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I. INTRODUCTION 

A disparity of adjustments response across the Euro-area labor markets has 

characterized the Great Recession and the sovereign debt crises (European Central Bank, 

2012). Recently this insight about the relative importance of (within) state regional 

heterogeneity for unemployment has been explored, with different emphasis on sectoral 

reallocation or regional mobility using country specific dynamic reduced form equation or 

panel SVAR’s (see Dao et al. (2014), Hogrefe and Sachs (2014) and Beyer and Smets (2015) 

among others). These approaches have provided contradictory results. Hogrefe and Sachs 

(2014) have shed doubts on the relevance of sectoral reallocations for some of the 

“troubled economies” of the EU.  On the other hand, Dao et al. (2014) and Beyer and Smets 

(2015) assign a significant, and possibly increasing, importance to both region-specific 

shocks and reallocation of jobs (and labor) across regions. In the light of recent advances in 

dynamic panel data modelling, it is the purpose of this paper to extend these previous 

results by framing the analysis in a heterogeneous panel data model that addresses for 

cross country interdependence in the EU context. 

In this study we examine the effect of labor reallocation on unemployment for 

European labor markets within a panel framework that takes into account dynamics, 

parameter heterogeneity and cross sectional dependence. The contribution of the paper is 

threefold: (i) we build an extensive dataset of 1165 observations for 15 European countries 

to assess the significance of labor reallocation on unemployment, (ii) we employ recently 

developed panel methodologies that allows us to take into account characteristics that are 

endemic to the hypothesis and (iii) we provide evidence that the sectoral reallocation 

index remains a significant determinant for rising unemployment even when aggregate 

volatility and expected volatility measures are taken into account. 

The rest of the paper is organized as follows. Section II outlines the background 

literature on the topic, section III discusses the model and estimation methodology and 

section IV presents the data. The results are discussed in section V and finally, section VI 

concludes. 
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II. BACKGROUND 

Draghi (2014) has recently reminded us that the heterogeneous picture lying behind 

the aggregate data reflects highly “different initial conditions such as varying sectoral 

composition of employment”. His analysis is consistent with the ECB report on EU labor 

markets (European Central Bank, 2012) that stresses the structural nature of European 

unemployment and the limited power of monetary policy in tackling this issue. Structural 

reforms are indispensable both at the individual state and the Union level (see also the 

discussion in De Grauwe (2016)). This view has attracted the attention of researchers who 

have been trying to substantiate it econometrically from different perspectives. 

Hogrefe and Sachs (2014) analyse a subset of EU countries (France, Ireland, Italy, 

Portugal, Spain) and use a difference specification of Okun’s approach (Okun, 1962) to 

estimate separately error correction models for each country. Their findings show that 

sectoral reallocations drove Spanish unemployment over the decade 2004-2014, while they 

are not significantly related to unemployment in France, Ireland and Portugal and are only 

marginally significant in Italy. The paper presents interesting results but focuses on a 

limited set of countries and the chosen methodology (Autoregressive Distributed Lag-

reduced form estimation for each country) does not take into account the potential 

interdependence between countries. 

Dao et al. (2014) and Beyer and Smets (2015) are rooted in the pioneering work of 

Blanchard and Katz (1992) and use panel VAR’s. Their focus is on the importance of labor 

migration for long run labor markets adjustments in both the US and EU. Dao et al. (2014) 

estimate a system panel VAR with three state level variables: state-relative employment 

growth, state-relative log employment rate and state-relative log participation rate for 

Europe and the USA. By imposing suitable restrictions, they conclude that the long-run 

effect of a state-specific shock on the state employment has decreased over time. Also the 

short term response of participation rates to labor demand shocks is found to be larger in 

Europe compared to the US. 

Beyer and Smets’s (2015) two-steps estimation procedure is aimed first at decomposing 

regional variables in three orthogonal components (continental, country, regional) via a 

multi-level factor model and then at estimating the impact of region-specific and country-
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specific shocks on labor markets via panel VAR’s pooled over the relevant subsamples. On 

the one hand they highlight the differences between the two sides of the Atlantic: in 

Europe labor mobility is less important for the adjustment mechanism to region-specific 

labor demand shocks compared to the US.  On the other, they detect convergence of the 

adjustment process as interstate migration in the US (Europe) is falling (increasing).  

As Hogrefe and Sachs (2014), we are interested in testing and measuring the impact of 

inter-sectoral reallocation on unemployment. However, operationally we are closer to Dao 

et al. (2014) and Beyer and Smets (2015) though their interest is mainly on migration while 

ours is on unemployment. Given industrial structures differing across EU states, each state 

would be affected differently by sectoral shocks. If a shock hits unfavourably the demand 

composition of a specific state the workers affected will become unemployed, drop out of 

the labor force or migrate to another country. On the other hand aggregate shocks (e.g. 

shocks linked to ECB monetary policy) will affect all countries and, even if sectors, and so 

individual countries, respond differently, it is unlikely they will generate much labor 

mobility across countries. This holds because the probability of finding a job elsewhere 

would not be much different. 

