qualitatively similar patterns of results and/or the same statistical results. 

Therefore, although the data for both are reported, only the d‟ results and statistical 

analyses for the optimal observer model are described in detail. 

7.5. Experiment 6: Determining potential stimulus parameters for 

pitch and timbre 

7.5.1 Procedure and Design 

Experiment 6 used the adaptive method and the method of constant stimuli in separate 

runs. This study undertook the majority of stimulus parameter combinations shown in Table 

7.2. However different pitch and timbre combinations were implemented depending on the 

method of presentation. 

The adaptive method was used in the first instance to obtain a general overview of the 

thresholds for each pitch and timbre discrimination tasks and likely pitch and timbre 

parameters to be tested. In the first step, the timbre task was implemented for the range of 

F0 starting differences (200 Hz +5-20%), but the lowest non-overlapping harmonic was 

always 2. This enabled exploration of the possible values for the lowest non-overlapping 

harmonic. In the second step, the pitch task was implemented to confirm that the pitch 

discrimination thresholds for all four F0 differences (%) at the possible timbre values 

identified in step 1; both smaller (7 as the lowest non-overlapping harmonic) and larger 

timbre differences (3 as the lowest non-overlapping harmonic).   

The method of constant stimuli was used to systematically and rigorously validate the likely 

pitch and timbre parameters that had been identified using the adaptive method. The 

combinations that were implemented for both tasks included a starting F0 = 200 Hz, F0 

differences = 5%, 10%, 15% and 20%, and lowest non-overlapping harmonics 3, 5 and 7 to 

create the timbre difference. Although 5 was not identified as a „likely‟ timbre value during 

the adaptive method phase, it was used to ensure a more representative range of timbres 

differences were explored (i.e., large, medium, and small, respectively). 

Listener #02 completed 7056 trials (144 blocks) for Experiment 6, which took approximately 

13 hours in total to complete. 
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7.5.2 Results  

7.5.2.1 Adaptive method 

The adaptive thresholds from listener #02 for the timbre task indicated that at F0 difference 

of 5%, the 7
th
 harmonic was the lowest discriminable non-overlapping harmonic. For larger 

F0 differences (10%, 15% and 20%) the lowest non-overlapping harmonic was 

approximately 3. These were subsequently used as the lowest non-overlapping values for 

the adaptive pitch task. For the pitch task, F0 difference limens at an F0 difference of 5% 

were relatively good at 1.24% with 7 as the lowest non-overlapping harmonic. At greater F0 

differences (10%, 15% and 20%), with the lowest non-overlapping harmonic of 3, thresholds 

were slightly poorer (3.15%, 2.41% and 1.68%, respectively). 

7.5.2.2 Method of constant stimuli  

Figure 7.3 illustrates d‟ obtained for each stimulus and task combination. Overall listener 

#02 was generally better at doing the pitch task than the timbre task. This is evidenced by 

the greater number of black lines (pitch) with d‟ > 2, than the gray lines (timbre). It is likely 

that this was because relatively small timbre differences were created using the overlapping 

and non-overlapping harmonics, which made the timbre cue generally more difficult to 

discriminate.    

For the timbre task, listener #02 was better at discriminating timbre when the timbre 

difference was larger (i.e., 3 as lowest non-overlapping harmonic), than when it was smaller 

(i.e., 5 and 7).  This is again evidenced in Figure 7.3 where only the gray lines denoted by a 

square being d‟ > 2.  

There was a general monotonic decrease in d‟ as function of increasing F0 difference for all 

of the lowest non-overlapping harmonic values (3, 5 and 7). For the pitch task, listener #02 

was generally better at discriminating pitch when the timbre difference was smaller (i.e., 7 

and 5) than when it was larger (i.e., 3). This is evidenced by the black lines denoting circles 

and triangles yielding the higher d‟. However, the only instance when d‟ for the pitch task 

showed the expected monotonic increase (i.e., increase in d‟ as a function of increasing F0 

difference), was when the lowest non-overlapping harmonic was 3. For 5 and 7, although 

majority of d‟ values were above the criterion of 2, they were non-monotonic  

In Panel B of Figure 7.3 , the data point for timbre task at F0 difference 20% with a timbre 

difference generated by using the lowest overlapping harmonic of 5 is not shown because 

the percentage correct fell below the minimum d‟ value criterion the programme could 

calculate (i.e., 50%). 
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7.5.3 Conclusion 

The red circles in Figure 7.3 denote examples where discriminability was matched across 

pitch and timbre parameters and d‟ was greater than 2. These were for F0 differences at 

10% and 15%, with a large timbre difference (i.e., 3 as lowest non-overlapping harmonic). 

This was true regardless of the d‟ measurement model used (optimal or suboptimal). A 

paired sample t-test performed using d‟ values from both optimal and suboptimal models 

(entering the data into SPSS as two participants as unable to run a t-test on only one 

participant), confirmed that d‟ was equally matched for pitch and timbre tasks for both sets of 

parameters; t(1) = -5.68, p = .111, and t(1) = -5.78, p = .109, respectively for F0 differences 

10% (pitch task: M = 2.17, SD = 0.08; timbre task: M = 2.46, SD = 0.01) and 15% (pitch 

task: M = 2.21, SD = 0.07; timbre task: M = 2.29, SD = 0.05). These two sets of parameters 

were therefore selected for further testing on two naïve listeners in Experiment 7. 
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Figure 7.3. Panel A: d’ based on the optimal observer model. Panel B: d’ based on the 

suboptimal observer model. D’ for the ‘different pitch, different timbre’ conditions for pitch 

and timbre tasks at different F0 and timbre combinations for listener #02. Line colour depicts 

the task type (black: pitch; gray: timbre). The line style and marker type depicts the timbre 

type and corresponding lowest non-overlapping harmonic. For the lowest non-overlapping 

harmonic, (P) denotes pitch task, and (T) denotes timbre task. Dotted black line depicts the 

d’ prime criterion threshold of ≥2. These graphic conventions also apply to the other figures 

that follow. Data is based on one listener so no confidence intervals are shown.  
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7.6. Experiment 7: Re-assessing stimulus parameters for pitch and 

timbre in two naïve listeners 

7.6.1  Procedure and Design 

Experiment 7 used only the method of constant stimuli paradigm. Naïve listeners #09 and 

#28 were required to complete a subset of pitch and timbre parameter combinations for 

pitch and timbre tasks,  with starting F0 = 200 Hz, F0 differences of 10% and 15%, and with 

3 as the lowest non-overlapping harmonic. Listeners completed around 588 trials (12 

blocks) each, which took approximately 3-4 hours per listener to complete (including 1-2 

hours of training).  

7.6.2  Results  

After training, the results for individual listeners are shown in Figure 7.4. Both listeners could 

discriminate the chosen parameters for pitch and timbre tasks relatively well. A paired 

sample t-test was performed on the averaged d‟ values across listeners #09 and #28 

(averaged data is not shown) for the optimal observer model. The t-tests indicated that, at a 

F0 difference of 10%, there was no statistically significant difference in d‟ between the pitch 

(M = 2.32, SD = 0.46) and timbre (M = 2.52, SD = 0.41) tasks, t(1) = -5.68, p = .111. For the 

F0 difference of 15%, there was also no statistically significant difference between the pitch 

(M = 2.73, SD = 0.12) and the timbre (M = 1.81, SD = 0.10) tasks, t(1) = 5.98, p = .105. 

However, in terms of seeking matched performance across pitch and timbre, discrimination 

performance for both listeners was more comparable for the F0 difference of 10% than the 

F0 difference of 15%. This is demonstrated by d‟ being greater than 2 on most conditions. 

This pattern was the same for d‟ based on the suboptimal observer model. 
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Figure 7.4. D-prime for listeners #09 and #28 for the ‘different pitch, different timbre’ 

conditions for pitch and timbre tasks with F0 differences from 200 Hz at 10% and 15% and a 

timbre difference created using 3 as the lowest non-overlapping harmonic. Panels 1A and 

2A illustrate d’ are based on the optimal observer model. Panels 1B and 2B illustrate d’ are 

based on the suboptimal observer model. In the key for the lowest non-overlapping 

harmonic, (P) denotes pitch task, and (T) denotes timbre task.  Data is based on individual 

listeners so no confidence intervals are shown.  

7.6.3 Conclusion 

Based on these findings an F0 difference of 10% at F0s 200 Hz and 220 Hz and a timbre 

difference created using 3 as the lowest non-overlapping harmonic were chosen as the most 

optimal stimulus parameters. These parameters were fully verified in Experiment 8.  
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7.7. Experiment 8: Verifying choice of stimulus parameters using a 

counterbalanced design  

Listeners #02, #09 and #28 were by now experienced in performing pitch and timbre 

discrimination for dual-pair designs in which the conditions were always „different pitch, 

different timbre‟ (see Figure 7.2, top row). Experiments 8, 9 and 11 consider performance 

when conditions could also include dual-pairs in which one of the perceptual dimensions 

remains the same across pairs (see Figure 7.2, bottom row). 

7.7.1 Procedure and Design 

Experiment 8 used the method of constant stimuli to assess discrimination performance. 

Listeners #02 and #09 completed the experiment. The starting F0 for each block was either 

200 Hz or 220 Hz. Tasks were fully counterbalanced so that the difference in pitch not only 

went upwards (200 Hz to 220 Hz) but also went downward (220 Hz to 200 Hz (-9.09% F0 

difference). This was because frequency change direction thresholds are known to vary 

across listeners (e.g., Semal and Demany, 2006). As identified previously, the lowest non-

overlapping harmonic of 3 was used as to create the timbre difference between tones.  

For both pitch and timbre discrimination tasks, trial types for each condition were completed 

twice, totalling an average of four blocks per condition (8 blocks for each task). Listeners 

were only permitted to continue to the next condition when performance on their current 

condition had reached an average accuracy of 85% across the given block runs. Listeners 

completed approximately 784 trials each for Experiment 8, which took approximately 1-3 

hours per listener to complete (including 1-2 hours of training).  
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Table 7.3  
The conditions for pitch and timbre discrimination tasks that were fully implemented in 
Experiment 8 

 Discrimination task 

Stimulus dimension  
and parameter 

Pitch 
In which interval was there a  

pitch difference? 

Timbre 
In which interval was there a 

 timbre difference? 

Condition 1: 
Different pitch, 
different 
timbre  

Condition 2: 
Different pitch, 
same timbre  

Condition 1: 
Different pitch, 
different 
timbre 

Condition 2:  
Same pitch, 
different 
timbre  

Pitch Starting F0 200 
 

220 200 
 

220 200 220 200 
 

220 

F0 
difference 
(%) 

10 -9.09 10 -9.09 10 -9.09 0 
 

0 

Timbre Lowest 
overlapping 
harmonic 

1 1 1 
 

1 1 1 1 1 

Lowest  
non-
overlapping 
harmonic 

3 3 3 3 3 3 3 3 

Note: „Different‟ or „Same‟ pitch or timbre relates to the stimulus dimension congruence 
between intervals 1 and 2.  

7.7.2 Results  

Figure 7.5 shows the average d‟ obtained from listeners #02 and #09 for conditions with a 

target dimension change only (i.e., pitch task: „different pitch, same timbre‟, timbre task: 

„same pitch, different‟ timbre) and conditions with both target and non-target dimension 

changes (i.e., pitch and timbre tasks: „different pitch, different timbre‟). As expected, 

listeners were extremely good and generally better (higher d‟) at discriminating conditions 

when only the target dimension was changing between intervals and not the non-target 

dimension. When both relevant (target) and irrelevant (non-target) dimensions were 

changing between intervals, d‟ was reduced but still exceeded 2.  
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Figure 7.5. Averaged d’ for listeners #02 and #09 for target dimension change only 

conditions and target and non-target dimension change conditions for pitch and timbre 

tasks. Panel A illustrates d’ based on the optimal observer model. Panel B illustrates d’ 

based on the suboptimal observer model. Within-subjects Cousineau-Morey 95% 

confidence intervals are plotted.  

Statistical analysis of the d‟ data for the optimal observer model using paired sample t-tests 

revealed no statistically significant difference in discriminability between pitch (M = 2.87, SD 

= 0.74) and timbre (M = 3.53, SD = 1.59) tasks for the conditions in which target and non-

target dimensions were changing (i.e., „different pitch, different timbre‟ conditions; t(1) = -

1.08, p = .474). There was also no statistically significant difference between pitch (M = 

4.90, SD = 0.35) and timbre (M = 5.76, SD = 0.00) tasks for conditions in which only the 



149 
 

target dimension changed i.e., pitch: „different pitch, same timbre‟ condition, and timbre: 

„same pitch, different timbre‟ conditions; t(1) = -3.42, p =.181). This pattern was the same for 

d‟ based on the suboptimal observer model. Confidence intervals appear quite large 

because the data is based on only two listeners.  

7.7.3 Conclusion 

Overall Experiment 8 confirmed the use of the chosen parameters defined in Table 7.3. 

7.8. Summary of Experiments 6-8 

The overall aim of the Experiments 6-8 was to determine what stimulus parameters for pitch 

and timbre tasks were required to give equivalence in discrimination performance. The 

objective was to eliminate differences in discriminability (and thus perceptual salience) as a 

potential confound in ERP and reaction time experiments reported in Chapters 8 and 9, 

respectively. These sequential studies with a small number of listeners tested over many 

1000‟s of trials validated the choice of a 200 Hz tone with an F0 difference of 10% and a 

timbre difference created using 3 as the lowest non-overlapping harmonic. These 

parameters provide the most optimal matched discrimination performance across listeners, 

where d‟ is consistently greater than 2.  
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Chapter 8.  Searching for pitch invariant 

representations in auditory cortex using a novel 

ERP adaptation approach 

8.1. Introduction 

This chapter describes Experiments 9 and 10, where ERP Experiment 10 primarily 

investigated the second pitch criterion identifying a specialised modular pitch centre: pitch 

constancy (in addition to pitch criteria 1 (pitch selectivity) and 4 (accounting for confounding 

factors)). Pitch constancy predicts responses that are always sensitive to pitch, despite 

changes in other acoustic features. Of particular interest here is whether or not a 

neurophysiological measure of pitch coding, measured using a novel ERP adaptation 

approach, is influenced by timbre changes. Pitch constancy or invariance has typically been 

addressed in non-human animal studies (e.g., Bendor & Wang, 2005; Bizley et al., 2009), 

whose findings may or may not be comparable across species. Pitch constancy has also 

been studied in humans (often using subtractive methodology), but these have often yielded 

somewhat inconsistent results (e.g., Barker et al., 2011, 2013; Hall et al., 2009; Chait et al., 

2006; Garcia et al., 2010; Puschmann et al., 2010, Penagos et al., 2004; Steinmann & 

Gutschalk, 2012). The advantages of adaptation designs to investigate stimulus-specific 

representations have previously been described (Chapters 3 and 6). The current ERP 

experiment describes one of the first attempts to directly apply this paradigm to investigate 

pitch invariance to timbre using the same well-matched pitch-evoking stimuli. The 

experimental approach combined behavioural and electrophysiological methods. Experiment 

9 was a behavioural study which sought to equate psychophysical performance for pitch and 

timbre tasks within subjects, as well as assess between-subject differences in the 

discriminability between and within pitch and timbre tasks. Experiment 10 was the main 

study of interest presented in the current chapter which explored pitch constancy using an 

ERP adaptation design in which pitch and timbre were manipulated across conditions in the 

same way they had been for Experiment 9. 

8.1.1 Neurophysiological evidence for pitch invariance in auditory cortex  

In the last 15 years or so there has been an exponential increase in the amount of non-

human and human neurophysiological investigations of pitch constancy on a more general 

level, and more recently, regarding pitch invariance to other perceptual features. Findings 

from these studies, not only help gain a better understanding of the psychophysical evidence 

regarding pitch perception and discrimination, but also allows for comparisons between non-

human animals and humans in order to build a cumulative picture regarding the neural 

representation of pitch perception in auditory cortex.  This relates to questions surrounding 

where in auditory cortex pitch perception is encoded, and also the neural mechanisms 
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underlying pitch abstraction. However, both non-human and human neurophysiological 

evidence regarding pitch representations, and the existence of pitch constancy at the level of 

auditory cortex remain unresolved (Griffiths, 2012). 

