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Abstract 

Coastal and estuarine systems worldwide are under threat from global climate change, with potential 

consequences including an increase in salinities and incursion of saltwater into areas currently subject 

to tidal and non-tidal freshwater regimes. It is commonly assumed that climate-driven increases in 

estuarine salinities and saline incursion will be directly reflected in an upstream shift in species 

distributions and patterns of community composition based on salinity tolerance. This study examined 

the responses of benthos to medium-term salinity changes in two macrotidal river-estuary systems in 

SE England to test whether these responses may be representative of climate-induced salinity changes 

over the long-term. The study reinforced the effect of salinity, related to tidal incursion, as the primary 

environmental driver of benthic species distribution and community composition. Salinity, however, 

acted within a hierarchy of factors followed by substratum type, with biotic competition and predator-

prey relationships superimposed on these. The assumption that increasing salinities will be directly 

reflected in a shift in species distributions and patterns of community composition upstream over the 

long-term was shown to be over simplistic and not representative of a complex and highly variable 

system. Relative Sea Level Rise (RSLR) projections were predicted to increase estuarine salinities and 
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saline incursion in the study estuaries, which together with projected reductions in river flow will have 

important consequences for estuarine structure and function, particularly in tidal limnetic zones, despite 

estuarine communities being pre-adapted to cope with fluctuating salinities. The study identified, 

however, that limnic-derived fauna inhabiting these zones may demonstrate greater tolerance to salinity 

change than is currently recognised, and may persist where salinity increases are gradual and zones 

unbounded.  

Keywords: saline incursion; benthic macroinvertebrates; relative sea level rise; estuary; tidal 

freshwater zones; freshwater-seawater interface 

1. Introduction 

Global climate change effects, including eustatic sea level rise, increased temperatures, changing 

precipitation patterns and increased storminess, and catchment land use (e.g. increased freshwater 

abstraction and channel modification) are predicted to result in an increase in salinities and saline 

incursion into estuaries and adjoining freshwater rivers, through reductions in summer river flows and 

relative sea level rise (RSLR) (Elliott et al., 2015; Prandle and Lane, 2015). Climate change research 

has largely neglected this in terms of its impact on coastal ecology (Peterson et al., 2010; Robins et 

al., 2016), despite episodic increases in salinity (often driven by prolonged drought periods) 

negatively affecting upper estuarine and riverine ecosystems globally  (Attrill et al., 1996; Herbert et 

al., 2015; Kingsford et al., 2011; Turak et al., 2011).  

Salinity is the primary environmental variable determining benthic macroinvertebrate community 

composition and structure in estuaries (Attrill, 2002; Telesh and Khlebovich, 2010). Hence the 

distribution and community composition of benthic fauna along the salinity gradient (from marine to 

freshwater) is primarily based on species salinity tolerances, sensu the classic study of Remane 

(1934). The latter describes a decreasing number of freshwater and marine species from the river and 

sea respectively towards the low salinity (5-7) inner estuary, which is in turn dominated by a few true 

estuarine/brackish species that excel in highly dynamic environments (i.e. the zone of lowest diversity 

and highest dominance; Whitfield et al., 2012). In macrotidal estuaries, the distribution and 
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composition of species integrates short-term (e.g. diurnal, weekly and lunar) changes in salinity to 

maintain a stable community under varying salinity changes (Elliott and Whitfield, 2011). Medium-

term spatial and temporal variations in salinities and saline incursion extent (e.g. seasonal and 

interannual), however, are assumed to be directly reflected in a shift in species distributions and 

community composition indices in response to salinity tolerances sensu the Remane curve (Remane, 

1934). As such, it is assumed that increases in salinity and extent of saline incursion driven by net 

changes in sea level, land level and reduced river flows over the long-term will reflect these patterns 

and result in a landward migration of estuarine benthic communities and associated patterns of 

community composition based on salinity tolerance (Little, 2012; Smyth and Elliott 2016). 