In this paper we focus on labor reallocation and its impact on the unemployment rate 

vis-a-vis potentially alternative triggering forces. We capture reallocation via a “purged” 

Lilien’s dispersion proxy (Lilien, 1982). Unemployment brought about by labor 

reallocation could largely reflect the process of “creative destruction” (Shumpeter (1976) 

and Aghion and Howitt (1992)). Improving the productivity of inputs technological 

progress, as a determinant of economic growth, would create profit prospects, encourage 

job creation and destroy outdated jobs. Lilien’s index of labor reallocation could reflect this 

incessant process of job creation and destruction to the extent allowed by its sectoral 

decomposition (i.e. a relatively thinner sectoral decomposition should in principle be able 

to encapsulate more of the labor reallocation linked to jobs restructuring). Counteracting 

the associated potential increase in unemployment via aggregate demand policies and/or 

implementing other policies aimed at slowing down jobs destruction would obstruct the 

process of endless restructuring necessary for growth. It is important to separate 

unemployment generated by adverse aggregate shocks from unemployment linked to 

“creative destruction”.   
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We expand previous work by considering also the impact of volatility measures on 

unemployment as captured by the so called “uncertainty” indexes which measures the 

economic policy expected volatility (Bloom (2009)). Caggiano et al. (2014) explore the 

effects of volatility index (VIX) and economic policy uncertainty index (EPU) shocks on 

unemployment dynamics using a non-linear VAR for the US. They provide evidence of a 

significant increase of unemployment after a one standard deviation-shock to volatility 

and uncertainty proxies. Baker at al. (2015) develop a new index of policy-related 

economic uncertainty and estimate its dynamic relationship to employment. Their results 

bear out that the policy uncertainty index leads to a significant decline in employment for 

the US and for a panel of 12 major economies. Choi and Loungani (2015) similarly, explore 

the role of uncertainty shocks on unemployment dynamics by distinguishing between 

aggregate and sectoral channels of volatility and comparing their effects on the 

unemployment rate. They show that the response of unemployment to aggregate 

uncertainty and sectoral uncertainty is different, and thus, that sectoral uncertainty shocks 

have more persistent effects for unemployment. 

In extending the above mentioned literature, we estimate a reduced form panel 

equation that takes into account dynamics, parameter heterogeneity and cross sectional 

dependence according to recent advances in the field.1 Finally, given the recent empirical 

evidence on the significance of economic volatility and uncertainty shocks for 

unemployment, we also consider an extended specification accounting for the effect of 

volatility and expected volatility measures. 

 

III. MODEL AND METHODOLOGY 

We estimate an unemployment reduced form equation of the form used by Mills et al. 

(1995). Lilien’s (1982) original approach focused only on monetary shocks vis-à-vis 

reallocation shocks, while Mills et al. (1995) allow for a larger set of aggregate covariates 

thus allowing for a more thorough testing of the sectoral shifts hypothesis. Using pooled 

time-series-cross-section data for the period 1995Q1-2015Q1 and for 15 European countries 

1 See Bakas et al. (2016) for a similar approach for the US and Chudik and Pesaran (2015b) for an extensive 
survey on heterogeneous panel data models with cross-sectional dependence. 
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(N=15 and T=81, results to a total of 1165 observations due to data restrictions and 

adjustments), we employ a dynamic heterogeneous panel analysis for the equation: 

 

Ui,t = µi +αiUi,t-1 + βi 𝜎𝑖,𝑡
𝑝  + λi' zi,t + ui,t  , (1) 

 

where Ui,t is unemployment for EU country i at time t; μi denotes a set of country-

specific fixed effects capturing the influence of unobserved state-specific heterogeneity; 𝜎𝑖,𝑡
𝑝   

is the index of dispersion; the vector zi,t  is a vector of EU country specific control variables 

among which we include the real GDP growth, ΔGDPi,t; the interest rate growth, ΔIRi,t, its 

(GARCH) variability, Hi,t, and the growth rate of government expenditures, ΔGi,t; finally, 

ui,t is the error term.  

The variable 𝜎𝑖,𝑡
𝑝  is the EU country “purged” measure of employment dispersion across 

sectors.2 Letting Nj,i,t and Ni,t  be the employment in sector j in country i at time t for j = 

1,2…, 10, and aggregate employment in country i at time t respectively, while Nj,i,t /Ni,t are 

weights defining by the relative size of each sector in each country, we can measure the 

“standard“ dispersion proxy (Lilien, 1982) for each country i at time t as follows: 

 
2/1

2
ti,ti,j,ti,ti,j, ) NlnNln)( N/ N( 








∆−∆= ∑

j
tiσ . (2) 

 

We filter out any potential aggregate influences from σit by regressing it on a vector of 

aggregate variables w�t−k: 3 

 

𝜎𝑖,𝑡 = ψi + ∑ θ
q
k=0 w�t−k + ξi,t .  (3) 

 

The estimated residual, ξı,t�  , is then the dispersion measure ‘purged’ of aggregate effects, 

denoted hereafter as 𝜎𝑖,𝑡
𝑝  .4 

2 The ten sectors are agriculture, industry, construction, trade, information, financial, real estate, 
professional, public and other sectors as defined in the OECD Quarterly National Accounts database. 
3 In this case we have used the change of interest rate; its GARCH variability and the growth rate of 
government consumption expenditure for each country (see also the data section). 
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We assume a multi-factor error structure so as to take into account cross correlation of 

the disturbances: 

 

𝑢𝑖,𝑡 = ∑  𝛾𝑖𝑗𝑓𝑗𝑡𝑁
𝑗=1 + 𝑒𝑖𝑡.   (4) 

 

The 𝑢𝑖,𝑡  can be decomposed as:  

 

ui,t = fsit + fwit  ,   (5) 

 

where fsit = ∑  𝛾𝑖𝑙𝑓𝑙𝑡𝑚
𝑙=1  and fwit = ∑  𝛾𝑖𝑙𝑓𝑙𝑡𝑁

𝑙=m+1 + 𝑒𝑖𝑡 and m is fixed (see Chudik et al. (2011) 

and Chudik and Pesaran (2015b)). 