8.1.1.1 Non-human studies  

Support for and against pitch-constant representations in auditory cortex has been reported 

in both non-human and human neurophysiological studies. In favour of pitch constancy, a 

number of non-human studies (predominately in primates) have argued that pitch coding 

involves dedicated “pitch neurons” that code pitch invariantly of the spectral composition of 

the stimulus (e.g., Bendor & Wang, 2005, 2010; Fishman, Reser, Arezzo, & Steinschneider, 

1998; Schwarz & Tomlinson, 1990; Steinschneider, Reser, Fishman, Schroeder, & Arezzo, 

1998).  For example, Bendor & Wang (2010) measured single unit responses in marmoset 

auditory cortex using a variety of pitch-evoking stimuli (e.g., harmonic complex tones with 

missing F0). They reported pitch selective neuronal populations in primary (A1) and non-

primary (R) areas that responded to the pitch value (i.e., F0) regardless of differing physical 

(i.e., spectrum) and perceptual (i.e., salience) characteristics of the different pitch-evoking 

stimuli. Interesting, they also found an increase in firing rate of neurons as a function of pitch 

salience (temporal regularity) within this putative pitch centre (but see Schnupp & Bizley, 

2010 for a critique of this study).  

Against pitch constancy, more recent animal studies using single-unit recording have 

reported neuronal sensitivity to pitch and other acoustic features (e.g., Bizley et al., 2009, 

2010; Walker et al., 2011a; see Schnupp & Bizley, 2010 for a critique of the idea of invariant 

pitch neurons). Bizley et al. (2009) investigated the neural representation of pitch, spectral 

timbre and sound localisation cues in ferret auditory cortex. They presented ferrets with 

artificial vowel sounds that differed in pitch (F0), timbre (formant frequency) and sound 

source azimuth (virtual sound source directions), and recorded cortical responses (single 

units) of individual neurons in five areas encompassing primary and nonprimary areas of 

ferret auditory cortex. To analyse the data they used a special „variance decomposition‟ 

technique, which allowed them to quantify how altering one parameter affected neural 

responses. They found that most neurons in multiple cortical areas (primary and non-

primary) were sensitive to more than one acoustic feature. They found no evidence of a 

specialised cortical field for pitch, timbre or spatial location. Nevertheless they did report that 

neurons in some areas were more sensitive to one feature than to others features. For 

example, primary areas such as A1 were more sensitive to pitch, whilst non-primary areas 

like the anterior auditory field were more sensitive to timbre. Walker et al. (2011a) also found 

that the same neurons in ferret auditory cortex could effectively multiplex information about 

pitch, timbre and spatial location acoustic features within separate temporal windows of their 

response. Specifically, timbre change information was represented earlier in auditory cortical 

responses than pitch change information. These findings suggest that neurons responsible 
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for encoding pitch may be non-invariant to timbre changes, and so a given pitch value might 

need to be encoded by multiple neurons or slightly different neuronal populations depending 

on the timbre and spatial location of the particular stimulus, rather than by a specialised 

region of highly-tuned pitch-exclusive neurons or neuronal populations. 

8.1.1.2 Human studies 

Neurophysiological evidence for pitch invariance to timbre in humans has been limited by 

the fact that the majority of studies use subtractive methodology. Unlike studies that employ 

alternative approaches (e.g., single-cell recording in primates, or adaptation designs), 

subtractive studies cannot effectively examine responses for both stimulus features (see 

Chapter 3). Subsequently, the majority of human evidence to date is somewhat indirect, and 

involves comparing across studies that report either pitch and/or timbre patterns and simply 

inferring whether or not they engage the same brain regions. Overall, evidence is largely 

against the idea of pitch constancy. For example, a number of fMRI studies have shown that 

pitch and timbre have overlapping and widely distributed neural substrates, notably in HG, 

and PT, as well as STG and Superior Temporal Sulcus (STS) areas of auditory cortex 

(Formisano, De Martino, Bonte, & Goebel, 2008; Warren et al., 2005; Overath et al., 2008; 

Overath et al., 2010). 

Furthermore, a recent ERP study that has employed adaptation methodology has also 

shown some evidence that pitch is non-invariant to timbre. Specifically, as described 

previously in Section 6.3, Briley et al. (2013) investigated whether the pitch is represented by 

its physical dimension (i.e., repetition rate, high or low), or by its perceptual dimensions (i.e., 

pitch height and/or pitch chroma). Pitch height refers to the octave in which a given note is 

situated, whilst pitch chroma represents the cycle of notes within a given octave (Briley et 

al., 2013). The authors compared adaptation effects for pure tones and IRN. Under the 

assumption of pitch constancy, they should have exhibited a similar pattern of results for 

both types of stimuli, despite variations in their „timbre‟. However Briley and colleagues 

found evidence for a representation of pitch chroma in auditory cortex for IRN, but not for 

pure tones. This suggests that the two different pitch stimuli activate different neurons in 

auditory cortex. This therefore did not support claims that there are invariant pitch neurons in 

auditory cortex. They claim their results support Butler (1972) who found that a pure tone 

does not adapt a complex tone that was the same pitch but had a non-overlapping spectral 

composition. However, Briley et al. (2013) examined evidence for pitch constant effects by 

comparing adaptation effects separately for two different classes of stimuli whereby 

differences in stimuli could extend beyond just the spectral composition of sounds, rather 

than comparing whether pitch is invariant to timbre in the same stimuli.  
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8.1.2 Objectives and hypotheses 

Overall, the amount of evidence for and against pitch constancy in auditory cortex is 

relatively mixed. It is still unclear whether there is evidence for pitch constancy at the level of 

auditory cortex. The current study therefore aims to address this by examining pitch 

invariance to timbre by comparing adaptation effects to changes in the same pitch-evoking 

stimuli (Experiment 10), using stimuli that are well-controlled for inferred perceptual salience 

(Experiment 9). The main objectives were as follows: 

Objective 1) whether adaptation of auditory cortical probe responses are selective to pitch? 

To address pitch criterion 1 (pitch selectivity; see Section 1.1) there should be no significant 

differences in amplitude across conditions for noise (EOR) and the adaptor (POR1), but 

there should be significant differences in amplitude for the probe (POR2) across conditions 

compared to the adaptor (POR1), specifically most adaptation should occur when the same 

pitch stimulus is repeated (see Figure 8.1).  It was expected that neither the EOR nor the 

POR1 would evoke statistically significant differences across conditions  

Objective 2) if pitch-selective adaptation is observed then, are pitch processing neuronal 

populations selective to encoding pitch only, or are they sensitive to encoding both pitch and 

timbre (see Figure 8.1) 

If pitch is invariant to timbre (see Figure 8.1A), there should be release from adaptation (less 

adaptation) for pitch changes (different pitch). A 2-by-2 repeated-measures ANOVA with 

pitch (same, different) and timbre (same, different), should reveal a significant main effect of 

pitch, but no significant main effect of timbre and no interaction. This would be consistent 

with a pitch constant or modular „pitch specific‟ representation in auditory cortex (addressing 

pitch criterion 2, pitch constancy; see Section 1.2). 

If pitch is non-invariant to timbre (see Figure 8.1B), there should be a release from 

adaptation for both pitch and timbral changes. A 2-by-2 repeated measures ANOVA with 

pitch (same, different) and timbre (same, different), should reveal a significant main effect of 

pitch, a significant main effect of timbre, and a possible pitch and timbre interaction. This 

would be counter to the idea of a pitch-specific representation in auditory cortex.  
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Figure 8.1. Schematic illustration of experimental hypotheses relating to pitch invariance to 

timbre. See text for details. 

The fourth pitch criterion („accounting for confounding‟ variables; see Section 1.4) was 

addressed by using stimuli that activated the same gross spectral region, helping to maintain 

a stable envelope and prevent cochlea distortions (see Section 8.3.2.1).  

8.1. General methods and materials 

The following sections describe the general methodology and materials for Experiments 9 

and 10. Experiment-specific details are presented in their corresponding sections. 
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8.1.1  Listeners 

Twenty right-handed (LQ = +89%, Decile R.7) healthy listeners (#01, #02, #05, #06, #07, 

#08, #09, #10, #14, #15, #16, #29-#37) volunteered to participate in both the psychophysical 

(Experiment 9) and ERP (Experiment 11) studies (10 male, 10 female; Mage = 23.35, SD = 

6.03, age-range 18-42 years).  All participants reported normal or corrected-to-normal vision, 

and had clinically normal hearing (≤25 dB HL between audiometric frequencies 250-8000 

Hz). No listeners reported a history of hearing, neurological, and/or psychological 

impairment, and use of psychiatric medication or substance misuse. Seven participants 

(#05, #07, #08, #14, #16, #31, and #37) were musically trained on the clarinet, drums, 

guitar, keyboard, piano, and recorder achieving grades 2-7 across 2-20 years. Six listeners 

(three of whom were not musically trained; #02, #05, #09, #14, #16, #35) also reported 

informal musical experience on the bass guitar, drums, guitar, keyboard, piano and violin, 

gained over 2-6 years. Eight listeners (not reported above; #38-#45) did not successfully 

complete Experiment 9. One participant (#38) withdrew before completion. Seven 

participants (#39-#45) did not achieve appropriately matched pitch and timbre discrimination 

performance during the training phase and so were excluded. After inspecting individual 

ERP waveforms, two subjects (#29 and #36) who participated in both studies were then 

excluded from Experiment 10 during the ERP analysis stage. They both failed to exhibit 

typically large and distinguishable cortical responses to noise (EOR; see Section 6.2.3.1). 

Listeners gave written informed consent, and the study was approved and performed in 

accordance with the College Research Ethics Committee‟s guidelines, Nottingham Trent 

University (ethics no. 2011/46). 

8.1.1 Procedure and Design 

Participants‟ completion of Experiment 9 always preceded Experiment 10, and generally on 

a different day (i.e., between 2 weeks depending on participant availability). Both 

experiments took place at Nottingham Trent University. All participants were recruited via 

Nottingham Trent University‟s online Research Participation Scheme or via email. 

Participants were awarded psychological research credits based on their length of 

participation (i.e., awarded 1 credit per 10 minutes of participation, where appropriate). 

8.2. Experiment 9: Ensuring pitch and timbre discriminability was 

matched for ERP Experiment 10 

8.2.1 Objective 

Experiment 9 was employed to ensure that the salience for pitch and timbre had been 

equated across listeners in Experiment 10. 
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8.2.2 Methods 

8.2.2.1 Stimuli  

The stimuli and trial types in Experiment 9 were the same as those in Experiment 8 (Section 

7.7). Also see Section 7.4.2 for details regarding how these were generated and calibrated. 

8.2.2.2 Procedure and Design 

Experiment 9 followed the same procedure and design as described in Experiment 8 (see 

Sections 7.7.1 and Section 7.4.3 for more information) and lasted between 2-4 hours 

depending on individual training needs. The procedure for training and equating pitch and 

timbre discrimination is described in Section 7.4.3.3. Some participants were invited to 

complete more than one pitch and timbre discrimination training session before they were 

assessed the eligibility to complete Experiment 10. It should be noted that participants could 

be trained only to discriminate pitch and/or timbre for conditions in which the pitch and/or 

timbre was „different‟. Therefore there was no training for the „same pitch, same timbre‟ 

condition.   

8.2.3 Data Analysis 

Data analysis for Experiment 9 followed the same procedure as described in Section 7.4.4. 

8.2.4 Results  

Average d‟ data for all 20 listeners (#01, #02, #05-#10, #14, #15, #16, #29-#37) are plotted 

in Figure 8.2. 
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Figure 8.2. Averaged d’ across the 20 listeners for Experiment 9 for pitch and timbre tasks 

for conditions in which the target dimension was different but the non-target remained the 

same (target different, non-target same), and for conditions in which both the target and non-

target were different (target different, non-target different). Panel A illustrates d’ based on the 

optimal observer model. Panel B illustrates d’ based on the suboptimal observer model. 

Within-subjects Cousineau-Morey 95% confidence intervals are plotted. 

Paired sample t-tests conducted on the d‟ data for the optimal observer model revealed no 

significant difference in discrimination performance between pitch and timbre tasks for both 

„target different, non-target same‟ conditions (pitch: M = 4.42, SD = 0.63; timbre: M = 4.62, 

SD = 0.82), t(19) = -1.07, p = .296, and „target different and non-target different‟ conditions 

(pitch: M = 3.00, SD = 0.63; timbre: M = 3.35, SD = 0.77), t(19) = -1.43, p = .169, indicating 

that the discriminability of pitch and timbre was appropriately matched across listeners (see 

Figure 8.2).  
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Results from the statistical paired sample t-tests indicated that the non-target dimension 

negatively affected discriminability of the target dimension for both pitch and timbre tasks. As 

expected, within tasks, listeners were significantly worse at discriminating the target when 

the non-target dimension also varied from interval to interval (i.e., the „target different and 

non-target dimension different‟ condition) for both the pitch tasks (non-target same: M = 

4.42, SD = 0.63; non-target different: M = 3.00, SD = 0.63), t(19) = 7.62, p < .001] and 

timbre tasks non-target same: M = 4.62, SD = 0.82; non-target different: M = 3.35, SD = 

0.77), t(19) = 5.24, p < .001, compared to when only the target dimension changed and the 

non-target dimension remained fixed (i.e., „target different, non-target same change‟ for pitch 

and timbre tasks). These results seem to suggest a detrimental effect of the non-target 

dimension on discriminating the target (signal), and one that is reciprocal for both 

dimensions (i.e., pitch affects timbre discrimination and vice versa). 

Paired sample t-tests conducted on d‟ data for the suboptimal observer model confirmed the 

same qualitative and statistical pattern of results as the optimal model. 

8.2.5 Conclusions  

Overall listeners who took part in Experiment 9, showed that discriminability for pitch and 

timbre was well-matched for the stimulus parameters selected. The significant difference 

within pitch and timbre tasks was expected given the nature of interference timbre has on 

pitch (and vice versa), supporting previous results (Borchert et al., 2011), and studies who 

claim an interdependence between pitch and other features related to its perception (Bizley 

et al., 2009). The group averaged d‟ data reported here was better than the expected or that 

reported for Experiment 8 (see Section 7.7.2), however this is likely to have occurred 

because some listeners were given more practice trials over a maximum of two sessions (2-

4 hours) until they reached criterion, or were excluded. 

8.3. Experiment 10: ERP adaptation study 

8.3.1 Objectives  

To recap the amount of stimulus-specific adaptation refers to the size of the reduction in 

neural responsiveness to a probe (POR2) when it is preceded by the same or similar 

adapter (POR1). The extent of this reduction reflects the extent to which the adapter and 

probe activate similar groups of neurons (i.e., assumes large amount of adaptation = 

same/similar neuronal populations coding probe, and assumes small amount of adaptation = 

different neuronal populations coding probe). The current ERP experiment used this 

adaptation approach to address pitch criterion 1 (pitch selectivity), criterion 2 (pitch 

constancy) and criterion 4 (accounting for confounding variables). 
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8.3.2 Methods 

8.3.2.1 Stimuli 

The ERP stimuli were chosen based on the most optimal stimulus parameters confirmed in 

Experiments 6-8 (see Sections 7.5-7.8) and using the same stimulus parameters as 

Experiment 9. 

The ERP stimuli were digitally synthesised using a bespoke MATLAB code (The Mathworks, 

Natick, MA), with a DVD quality sampling rate of 48 kHz and a 16-bit resolution. The 

resulting pitch and noise sound sequences evoked continuous stimulation within a given trial 

(e.g., Krumbholz et al., 2003; see Chapter 6). A representative example is given in Figure 

8.3. Specifically, each sound sequence transitioned from a silent period (100ms), to white 

noise stimulus (800ms), a long harmonic adaptor stimulus (1000ms), a short harmonic probe 

stimulus (500ms), and silence (100ms), with a total trial stimulus duration of 2520ms. Each 

element in the sequence was butted together with no ramps, and then the whole sequence 

was low-pass filtered at 2 kHz, meaning that a noise masker was not needed because all 

stimuli were matched to activate the same gross spectral region, helping to maintain a stable 

envelope and prevent cochlea distortions (accounting for potential confounding factors, see 

Chapter 1). The sound sequence was gated to add two 10ms cosine ramps at beginning and 

the end of sound stimuli (noise and probe segments). The sound level for each segment was 

originally fixed at 50 dB SPL and the energy across the whole sequence was matched. The 

long adaptor, short probe, and no ISI between adaptor and probe were chosen in order to 

maximise auditory adaptation effects as found by Lanting et al. (2013; see Section 6.3 for 

more details). The noise and adaptor stimuli were a different duration (i.e., 800ms, and 

1000ms, respectively), but this was not envisaged to affect the response measures. In 

Krumbholz et al.‟s (2003) continuous stimulation MEG study exploring PORs, sequences 

contained a 2000ms noise which than transitioned to a 1000ms IRN pitch stimulus. 