Freshwater species are generally assumed to be intolerant of any increase in environmental salinity 

(Williams and Williams, 1998a) and thus those that inhabit lower river and upper estuarine areas (i.e. 

tidal freshwater zones; TFZs) are predicted to be most at risk from future increases in saline incursion 

(Little, 2012). This is corroborated by studies undertaken in upper estuarine areas following prolonged 

drought-driven saline incursion events, where notable reductions in the diversity and richness of the 

freshwater fauna have been recorded, together with the upstream migration of brackish and marine taxa 

(Attrill and Power, 2000; Attrill et al., 1996; Kingsford et al., 2011). TFZs are, however, poorly-studied 

compared to their non-tidal freshwater and tidal brackish and marine counterparts (Rundle et al., 1998; 

Sousa et al., 2007). As such, relatively little is known regarding the community composition of these 

areas or the response of the limnic-derived fauna to medium and long-term variations in salinity and 

saline incursion extents (Rundle et al., 1998; Williams and Williams, 1998a, b). 

Our lack of knowledge regarding the response of estuarine benthic fauna to medium-term fluctuations 

in salinity over the full marine to freshwater transition, limits our potential to confirm assumptions and 

predict the effect of climate-driven increases in salinity on estuarine function over the long-term with 

confidence. This study examines the responses of estuarine benthic communities to salinity changes 

due to seasonal river flow in two macrotidal river-estuary systems in SE England. It tests the hypothesis 

that the responses of the benthos to medium-term salinity variations can be used to predict the impact 
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of climate-induced salinity changes over the long-term. The study also tests the current assumptions 

regarding the impacts of climate change on benthic estuarine communities (particularly in TFZs). 

2 Materials and methods 

2.1 Study area and site selection 

The River Ouse and River Adur, (Southern England; Figure 1), rise on Gault and Weald clay and cut 

through alluvial valleys of the Sussex chalk, running over alluvial floodplains to enter the English 

Channel at Newhaven and Shoreham-by-sea respectively (Environment Agency, 2011; Buck, 1997). 

The adjacent catchments cover a combined area of 1073 km2 and are bordered by 40.2 km of coastline, 

most of which has been urbanised, including the city of Brighton and Hove and the large ports of 

Shoreham and Newhaven (Figure 1; Environment Agency, 2010). The River Ouse estuary extends 21.8 

km from Newhaven to the artificial tidal limit (marked by a series of weirs at Barcombe Mills) and has 

a Mean High Water Spring (MHWS) and Mean Low Water Spring height (MLWS) of 6.69 m and 0.77 

m respectively. The River Adur estuary is tidal for 21 km to the normal tidal limit (NTL) on the eastern 

branch and 18.9 km on the western branch, with a MHWS and MLWS of 6.3 m and 0.6 m respectively 

(Buck, 1997). The estuary channels have been anthropogenically narrowed, deepened and constrained 

for navigation and flood defence, with flood storage areas removed (i.e. intertidal areas and flood 

plains). In the convergent Adur and Ouse estuaries, this artificial manipulation exacerbates incursion of 

the tidal wave by decreasing frictional drag and increasing tidal flow velocity, funnelling and 

propagating tidal amplitude upstream (Savenije and Veling, 2005).  

The rivers have similar hydrological regimes, with the impermeable clays in the upper catchments 

making the rivers highly ‘flashy’ (i.e. responds very quickly to rainfall, with water flow rising rapidly 

to a peak before receding) in nature, with naturally low summer flows (Environment Agency, 2005a; 

Burrin and Jones, 1991). SE England is one of the most densely populated and driest regions in the 

UK and, as such, surface (and ground) water resources suffer from unsustainable abstraction during 

summer months, with river flow rates even in winter months deemed ‘unacceptable’ for large parts of 

the region (Environment Agency, 2007;  Rodda, 2006). Concerns regarding increased saline incursion 
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(due to increased freshwater abstraction) have been raised during drought years, particularly on the 

River Ouse, due to a large public water supply (PWS) abstraction site located just above the tidal 

limits (Barcombe Mills; Figure 1; Environment Agency, 2005a, b).  

Short- and long-term climate change projections for SE England are likely to exacerbate saline incursion 

within these estuaries (i.e. reductions in summer river flow, high RSLR exaggerated by isostatic land 

subsidence and potential for increased storminess; IPCC, 2014; Jenkins et al., 2009; Robins et al., 2016). 