In Equation (4) 𝑓𝑗𝑡  is an m-dimensional column vector of unobservable common factors 

capturing cross-sectional dependencies across countries, the 𝛾𝑖𝑗  are the country specific factor 

loadings and the idiosyncratic errors ei,t ~IID across i and t. In Equation (5) fsit is a vector of a 

finite number of ‘strong’ factors (common global shocks to all EU countries) while fwit 

contains a vector of an infinite number of ‘weak’ factors (regional spillover effects across 

subsets of EU countries) and the idiosyncratic errors. 5 

Alternative approaches are employed to estimate the impact of labor reallocation on 

unemployment. Both homogeneous and heterogeneous estimators are used to explore the 

robustness of the effect. We start with the pooled OLS (POLS) as well the fixed effects 

approach which allows the intercepts to differ across countries (FE and FET). Next, we 

move to their extensions proposed by Driscoll and Kraay’s (1998) that employ a 

nonparametric variance-covariance matrix estimation which produces heteroskedasticity 

and autocorrelation consistent standard errors that remain robust to the presence of 

generalized forms of spatial and cross-sectional dependence (DK-POLS and DK-FE). 

Furthermore, given the dynamic specification of Equation (1), we proceed and employ the 

system GMM estimator of Blundell and Bond (1998) (GMM). To account for the presence 

4 The potential sensitivity of Lilien’s measure to aggregate shocks was pointed out by Abraham and Katz 
(1986). The “observational equivalence” problem and the purging methodology are discussed in Gallipoli 
and Pelloni (2013). 
5 The cross sectional dependence in our panel data context could be taken into account by employing the 
Common Correlated Effects (CCE) approach of Pesaran (2006) (see also Chudik et al. (2011) and Chudik and 
Pesaran (2015b)). The CCE method is appealing since it does not require estimating the unobservable 
common factors directly. It can account for common factors by including cross-sectional averages of the 
dependent and explanatory variables (as approximations of the unobserved factors) in the panel regressions. 
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of cross sectional dependence in the homogeneous modeling we employ the pooled 

common correlated effects estimator (CCEP and CCEPT) suggested by Pesaran (2006).  

Given the importance of heterogeneity and cross country interdependence in the EU 

context, we proceed to the estimation of heterogeneous panel models with cross-sectional 

dependence; the heterogeneous version of the CCE estimator (CCEMG and CCEMGT) as 

suggested by Pesaran (2006) and the AMG estimator by Bond and Eberhardt (2009) which 

allows for parameter heterogeneity and accounts also for cross sectional dependence in the 

panel. Finally, we implement the recent extension of the Mean Group Common Correlated 

Effects estimator (dynCCEMG) that is proposed in Chudik and Pesaran (2015a) and 

permits the inclusion of lagged dependent variables and weakly exogenous regressors in 

the panel data modeling. 

 

IV. DATA 

We employ quarterly data for an unbalanced panel of 15 European Countries: Austria, 

Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, 

Netherlands, Portugal, Spain, Sweden, United Kingdom, over the period 1995Q1-2015Q1. 

Table 1 presents the list of countries and their abbreviations. The data for sectoral 

employment are from the OECD Quarterly National Accounts while the macroeconomics 

variables used in the analysis were obtained from OECD’s Main Economic Indicators and 

Labour Market statistics databases. The reallocation index is computed for each country 

using the shares of the available sectoral decomposition of quarterly employment based 

on the following 10 sectors (see note 2). Using this industrial decomposition, we compute 

measures of reallocation (𝜎𝑝) allowing for alternative sectoral disaggregation (4, 5, 8, 9 and 

10 sectors respectively). 

We use the logarithmic form of the unemployment rate as the dependent variable, Ui,t 

= ln(uni,t), where uni,t is the unemployment rate (in decimal). The macro variables are the 

real GDP growth, ΔGDPi,t = Δln(rgdpi,t), where rgdpi,t is the real GDP; the interest rate 

growth, ΔIRi,t = irsi,t - irsi,t-1, where irsi,t is the short term (3 months) interest rate; and the 

growth rate of government expenditures, ΔGi,t = Δln(gci,t), where gci,t is the general 
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government final consumption expenditure for each country.6 Following Caporale et al. 

(1996) and Bakas et al. (2016), we proxy the monetary policy variability using the 

conditional variance (Hi,t) derived from a GARCH (1,1) model for the interest rate. Given 

the literature reviewed in Baker et al. (2015), we consider augmenting the specification 

with several measures of volatility (expected volatility and stock market volatility) for the 

EU (and the US).7,8 Table 2 presents the corresponding summary statistics for all variables 

used in our analysis. Figure 1 shows the sectoral reallocation index for the 15 EU countries 

against the EU average. Figure 2 presents the country-by-country graphs of the 

unemployment rate and the dispersion index for the EU panel. The heterogeneity of the 

EU labor markets (both in terms of the unemployment rate as well the dispersion index) is 

evident from both Figures. It is crucial to account for this heterogeneity (alongside with 

the inherent interdependence across the EU countries) in our panel data analysis. 