Sequences were gated with periods of silence and onset/offset ramps to prevent audible 

clicks and truncation. 
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Figure 8.3. A representative example of one of the stimulus sequences used for the ERP 

Experiment 10. Sound transitioned from noise to pitch-evoking adaptor and then a pitch-

evoking probe. Please note that the adaptor and probe pairing shown here have a different 

F0 and timbre (i.e., ‘different pitch, different timbre’ condition).   

The stimuli and trial types for Experiment 10 are shown in Table 8.1. Four conditions were 

created by crossing two levels of pitch congruence (same, different) with two levels of timbre 

congruence (same, different) in a factorial design. Pitch and timbre congruence referred to 

the pairing of stimulus values between the two pitch evoking stimuli, adaptor and probe. 

Within each condition, the adaptor-probe pairings yielded four trial types, with a total of 16 

trial types across conditions. Twenty-five versions of each trial type (25 x 16) were 

generated afresh to ensure a new random white noise sample for each trial, equating to 100 

trials per condition, and totalling 400 trials. Many trials improve SNR by reducing the residual 

EEG noise (Kropotov, 2009, Part II, p. 347) 

Table 8.1   
Conditions used for the ERP Experiment 10 

  Timbre congruence (adaptor -> probe) 
Pitch congruence (adaptor -> probe)  Same timbre Different timbre 

Same pitch  

 Condition 1 
200-1 -> 200-1 
200-2 -> 200-2  
220-1 -> 220-1 
220-2 -> 220-2 

Condition 2 
200-1 -> 200-2 
200-2 -> 200-1  
220-1 -> 220-2 
220-2 -> 220-1 

Different pitch  

 Condition 3 
200-1 -> 220-1 
200-2 -> 220-2 
220-1 -> 200-1  
220-2 -> 200-2 

Condition 4 
200-1 -> 220-2 
220-2 -> 200-1 
200-2 -> 220-1  
220-1 -> 200-2 

Note: Timbre congruence indicated by suffixes „1‟ or „2‟ indicates the two different types of 
timbre that were used. „1‟ refers to the timbre type created using 3 as the lowest non-
overlapping harmonics, whilst „2‟ refers to the timbre type using 4 as the lowest non-
overlapping harmonic (see Section 7.4.2). 

8.3.2.2 Procedure and Design 

The ERP Experiment 10 used a continuous stimulation paradigm to avoid further potential 

confounds when measuring adaptation effects (see Section 2.4.2). To date, the continuous 
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stimulation paradigm is only typically employed in subtraction studies and therefore does not 

resolve the problem related to the requirement of an appropriately „matched‟ baseline 

(Friston et al., 1996b;  Sartori & Umiltà, 2000). However the current experiment resolves the 

baseline problem because an adaptation design was used (where the feature of interest is 

present in both the adaptor and probe stimulus) in conjunction with a continuous stimulation 

paradigm within the same pitch-evoking stimuli. Subsequently, the sound sequences 

consisted of noise, the adaptor pitch stimulus, and the probe pitch stimulus. As shown in 

Table 8.1, from adaptor to probe the same stimulus could be repeated (condition 1), or have 

a different pitch (condition 3), timbre (condition 2) or both (condition 4).  

The ERP listening task was conducted in a quiet EEG lab at Nottingham Trent University. 

Presentation and timing of stimulus trials were controlled using an open source experimental 

building programme called OpenSesame 0.26 (Mathôt, Schreij, & Theeuwes, 2012) on a 17 

inch stimulus presentation personal computer. The 400 trials were presented in a 

randomised order, and each trial was separated by a 1500ms silent inter-trial interval that 

randomly varied by 10% (i.e., ± 150ms) to avoid cross-over adaptation effects (Dale & 

Buckner, 1997; Vidyasagar, Stancak, & Parkes, 2010) and predictability between trials 

(Cohen & Eretz, 1991). Digital triggers were placed at the beginning of each segment in a 

given trail to synchronise stimulus presentation with recorded ERP activity.  

The sound presentation level in OpenSesame was fixed to ensure stimuli presented 

binaurally using Sennheiser HD-280 headphones had an overall sound level of 70 dB SPL. 

Sound level was measured prior to testing using a Brüel & Kjær 4231 Sound Calibrator, 

affixed with a Brüel & Kjær 2250 Sound Level Meter, Brüel & Kjær 4153 artificial ear, and 

Brüel & Kjær 4192 Half Inch Microphone. Sound pressure levels were calibrated using the 

“LAEQuilize” setting which gives a measure of the overall dB SPL over time (i.e., overall dB 

SPL for the whole trial). Experiment 10 was generally completed by participants on a 

separate day to Experiment 9, but usually within a maximum of 14 days, and lasted between 

2-3 hours in total for each participant (including lab set-up and clean-up times).  

8.3.3 EEG data acquisition 

ERPs were recorded using a 64-channel Active-Two acquisition system (BioSemi; 

www.biosemi.com), using the same acquisition procedures as described in Section 6.2. ERP 

data pre-processing and analysis for Experiment 10 was conducted using BESA Software 

(BESA Research v. 5.3.7, Gräfelfing), and involved three main stages: 1) Pre-processing, 2) 

Sensor-based analysis, and 3) Source-based analysis, as described in Section 6.2. 

8.3.4 Data pre-processing  

Data pre-processing followed the procedure described in Section 6.2.2.  

http://www.biosemi.com/
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8.3.5 ERP analysis 

Experiment 10 used the two sensor-based and source-based analysis approaches 

described in Sections 6.2.3 and 6.2.4, respectively.  

In order to address Objective 1, whether auditory cortical probe responses are selective to 

pitch, the amplitudes for the noise (EOR) and adaptor (POR1) responses needed to be 

quantified across conditions.  

In order to address Objective 2, whether pitch processing neuronal populations are constant 

for encoding pitch only, or are sensitive to both pitch and timbre, the difference in amplitude 

between the response to the adaptor (POR1) and response to the probe (POR2) had to be 

quantified across conditions, to reveal the amount of adaptation or release from adaptation. 

The amount of adaptation was measured in microvolts for sensor-based analyses, and nAm 

for dipole source analysis. 

8.3.5.1 Statistical analysis 

The peak-to-peak amplitudes for EOR, POR1 and amount of adaptation for POR2 relative 

to POR1 (for both sensor and source-based analyses) were subjected to statistical analysis 

using a 2-by-2 repeated-measures ANOVA. The first factor reflected pitch congruence from 

adaptor to probe (same, different), and the second factor reflected timbre congruence 

(same, different). For all ANOVA testing an alpha criterion of p < .05 was used to test for 

statistical significance. All planned and post hoc paired sample t-tests were Bonferonni 

corrected to account for FWE associated with multiple comparisons. If Mauchly's test of 

sphericity assumption of sphericity was violated a Greenhouse-Geisser correction was 

used. 

 

 

 

 

 

 



163 
 

8.4.  Results 

8.4.1 Objective 1: ERP evidence for pitch selectivity 

8.4.1.1 Sensor-based  

GA ERP waveforms and latencies 

Figure 8.4. GA ERP waveforms measured at the Cz for each condition. Conditions were 

comprised of ‘same pitch, same timbre’, ‘same pitch, different timbre’, ‘different pitch, 

different timbre’ and ‘different pitch, same timbre’. Note that the horizontal x axis represents 

time in ms.  

The corresponding GA ERP waveforms at the Cz site, across the four sound conditions, are 

shown in Figure 8.4. Consistent with previous data (Seither-Preisler et al., 2004), the EOR 

was comprised of two large vertex deflections (N100: Näätänen & Picton, 1987; and P200 

Lütkenhöner & Steinsträter, 1998) following the onset of noise. This was followed by two 

large transitional PORs; POR1 following the onset of the adaptor stimulus (at around 

110ms), followed by POR2 (peaking at around 110ms) after the onset of the probe. Peak 

latencies for EOR, POR1 and POR2 components are shown in Table 8.2. As expected from 

visual inspection of the GA data, the EORs were not significantly different across conditions 

for the sensor-based data. Peak-to-peak EORs (µV) from N100-P200 did not reveal any 

significant main effects for pitch congruence, F(1, 17) = 0.38, p = .543, timbre congruence, 
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F(1, 17) = 0.58, p = .458, and no pitch congruence*timbre congruence interaction, F(1, 17) = 

0.76, p = .394, respectively. This was also the case for POR1 adaptor responses observed 

for the sensor-based data, whereby peak-to-peak POR1s (µV) from N100-P200 revealed no 

main effects of pitch congruence, F(1, 17) = 0.70, p = .415, timbre congruence F(1, 17) = 

0.02, p = .900, and no pitch congruence*timbre congruence interaction, F(1, 17) = 2.32, p = 

.146, respectively. 

ERP peak latencies for N100 and P200 components for the EOR, POR1 adaptor and POR2 

probe were obtained. All peak latencies were in accordance with the findings of previous 

studies (e.g., Bosnyak et al., 2004; Seither-Preisler et al., 2004). Previous studies have 

found that the POR typically occurs around 150ms, which is markedly later than the EOR 

(N100; e.g., Chait et al., 2006; Krumbholz et al., 2003). The results reported here also 

derived PORs which share extremely similar temporal properties. Examining the temporal 

window of processing for new and repeated stimuli, the facilitation model (see Section 6.3) 

suggests that the latency and/or duration of the response to repeated items will be shorter 

for the second presentation than for the first presentation (see Grill-Spector et al., 2006). As 

shown in Table 8.2, both „N100‟ and „P200‟ latencies for POR2 responses were significantly 

shorter (i.e., 128.14ms, and 201.12ms, respectively) than POR1 (i.e., 143.18ms, and 

217.12ms, respectively); t(17) = -7.47, p < .001, and t(17) = -4.25, p = .001, respectively. 

Considering the POR and EOR latencies demonstrated in the current study and the nature 

of the continuous stimulation paradigm used, I can be confident that the observed cortical 

responses are attributable to the neural mechanisms underlying pitch and timbre processing 

specifically, as opposed to sound coding in general. 

Table 8.2  
Average peak latencies in ms (± SD) derived from N100 and P200 components of interest 
comprising EOR, POR1 and POR2 at Cz sensor site, collapsed across conditions and 
listeners 

ERP Component Mean latency in ms (± SD) 

EOR (N100)  122.71 (± 10.34) 

POR1 (N100) 143.18 (± 5.68) 

POR2 (N100) 128.14 (±  9.20) 

EOR (P200) 193.96 (± 15.63) 

POR1 (P200) 217.12 (± 9.34) 

POR2 (P200) 201.12 (± 13.35) 

  
There was no significant difference between the N100 and P200 latencies respectively for 

the POR2 (probe response) for pitch change only (i.e., different pitch same timbre) and 

timbre change only conditions (i.e., different timbre, same pitch); t(17) = -.57, p = .578, and 

t(17) = -.22, p = .828. This was contrary to Walker et al. (2011a) observed findings in ferrets 

that timbre changes are processed earlier than pitch changes. However a possible 
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explanation for this could relate to fact that the current experiment matched pitch and timbre 

discriminability. This is explored further in Chapter 9. 

Visual inspection of the data (see Figure 8.4) revealed there were differences between 

conditions for the POR2 response. When there was no change in pitch and timbre („same 

pitch, same timbre‟ condition) responses had amplitudes close to zero. When there was a 

change in pitch, timbre or both, the amplitudes of the N100 and P200 components increased 

with increasing pitch and timbre differences. ERP response sizes for the probe (POR2) 

reveal that they increased for increasing pitch and timbre changes between adaptor and 

probe, and were minimal when both the pitch and timbre was the same. This minimum is 

likely to reflect noise in the EEG measurements. Overall these results suggest that the 

POR2 probe responses are pitch and timbre selective. These differences across conditions 

were further interrogated in the Section 8.4.2 below.  

The POR2 probe response did have a similar triphasic morphology as the EOR and probe 

responses reported in Briley et al. (2013), with a small initial positive peak (referred to as 

P100; Näätänen and Picton 1987), followed by the N100 and P200. The presence of the 

P100 component for the probe responses, but not the adaptor responses, prompted further 

analysis of the probe, to rule out the possibility of any statistically significant differences 

across conditions. Peak-to-peak amplitudes of the probe were calculated from the onset of 

the probe stimulus to the peak of the P100 (termed here as „P100 onset‟), for all pitch and/or 

timbre change conditions (i.e., „same pitch different timbre‟, „different pitch same timbre‟, and 

„different pitch different timbre‟). This analysis was not conducted on the „same pitch same 

timbre‟ condition because there was no P100 present, which is characteristic of a stimulus 

condition where the same sound is repeated. For statistical rigour, this peak-to-peak 

analysis was repeated from the peak of P100 to the N100 (termed here as „P100 offset‟). 

Paired sample t-tests, Bonferonni corrected to account for FWE associated with multiple 

comparisons, were conducted. The mean latency for P100 responses was 79ms, and there 

was no statistically significant difference in P100 latency across conditions. As anticipated, 

comparisons between „different pitch different timbre‟ conditions (P100 onset: M = 3.02, SD 

= 1.86; P100 offset: M = 4.61, SD = 2.10) and „different pitch same timbre‟ conditions (P100 

onset: M = 2.40, SD = 1.65; P100 offset: M = 4.02, SD = 2.24) revealed no statistically 

significant differences; P100 onset: t(17) = 1.07, p > .05; P100 offset: t(17) = 1.12, p > .05). 

This was also the case for comparisons between „different pitch different timbre‟ conditions 

and „same pitch different timbre‟ conditions (P100 onset: M = 2.49, SD = 1.60, t(17) = 0.96, p 

> .05 ; P100 offset: M = 3.54, SD = 2.03, t(17) = 2.00, p > .05), and comparisons between 

„same pitch different timbre‟ and „different pitch same timbre‟ conditions (P100 onset: t(17) = 

-0.19, p > .05; P100 offset: t(17) = 1.14, p > .05). These non-significant results for the P100 

responses of the probe, confirm that differences in peak-to-peak amplitudes were confined 

to the N100-P200 components of the probe, and are analysed further in the following 

section. The P100 could have arisen in the probe responses due to the characteristics of the 
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stimulus sequence, such as differences in the stimuli and duration of sound preceding the 

adaptor (800ms noise) versus the stimuli and duration of sound preceding the probe 

(1000ms tone); however, the onset and offset of the P100 was not statistically different 

across conditions and therefore seems unlikely to have affected the probe adaptation 

calculated for peak-to-peak measures of N100-P200. Seither-Preisler et al. (2004) found that 

reducing the time interval between the noise and pitch resulted in a decrease in the 

amplitude of the POR. In the current experiment, the noise stimulus was shorter than the 

adaptor that preceded the probe, and therefore might be one explanation as to why the 

P100 was only evident in the probe response. If the current experiment had used noise and 

adaptor stimuli with the same lengths, we may have observed the presence of a P100 for 

the adaptor response also. The possible explanations for the presence of the P100 in the 

probe response are explored further in the Discussion. 

8.4.1.2 Source-based  

 

Figure 8.5. Average of right and left auditory dipoles for each condition. Conditions were 

comprised of ‘same pitch, same timbre’, ‘same pitch, different timbre’, ‘different pitch, 

different timbre’ and ‘different pitch, same timbre’. Note that the horizontal x axis represents 

time in ms.  
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As shown in Figure 8.5, source waveforms across conditions were highly comparable with 

the sensor-based waveforms, whereby the only noticeable difference between conditions 

related to the POR2 probe responses. EOR and POR1 responses were comparable.   

8.4.1.3 Summary 

In summary, the findings from both sensor and source-based analyses fulfilled the pitch 

selectivity criterion for Objective 1. EOR, POR1 as well as P100 responses (for the probe) 

were not significantly different across sound conditions, and differences between conditions 

appeared to be confined to the evoked POR2 responses. 

8.4.2 Objective 2: ERP evidence for pitch non-invariance to timbre 

8.4.2.1 Sensor-based results 

 

Figure 8.6. Mean amount of adaptation across conditions comprising the pitch congruence 

and timbre congruence interaction. Cousineau-Morey 95% confidence intervals are plotted. 