In addition the South East Plan (prepared by the then South East England Regional Assembly) aims to 

accommodate up to one million more people by 2026, raising concerns that the already over-exploited 

freshwater resource will be further stressed by increasing population demands (Rodda, 2006). 

These estuaries are representative of a large number of macrotidal, anthropogenically modified coastal 

plain estuaries of North-West Europe (Prandle and Lane, 2015) with growing catchment and coastal 

populations. Hence the results of this study are applicable to other similar European systems.  

2.2 Macroinvertebrate sample collection and processing 

Macroinvertebrate sampling occurred during August 2008 and February 2009 to coincide with low 

summer and high winter river flows, indicative of high and low salinities and degree of tidal saline 

incursion respectively. Macroinvertebrate sampling at 12 and 15 sites in the River Adur and River Ouse 

respectively covered the complete marine to freshwater transition (Figure 1). Due to the perceived 

susceptibility of TFZs to future increases in salinity, more emphasis was given to these areas (Figure 

1). Sites O4 and O5 were added in February 2009 to address a sampling gap. 
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Figure 1. River Adur and River Ouse catchment showing sampling sites, normal tidal limits (NTL), 

tide and salinity profile stations and river flow gauging stations. 

 

Benthic macrofaunal samples were obtained at each site, in each year, through one standard three-

minute kick-sweep sample in the marginal area of the channel at low tide (Murray-Bligh, 1999). In 

total, 48 kick samples were collected. All samples were preserved in 10% formaldehyde and identified 

to species level where possible. All recorded macroinvertebrate species were assigned a salinity 

tolerance grouping (Table 1; adapted from Wolf et al., 2009) based on the analysis of published 
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literature sources (see supplementary material Table 1). These groupings were developed as part of a 

classification approach to meet the dynamic salinity conditions experienced by macroinvertebrates in 

tidal streams, and have been adopted here due to similarities in conditions (Wolf et al., 2009).  

 

Table 1. Summary table of salinity tolerance groupings (derived from Wolf et al., 2009) with number 

of species allocated to each grouping. 

 

2.3 Environmental parameters 

Tide and salinity profiles of the study estuaries were recorded at five stations (Figure 1) over four 

consecutive days (during the macroinvertebrate sampling period) in both years. In addition, spot 

samples of a number of physico-chemical parameters were recorded at each macroinvertebrate sample 

site, including water temperature (ºC), pH, dissolved oxygen concentration (DO %), conductivity (μS 

cm-1) and salinity (psu) using a hand-held WinLab®Data-Line Conductivity Meter (with automatic 

calibration and temperature compensation) and additional standard meters (Hanna Instruments, 

Leighton Buzzard, UK).  

Surface sediment was collected from three 0.2 x 0.3 m grids at each sample site using a trowel. Sediment 

classification (Wentworth grain size, particle roundness, sphericity; Gordon et al., 2004; Krumbein, 

1941) and organic carbon, calcium carbonate and minerogenic content were determined following Dean 

(1974). Sediment samples were dry sieved through a sieve nest, with particles >60 mm removed prior 

to the dry sieving process. The average grain size was taken as the mean interquartile (25% - 75%) 
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range. For sites with visible coarse material (i.e. >4mm including granules, pebbles and cobbles) the 

length of the b-axis was used to allocate randomly selected particles into a Wentworth size class 

category.  

2.4 River Flow Gauging 

Mean daily discharge (m3 s-1) data in August 2008 and February 2009 were provided by the 

Environment Agency through gauging stations on the lower River Ouse and the eastern and western 

branches of the lower River Adur (Figure 1). Mean daily discharge for the four-day salinity sampling 

periods were 0.72 m3 s-1 and 0.73 m3 s-1 in August 2008 and 1.24 m3 s-1 and 1.43 m3 s-1 in February 2009 

for the Adur and Ouse respectively. The winter sampling period did not coincide with the peak 

discharges recorded during February 2009 (mean monthly discharges of 4.13 m3 s-1 and 2.9 m3 s-1 on 

the Rivers Adur and Ouse respectively), but followed an event of high river discharge. The summer 

sampling in August 2008 coincided with higher than average river flows, but was preceded by base-

flow conditions (mean monthly discharges of 0.66 m3 s-1 and 0.47 m3 s-1 on the Rivers Ouse and Adur 

respectively). 