 

V. EMPIRICAL RESULTS 

We present a (preliminary) graphical investigation of the relationship between the 

sectoral reallocation index (𝜎𝑝) and the unemployment rate for the 15 EU countries in 

Figure 3. The graph reveals the positive relationship between the Lilien’s proxy and 

unemployment rate for the 15 EU countries over the period 1995Q1-2015Q1 with a 

statistically significant correlation coefficient of 0.278. This positive correlation is further 

confirmed by the Pooled OLS and the CCEMG regression lines between the Lilien’s proxy 

and the unemployment rate. It also highlights the differences in the Lilien’s sigma slope 

coefficient between the homogeneous (POLS) and the heterogeneous (CCEMG) models.   

Our analysis continues with the estimation of Equation (1) using an extended dataset 

of 15 EU countries over the period 1995Q1-2015Q1 (a total of 1165 observations after 

6 We use the short term interest rates obtained by the national Central Banks, while after the introduction of 
the euro we use the 3-month "European Interbank Offered Rate" from the ECB for the period after each 
country joined the single currency. 
7 We use the VSTOXX volatility index (VOL 

eu), obtained from STOXX database, for the EU stock market 
variability (which is the European equivalent to the VIX index for the US), and the EPU index of Baker et al. 
(2015) for EU and US (EPU 

eu and EPU 
us) respectively (source: http://www.policyuncertainty.com/). Finally, 

we use a stock market index (STOCK 
eu) for each country (collected from the OECD database). 

8 Bloom (2013) defines “uncertainty” as forward looking and volatility as realised.  Uncertainty can be 
viewed as ‘expected volatility’.  
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adjustments).9 Table 3 presents the estimated coefficients of Equation (1) using alternative 

homogeneous estimation techniques: Pooled OLS, (one way and two way) Fixed Effects, 

system GMM, the Driscoll and Kraay’s (1998) Pooled OLS and Fixed Effects estimators 

which produces robust standard errors to cross-sectional dependence and the Pesaran’s 

(2006) Pooled Common Correlated Effects estimator (without and with state-specific linear 

trend) that accounts for cross sectional dependence.10 The coefficient of lagged 

unemployment is significant and less than unity (greater than 0.9 but lower than 1) 

capturing the high persistent nature of unemployment. The coefficient of labor 

reallocation as measured by Lilien’s proxy (𝜎𝑝) is positive and statistically significant 

across all alternative estimation methods (including the Driscoll and Kraay’s (1998) and 

the Pesaran’s (2006) estimators that are robust to cross-sectional dependence and the 

system GMM approach which is robust to endogeneity issues of the regressors). The 

values of the 𝜎𝑝 coefficients range from 0.82 (CCEP) to 1.291 (FET) and are statistically 

significant in all cases highlighting the importance of labor reallocation for 

unemployment.11 These findings reinforce the existing evidence of a significant effect of 

sectoral shocks (e.g. De Serres et al. (2002) for the EU and Bakas et al. (2016) for the US).  

The coefficient of the growth rate of GDP is negative and significant and, in a sense, 

reflects Okun’s law. The coefficient of ΔIR is also negative and significant in most of the 

cases, but with relatively lower significance for unemployment, while H (the monetary 

policy GARCH variability) has a small positive and significant coefficient. Finally, the 

impact of the fiscal policy (ΔG) is found to be negative and significant. 

 Table 4 presents the heterogeneous slopes estimates that account for cross-sectional 

dependence (AMG, CCEMG and the dynCCEMG which allows for lagged values of the 

dependent variable and weakly exogenous regressors in the specification). The coefficient 

of 𝜎𝑝 remains positive and significant in all cases with values just below unity (ranging 

from 0.748 (CCEMGT) to 0.880 (CCEMG)). The results based on the heterogeneous 

estimators (Table 4) highlight the significant effect of the dispersion index on 

9 We estimate Equation (1) using the ‘purged’ dispersion index 𝜎𝑝 to isolate the impact of the idiosyncratic 
component of the dispersion index. Substituting the purged proxy with the unpurged measure would not 
alter the outcomes qualitatively. These results are available upon request. 
10 Since our focus is on addressing the existing heterogeneity (and cross sectional dependence) in the EU 
data, we start by implementing several pooled estimators as benchmark cases before moving to 
heterogeneous approaches for comparison purposes. We would like to thank an anonymous referee for 
drawing our attention to this point. 
11 Bakas et al. (2016) provide lower estimates of labor reallocation for the US. 
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unemployment when both heterogeneity and interdependence among EU states are taken 

into account (albeit lower to the homogenous case). Furthermore, we observe that these 

heterogeneous estimates (Table 4) are of similar magnitude with the estimates of the 

pooled CCE estimator (columns 7 and 8 of Table 3) where cross country dependence is 

taken into account.12 This outcome stresses the importance of controlling for the presence 

of cross sectional dependence in the European panel context. The estimated value of 1.277 

based on the FE estimator declines to 0.82 and 0.88 under the homogeneous CCEP and the 

heterogeneous CCEMG estimators respectively. The results for lagged unemployment 

confirm the high persistence of unemployment. The rest of the coefficients are producing 

results similar to the pooled estimates both in significance and sign.  