Note: Positive values indicate that the POR2 probe response was reduced relative to the 

POR1 adaptor response (i.e., adaptation). Negative values indicate the POR2 response was 

larger than the POR1 response (i.e., release from adaptation). Values approaching 0 

indicate little or no adaptation (i.e., smaller values equal reduced adaptation or release from 

adaptation, values closer to 100% = maximal adaptation). 
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The amount of adaptation (µV%) from adaptor (POR1) to probe (POR2) did significantly 

differ across experimental conditions. A highly significant main effect of pitch congruence, 

F(1, 17) = 151.89, p < .001,   
  = .899, indicated that adaptation was maximal for POR2 

responses when the same pitch was repeated (M = 47.77%, SD = 17.14), compared to 

when the pitch changed  (M = -19.77%, SD = 25.54). Hence a pitch change led to a release 

from adaptation (i.e., -% = less/no adaptation, greater neuronal response) suggesting that 

different neuronal populations were recruited to process these changes in the pitch value of 

the probe. It is therefore possible that observed probe responses do reflect cortical 

selectivity to the perceived pitch of the stimuli being presented (i.e., more evidence in favour 

of pitch selectivity). However this argument is based on the assumption that the POR1 and 

the POR2 are comparable; see the Discussion for potential limitations of this result.  

The main effect of timbre also reached significance, F(1, 17) = 43.47, p < .001,   
  = .719, 

which revealed that adaptation effects were greater for POR2 responses when the timbre 

was repeated (M = 31.06%, SD = 16.99), relative to when it varied from adaptor to probe (M 

= -3.06%, SD = 25.06). Importantly this revealed that changes in timbre also led to a release 

from adaptation across conditions, suggesting that different neuronal populations were also 

required to process timbral changes in the probe. This provides some support for the 

hypothesis that pitch processing neuronal populations are also sensitive to encoding the 

spectral frequency composition of the pitch-evoking stimuli, and thus pitch and timbre 

selective (although these neuronal populations may not be the same; see Discussion). 

Support for this hypothesis is further evidenced by the significant interaction between pitch 

and timbre congruence, F(1, 17) = 20.09, p < .001,   
  = .542. Figure 8.6 depicts how the 

most adaptation was observed when the same stimulus was repeated (same pitch, same 

timbre), and the least amount of adaptation (i.e., the largest „release‟ from adaptation) when 

both the pitch and timbre changed from adaptor to probe. Values around zero indicate that 

the POR2 probe response was equivalent to the POR1 adaptor response, whilst higher 

values above zero indicate more adaptation (i.e., reduced response for POR2 probe 

compared to POR1 adaptor), and values below zero indicate release from adaptation (i.e., 

greater response for POR2 compared to POR1). This highlights how although the greatest 

adaptation occurred for when both pitch and timbre were repeated, when there was a 

change in either or both features of the probe, this caused varying degrees of release from 

adaptation or less adaptation.  

Comparing the observed pattern of adaptation in Figure 8.6 to the predictions that were 

made in Figure 8.1 (see Section 8.1.2), a „hybrid‟ pattern of results is observed between the 

pattern of adaptation predicted if pitch is invariant to timbre and if pitch is non-invariant to 

timbre. Specifically, post hoc t-tests on the amount of adaptation revealed that all conditions 

were significantly different from one another (p < .001) conforming to the pattern of 

adaptation predicted if the pitch response is non-invariant, with the exception of the „different 
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pitch, different timbre‟ and the „different pitch, same timbre‟ conditions. This pattern indicates 

that the timbre had no significant influence on the magnitude of the release from adaptation 

when pitch changed across the sound pair. Importantly, however, there was much less 

adaptation when the timbre changed but the pitch stayed the same which suggests that pitch 

processing neuronal populations are non-invariant to timbre, but potentially more sensitive to 

pitch changes than timbre changes. However, this argument assumes that the neuronal 

populations responding to both pitch and timbre changes are the same (see Discussion for 

alternative explanations).  

One sample t-tests confirmed that half of the conditions were significantly different from zero 

baseline (p < .005) with the exception of the „different pitch, same timbre condition‟ and 

„same pitch, different timbre‟ conditions (after correcting for multiple comparisons).  

8.4.2.2 Dipole-based results  

The amount of adaptation (nAm) from adaptor to probe averaged over the two dipole 

sources located approximately in medial HG, were highly comparable and qualitatively 

similar to the sensor-based results (see Figure 8.7). Adaptation was significantly greater, 

F(1, 17) = 49.72, p < .001,   
  = .745, for probe responses when the same pitch repeated (M 

= 24.09, SD = 13.54), compared to when the pitch changed (M = -9.99, SD = 14.98). 

Similarly for timbre, there was significantly more adaptation, F(1, 17) = 18.75, p < .001,   
  = 

.524, for probe responses when the same timbre repeated (M = 14.99, SD = 10.90), 

compared to when the timbre changed (M = -0.90, SD = 14.13). There was also a significant 

interaction between pitch and timbre, F(1, 17) = 5.34, p = .034,   
  = .239, with post hoc 

comparisons revealing all conditions were significantly different from one another (p < .001), 

with the exception of the „different pitch, different timbre‟ condition vs. the „different pitch, 

same timbre condition‟, also confirming a „hybrid‟ pattern for the predicted adaptation results 

(see Figure 8.1). One sample t-tests confirmed that the majority of conditions were 

significantly different from zero baseline (p < .001) with the exception of the „different pitch, 

same timbre condition‟ (after correcting for multiple comparisons). In summary these results 

also provide some evidence in favour of the hypothesis for pitch non-invariance to timbre. 
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Figure 8.7. Mean amount of adaptation across conditions comprising the pitch congruence 

and timbre congruence interaction. Cousineau-Morey 95% confidence intervals are plotted. 

8.4.2.3 Summary 

In summary, both the sensor and source-based results showed that adaptation was greater 

when both pitch, or timbre was repeated, confirming that the adaptation paradigm had been 

employed successfully and that POR2 probe responses were sensitive to both these 

changes. There was a release from adaptation or less adaptation when the pitch, timbre or 

both features changed, which possibly suggests that pitch processing neuronal populations 

are non-invariant to timbre (and vice versa); however, it is important to note that this 

argument is based on multiple assumptions, and therefore possible alternative explanations, 

limitations and future directions are reviewed in the discussion. 

8.5. Discussion  

Experiment 9 ensured that discriminability for pitch and timbre was well-matched across 

pitch and timbre tasks and listeners. Experiment 10 described one of the first attempts to 

investigate pitch invariance to timbre using an ERP adaptation design, and using the same 

pitch-evoking stimuli that had been previously well-matched for perceptual salience and 

unconfounded by task requirements. To recap, the main objectives were to explore whether 

probe responses were selective to pitch (Objective 1, pitch criterion 1), and also to 

determine the evidence for pitch constancy in auditory cortex, specifically whether pitch is 
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invariant to timbre or not (Objective 2, pitch criterion 2), while controlling for potential 

confounds (pitch criterion 4). 

8.5.1 Probe responses selective to pitch and timbre 

Across both sensor and source-based analysis approaches, the current experiment found 

evidence that suggests that the POR2 probe‟s responses were selective to pitch and timbre, 

fulfilling the first criterion surrounding pitch selectively (Objective 1), and supporting previous 

studies that have used this methodology (i.e., Briley et al., 2013).  

8.5.2 Is pitch non-invariant to timbre - no support for pitch constancy? 

Experiment 9 found that there was a significant difference within pitch and timbre tasks 

suggesting an interference effect of timbre on pitch (and vice versa). This supports previous 

results (Borchert et al., 2011), and studies who claim an interdependence between pitch and 

other features related to its perception (Bizley et al., 2009). 

Across both sensor and source-based analysis approaches, Experiment 10 found evidence 

in favour of pitch processing being non-invariant to timbre. POR2 probe responses showed 

release from adaptation or less adaptation when the pitch and timbre changed. These 

findings provide some support previous human adaptation studies (e.g., Briley et al., 2013; 

Butler, 1972), and non-human studies that have found multiple areas of primary and non-

primary areas of auditory cortex responding to pitch, timbre and spatial location of sounds 

(e.g., Bizley et al., 2009). These results may also be one explanation as to why previous 

primate studies have failed to locate neurons in primary auditory cortex that respond to the 

pitch of a complex tone when the frequency components are different (i.e., Fishman et al., 

1998;  Schwartz & Tomlinson, 1990, Steinschneider et al., 1998). Although Bendor and 

Wang (2005, 2010) did find pitch neurons that responded to the pitch of the stimulus despite 

changes in spectrum, there has been speculation as to whether this positive result is actually 

more attributable to distortion products (Abel & Kössl, 2009; Briley et al., 2013; McAlpine, 

2004).  

The current results therefore lend more support towards pitch being co-represented neurally 

together with timbre. As described earlier, recent studies suggest that other sound features 

may also be included in this cortical representation (see Bizley et al., 2009; Nelken et al., 

2008). Town & Bizley (2013) suggested that there might be a very broadly distributed 

network of pitch sensitivity, involving multiple brain regions which may spatially overlap with 

regions sensitive to timbre. Walker et al. (2011a) found that neurons in ferret auditory cortex 

can represent pitch information in parallel with information about timbre and spatial location, 

which they referred to as „multiplexing‟. Neurophysiological human evidence (Formisano et 

al., 2008; Warren et al., 2005; Overath et al., 2008, 2010) suggests that pitch and timbre are 

processed in similar regions in auditory cortex (i.e., HG, PT, STG and STS), which is 
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consistent with the idea that there are neuronal populations coding pitch that are non-

invariant to timbre. 

One intriguing finding related to the „hybrid‟ pattern of adaptation results observed between 

predicted patterns of adaptation shown in Figure 8.1, Section 8.1.2. Changing pitch always 

led to a release from adaptation, no matter what the timbre properties of the stimulus pair 

were, with pitch change conditions not being significantly different from one another. 

However when the pitch stayed the same and timbre changed, there was still some partial 

release from „maximal‟ adaptation. One interpretation of this hybrid result could be that 

although there was significant release from adaptation for all probe change conditions, 

neuronal populations were more finely tuned to F0 than to spectral content of the stimuli, 

and therefore more sensitive to pitch changes than to timbre changes (even though pitch 

and timbre salience had been equated prior to this experiment). Bizley et al. (2009) did 

report that neurons in some areas were more sensitive to one feature than to others. For 

example, primary areas such as A1 were more sensitive to pitch, whilst non-primary areas 

such as auditory anterior field were more sensitive to timbre. It therefore is possible the 

generators of responses of the POR2 originated from a region or neuronal populations that 

were more sensitive to F0 than timbre.  

The current experiment shows that novel ERP adaptation methodology can be used to 

investigate pitch processing. Nevertheless, there are several limitations of the current 

experiment that need to be addressed in future work. These relate to the presence of the 

P100, the use of different noise and adaptor durations, the different stimulus presentation 

contexts for both the adaptor and the probe (i.e., preceded by a noise or preceded by a 

tone), and the sources of responses to changes in pitch and timbre and whether these are 

the same or different. The presence of the P100 for the POR2 probe response, although not 

statistically significant across conditions could have arisen due to differences in the duration 

of the noise stimulus which preceded the adaptor, and the pitch stimulus adaptor which 

preceded the probe. One explanation for the presence of the P100 for the probe response 

could be related to the fact that the noise stimulus was shorter in duration, compared to the 

pitch stimulus adaptor, and therefore led to smaller amplitudes for the adaptor POR1 

response (see Seither-Preisler et al., 2004) which may have diminished the size of the P100, 

so that it was not visible. It could be argued that if the duration of the noise and adaptor 

stimuli had been the same, the presence of the P100 may have been visible for both adaptor 

and probe responses.  

Furthermore, the use of noise, adaptor and probe stimuli also meant that the sounds, and 

therefore the stimulus context, which preceded both the adaptor and probe stimuli, were 

different; the adaptor was preceded by noise, and the probe was preceded by a tonal sound. 

Subsequently, we cannot assume that adaptor (POR1) and probe (POR2) responses were 

strictly comparable, and these two pitch responses might actually be different. For instance, 
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the POR2 response followed similar triphasic morphology as the EOR, with a visible P100, 

N100, and P200 deflections, whilst the POR1 response‟s morphology was more 

representative of a typical POR response, which does not typically have a visible P100 

deflection. It might be that the POR1 response which was preceded by a noise stimulus was 

a conventional POR response, as reported by Krumbholz et al. (2003) using sequences 

which transitioned from noise to pitch transition. For pitch-evoking probe stimuli (POR2) that 

were preceded by another pitch stimulus, this is a similar stimulus presentation context as 

used in Briley et al.‟s (2013) ERP adaptation study that investigated pitch processing, and 

therefore might explain why POR2 responses in the current experiment followed the same 

triphasic morphology as Briley and colleagues (who also report P1-N1-P2 deflections for the 

probe). The POR2 responses might therefore actually reflect a pitch-related probe response, 

which they termed „PR‟, rather than a POR2. It seems unlikely that the response to the 

probe reflects a general response to a change in the auditory stimulus because Krumbholz 

et al. (2003) found that the transition from an IRN pitch stimulus to noise produced no 

response whatsoever. Chait et al. (2006) also argued that if the POR was just a detector of 

change in on-going stimulation, you would expect to see just a single peak rather than two 

peaks (as observed for PORs); or three peaks, as observed in the current data and Briley et 

al. (2013). In the present data, the cortical sensitivity to changing pitch stimuli also seemed 

greater than changes in timbre, which runs counter to the idea that probe responses 

reflected a change response, as we would have expected adaptation results to be the same 

regardless of whether the pitch, timbre or both changed. It also seems unlikely that the 

probe responses reflect auditory deviance detection because only one pitch adaptor 

preceded probe responses.  

The current experiment had three auditory events present in a given sequence (i.e., noise, 

adaptor and probe); however, future work could undertake the current experiment using just 

adaptor and probe stimuli, as in Briley et al. (2013), so that the stimulus context is better 

controlled and pitch responses are therefore more comparable. Alternatively, fMRI in 

conjunction with EEG measures could be used to explore the responses for POR1 and 

POR2 and determine whether the sources of these are the same or different, which would 

give a better indication of whether these responses are comparable. Most studies report 

slightly different neural generators for POR and N100 or P200 components elicited by any 

sound stimulus (see Seither-Preisler et al., 2004; Schönwiesner and Zatorre, 2008). 

The results showed release from adaptation or less adaption when there was a change in 

pitch, timbre or both, which suggests that pitch processing neuronal populations may be 

non-invariant to timbre (and vice versa). However, this argument is difficult to determine 

given that there is no way that the response to pitch and timbre can be separated in the 

present data; more specifically, we do not know if the neuronal populations giving rise to 

POR2 responses for pitch and/or timbre changes, were the same or different. A release from 

adaptation suggests different neuronal populations have been recruited to process the probe 
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change, but in the present study we were unable to determine if this recruitment of new 

neurons involved the same or similar neurons for both pitch and timbre. Subsequently, an 

EEG experiment combined with fMRI methods would enable us to determine whether the 

responses to pitch and timbre were derived from similar or different neuronal populations. 

Specifically, we would be able to more definitively rule out whether the responses to timbre 

changes reflected a timbre onset response (TOR) from separate timbre specific neuronal 

populations, and whether pitch and timbre changes reflected a summation of different 

neuronal populations responsible for pitch and timbre perception. 

8.5.3 Summary 

In summary, the ERP results reported here satisfied the first pitch criterion of pitch 

selectivity, but failed to find any evidence in favour of the second pitch criterion relating to 

pitch constancy. Pitch coding neuronal populations might be non-invariant to timbre, but this 

would need further exploration in follow-up studies. Confirmation of such findings would be 

counter to the argument that there are dedicated pitch neurons in the auditory cortex. 

Despite humans being able to recognise the same note has been played on a piano or a 

trumpet, it seems reasonable to suggest that that such pitch constant representations might 

occur at the higher levels beyond auditory cortex. Importantly, however it should be noted 

that ERP methodology is limited in terms of being able to tell us what specific brain areas 

responded to given stimuli, and therefore the possibility that observed ERP waveforms did 

include the summation of cortical activity from two distinct neuronal populations (one 

responding to the F0, and one responding to the timbre) cannot be completely ruled out in 

the present data. Therefore further work is required to explore the location of such 

adaptation effects using a combination other neuroimaging techniques (e.g., fMRI and EEG). 