 2.5 Tide and salinity profiling – contemporary and projected future profiles 

Tide and salinity profiles were recorded using two SEBA-TEC in-situ data logging sondes, which 

recorded water level (m), salinity (psu) and temperature (°C) every 2 minutes over consecutive 24 

hour periods at four stations along both estuaries (Figure 1).  In order to produce interpolated, 

standardised tide and salinity profiles under low and high discharge conditions, the profiles at each 

site were standardised to the MHWS and MLWS tide height recorded at the river mouths (6.3 – 0.6 m 

at Shoreham and 6.69 – 0.77 m at Newhaven; Buck, 1997). Tide heights recorded at Newhaven (and 

applied to Shoreham) during the profiling were available through the UK National Tide Gauge 

Network logged at 10 minute intervals (accessed at: 

http://www.ntslf.org/data/realtime?port=Newhaven) 

   2.5.1 Tide and salinity profile standardisation 
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Each site recorded a lag between highest tide (m) and maximum salinity which differed between 

stations, increasing up to 62 minutes after the high tide at station A1.  Maximum and minimum salinity 

related to high tide height at each station (in order to produce current and predicted salinity profiles) 

were obtained by synchronising the tide height and salinity profiles, so that highest tide level (m) 

matched maximum salinity and low tide level (m) matched minimum salinity. A ratio of the height of 

tide at each station and the height of the associated tide at the river mouth was determined. The ratio, 

multiplied by the MHWS and MLWS tide heights, produced a corrected vertical high and low tide 

height (m) for each station.  

The corrected salinity and estuary level (m) relationships for the rising and falling tide profiles at each 

station and flow regime were plotted and the salinity associated with the corrected vertical height (m) 

determined. This assumes that the profiles at each station were consistent over varying tide heights. 

This was corroborated by comparing control tidal profile forms obtained at each salinity station during 

the sampling periods (August 2008 and February 2009).  

This study regarded the 0.5 salt concentration as the upstream limit of saline incursion, the established 

Venice System oligohaline/limnetic boundary (McLusky, 1993). Alternative salt concentrations have 

also been used, with 1 as a typical agricultural/industrial limit and 2-4 as being biologically significant 

as the upstream extent of saline incursion in estuarine studies (Bulger et al., 1993; Deaton and 

Greenberg, 1986; Gordon et al., 2004; Kimmerer et al., 1998; Telesh et al., 2011). 

 2.5.2 Predicted future tide and salinity profiles 

Predicted future tide and salinity profiles were determined under the UK climate projection scenario 

(UKCP09) for high greenhouse gas emissions (Special Report on Emissions Scenarios (SRES) A1FI; 

Nakicenovic et al., 2000), for three time periods (2020s, 2050s and 2080s; IPCC, 2007; Lowe et al., 

2009; Murphy et al., 2009). The IPCC replaced the SRES scenarios with Representative Concentration 

Pathways (RCPs) for its fifth Assessment Report (AR5; IPCC, 2013). SRES scenarios are however still 

used as the basis for UK climate projections and, as such, have been employed here (Murphy et al., 

2009). SRES A1FI was selected as a predictive basis for the most extreme case scenario (within the 
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IPCC (2007) uncertainty range), based upon climate modelling (IPCC, 2007; Lowe et al., 2009; 

Nakicenovic et al., 2000). 

SRES A1FI RSLR projections were selected for 12 km coastal grid squares at Newhaven and Shoreham 

(ID 25360 and 25151 respectively) using the UKCP09 User Interface (v1.0) (accessed at: 

http://ukclimateprojections-ui.defra.gov.uk). The estimated 5th and 95th percentile range of RSLR 

projections provided a range of 90% of the modelled results (Lowe et al., 2009). The projected RSLR 

for the three time periods, were separately combined with MHWS and MLWS tide heights for the study 

estuaries and multiplied by the tide height ratios (determined for the current profiles), to produce 

corrected MHWS and MLWS tide heights for each station and discharge regime. The maximum and 

minimum salinities that corresponded to the corrected MHWS and MLWS vertical tide heights (using 

the corrected salinity and tide level relationship plots of Section 2.5.1) were determined.  