Having established a significantly positive unemployment effect of labor reallocation, 

we focus on the magnitude of the impact of labor reallocation on unemployment for the 

EU states. The 𝜎𝑝 coefficient measures the semi-elasticity of unemployment with respect to 

the labor reallocation index. We use the estimates generated by the homogeneous DK-FE 

(column 6 of Table 3) and the heterogeneous CCEMG (column 2 of Table 4) estimators to 

measure the unemployment response to labor reallocation changes. The coefficient of the 

DK-FE model suggests an estimated elasticity (the percentage change in unemployment 

rate in response to a percentage change in the dispersion index) of 1.28% at the sample 

mean of sigma (𝜎� = 0.01). The impact decreases slightly when we use the CCEMG 

estimate (a 1% increase in the reallocation index will lead to a 0.88% increase of the 

unemployment rate for the EU states).13  

In addition, a one sample standard deviation increase in the labor reallocation index 

results in an increase from 1.015 (CCEMG) to 1.021 (DK-FE) standard deviations in the rate 

of unemployment.14 Using the standardized coefficients based on the CCEMG and the 

DK-FE estimators, we can compare the magnitude of the effect of the reallocation index 

with that of the GDP growth as well as with the impact of the monetary and fiscal policy 

change. A one standard deviation increase in the measure of labor reallocation leads to an 

12 Following the theoretical argument of Sarafidis and Wansbeek (2012) and analogously to the findings in 
Bakas et al. (2016), we observe that neglecting to account for cross sectional dependence in the estimation 
will lead to an upward bias in the estimates. 
13 Similarly, the elasticity of unemployment with respect to sigma (based on the CCEMG estimator) will be 
equal to 6.16% at the sample maximum value of the reallocation index (𝜎𝑚𝑎𝑥 = 0.07) (see Table 2). 
14 The estimated standardized coefficient for the reallocation index is 0.021 (DK-FE) and 0.015 (CCEMG) 
respectively. The reallocation index has a sample standard deviation of about 0.007 (see Table 2). 
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increase of about 0.015 standard deviations (0.021 based on the DK-FE) in the logarithm of 

the unemployment rate while a one standard deviation increase in the growth of GDP is 

associated with a decrease of 0.018 standard deviations (0.031 on the DK-FE) in the 

logarithm of unemployment rate. Similarly, a one standard deviation increase in the ΔIR is 

associated with a decrease of 0.02 standard deviations (statistically significant with the 

DK-FE) in the logarithm of unemployment rate and, finally, a one standard deviation 

increase in the ΔG is associated with a decrease of 0.008 standard deviations (0.011 with 

the DK-FE) in the logarithm of unemployment rate. Thus, the impact of reallocation index 

on unemployment rate is of similar magnitude with the impact of the GDP growth and 

that of the change of the monetary policy instrument and roughly double the impact of the 

fiscal policy growth (in absolute value). 

 

A. ROBUSTNESS 
 

Our robustness analysis is twofold. First, alternative 𝜎𝑝  indexes are constructed to 

investigate whether the degree of sectoral disaggregation can affect the results (i.e. we 

vary the number of sectors entering the computation of Equation (2)). Table 5 presents the 

results for labor reallocation that stems from several dispersion proxies measured using 

alternative sectoral decompositions (4, 5, 8, 9 and 10 sectors). The 10 sector 𝜎𝑝 index is also 

employed by repeating the results presented in column 6 of Table 3 and column 2 of Table 

4. These outcomes were computed using the homogeneous DK-FE and the heterogeneous 

CCEMG estimators.15 Two issues emerge from the results. First and foremost, we observe 

that the coefficient of labor reallocation remains positive and significant under all 

alternative measures of sectoral disaggregation. Second, the magnitude of the 

𝜎𝑝 coefficient decreases as the sectoral disaggregation increases, a result that corroborates  

Parker’s (1992) support for the importance of mobility across the 4 major sectors of the 

economy.16 The coefficient of ΔIR seems to be more fragile to the alternative measures of 

reallocation index in the specification as it loses its significance in some cases when 

employing the CCEMG estimator.  

15 We explore the robustness of our results by implementing the heterogeneous CCEMG (that accounts also 
for cross sectional dependence) and a homogeneous counterpart estimator, the DK-FE, to facilitate 
comparisons. 
16 As in Bakas et al. (2016), the impact of the dispersion index depends on the level of its disaggregation. The 
extent of sectoral decomposition determines the magnitude of labor restructuring that is captured. One 
limitation is that it cannot capture intrasectoral and intrafirm reallocation. 
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The second route is to consider measures of (expected) volatility and stock market 

volatility in the empirical specification. Following the contributions of Bloom (2009, 2013) 

and Baker et al. (2015) we augment the model by considering the effects of volatility. 

Expected volatility is proxied by the Economic Policy Uncertainty Index (EPU 
eu and EPU 

us) for Europe and the US (see Baker et al. (2015) for an extensive discussion). Alternative 

measures of volatility include the EU stock market variability index (VOL 
eu) that is 

measured by the VSTOXX volatility index. Finally, we use the stock market index for each 

country (STOCK 
eu) as a proxy for the stock market activity. The results are presented in 

Table 6 and Table 7 using the homogeneous DK-FE and the heterogeneous CCEMG 

estimators respectively. Two points emerge from these results. First, looking at Table 6, the 

measures of expected volatility (EPU for Europe and the US) and stock market volatility 

(VOL 
eu) are affecting in a positive and significant way unemployment (stock market index 

(STOCK 
eu) has a significant negative sign instead).17 This finding corroborates Caggiano et 

al. (2014) and Baker at al. (2015) who provide evidence of a significant positive effect of 

unemployment to volatility and uncertainty shocks. Second, 𝜎𝑝  remains positive and 

significant under all different scenarios (with a magnitude comparable to those produced 

from the specification without the volatility proxies). Choi and Loungani (2015) document 

the higher importance of sectoral (uncertainty) shocks on unemployment compared to 

aggregate (uncertainty) shocks for the US. The relative lower estimated coefficients of EPU 

on Table 6 seem to point to the same direction for the EU. Overall the purged dispersion 

measure remains significant under alternative levels of sectoral disaggregation and when 

expected volatility and stock market volatility are taken into account.  