This is because fMRI is better at addressing questions surrounding whether (and where) 

neurons in a particular area are active or not, instead of whether they are tuned to a 

particular stimulus dimension (Town & Bizley, 2013).  
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Chapter 9. Searching for pitch invariant 

representations using behavioural measures 

9.1. Introduction 

This chapter describes Experiments 11 and 12, where Experiment 12 primarily investigated 

the criterion of „pitch constancy‟ using behavioural methods. Adaptation can be measured 

behaviourally as well as neurophysiologically. The adaptation phenomenon examined in 

Chapter 8 has been purported as the neural correlate of behavioural performance or 

perceptual repetition priming (Grill-Spector et al., 2006; Henson & Rugg, 2003; Schacter & 

Buckner, 1998; Wiggs & Martin, 1998). Behavioural measures are more commonly referred 

to as „perceptual repetition priming‟ and believed to represent a learning mechanism that 

represents repeated or familiar as compared to novel items (Bergerbest et al., 2004). 

Repetition of stimuli has shown to facilitate discrimination performance (i.e., quicker reaction 

times and improved accuracy; Dehaene et al., 2001;  De Lucia et al., 2010; Henson & Rugg, 

2003). Subsequently it is plausible that adaptation results for repeated and different stimuli 

can generate predictions about discrimination performance measures based on reaction 

time and accuracy. Like neural adaptation, it may be possible to draw inferences about the 

neural coding of pitch based on whether or not discrimination performance for listening 

conditions exhibit pitch constancy or invariance. Discrimination performance for pitch and 

timbre tasks using reaction time measures and accuracy measures is yet to be fully explored 

in the human pitch coding literature to date (but see Pitt, 1994 as one example). The 

experimental approach combined two different behavioural methods. Experiment 11 was a 

feasibility study which sought to equate behavioural performance for pitch and timbre tasks 

within subjects, as well as assess between-subject differences in the discriminability 

between and within pitch and timbre tasks. Experiment 12, the study of interest in this 

chapter, further investigated the pitch constancy criterion by exploring the reaction time and 

accuracy effects across the same experimental conditions used in the ERP Experiment 10. It 

is (to my knowledge) the first of its kind to examine accuracy and reaction time data to pitch 

and timbre tasks in a fully-crossed design, where stimulus parameters have been well-

matched for discriminability. 

9.1.1 Behavioural evidence for pitch invariance to timbre 

9.1.1.1 Non-human studies  

A prerequisite for any study that wishes to make comparisons between animal models and 

humans is that the non-humans can actually perceive and distinguish between the sounds 

being tested (Bizley, Shinn-Cunningham, & Lee, 2012). We know that like humans, non-

human animals can discriminate pitch and timbre (e.g., Bizley et al., 2012; Walker, Schnupp, 



176 
 

Hart-schnupp, King, & Bizley, 2009) across a variety of different listening tasks (e.g., change 

detection, 2AFC) and stimuli (pure, complex, and naturalistic tones). Walker et al. (2009) 

used pure tones and artificial vowels to measure pitch discrimination in ferrets. This involved 

training ferrets to discriminate whether the pitch was higher or lower than the reference 

sound (ranging from 200-1200 Hz), using a 2AFC task. For comparison, they also measured 

discrimination performance in naïve human listeners, using a similar paradigm. Ferrets were 

able to discriminate pitch equally well for both pure tones and vowel stimuli, however human 

pitch discrimination was substantially better overall. Nevertheless the study confirmed that 

ferrets can be trained to label complex sounds as high or low. Walker et al. (2011a) also 

trained ferrets to detect changes in the pitch or timbre of a repeating artificial vowel on a 

go/no go task. The ferret would initiate the trial by placing its nose in a poke hole situated in 

the center of the chamber. A sequence of artificial vowel sounds was then presented. The 

reference sound could change in identity (timbre) or pitch on the 3
rd

 and 7
th
 vowel in the 

sequence. If the ferret withdrew their nose from the hole when a deviant was presented, they 

were rewarded with water. If they did not withdraw then they had a 12 s time-out period. 

Timbre and pitch changes were tested in separate sessions. They found that ferrets 

accurately responded to changes in timbre more rapidly than they could for pitch. 

Nevertheless, it should be noted that in none of these animal studies did the authors match 

conditions for stimulus discriminability like in the present chapter and elsewhere (see 

Chapters 7 and 8). This might be one explanation for why differences in sensitivity and time 

courses for timbre have emerged (Bizley et al., 2009; Walker et al., 2011a; but not detected 

in ERP data here, see Section 8.4.1). It could be argued that timbre changes were more 

salient, and thus gave rise to the pattern of results reported. Hence the present chapter 

explored whether timbre discriminations were quicker and more accurate than pitch 

discrimination   

Some evidence for pitch constancy for discrimination tasks has also been reported. A 

handful of studies have found that non-human animals can universally distinguish between 

vowel sounds (e.g., timbre), despite changes in the gender of the speaker (i.e., pitch; 

(Kojima & Kiritani, 1989; Ohms, Gill, Van Heijningen, Beckers, & ten Cate, 2010), or in F0 

and spatial location (Bizley et al., 2012). However as previously discussed in Chapter 7, 

pitch invariance to timbre (and vice versa) has not been specifically addressed by animal 

studies as they typically observe discrimination thresholds for one target dimension (i.e., 

pitch or timbre) whilst the other non-target dimension remains fixed, or only focus on 

exploring one target dimension when the other non-target dimension is varying. 

9.1.1.2 Human studies  

Psychophysical studies have revealed that humans are able to discriminate pitch (e.g., 

Jackson & Moore, 2013), and timbre (Grey, 1978) particularly well when all other within- and 
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between-interval non-target acoustic features remain fixed, but not when the non-target 

dimension varies (see Chapter 7). 

9.1.2 Using adaptation evidence to make predictions about behavioural performance 

Studies have generally found that when an initial stimulus is repeated, behavioural 

responses in a given task, such as a reaction time and accuracy tend to be faster and more 

accurate, and this is known as a priming, or facilitative, effect (DeHaene et al., 2001). For 

example, Mondor, Hurlburt, and Thorne (2003) conducted two experiments that looked at 

the effect on pitch categorisation performance when timbre changed from prime to probe. 

They used a consecutive response paradigm (i.e., two sounds presented in succession) to 

investigate whether categorisation of the pitch of a probe tone is influenced by the pitch of, 

and the response made to, a preceding prime tone. The prime and the probe could be drawn 

from a pool of either low or high frequency pure tones, and participants were required to 

discriminate whether each of the sounds were high (e.g., 3000 or 3300 Hz) or low (e.g., 500 

or 550 Hz) in pitch. The probe and prime were either the same (identical condition; i.e., 

same pitch, same response), differed in pitch but required the same response as they were 

drawn from the same frequency pool (equivalent condition), or differed in both the pitch and 

required different responses (i.e., different condition). By comparing results for identical and 

different conditions, this allowed the authors to examine the influence of stimulus and 

response repetition effects, whilst comparing results for identical and equivalent conditions 

allowed them to assess the importance of pitch repetition over and above that of response 

repetition. They found that performance was quickest and most accurate when the prime 

and probe were part of an identical condition, indicating a robust facilitative effect. 

Performance was intermediate when the two sounds differed in pitch and required different 

responses (different condition), and slowest when the prime and the probe different in pitch 

but required the same response (equivalent condition), indicating an inhibitory or 

interference effect.  In a subsequent experiment, they not only found that performance got 

worse as a function of increased frequency change, but also the magnitude and direction of 

the pitch change in the „equivalent condition‟ influenced performance as listeners were 

quicker and more accurate when the direction of the pitch change was away from the 

alternative category (i.e., high or low frequency) compared to when it was towards an 

alternative category. Taken together, the results of the two experiments provided evidence 

that pitch discrimination performance is influenced by both the pitch of a preceding sound 

and the response made to it. 

Subsequently perceptual priming can be used to investigate the coding or mental 

representations occurring between stimulus presentation and behavioural responses 

(Naccache & Dehaene, 2001) and like adaptation, priming can be used to probe the 

functional characteristics of neuronal populations (Grill-Spector et al., 2006; Henson, 2003). 

Using these assumptions, it seems reasonable to suggest that given the interference effect 
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that both pitch and timbre have on one another, it might be expected that reactions times as 

well as accuracy may be impaired for target dimension discrimination, when the non-target 

dimension is also varying. However, to my knowledge, no prior human (or non-human) study 

has collectively investigated discrimination performance (reaction times and accuracy) for 

both pitch and timbre tasks to investigate pitch invariance to timbre in stimuli that have been 

well-matched.  

9.1.3 Objectives and Hypotheses 

The current study therefore aims to address this by examining pitch invariance to timbre by 

comparing behavioural effects to changes in the same pitch-evoking stimuli (Experiment 12), 

using stimuli that are well-controlled for inferred perceptual salience (Experiment 11). Based 

on the same logic in Chapter 8, the main objectives were as follows:  

Objective 1) Are behavioural responses to pitch invariant to changes in timbre, or non-

invariant to changes in timbre? If pitch is non-invariant to timbre changes a 2 x 2 x 2 

repeated-measures ANOVA, with target type (pitch or timbre), target dimension (same or 

different), and non-target dimension (same or different), should reveal a significant main 

effect of non-target dimension. This would address the second pitch criterion relating to pitch 

constancy (see Section 1.2). 

Objective 2) If timbre discriminations processed quicker than pitch (as per Walker et al., 

2011a) it was expected that there would be quicker reaction times and better accuracy for 

timbre conditions, compared with different pitch conditions (i.e., a significant main effect of 

target type). 

9.2. General methods and materials 

9.2.1 Listeners  

Twenty-three right-handed (LQ = +87%, Decile R.6) healthy listeners (#46-#68) volunteered 

to participate in both behavioural Experiments 11 and 12 (5 male, 18 female; Mage = 20.52, 

SD = 2.86, age-range 18-30 years). All participants reported normal or corrected-to-normal 

vision, and had clinically normal hearing (≤25 dB HL between audiometric frequencies 250-

8000 Hz). No listeners reported a history of hearing, neurological, and/or psychological 

impairment, and use of psychiatric medication or substance misuse.  Six participants (#49, 

#52, #55, #57, #62, and #65) were musically trained on the cornet, guitar, piano and violin 

achieving grades 1-5 across 1-5 years, whilst four listeners (three of whom were not 

musically trained; #49, #60, #64 and #67) also reported informal musical experience on the 

guitar, keyboard, saxophone and ukulele gained over 1-8 years. Eighteen subjects (not 

reported above; #69-#86) did not successfully complete Experiment 11. Two participants 

withdrew before completion. Sixteen participants were excluded because they did not 
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achieve appropriately matched pitch and timbre discrimination performance during the 

training phase. Listeners gave written informed consent, and the study was approved and 

performed in accordance with the College Research Ethics Committee‟s guidelines, 

Nottingham Trent University (ethics no. 2011/46). 

9.2.2 Procedure and Design 

Experiment 12 was generally completed by listeners on a separate day after Experiment 11, 

but usually within 14 days. Both experiments took place at Nottingham Trent University. All 

participants were recruited via Nottingham Trent University‟s online Research Participation 

Scheme or via email. Participants were awarded psychological research credits based on 

their length of participation (i.e., awarded 1 credit per 10 minutes of participation, where 

appropriate). 

9.3. Experiment 11: Ensuring pitch and timbre discriminability was 

matched for reaction time Experiment 12 

9.3.1 Objective 

The following feasibility Experiment 11 was employed to ensure that the salience for pitch 

and timbre had been equated across listeners in Experiment 12. 

9.3.2 Methods 

9.3.2.1 Stimuli 

The stimuli and trial types in Experiment 11 were the same as those in Experiment 8 

(Section 7.7). Also see Section 7.4.2 for details regarding how these were generated and 

calibrated. 

9.3.2.2 Procedure and Design 

Experiment 11 followed the same procedure and design as described in Experiment 8 (see 

Sections 7.7.1 and Section 7.4.3 for more information), and lasted between 2-4 hours, 

depending on individual training needs. The procedure for training and equating pitch and 

timbre discrimination is described in section 7.4.3.3. Some participants were invited to 

complete more than one pitch and timbre discrimination training session. It should be noted 

that participants could be trained only to discriminate pitch and/or timbre for conditions in 

which the pitch and/or timbre was „different‟. Therefore there was no training for the „same 

pitch, same timbre‟ condition.  

9.3.3 Data Analysis 

Data analysis for Experiment 11 followed the same procedure as described in Section 7.4.4.  
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9.3.4 Results  

Average d‟ data for all 23 listeners (#46-#68) are plotted in Figure 9.1. 

 

Figure 9.1. Averaged d’ across the 23 listeners for Experiment 11 pitch and timbre tasks for 

conditions in which the target dimension was different but the non-target remained the same 

(target different, non-target same), and for conditions in which both the target and non-target 

were different (target different, non-target different). Panel A illustrates d’ based on the 

optimal observer model. Panel B illustrates d’ based on the suboptimal observer model. 

Within-subjects Cousineau-Morey 95% confidence intervals are plotted.  

Paired sample t-tests conducted on the d‟ data for the optimal observer model revealed no 

statistically significant difference in discrimination performance between pitch and timbre 

tasks for both „target different, non-target same‟ conditions (pitch: M = 4.14, SD = 0.75; 

timbre: M = 4.14, SD = 0.91), t(22) = 0.02, p = .986, and „target different, non-target different‟ 

conditions (pitch: M = 2.74, SD = 0.95; timbre: M = 2.92, SD = 0.88), t(22) = -0.74, p = .468), 
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indicating that the discriminability of pitch and timbre was appropriately matched across 

listeners (see Figure 9.1). 

Results indicated that the non-target dimension negatively affected discriminability of the 

target dimension for both pitch and timbre tasks. As expected, within tasks listeners were 

significantly worse (p < .001) at discriminately the target when the non-target dimension also 

varied from interval to interval (i.e., „target different, non-target different‟ conditions) for both 

the pitch (non-target same: M = 4.14, SD = 0.75; non-target different: M = 2.74, SD = 0.95), 

t(22) = -6.80, p < .001, and timbre tasks (non-target same: M = 4.14, SD = 0.91; non-target 

different: M = 2.92, SD = 0.88), t(22) = -4.29, p < .001, compared to when only the target 

dimension differed and the non-target dimension remained the same (i.e., „target different, 

non-target same‟ conditions) for pitch and timbre tasks. These results seem to suggest a 

detrimental or interference effect of the non-target dimension on discriminating the target 

(signal), and one that is reciprocal for both dimensions (i.e., pitch affects timbre 

discrimination and vice versa). 

Paired sample t-tests conducted on the data for the suboptimal observer model confirmed 

the same pattern of results as the optimal model. 

9.3.5 Conclusions 

Overall, the results showed that discriminability between pitch and timbre tasks were well-

matched for the stimulus parameters selected and for this group of participants. The 

significant differential effect within pitch and timbre tasks was expected given the nature of 

interference timbre has on pitch (and vice versa), supporting previous results (Borchert et 

al., 2011), and studies who claim an interdependence between pitch and other features 

related to its perception (Bizley et al., 2009). 

9.4. Experiment 12: Reaction time experiment exploring pitch 

constancy 

9.4.1 Objective 

To recap the current behavioural experiment aimed to address pitch criterion 2 relating to 

pitch constancy, using the same logic and conditions reported in Chapter 8. 

9.4.2 Methods 

9.4.2.1Stimuli 

The stimulus parameters employed in Experiment 12 were identical to those described for 

Experiments 8-11.  



182 
 

9.4.2.2 Procedure and Design 

For both pitch and timbre discrimination tasks, listeners were required to make a judgement 

across intervals to decide in which interval the target dimension was the same or different. 

Any non-target within interval changes were the source of interference on performance. To 

keep the task for both Experiments 11 and 12 as similar as possible and not affect 

discriminability, each condition was completed in blocks (as per training) but the order of 

which task (pitch or timbre) they completed first was randomised to eliminate any order 

effects. Feedback was provided after each trial, in the form of a green “correct” response, or 

a red “incorrect” response displayed on the computer screen, and enabled listeners to track 

their performance. Although the procedure and design employed for Experiment 12 was 

similar to Experiment 11, it differed in a number of important ways which are described in the 

following three sections below. 

 Task and Conditions 

Given the nature of the present experimental paradigm, I was unable to employ a strictly 

implicit auditory priming design, as I wanted to ensure the stimuli were as similar as possible 

to previous behavioural and ERP adaptation experimental conditions, and that the 

discriminability of pitch and timbre stimuli were effectively matched. Changing the paradigm 

would have undoubtedly made the task much more difficult and hence affected the results. 

Subsequently, in the current experiment, listeners not only had to indicate in which interval 

the pitch or timbre (target dimension) was different, but also indicate in which interval the 

pitch or timbre was the same (see Table 9.1 for conditions, trial types, and target and non-

target intervals). This meant that each of the conditions for pitch and timbre tasks directly 

mapped onto each of the four conditions presented in the ERP Experiment 10 described in 

Chapter 8. 