 

VI. CONCLUSIONS  

The notion of labor reallocation and its effect on unemployment has generated a strand 

of literature that focused on the US economy. We revisit the hypothesis by looking at an 

extensive panel of 15 European countries. The adopted econometric methodology takes 

into account important characteristics of the hypothesis: dynamics, heterogeneity and 

cross section dependence.  We construct an extensive quarterly panel dataset of 1165 

17 The variables EPU 
eu, EPU 

us and VOL 
eu are common for all EU countries and can be seen as ‘observed 

common factors’ in the heterogeneous version of Equation (1) and therefore their coefficients and its 
significance based on the CCEMG estimator (in Table 7) have to interpreted with caution.  
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observations. The increased degrees of freedom of the panel framework allow the 

assessment of the effect of labor reallocation on European unemployment. We employ a 

battery of alternative pooled and heterogeneous panel estimates. All estimations bear out 

the positive and statistically significant effect of labor reallocation on unemployment. 

Robustness includes different labor sectoral disaggregation and the inclusion of alternative 

volatility measures. These results confirm the economic importance of labor reallocation 

for the European unemployment. 
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TABLES AND FIGURES 

PART A: DESCRIPTIVE STATISTICS 

 
Table 1: List of EU Countries and Abbreviations 

Country Abbrev. Country Abbrev. 
Austria AT Italy IT 
Belgium BE Luxembourg LU 
Denmark DK Netherlands NL 
Finland FI Portugal PT 
France FR Spain ES 
Germany DE Sweden SE 
Greece GR United Kingdom GB 
Ireland IE   
                 N = 15, T = 81, Obs = 1165 

 

 

Table 2: Summary Statistics 
 Mean SD Min Max 
 Sectoral Variables 
Total 11897.88 12040.59 257.45 42774.00 
Agriculture 412.58 341.60 4.04 1280.50 
Industry 1933.55 2205.59 36.31 8880.00 
Construction 841.82 845.01 27.78 3332.00 
Trade 2941.81 2938.34 65.97 9884.00 
Information 336.32 373.98 8.33 1382.02 
Financial 354.35 390.07 29.06 1298.00 
Real Estate 120.64 144.11 1.39 503.13 
Professional 1359.43 1476.80 28.14 5667.00 
Public Sector 2836.50 2908.46 43.82 10278.00 
Other Sectors 760.87 873.61 11.07 2992.00 
 Macro Variables 
Un. Rate (%) 8.337 4.172 1.867 27.833 
U (log) -2.588 0.449 -3.981 -1.279 
𝜎  0.010 0.007 0.001 0.069 
𝜎𝑝  0.000 0.007 -0.012 0.060 
Real GDP (log)  11.753 1.242 8.648 13.827 
Int. Rate (%) 3.091 2.415 -0.113 18.117 
H GARCH 0.462 0.513 0.000 8.797 
Gov. Exp. (log) 10.160 1.323 6.682 12.488 
EPU eu 4.751 0.347 4.100 5.555 
EPU us 4.613 0.303 4.145 5.375 
VOL eu  3.174 0.325 2.569 4.066 
STOCK eu 4.541 0.429 3.247 5.817 

Notes: Summary statistics for sectoral employment and Macro series for the full sample (NxT), 
based on a maximum of N = 15 countries and T = 81 quarters. All variables are defined in the 
Data section. All sectoral employment series are measured in thousands of persons. 
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PART B: FIGURES 

 

 Figure 1: Lilien’s “Purged” Index for the 15 EU Countries against the EU average 
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 Figure 2: Unemployment Rate and Lilien’s “Purged” Index for the 15 EU Countries 
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Figure 3: Cross Country Correlation between Unemployment Rate and Lilien’s “Purged” 
Index for the 15 EU Countries 
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PART C: ESTIMATION TABLES 

 

Table 3: Lilien’s Index and Sectoral Shifts - Pooled Estimates 
 POLS FE FET GMM DK-POLS DK-FE CCEP CCEPT 

ULagged 0.984** 0.973** 0.975** 0.978** 0.984** 0.973** 0.966** 0.965** 
 (292.51) (161.34) (136.64) (88.81) (181.71) (105.34) (135.35) (129.57) 
         
𝜎𝑝 0.905** 1.277** 1.291** 0.976** 0.905** 1.277** 0.820** 0.827** 
 (4.32) (2.65) (2.71) (2.23) (2.59) (2.61) (3.44) (3.33) 
         
ΔGDP -1.020** -1.027** -0.599** -1.090** -1.020** -1.027** -0.345** -0.337** 
 (-7.64) (-4.18) (-3.57) (-4.47) (-5.58) (-6.01) (-2.37) (-2.23) 
         
ΔIR -0.018** -0.018** -0.003 -0.021** -0.018** -0.018** -0.004 -0.004 
 (-4.04) (-2.54) (-0.54) (-3.22) (-2.79) (-2.90) (-1.24) (-1.20) 
         
H 0.011** 0.010** 0.012** 0.011** 0.011** 0.010** 0.012** 0.012** 
 (4.35) (4.58) (5.76) (3.40) (2.89) (2.46) (4.73) (4.51) 
         
ΔG -0.230** -0.287* -0.269* -0.299* -0.230** -0.287** -0.220** -0.217** 
 (-2.90) (-1.98) (-2.13) (-1.70) (-3.14) (-4.40) (-2.76) (-2.62) 
Obs 1165 1165 1165 1165 1165 1165 1165 1165 
N 15 15 15 15 15 15 15 15 
T 78 78 78 78 78 78 78 78 
RMSE 0.0396 0.0389 0.0359 0.0397 0.0396 0.0399 0.0324 0.0335 
Hansen-J    1.00     
AR(1)    0.00     
AR(2)    0.40     

Notes: FE and FET – one way and two way Fixed Effects estimator respectively. DK POLS and DK FE –Driscoll and 
Kraay’s (1998) Pooled OLS and Fixed Effects estimators. GMM – Blundell and Bond (1998) System GMM estimator. 
CCE and CCET – the Pesaran (2006) pooled common correlated effects estimator   (without and with state-specific 
linear trend). t-statistics in parentheses. All estimations were carried out using robust standard errors. RMSE refers to 
the root mean squared error. Hansen J refers to the p-value of the Hansen test for the validity of over-identifying 
restrictions. AR (1) and AR (2) refer to the p-value of the test for first-order and second-order residual serial 
correlation. * and ** denotes significance at the 10% and 5% significance levels, respectively. 
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Table 4: Lilien’s Index and Sectoral Shifts – Heterogeneous Estimates 
 AMG CCEMG CCEMGT dynCCEMG1 dynCCEMG4 
ULagged 0.939** 0.942** 0.944** 0.944** 0.917** 
 (62.78) (53.43) (52.98) (56.28) (42.12) 
      
𝜎𝑝 0.831** 0.880** 0.748** 0.856** 0.828* 
 (2.27) (3.08) (2.61) (2.61) (1.72) 
      
ΔGDP -0.986** -0.585** -0.601** -0.461** -0.506* 
 (-3.22) (-3.08) (-2.51) (-2.27) (-1.81) 
      
ΔIR -0.022** -0.043 -0.045 -0.002 -0.008 
 (-5.32) (-1.52) (-1.56) (-0.28) (-1.32) 
      
H 0.010** 0.046* 0.052* 0.004 0.005 
 (2.17) (1.75) (1.93) (0.71) (1.05) 
      
ΔG -0.089 -0.218** -0.184* -0.179* -0.278** 
 (-0.68) (-2.37) (-1.89) (-1.80) (-2.04) 
Obs 1165 1165 1165 1152 1113 
N 15 15 15 15 15 
T 78 78 78 77 74 
RMSE 0.0342 0.0285 0.0282 0.0279 0.0229 
Notes: AMG – Bond and Eberhardt’s (2009) Augmented Mean Group estimator. CCEMG and CCEMGT – Pesaran’s 
(2006) Common Correlated Effects Mean Group estimator (without and with state-specific linear trend). dynCCEMG1 
and dynCCEMG4 – Chudik and Pesaran’s (2015a) Dynamic Common Correlated Effects Mean Group estimator 
(augmented with one and four additional lags of the cross-section averages). t-statistics in parentheses. RMSE refers to 
the root mean squared error. * and ** denotes significance at the 10% and 5% significance levels, respectively. 
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Table 5: Lilien’s Index and Sectoral Shifts – Alternative Sectoral Decomposition 
 DK-FE CCEMG DK-FE CCEMG DK-FE CCEMG DK-FE CCEMG DK-FE CCEMG 

ULagged 0.973** 0.943** 0.974** 0.943** 0.973** 0.941** 0.973** 0.941** 0.973** 0.942** 
 (105.76) (56.26) (108.87) (57.34) (105.03) (51.96) (106.33) (53.33) (105.34) (53.43) 
           
𝜎4
𝑝 2.097** 1.207**         

 (3.29) (3.62)         
           
𝜎5
𝑝   2.243** 1.158**       

   (3.88) (3.32)       
           
𝜎8
𝑝     1.199** 0.981**     

     (2.29) (2.67)     
           
𝜎9
𝑝       1.394** 1.030**   

       (2.74) (3.24)   
           
𝜎10
𝑝          1.277** 0.880** 

         (2.61) (3.08) 
           
ΔGDP -1.070** -0.647** -1.060** -0.629** -1.073** -0.656** -1.067** -0.650** -1.027** -0.585** 
 (-6.24) (-3.32) (-6.49) (-3.27) (-5.92) (-3.50) (-6.07) (-3.45) (-6.01) (-3.08) 
           
ΔIR -0.018** -0.039* -0.018** -0.039* -0.018** -0.042 -0.018** -0.041 -0.018** -0.043 
 (-2.87) (-1.72) (-2.95) (-1.71) (-2.83) (-1.54) (-2.87) (-1.56) (-2.90) (-1.52) 
           
H 0.010** 0.045* 0.010** 0.045* 0.010** 0.047* 0.010** 0.047* 0.010** 0.046* 
 (2.57) (1.73) (2.85) (1.76) (2.34) (1.71) (2.52) (1.71) (2.46) (1.75) 
           
ΔG -0.276** -0.189** -0.274** -0.186** -0.290** -0.214** -0.285** -0.208** -0.287** -0.218** 
 (-4.14) (-2.02) (-4.15) (-1.99) (-4.39) (-2.37) (-4.33) (-2.27) (-4.40) (-2.37) 
Obs 1165 1165 1165 1165 1165 1165 1165 1165 1165 1165 
N 15 15 15 15 15 15 15 15 15 15 
T 78 78 78 78 78 78 78 78 78 78 
RMSE 0.0395 0.0283 0.0392 0.0283 0.0400 0.0285 0.0399 0.0285 0.0399 0.0285 