Four conditions were created for each task by crossing two levels of pitch congruence 

(same, different) with 2 levels of timbre congruence (same, different) in a repeated-

measures factorial ANOVA design. Pitch and timbre congruence referred to the pairing of 

stimulus values across the two intervals (see Table 9.1). Only the condition of interest 

stayed the same or differed between intervals. As shown in Table 9.1, it was the relationship 

across intervals that gave rise to the condition of interest, where one interval was the target 

interval and the other was the non-target interval (e.g., for the pitch task condition 2, the only 

difference between the intervals related to the F0). Unlike Experiments 8, 9 and 11, 

conditions here were counterbalanced so that each of the four conditions was discriminated 

for each pitch and timbre task (i.e., totalling 8 conditions). 
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Table 9.1 
Trial types for all conditions in the pitch and timbre discrimination tasks 

 Pitch task Timbre task 

 
Condition 

Target interval Non-target 
interval 

Target interval Non-target 
interval 

1: Same pitch, 
same timbre 
(i.e., target 
same, non-
target same) 

200-1->200-1 
200-2->200-2 
220-1->220-1 
220-1->220-1 

200-1->220-1 
220-1->200-1 
200-2->220-2 
220-2->200-2 

200-1->200-1 
200-2->200-2 
220-1->220-1 
220-1->220-1 

200-1->200-2 
200-2->200-1 
220-1->220-2 
220-2->220-1 

2: Same pitch, 
different timbre 

200-1->200-2 
200-2->200-1 
220-1->220-2 
220-2->220-1 

200-1->220-2 
220-2->200-1 
200-2->220-1 
220-1->200-2 

200-1->200-2 
200-2->200-1 
220-1->220-2 
220-2->220-1 

200-1->200-1 
200-2->200-2 
220-1->220-1 
220-1->220-1 

3: Different 
pitch, same 
timbre 

200-1->220-1 
220-1->200-1 
200-2->220-2 
220-2->200-2 

200-1->200-1 
200-2->200-2 
220-1->220-1 
220-1->220-1 

200-1->220-1 
200-2->220-2 
220-1->200-1 
220-2->200-2 

200-1->220-2 
200-2->220-1 
220-1->200-2 
220-2->200-1 

4: Different 
pitch, different 
timbre 
(i.e., target 
different, non-
target 
different) 

200-1->220-2 
220-2->200-1 
200-2->220-1 
220-1->200-2 

200-1->200-2 
200-2->200-1 
220-1->220-2 
220-2->220-1 

200-1->220-2 
200-2->220-1 
220-1->200-2 
220-2->200-1 

200-1->220-1 
200-2->220-2 
220-1->200-1 
220-2->200-2 

Note: Numbers refer to pitch/F0 types. Suffixes „1‟ and „2‟ refer to timbre types. „1‟ refers to 
the timbre type created using 3 as the lowest non-overlapping harmonics, whilst „2‟ refers to 
the timbre type using 4 as the lowest non-overlapping harmonic (see Section 7.4.2). Solid 
line separates pitch and timbre tasks, whereas the dashed line separates discrimination 
intervals on a given trial. 

Position of target in the stimulus sequence 

For simplicity Experiments 6-10 used a modified version of the dual-pair design, where the 

target only ever appeared as the second tone in interval pair (e.g., AB-AA or AA-AB). 

Listeners may have used the position of the target as an additional cue to improve their 

performance (i.e., optimal observer). Specifically, listeners may have built an internal 

memory of the reference during training and judged each target as low or high relative to this 

internalised reference, or compared a given target to internalised low and high target 

templates (Walker et al., 2009). Humans could be comparing relative pitches of target and 

reference for each trial. Therefore in Experiment 12, the position of the targets in the 

stimulus sequence were randomised and occurred either as the first or second tone for each 

interval an equal number of times. This helped to eliminate the possibility that listeners used 

this position cue and get a more reliable measure of their reaction time and accuracy across 

conditions. 
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 Presentation and block order 

Presentation and timing of stimulus trials were controlled using Superlab v4.0 (Cedrus 

Corporation). The timing of stimuli was exactly the same as reported for Experiment 11. 

Listeners responded „interval 1‟ or „interval 2‟ as same or different (depending on the task) 

using a RB-730 response pad, which accurately records reaction times to about 500 

microseconds. The pad is a USB device that requires a USB driver which introduces a 

constant delay of around 5ms. Reaction times were therefore measured with ms accuracy 

from the offset of the second interval. The mapping of responding hands to responses was 

counterbalanced across participants. For a given pitch or timbre task, each condition was 

presented in individual blocks, where pitch and timbre target types were randomised for 

each block using the method of constant stimuli. Unlike Experiment 11, the order of 

completion for the blocks in a given tasks was randomised using a Latin square design to 

avoid any order effects (i.e., some subjects did easier blocks before harder blocks and vice 

versa). Participants were given trial examples and practice trials with feedback before each 

block. A total of 384 trials were presented for each pitch and timbre task. For conditions 

where the non-target was different, the interval pairings yielded 32 trial types across 

conditions which were repeated three times. For conditions where the non-target was the 

same, the interval pairings yielded 16 trial types across conditions which were repeated six 

times. The presentation of trials was randomised within a given block. Unlike Experiment 11, 

median reaction times as well as mean accuracy were recorded for each condition per task 

per listener. 

The sound presentation level in Superlab was fixed to ensure stimuli presented binaurally 

using Sennheiser HD-280 headphones had an overall sound level of 70 dB SPL. Sound 

level was measured and calibrated prior to testing using the same procedure described in 

Chapter 7. Experiment 12 took approximately 2 hours per listener to complete. 

9.4.3 Data Analysis 

For the reaction time analysis, inaccurate trials were discarded, and median reaction times 

were calculated for the remaining correct trials for each condition, per task and listener. 

Median reaction times were used instead of mean reaction times; this is because reaction 

time data is known to be highly variable and prone to outliers (e.g., due to guesses, etc.), 

where reaction time distributions are often skewed to the right (Ratcliff, 1993). Exploring my 

own data confirmed that all conditions contained outliers, most conditions had skew and 

kurtosis values greater than -/+ 2, and histogram plots were positively skewed. 

Subsequently, median reaction times were used because they are a robust and common 

way of eliminating outliers in reaction time data (see Ratcliff, 1993). 

For the accuracy data, signal detection theory was used to convert PC into corresponding d‟ 

using a similar method as Experiments 6-9 and 11. However given that the design for 
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Experiment 12  (i.e., the number of possible target combinations/sequences) were now the 

same or more similar to the conventional a dual-pair design, only the dual-pair design 

formula for MATLAB described in the Micheyl & Messing‟s (2006) paper was used (see 

Section 7.4.4). For dual–pair designs, the formula only calculated d‟ for PC values of 0.50 to 

1.00, otherwise it returned as blank. In these rare cases that the PC did fall below 0.50 but 

was approaching this value (i.e., Experiment 12) the PC value was set to 0.50 if it was close 

to this value. Although this meant that some d‟ values were slightly elevated, it was not 

anticipated to make a significant difference to the results. 

Dependent variables, median reaction time and d‟ were subjected to a three-way repeated-

measures ANOVA (i.e., 2 x 2 x 2). The first factor referred to target type (i.e., pitch or timbre 

task). The second factor referred to the target dimension (i.e., whether the target dimension 

was the same or different). The third factor referred to the non-target dimension and whether 

this was the same or different. Extreme hit rates and false alarm rates were dealt with using 

the correction procedure described in Section 7.4.4. For all ANOVA testing, an alpha 

criterion of p < .05 was used to test for statistical significance. All planned and post hoc 

paired sample t-tests were Bonferonni corrected to account for FWE associated with multiple 

comparisons. If Mauchly's test of sphericity was violated, a Greenhouse-Geisser correction 

was used 
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9.4.4 Results  

9.4.4.1 Evaluating the evidence for Objective 1 (Behavioural evidence for pitch 

non-invariance to timbre) and Objective 2 (No evidence for timbre discriminations 

being processed quicker than pitch discriminations)  

 Reaction time data  

  

Figure 9.1. Median reaction times for pitch and timbre tasks across conditions. Within-

subjects Cousineau-Morey 95% confidence intervals are plotted. 

The ANOVA revealed a significant main effect of target dimension, F(1, 22) = 4.92, p = .037, 

  
  = .183, where across conditions and tasks listeners were 27ms faster at discriminating 

the target dimension when it was different across intervals (M = 379.34ms, SD = 135.14) 

compared to when the target was the same (M = 406.76ms, SD = 156.59). This result 

however might be driven by the fact that reaction times for pitch task „target same, non-

target different‟ condition (i.e., same pitch, different timbre) were longer compared to the 

timbre task for the same condition (see Figure 9.1).  

There was also a significant main effect of the non-target dimension, F(1, 22) = 15.26, p = 

.001,   
  = .410, which indicated that listeners were 168 ms slower at discriminating the 

target when the non-target dimension differed across intervals (M = 477.08ms, SD = 236.05) 

than when the non-target dimension stayed the same (M = 309.02ms, SD = 81.18). This 

indicates that irrelevant non-target dimension changes interfered with listener‟s ability to do 
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both pitch and timbre tasks, suggesting pitch is non-invariant to timbre (and vice versa). This 

provides evidence in support of Objective 1.  

Across conditions, there was no significant main effect of target type, F(1, 22) = 2.11, p = 

.161, which suggests that discriminability of pitch and timbre tasks was well equated and 

does not support the directional prediction of Objective 2. Timbre discriminations were not 

processed quicker than pitch discriminations.  

A significant two-way interaction for target dimension*non-target dimension was also found; 

F(1, 22) = 12.39, p = .002,   
  = .360. To understand the pattern of this interaction, the data 

were plotted in Figure 9.2. The null result of the main effect of target type justified collapsing 

the data across conditions in Figure 9.2. 

 

Figure 9.2. Median reaction times for conditions collapsed across pitch and timbre tasks. 

Within-subjects Cousineau-Morey 95% confidence intervals are plotted.  

Post hoc t-tests were conducted on the target*non-target interaction reaction time data that 

had been collapsed across pitch and timbre tasks. As expected, conditions in which both the 

target and non-target stayed the same across intervals (i.e., „target same, non-target same‟; 

same pitch, same timbre condition), were processed significantly faster (M = 302.86, SD = 

95.14) than conditions where the target was the same but the non-target was different (i.e., 

„target same, non-Target different‟; M = 510.65ms, SD = 253.64, t(22) = -4.52, p < .001), and 

conditions where the target and non-target dimensions were both different (i.e., „target 

different, non-target different; M = 443.50ms, SD = 228.15, t(22) = -3.51, p = .002). These 

results support neurophysiological and behavioural data that suggest that processing is 

more efficient for repeated presentations of a stimulus dimension. However there was no 

significant difference between the „target same, non-target same‟ conditions (M = 302.86, 

SD = 95.14) and the „target different, non-target same‟ conditions (M = 315.19, SD = 75.05, 

t(22) = -1.08, p = .293). One explanation for this finding could relate to the fact that the target 

difference was relevant to the task in these conditions, and so it is possible that listeners 
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were looking out for this cue or it was more novel. Furthermore because „target different, 

non-target same‟ conditions did not have any interference effects occurring from the non-

target this may have also helped to facilitate discrimination performance.  

Conditions where the target stayed the same but the non-target was different (i.e., „target 

same, non-target different‟) showed significantly slower reactions times (M = 510.65, SD = 

253.64), compared to conditions with only a target difference (M = 315.19, SD = 75.05), 

specifically the „target different, non-target same‟ condition; t(22) = -3.99, p = .001. This 

result may indicate an interference effect of 195ms from the non-target dimension, which 

further supports evidence from previous literature and experiments reported here that pitch 

is non-invariant to timbre, and vice versa. 

As expected, stimulus presentations with two dimension changes (i.e., „target different, non-

target different) took significantly 128ms longer to discriminate sounds (M = 443.50ms, SD = 

228.15) compared to conditions in which only the task relevant target differed i.e., „target 

different, non-target Same‟ conditions  (M = 315.19, SD = 75.05); t(22) = -2.99, p = .007. 

However when „target different, non-target different‟ conditions were compared to „target 

same, non-target different‟ conditions (M = 510.65ms, SD = 253.64), reaction times were 

actually quicker for the former by 67ms (M = 443.50, SD = 228.15); t(22) = 3.24, p = .004). 

Explanations for this might be because it is more difficult to identify a relevant target 

dimension as the same when the non-target dimension is varying because there is an 

aspect of the stimulus that is changing which interferes with processing and listener‟s ability 

to do the task but does not provide a useful cue. Whereas for „target different, non-target 

different‟ conditions in which two dimensions are changing, the target of interest is still 

changing with the irrelevant non-target dimension and thus might facilitate performance to 

some degree. Other explanations could related to fact that listeners were not trained to 

identify a target dimension as the same when the irrelevant dimension was also varying, 

whilst they were trained to discriminate a relevant dimension as different when the irrelevant 

dimension was also different and thus might have improved performance for two dimension 

change conditions. Steele & Williams (2006) found that both musicians and non-musicians 

alike, misjudged identical pitches as being different when they were played on different 

musical instruments. 

There was also a significant three-way interaction between task type, target dimension and 

non-target dimension, F(1, 22) = 4.67, p = .042,   
  = .175. However this interaction was not 

explored further as the comparisons of special interest have already been discussed and 

deemed to encapsulate any significant effects that may have been present here. No other 

interactions were significant. 
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 d’ sensitivity 

 

 

Figure 9.3. Mean d’ for pitch and timbre tasks across conditions taken from PC. Within-

subjects Cousineau-Morey 95% confidence intervals are plotted. Note that this exactly 

mirrors the reaction time data. 

The same ANOVA model was specified for the accuracy data, where d‟ was the dependent 

variable. These data are plotted in Figure 9.3. Despite listeners being trained to discriminate 

pitch and timbre when the non-target stimulus parameter varied in Experiment 11, 

performance was impaired (<2 d‟) when the experimental design was fully counterbalanced 

in Experiment 12 (see the post hoc t-tests section described below for statistics relating to 

this result). One explanation might be because some subjects did more difficult blocks 

before easier blocks, thus increasing errors and decreasing d‟. 

Contrary to the reaction time data, there was no significant main effect of target dimension, 

F(1, 22) = 0.02, p = .904, indicating that discriminability was equivalent, irrespective of 

whether the target was the same (M = 2.06, SD = 0.38) or different (M = 2.05, SD = 0.46).  

There was however a significant main effect of the non-target dimension, F(1, 22) = 330.46, 

p < .001,   
  = .938, indicating that listeners were much worse at discriminating pitch and 

timbre targets when the non-target dimension differed across intervals (M = 1.00, SE = 0.42) 

than when the non-target dimension stayed the same (M = 3.11, SD = 0.53). The pattern of 

results reported for d‟ were comparable to those reported for the reaction time data (i.e., 

longer reaction times when non-targets were different), suggesting pitch non-invariance to 

timbre. This further evidences that irrelevant non-target dimension changes interfered with 
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listener‟s ability to do pitch and timbre tasks, but also confirmed that there were no-speed 

accuracy trade-offs. This provides evidence in support of Objective 1. 

Across conditions, there was no significant main effect of target type, F(1, 22) = 0.05, p = 

.824, which suggests that discriminability of pitch and timbre tasks was well equated and 

does not support the directional prediction of Objective 2. Timbre discriminations were not 

processed more accurately than pitch discriminations. 

A significant two-way interaction for target dimension and non-target dimension, F(1, 22) = 

13.45, p = .001,   
  = .379, was also confirmed. To explore the nature of this interaction, the 

data were plotted in Figure 9.4. The null result of the main effect of target type justified 

collapsing the data across conditions for Figure 9.4. 

 

Figure 9.4. Mean d’ for conditions collapsed across pitch and timbre tasks. Within-subjects 

Cousineau-Morey 95% confidence intervals are plotted.  

Post hoc t-tests revealed that when the non-target was the same, there was no significant 

difference in discriminability between target same (M = 3.23, SD = 0.50) and target different 

(M = 3.00, SD = 0.66) conditions; t(22) = 2.10, p > .05 (after Bonferroni correction for 

multiple comparisons). This was also the case for when the non-target was different for 

target same (M = 0.90, SD = 0.45) and target different (M = 1.10, SD = 0.47) conditions; 

t(22) = -2.49, p > .05 (after Bonferroni correction for multiple comparisons). This further 

indicated that the discriminability of pitch and timbre had been appropriately matched across 

listeners and was similar to the pattern of results reported in Experiment 11. However within 

both target same and target different conditions, discriminability was significantly impaired 

when the non-target dimension was different (M = 0.90, SD = 0.45; M = 1.10, SD = 0.47, 

respectively) compared to when the non-target was the same (M = 3.23, SD = 0.50; M = 

3.00, SD = 0.66, t(22) = 19.56, p < .001 and t(22) = 16.68, p < .001, respectively). Although 

this also broadly followed the same patterns of results reported in Experiment 11, as shown 
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in Figure 9.4 and discussed previously, d‟ fell considerably below the d‟ 2 threshold when the 

experimental task was fully counterbalanced.  

There was also a significant two way interaction between target and task type; F(1, 22) = 

10.11, p < .004,   
  = .315]. However after correcting for multiple comparisons, none of the 

post hoc t-tests related to the interaction term were significant. No other interactions were of 

interest or significant. 

 Summary 

Overall comparisons of interest across reaction time and d‟ sensitivity data showed evidence 

which suggests that: 

1) pitch is non-invariant to timbre, providing support for Objective 1.  

2) timbre discriminations are not processed any faster, and more accurately, than pitch 

discriminations, failing to find evidence for Objective 2.  

9.5. Discussion  

The present experiment described a novel attempt to investigate pitch invariance to timbre 

using a behavioural approach that explored reaction time and accuracy data for pitch and 

timbre discrimination tasks in a fully crossed experimental design where the stimuli were 

well-matched for discriminability. To recap, the main objectives were to explore whether or 

not the behavioural response to pitch is invariant to changes in timbre (and vice versa; 

Objective 1), as well as determine whether timbre discrimination performance preceded 

pitch discrimination performance for stimuli that been matched for discriminability (Objective 

2). 

9.5.1 Behavioural responses for pitch are non-invariant to timbre (and vice versa) – 

but is this specific to timbre or related to a more general interference effect? 

If pitch is invariant to timbre, then it would be expected that there would be no significant 

effect for reaction time or accuracy for timbre changes and vice versa (i.e., no significant 

effect of the non-target dimension). This is because there would be no additional processing 

resource for conditions in which only the non-target dimension was „different‟ (i.e., „target 

same, non-target different‟ conditions), and therefore reaction times and accuracy would be 

equivalent to the „target same, non-target same‟ conditions (i.e., no main effect of non-target 

and no significant target*nontarget interaction). This is based on the assumption that if pitch 

processing neuronal populations are only selective to pitch then responses for different 

timbre conditions should be equally quick and accurate regardless of whether the timbre 

dimension of the stimulus is the same or different (i.e., repeated or novel per se), and would 

strongly suggest that the neuronal populations representing these sounds overlap. However 
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during pitch and timbre discrimination tasks discrimination performance was slower and less 

accurate for conditions in which the non-target dimension was different (i.e., „target same, 

non-target different‟ and „target different, non-target different‟) compared to conditions in 

which the non-target dimension was the same (i.e., „target same, non-target same‟ and 

„target different, non-target same‟; significant main effect of non-target and a significant 

target*nontarget interaction). These findings showed that both reaction time and accuracy 

for the target dimension were impaired when the non-target dimension differed. The 

interference effect supports evidence from behavioural (Borchert et al., 2011; Moore & 

Glasberg, 1990; Pitt, 1994; Steele & Williams, 2006) and neurophysiological studies whose 

results suggest that pitch is non-invariant to timbre (e.g., Bizley et al., 2009; Briley et al., 

2013; Walker et al., 2011a) as well as those that indicate pitch and timbre have overlapping 

neural substrates in auditory cortex (Formisano et al., 2008; Warren et al., 2005; Overath et 

al., 2008, 2010). However, this argument assumes that this paradigm is tapping very low 

level feature representation only. An alternative explanation could be that the observed 

effects stemmed from higher level effects that are responsible for active listening. 

Nevertheless, future experiments in conjunction with neuroimaging methods could explore 

this further.  

One interesting result related to the finding that there was no significant difference between 

„Target Same, Non-Target Same‟ conditions and the „Target Different, Non-Target Same‟ 

conditions. This is likely to be related to whether the target needing to be identified as the 

same or different was relevant to the task. Therefore meaning that there was facilitatory 

effect on discrimination because target relevant decisions needed to be made in the 

absence of any non-target interference. 

9.5.2 Differences is discriminability across pitch and timbre tasks do not occur when 

you control for discriminability (Objective 2) 

Overall results for reaction time and d‟ sensitivity found no evidence for timbre 

discriminations being processing faster, or more accurately, than pitch discriminations. This 

finding is contrary to recent ferret evidence by Walker et al. (2011a) who report quicker 

reaction times by approximately 30ms for timbre discriminations compared to pitch. Walker 

et al. (2011a) did not match their stimuli for discriminability, so one possible explanation for 

their contrasting result could be that the timbre salience was greater than the pitch salience, 

giving rise to their results. Alternatively, it could be that the behavioural methods used here 

were not sensitive enough to detect such effects, or because reaction time variability 

between listeners was quite high (see standard deviations reported in Results section 

above), and thus did not pick up subtle differences.  
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9.5.3 Evidence against pitch constancy at level of auditory cortex?  

There is growing evidence to suggest that although perceptually humans have an ability to 

invariantly perceive different musical instruments and human speakers, participants find it 

much more difficult to distinguish timbre when the pitch is varying under controlled 

psychophysical conditions. This may be because at lower levels of the auditory system 

acoustic features need to be transformed in a manner that is invariant to other features, but 

at higher levels in the auditory system neuronal populations responsible for pitch may 

generalise across other features to recognise a sound, and therefore neuronal populations in 

auditory cortex represent more than one acoustic feature (e.g., Bizley & Cohen, 2013). 

However it is perhaps more likely that it may be easier to do in an auditory scene when one 

has other cues over time to help separate out an auditory object from the background. 

Whether or not this is the case, is yet to be confirmed by future studies. Nevertheless, the 

psychophysical evidence does lend some support to the neurophysiological work in favour of 

an interdependent and non-invariant relationship between pitch and other acoustic features, 

such as timbre in auditory cortex (Bizley et al., 2009). 

9.5.4 Summary 

In summary, Experiment 12, failed to find any evidence in favour of the second pitch 

criterion, pitch constancy. Instead, pitch appears to be non-invariant to timbre. Pitch 

processing appears to be sensitive to or co-represented with other stimulus features related 

to its perception (i.e., timbre; evidence against pitch constancy). These findings support 

previous results from Experiment 10 reported in Chapter 8.  
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Chapter 10. General discussion  

10.1. Thesis overview 

The primary aim of this PhD was to evaluate the evidence for a pitch centre within auditory 

cortex, focusing on the four pitch criteria defined in Hall & Plack (2009): 

1) Pitch selectivity 

2) Pitch constancy 

3) Covariation with pitch salience 

4) Accounting for confounding factors 

I used a combination of psychophysical, fMRI and EEG approaches. I was especially 

interested in exploring whether the neural representation of pitch is modular or distributed, 

and whether there is evidence for pitch constancy at the level of auditory cortex (i.e., are 

pitch-processing neurons invariant to other attributes of sound, such as timbre). This chapter 

summarises the main findings in each experimental chapter (Chapters 5, 8 and 9) in relation 

to the primary aims according to each criteria, as well as discussing the implications for 

future research. 

10.2. Evidence for pitch selectivity 

Chapter 5 used an fMRI passive listening experiment (Experiment 5) to evaluate pitch 

criteria 1, 3 and 4. This experiment was particularly interested in examining the neural 

representation of pitch and pitch salience using harmonic complex tones that were either 

resolved (strongly pitch salient) or unresolved (weakly pitch salient). The fMRI study found 

that the representation of pitch compared to noise was widely distributed across auditory 

cortex and localised to both primary and non-primary ROIs. This is consistent with findings 

from a number of fMRI papers (e.g., Garcia et al., 2010; Hall & Plack, 2009) 

Chapter 8 used EEG adaptation methodology to evaluate pitch criteria 1, 2 and 4. 

Experiment 10 primarily aimed at investigating the second pitch criterion relating to pitch 

constancy, specifically pitch‟s invariance to timbre, using a novel adaptation design.  

Harmonic complex sequences were used which transitioned from noise to two pitch tones 

(adaptor and probe). Sequences either varied in pitch, timbre or both. Both sensor and 

source-based analyses revealed that the EOR and POR1 were not significantly different 

across sound conditions, and differences between conditions appeared to be confined to the 

evoked POR2 responses, thus confirming pitch and timbre selectivity. 

The pitch selectivity criterion was therefore satisfied by all neurophysiological experiments 

reported here. 
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10.3. Evidence for pitch constancy 

Experiment 5 showed some fMRI evidence for pitch constancy in that the incidence map for 

strong pitch salience > weak pitch salience did report activity in some of the primary and 

non-primary auditory regions that were found to be selective to pitch. However the 

distribution of activity still varied widely across multiple auditory areas. 

Experiments 9 and 11 both showed behavioural evidence against pitch constancy in that 

there was a significant interference effect within pitch and timbre tasks when the non-target 

dimension (pitch or timbre) varied across intervals.  

Experiment 10 reported in Chapter 8 revealed that both EEG sensor and source-based 

analyses revealed significant release in adaptation and a release from maximal adaptation, 

when the pitch, timbre or both varied for the probe stimuli. These results imply that different 

neuronal populations were required to process pitch and timbre changes, suggesting pitch 

may be non-invariant to timbre and thus failed to find evidence of pitch constancy at the level 

of the auditory cortex using this experimental approach. This lends some support to the 

findings of Briley et al. (2003) and Bizley et al. (2009), who both suggest pitch and timbre are 

co-represented in auditory cortex. However the presence of the P100, the use of different 

noise and adaptor durations, and the different stimulus presentation contexts for both the 

adaptor and the probe, might have meant that at least two different types of pitch responses 

were evoked in the present data, a conventional POR response for the adaptor which was 

preceded by noise (POR1; like Krumbholz et al., 2003), and a probe response relating to the 

adaptation response of the probe when preceded by a tonal adaptor (POR2; like Briley et al., 

2013). The current data also cannot ascertain the source of the probe responses and 

whether neuronal populations coding pitch and timbre were the same, or derived for partially 

overlapping or different neuronal populations. Furthermore, we cannot rule out the following: 

i) that the POR2 responses for pitch and timbre were the same type of response, ii) whether 

the timbre change reflected a „timbre onset response‟ (TOR; although the literature has not 

yet revealed the existence of this), and iii) whether changes in both pitch and timbre gave 

rise to a summation of these potentially separate onset responses. Given the spatial 

limitations of EEG methods, further follow-up studies would need to be conducted before we 

can make definitive conclusions regarding whether pitch is non-invariant to timbre. 

Another related problem is associated with using adaptation methodology as the neural 

mechanisms underpinning this phenomenon are still not understood. Whilst adaptation can 

be used to probe the neuronal sensitivity to changes in stimulus features, it is difficult to 

interpret the adaptation effects because different models have different predictions regarding 

the nature of cortical responses (see Chapter 6.3 for more detail on this). Briley & Krumbholz 

(2013) found that the pattern of auditory adaptation results fitted the fatigue model best. 
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However, more work is required to explore which models best reflect auditory-evoked 

adaptation responses.  

EEG has a number of notable strengths, namely its excellent temporal resolution, ability to 

provide a continuous measure of the overt and covert processing that occurs between a 

stimulus and a response (e.g., behavioural and/or cognitive), non-invasiveness, and cost 

effectiveness. However, there are also several limitations which the current experiment has 

highlighted. This mostly relates to determining the functional significance and location of 

ERP components, particularly those relating to adaptor and probe responses. These 

limitations are exacerbated by the limited spatial resolution of EEG because the data 

recorded may reflect summed contributions from many different neural generators which 

make it difficult to isolate the source of particular ERPs. However it is becoming increasingly 

popular to combine ERPs with fMRI, because using both these methods provides a 

spatiotemporal resolution that neither method alone can provide (see Handy, 2005, Chapter 

15, p. 345). To integrate these methods a common spatial reference would be required to 

establish a more reliable relationship between the ERP effects and the hemodynamic 

imaging activations. Subsequently, dipole modelling of ERP effects would be needed to 

facilitate this. Nevertheless a combination of fMRI and EEG might be able to tease apart 

whether pitch is non-invariant to timbre in human auditory. If sources of adaptation effects 

for ERPs are the same or similar (overlapping) for pitch and timbre, this would suggest that 

pitch and timbre processing neurons may be interdependent and therefore non-invariant to 

one another, as suggested by Bizley et al. (2009).  

Although these results should be taken with caution until precise neural representation is 

confirmed in conjunction with fMRI, adaptation and/or invasive methods, such as intracranial 

recordings (see Section 10.4), there is some evidence that pitch and timbre have 

overlapping neural representations in primary and non-primary areas of auditory cortex.  

Formisano et al. (2008) conducted an fMRI study to measure spatial patterns of activity in 

auditory cortex related to speech content (i.e., „what‟ the person is saying) or speaker 

identity (i.e., „who‟ is speaking). They used three Dutch vowels and three native Dutch 

speakers which evoked different timbres. For both vowel and speaker identity, they found 

spatially distributed and bilateral patterns of activation in STG, including anterolateral HG, 

PT and STS, which are also established pitch processing regions of auditory cortex. 

Interestingly, using a bespoke data-mining algorithm, Formisano and colleagues were able 

to identify and distinguish between the neuronal fingerprints of listeners in „discriminative 

maps‟ created for vowel identity and speaker identity signals. They found that both these 

maps were significantly different from one another but insensitive to acoustic variations 

which led them to conclude that timbre information like the low-level „what‟ (i.e., vowel 

identity) or the higher-level „who‟  (i.e., speaker identity) is not only processed at higher-level 

regions but also in more primary and non-primary auditory areas. This supports other 
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studies that have also found evidence that stimulus features are encoded at multiple levels 

in the cortical hierarchy (e.g., Staeren et al., 2009). This is something that is often seen in 

the visual modality, whereby neurons represent a number of different features (e.g., retinal 

location, orientation and ocular dominance; Hubel and Wiesel, 1977; Briley et al., 2013). 

Similar to visual processing of objects or faces, at higher levels of auditory processing pitch 

coding might become more specialised and therefore invariant to other acoustic features. 

Such a specialised level representation might lie beyond the levels that generate PORs 

measured in Experiment 10, or alternatively their activation (or invariant presentation) might 

only occur under active listening conditions (Briley et al., 2013; e.g.,Talja, Alho, & Rinne, 

2015).  

The behavioural Experiment 12 reported in Chapter 9 used dual-pair (four-interval same-

different) discrimination tasks to further investigate pitch constancy (i.e., evidence for pitch 

invariance to timbre). Findings indicated that timbre changes (non-target stimulus) interfered 

with listener‟s ability to discriminate pitch (target stimulus), and vice versa. These results 

therefore also failed to find evidence for pitch constancy in terms of performance measures, 

providing some support from neurophysiological studies which suggest pitch and timbre 

processing are interdependent (e.g., Bizley et al., 2009; Briley et al., 2013). Subsequently, 

whilst behavioural measures have a number of strengths relating to having a much clearer 

understanding about what the signal means (i.e., knowing that when a button is pressed, it is 

understood that any difference in reaction time relates to the amount of time it takes to 

encode, process and act on that stimulus condition; where longer reaction times indicate 

longer processing times). It is it is impossible to determine the specific cognitive processes 

associated with variations in reaction time and accuracy (unlike EEG). Therefore, 

behavioural results may not necessarily be measuring the same aspects of pitch processing 

as EEG or fMRI studies because one involves active listening and the other involves passive 

and/or active listening. Chait et al. (2006) pointed out that behaviour and electrophysiology, 

studied separately, might lead to different conclusions about the nature of the processing 

involved, and the simultaneous acquisition of neuroimaging method(s) and behavioural 

responses provides much more compelling evidence regarding the precise neural 

mechanisms that are involved. 