Notes: DK FE denotes the Driscoll and Kraay’s (1998) Fixed Effects estimator and the CCEMG denotes the Pesaran’s 
(2006) Common Correlated Effects Mean Group estimator. t-statistics in parentheses. RMSE refers to the root mean 
squared error. * and ** denotes significance at the 10% and 5% significance levels, respectively. 
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Table 6: Lilien’s Index and Sectoral Shifts – Impact of Volatility (DK-FE) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
ULagged 0.970** 0.977** 0.984** 0.966** 0.974** 0.968** 0.974** 0.978** 0.965** 0.969** 
 (100.78) (101.96) (108.69) (92.77) (118.46) (114.59) (115.21) (113.89) (103.19) (108.39) 
           
𝜎𝑝 1.280** 1.164** 1.192** 1.115** 1.356** 1.450** 1.306** 1.212** 1.233** 1.422** 
 (2.66) (2.30) (2.17) (2.24) (2.77) (3.09) (2.68) (2.45) (2.48) (2.94) 
           
EPUeu 0.024**    0.019* 0.024**    0.022** 
 (3.78)    (1.86) (4.30)    (2.69) 
           
EPUus  0.034**     0.028**    
  (3.87)     (4.63)    
           
VOLeu   0.031**  0.021**   0.015**  0.003 
   (4.68)  (2.20)   (2.36)  (0.43) 
           
STOCKeu    -0.026**     -0.020**  
    (-5.30)     (-3.75)  
           
ΔGDP -1.060** -0.964** -1.096** -1.203** -1.003** -0.875** -0.818** -0.852** -1.019** -0.788** 
 (-3.92) (-4.62) (-5.43) (-5.10) (-4.49) (-4.98) (-5.22) (-5.05) (-5.84) (-4.58) 
           
ΔIR      -0.014** -0.015** -0.026** -0.014** -0.022** 
      (-2.66) (-2.80) (-4.25) (-2.38) (-4.21) 
           
H      0.014** 0.011** 0.006 0.009** 0.013** 
      (3.52) (3.14) (0.83) (2.30) (2.12) 
           
ΔG      -0.227** -0.222** -0.285** -0.277** -0.235** 
      (-3.99) (-4.10) (-4.56) (-4.40) (-4.44) 
Obs 1165 1165 967 1165 967 1165 1165 967 1165 967 
N 15 15 15 15 15 15 15 15 15 15 
T 78 78 65 78 65 78 78 65 78 65 
RMSE 0.0410 0.0403 0.0418 0.0413 0.0418 0.0395 0.0391 0.0407 0.0400 0.0407 
Notes: DK FE denotes the Driscoll and Kraay’s (1998) Fixed Effects estimator. t-statistics in parentheses. 
RMSE refers to the root mean squared error. * and ** denotes significance at the 10% and 5% significance 
levels, respectively. 
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Table 7: Lilien’s Index and Sectoral Shifts – Impact of Volatility (CCEMG) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
ULagged 0.959** 0.947** 0.941** 0.952** 0.942** 0.940** 0.926** 0.922** 0.936** 0.923** 
 (57.89) (48.14) (37.91) (48.77) (38.64) (43.88) (40.14) (33.43) (46.95) (32.21) 
           
𝜎𝑝 0.668* 0.660* 1.070** 0.570 1.067* 0.707** 0.754** 1.301** 0.634** 1.372** 
 (1.87) (1.88) (2.10) (1.63) (1.94) (2.36) (2.59) (2.31) (2.41) (2.43) 
           
EPUeu 0.003    0.004 -0.001    0.001 
 (0.33)    (0.52) (-0.14)    (0.07) 
           
EPUus  -0.004     -0.008    
  (-0.46)     (-0.97)    
           
VOLeu   -0.004  -0.006   -0.005  -0.005 
   (-0.47)  (-0.81)   (-0.50)  (-0.61) 
           
STOCKeu    -0.024     -0.030*  
    (-1.41)     (-1.71)  
           
ΔGDP -0.747** -0.653** -0.795** -0.707** -0.810** -0.594** -0.509** -0.619** -0.612** -0.663** 
 (-3.67) (-3.19) (-2.93) (-2.89) (-2.95) (-3.24) (-2.86) (-2.24) (-2.35) (-2.37) 
           
ΔIR      -0.042 -0.043 -0.025 -0.048 -0.024 
      (-1.49) (-1.48) (-0.64) (-1.46) (-0.62) 
           
H      0.043* 0.046* 0.082** 0.041** 0.088** 
      (1.79) (1.72) (3.07) (2.14) (3.13) 
           
ΔG      -0.183** -0.219** -0.147 -0.186** -0.144 
      (-2.09) (-2.62) (-1.35) (-2.05) (-1.38) 
Obs 1165 1165 967 1165 967 1165 1165 967 1165 967 
N 15 15 15 15 15 15 15 15 15 15 
T 78 78 64 78 64 78 78 64 78 64 
RMSE 0.0305 0.0305 0.0313 0.0301 0.0308 0.0278 0.0278 0.0280 0.0274 0.0275 
Notes: CCEMG denotes the Pesaran’s (2006) Common Correlated Effects Mean Group estimator. t-statistics 
in parentheses. RMSE refers to the root mean squared error. * and ** denotes significance at the 10% and 
5% significance levels, respectively. 
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