Overall, all the experiments reported here, across three experimental methods, converged 

on the same conclusion and failed to find compelling evidence fulfilling the second criterion 

of pitch constancy, thus increasing confidence in this null result. Pitch processing may be 

sensitive to or co-represented with other stimulus features related to its perception (i.e., 

timbre; evidence against pitch constancy). However, as already noted this needs to be 

determined by follow-up experiments. Nevertheless, pitch constant representations might 

occur at the higher levels beyond auditory cortex, or that it might be easier to complete such 

tasks in an auditory scene when one has other cues over time to help separate out an 

auditory object from the background. Further work is therefore also needed using passive 
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listening (e.g., Hall & Plack., 2009) and active task-dependent methods (e.g., Puschmann et 

al., 2010; Rinne, Koistinen, Salonen, & Alho, 2009; Talja et al., 2015) to interrogate when 

and where such pitch constant representations are formed. Alho et al. (2014) conducted a 

meta-analysis of 115 fMRI studies to investigate the location of pitch and spatial location 

activation in auditory cortex during passive and active listening conditions for speech and 

non-speech sounds. Comparing across studies, they found no significant differences in the 

median loci for pitch processing in passive compared to active listening conditions (i.e., both 

in middle STG, lateral to HG). Nevertheless, not many (if any) studies have directly 

compared results from passive vs. active pitch listening conditions within the same study. It 

is therefore important that future work teases apart the functional aspects of pitch coding by 

exploring to what extent pitch responses are modulated by task-dependent effects (e.g., a 

combined ERP and fMRI experiment could investigate pitch invariance to timbre by 

exploring the nature and location of adaptation effects, both in passive listening and active 

task-driven designs). 

10.4. Evidence for covariation with pitch salience 

The evidence for pitch salience reported in Experiment 5 was somewhat questionable given 

that the weak pitch salience condition was not significantly different from matched noise (did 

not meet first criterion of pitch selectivity). However activity did appear to be also co-

localised to the same regions as the pitch response, and significantly different activation for 

weak pitch salience vs. noise was reported when lenient uncorrected statistics were used. 

Subjective ratings did reveal that listeners perceived a significant difference between weak 

pitch and noise sounds, but this was not detectable in the fMRI for listeners across the 

group. These findings raise concerns regarding fMRI‟s sensitivity to pitch salience effects in 

the context of high individual variability. Experiment 5 therefore failed to find robust evidence 

meeting criterion 3. Further work is needed in conjunction with other neuroimaging and 

behavioural methods to confirm whether or not fMRI methods are sensitive enough to detect 

pitch salience effects.  This is because whilst fMRI has excellent spatial resolution, there are 

a number of limitations to using the methodology, namely relating to the fact the fMRI is not 

a direct measure of neural activity and the neural mechanisms underlying the hemodynamic 

response are still not understood. Furthermore, fMRI has poor temporal resolution which 

means that activation is derived from the average of multiple stimulus events that occur over 

several seconds. As mentioned previously, combining fMRI with other methods such as 

EEG provides one way of circumventing such limitations. Specifically, fMRI and EEG 

methods could be combined to look at whether conditions with differing pitch saliences 

(confirmed by behavioural measures), give rise to parametric activation in the same or 

different neuronal populations (i.e., do ERPs with increasing amplitudes with increasing pitch 

salience map onto the same focal region(s) in auditory cortex?). We would then be able to 

confirm whether the pitch salience effects that are often reported in MEG and EEG studies 
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(e.g., Krishnan et al., 2012; Krumbholz et al. 2003) actually have the same or different neural 

locations, thus providing evidence in favour or against the pitch center hypothesis. 

Additionally, intracranial recording (electrocortiography or ECoG) is a promising new 

invasive methodology that is becoming increasingly more popular in the field of auditory 

neuroscience (e.g., see a recent high-profile tinnitus case study by Sedley et al., 2015), and 

might be sensitive enough to determine the presence of pitch salience effects in human 

auditory cortex. This is because it provides a more direct measure of electrical activity (local 

field potentials, LFPs) of neuronal populations and offers higher spatial and temporal 

resolution than non-invasive methods, such as fMRI or EEG (Nourski & Howard, 2015). 

However its application to humans is confined to neurosurgical patients (e.g., epilepsy 

patients) whose treatment plan requires the placement of electrodes over the cortical 

surface (surface arrays) or directly into the gray matter (depth electrodes; Nourski & Howard, 

2015).  

The advantages of using intracranial recordings has only been exemplified in a few auditory 

studies of pitch (e.g., Griffiths et al., 2010; Schönwiesner & Zatorre, 2008; see Kumar & 

Schonwiesner, 2012 for a review). For instance, Griffiths et al. (2010) used intracranial 

recordings to record LFPs in human auditory cortex whilst participants listened to a noise 

which transitioned into a pitch-evoking stimulus (i.e., IRN). They found that time-locked 

evoked responses relating to the temporal regularity of the stimulus occurred irrespective of 

whether the IRN stimulus evoked a pitch percept (e.g., 16 Hz, which is below the lower limit 

of a pitch percept that is only evoked at ~30 Hz (Krumbholz et al., 2000; Pressnitzer et al., 

2001). However time-frequency analysis indicated that sustained oscillatory responses 

shown in the high gamma range (80-120 Hz) only occurred for stimuli that evoked a pitch 

percept (e.g., 128 Hz and 256 Hz). Using this method, Griffiths et al. (2010) were able to 

distinguish between two possible types of pitch-related activity relating to stimulus regularity 

and perceived pitch, as well as determine that these responses were mapped to similar 

areas of primary and non-primary auditory cortex (i.e., medial and central HG, but maximal 

in medial HG). Interestingly, when the authors varied the salience of the IRN pitch stimuli 

(i.e., higher number of iterations = more salient pitch percept), whilst the pitch value 

(regularity) was kept fixed, the magnitude of both evoked responses and induced gamma 

power increased as a function of pitch salience throughout all areas of HG. However given 

that both Griffiths et al. (2010) and Schönwiesner & Zatorre (2008) used potentially 

confounded IRN as their pitch-evoking stimulus (see Barker et al., 2012; 2013; Steinmann & 

Gutschalk, 2012), it would be interestingly to examine the results that arise from intracranial 

recordings of different types of pitch-evoking stimuli (e.g., resolved and unresolved complex 

tones), and particularly whether pitch salience effects are more apparent using this 

methodology. 
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10.5. Evidence that the study designs accounted for confounding 

factors 

As far as possible, all studies created stimuli in which the potential factors relating to 

uncontrolled psychoacoustic parameters were considered. All stimuli avoided the use of IRN 

(see Barker et al., 2012, 2013; Steinman & Gutschalk, 2012). Chapter 5 used well-controlled 

stimuli that accounted for temporal regularity. A continuous Gaussian wide-band background 

noise masker was embedded in all of the pitch stimuli at approximately 20 dB above their 

masked threshold to mask distortion products at lower frequencies caused by nonlinear 

interaction in the cochlea. Chapters 7, 8 and 9 used stimuli that were matched to activate the 

same gross spectral region, helping to maintain a stable envelope and prevent cochlea 

distortions. Stimuli used throughout Chapters 8 and 9 were piloted in Chapter 7 and then 

equated for pitch and timbre discriminability (and perceptual salience) in Experiments 9 and 

11 to ensure differences in the salience of these stimulus parameters did not affect the 

pattern of results reported. This is an important control that previous pitch studies 

investigating pitch and timbre representations have failed to address. 

Subsequently all experiment chapters fulfilled the fourth pitch criterion related to accounting 

for confounding factors. 

10.6. Evidence for modularity and implications 

All four of the pitch criteria described above need to be met in order to establish the 

existence of a pitch „centre‟. Throughout all the experiments reported in Chapters 5, 6 and 8, 

only the first (pitch selectivity) and fourth pitch criteria (controlling for confounding variables) 

were adequately met. There was no compelling evidence in favour of the second pitch 

criterion relating to pitch constancy, and questionable evidence in favour of the third pitch 

criterion (pitch salience).   

Overall, across all studies and experimental approaches, the cumulative evidence that has 

built up across this thesis appears to suggest that there is no modular representation of pitch 

(pitch centre), but rather pitch processing sites are distributed throughout multiple areas of 

the primary and non-primary auditory cortex. Evidence for a more distributed representation 

of pitch is most apparent in the fMRI experiment reported in Experiment 5. It is possible that 

such a distributed representation of pitch processing may also be sensitive to other acoustic 

features, as suggested by results from Experiments 10 and 12. However this requires further 

investigation. Nevertheless these findings might imply that different neuronal populations are 

required to encode pitch according to each spectral region (Micheyl & Oxenham, 2004; 

Shamma, 2004). Oxenham et al. (2004) conducted a series of experiments to directly 

investigate whether pitch processing is dependent upon purely temporal periodic cues, or 

whether a tonotopic representation of frequency is also required to extract pitch. In an 
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attempt to dissociate temporal from spectral information, they used novel „transposed‟ stimuli 

designed to present low-frequency pitch stimuli to high-frequency regions of the cochlea, 

hence eliminating spectral cues. They hypothesised that if pitch coding is only based on a 

temporal mechanism, then equivalent behavioural performance would be observed for 

participants presented with the transposed pitch stimuli compared to the pure tone stimuli, 

because spectral information is not relevant. However, they found markedly poorer 

performance for transposed tones, whereby none of their participants could accurately 

discriminate pitch. They suggested that transposing stimuli to arbitrary spectral locations had 

a severe impact on the perceived pitch, and hence was responsible for participants‟ 

particularly poor performance. Importantly this led them to conclude that pitch extraction 

cannot occur unless temporal information is presented to the correct tonotopically organized 

spectral region. Consistent with the current results and spatio-temporal „hybrid‟ models of 

pitch coding, their findings suggested that the neural mechanisms processing pitch require 

accurate mapping and synthesis of both temporal (pitch; time) and spectral (timbre; place) 

information to give rise to a perceptible pitch (Oxenham, 2008; Walker et al., 2011). 

Furthermore, it might be that different models of pitch processing operate in different 

neuronal populations in human auditory cortex, and/or under different listening conditions. 

Further work is required to explore this. 

10.7. Additional challenges of interpretation 

10.7.1  Comparing across methods 

The implementation of differing experimental methodologies has inherently led to a high 

number of inconsistencies within the literature. In human studies, the problem of identifying 

specialised pitch regions or addressing questions regarding pitch constancy is particularly 

pertinent because conventional neuroimaging analyses are typically confined to using 

subtractive methodology. Nevertheless, even in my own experiments inconsistencies were 

apparent. For example, the ERP Experiment 10 showed evidence of greater sensitivity to 

pitch (when pitch and timbre had been equated for salience), but this greater sensitivity to 

pitch was not observed for the behavioural reaction time Experiment 12 (when the pitch and 

timbre had been equated). It is important to note that although the current results compared 

with my previous results, and those reported by others, seem to suggest pitch invariance to 

timbre, the pitch mechanisms operating under different methods and designs (e.g., 

neurophysiological passive listening conditions compared to behavioural tasks) might 

actually be different and involve different brain regions. For instance, the context of stimulus 

presentation has been shown to modulate the magnitude of pitch-related responses, but 

subtraction methods do not take this into account (Garcia et al., 2010; Ulanovsky et al., 

2004). Hall and Plack (2009) and Puschmann et al. (2010) also report contrasting patterns of 
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pitch activity for multiple pitch-evoking stimuli which might be related to the difference 

between passive and active listening conditions, respectively. 

Discriminability for pitch and timbre was also inconsistent for Experiments 11 and 12 when 

the task was slightly different (identifying trials that were the same in a given stimulus 

dimension, as well as different) and the experimental trials were fully counterbalanced. 

Specifically, d‟ values for Experiment 12 conditions where the non-target dimension varied 

were less than 2. It is therefore important to try and triangulate findings with other methods, 

designs and species whilst controlling for other variables (e.g., stimuli, see Section 10.7.2). 

To address this issue and further investigate the evidence for a pitch centre, experiments 

could aim to confirming the observed pattern of results using another experiment method 

and/or in another species. Intracranial recordings in particular may allow us to bridge the gap 

when making comparisons across species, methods or stimuli. 

10.7.2  Comparing across pitch-evoking stimuli 

Different pitch stimuli often give rise to different results (Hall & Plack., 2009). For example, 

Experiment 5 used strong and weak pitch salience stimuli, but the consistency and 

distribution of activation for strong pitch salience conditions was much larger and much more 

distributed compared to the weak pitch salience condition. Furthermore, Experiments 6-8 

illustrate how using different stimulus parameters for pitch and timbre can widely negatively 

impact the discriminability and perceptual salience of the stimuli. For some parameters, d‟ 

was approaching zero. Subsequently it is important to ensure the stimuli are well controlled 

and that they can be used to make reliable conclusions regarding pitch-related effects (e.g., 

see Barker et al., 2012). Unfortunately there is no gold standard pitch stimulus that is used 

by all studies of pitch, which subsequently makes comparison between studies much more 

difficult. To address this issue, experts in the field could corroborate and confirm the use of a 

„gold standard‟ pitch stimulus to be included by all future investigations of pitch, in an attempt 

to make the findings across studies and research groups more comparable and reliable. 

This expands on Hall & Plack‟s (2009) recommendation to use multiple pitch-evoking stimuli. 

However the „gold standard‟ pitch stimulus would probably exclude IRN given its problematic 

use for fMRI studies at least (see Steinmann & Gutschalk, 2012), Huggins pitch because it is 

not universally perceived by listeners (see Hall & Plack., 2009), and unresolved complex 

tones because they do not produce a salient pitch percept (may not be significantly different 

from noise when using fMRI; see data from Experiment 5, Section 5.4.5.1). Subsequently, 

wideband or resolved harmonic complex tones may be a more appropriate choice. 

10.8. Future directions 

Although used by multiple studies of pitch, subtraction methods are still very restricted in 

their ability to reliably isolate pitch-related activity. It is imperative that these limitations are 

now addressed by using more advantageous methodologies which involves triangulation of 
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different methods, contexts and stimuli (as suggested above), as in the approach used 

throughout this thesis, but in conjunction with one another, rather than separately (i.e., EEG 

combined with fMRI in active and passive listening paradigms). 

Multivariate pattern analysis has been used more recently to overcome problems with 

conventional analyses and distinguish between cortical fMRI activations to stimuli with 

differing acoustic features, such as pitch (e.g., Staeren et al., 2009) and timbre (e.g., 

Formisano et al., 2008). However the results from these studies are still only consistent with 

some studies and only address whether neurons in a particular area are active or not, 

instead of whether they are tuned to a particular stimulus dimension (Town & Bizley, 2013).  

Given that listeners never experience pitch as a perceptual phenomenon in isolation but in 

combination with varying stimulus characteristics such as timbre and/or spatial location that 

define an auditory object, it is increasingly important to employ experimental designs that 

allow for the investigation of such possible interdependent relationships (e.g., adaptation). 

Subsequently, reconciling invariant pitch perception with distributed and non-invariant 

sensitivity requires employing different experimental methods that specifically tackle the 

multidimensional aspects of pitch perception. Combining methods (i.e., EGG, fMRI and 

behavioural), or intracranial recordings, may be sensitive enough to elucidate the neural 

representation of pitch, pitch constant and pitch salience effects, and therefore future work 

should aim to use these methodologies, where possible. Nevertheless, current models of 

pitch perception do not take into account such multi-dimensional aspects of stimuli. It is 

paramount that future work aims at addressing the issues highlighted throughout this 

chapter in order to elucidate the representation of pitch in auditory cortex. Ultimately, this will 

not only aid academic understanding in the auditory neuroscience community but also prove 

important in better understanding cortical reorganisation of pitch processing in hearing 

impaired individuals (e.g. including people with tinnitus; Sereda et al., 2011). 

10.9. Summary 

This thesis evaluated the evidence for a pitch centre within auditory cortex, focusing on the 

four pitch criteria defined in Hall & Plack (2009), and using a combination of psychophysical, 

fMRI and EEG approaches. Whilst evidence of pitch selectivity (pitch criterion 1) was found 

throughout these experiments (whilst appropriate controlling for confounding factors; pitch 

criterion 4), the results did not provide compelling evidence for pitch constancy (pitch 

criterion 2), or covariation with pitch salience (pitch criterion 3). Subsequently, no evidence 

for a pitch center was found. Instead, the findings imply that pitch processing is distributed 

throughout auditory cortex, that pitch processing is sensitive to variations in other sound 

features related to its perception (i.e., timbre), and that this may be reflect a co-

representation of pitch and timbre in auditory cortex. Under this assumption, the spatio-

temporal model of pitch perception may best describe the neural mechanism underpinning 

pitch perception. Nevertheless, a number of alternative explanations and limitations to the 
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current experiments are discussed, and it is argued that future work aimed at addressing 

these challenges to interpretation using a simultaneous combination of fMRI, EEG and 

psychophysical measures under passive and active listening conditions will prove fruitful in 

gaining insight into the neural representation of pitch in human auditory cortex. 
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