2.6 Statistical analyses 

Trends in the species, samples and environmental datasets were explored using multivariate techniques 

in Canoco v. 4.54 (ter Braak and Šmilauer, 2006). In all cases, preliminary detrended correspondence 

analysis (DCA) indicated a strongly unimodal pattern (DCA axis 1 gradient length >7), and 

subsequently the unimodal technique of detrended canonical correspondence analysis (DCCA) was 

employed to investigate environmental-species relationships under each flow regime, both within and 

between the two river systems. In all cases species data were converted to percentages and rare species 

were down-weighted. In order to explore trends longitudinally, sites A9 and O10 were removed from 

the statistical analyses due to their location on parallel/bypass channels. 

Community composition indices including species richness, relative abundance (RA), Shannon-Wiener 

diversity index (H’) and Berger-Parker dominance index (BP; Berger and Parker, 1970) were calculated 

within the α Species Diversity and Richness software v.3.03 (Henderson and Seaby, 2002). To 

determine faunal zones of similarity between river and flow regime, faunal assemblages were compared 

by multivariate analyses via hierarchical clustering using Bray-Curtis similarity in PRIMER 6 (PrimerE 

Ltd: Plymouth Routines in Multivariate Ecological Research, Version 6). The statistical significance of 
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these clusters (p<0.05) were evaluated using similarity profile (SIMPROF) random permutation tests. 

The individual species responsible for the similarity and dissimilarity within and between the zones 

were assessed using SIMPER. 

Species distribution plots were produced using the visualisation program C2 V.1.6.3 (Juggins, 2007) to 

sequence species distributions into salinity tolerance groupings relative to sampling point, distances 

from river mouths, discharge regime and species abundance. In comparing sites between discharge 

regimes, sites O4 and O5 were not included in the DCCA or faunal zone analysis, as these sites were 

only sampled under high discharge conditions (Feb 09). 

3 Results 

3.1 Species distributions and assemblage composition  

A total of 91 macroinvertebrate taxa from 18 orders (divided into the six salinity groupings; Table 1) 

were recorded in the River Ouse and River Adur over the sampling period, with 47 species common to 

both. Hierarchical similarity clustering of the faunal data identified three (A-C) and four (A1-D1) 

significant (p<0.05) longitudinal clusters of sites in the River Ouse and five (A2-E2) and three (A3-C3) 

significant (p<0.05) clusters in the River Adur under low and high discharge conditions respectively 

(Figures 2-4). Under both discharge regimes, diversity (Shannon-Wiener H’ index) generally decreased 

from the head of both estuaries downstream and from the river mouth upstream (Figure 4). This was 

coupled with an increase in species dominance (Berger-Parker index), peaking in the upper estuary 

(Figure 4). A modified Remane diagram for these estuaries is provided in Figure 5. 

3.1.1. River Ouse 

In the River Ouse, the first clusters (A & A1) under both discharge conditions were characterised by a 

diverse and abundant marine dominated fauna, composed of euryhaline-marine (63.6 % & 77.9 %), 

brackish (29 % & 16.3 %) and holeuryhaline (7.5 % & 5.9 %) species (average dissimilarity between 

clusters of 61.5%) (See supplementary material Table 2 for clusters and species summary). Under low 

discharge conditions, cluster A (sites O1-O7) extended up to 12.8 km upstream (over max and min 

salinity gradients of 35-10.3 and 25.8-0.2 respectively), compared to 6.35 km upstream for cluster A1 
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(sites O1-O3) under high discharge conditions (max salinity of 35 and min salinity gradient of 0.2 to 

25.8), a reduction in upstream extent of 6.4 km. The downstream shifts in these clusters reflect changes 

in the faunal data (Figures 2 and 4). Under low discharge conditions, euryhaline-marine species (e.g. 

Carcinus maenas, Gammarus salinus and Melita palmata) were recorded up to 12.8 km (O7) from the 

estuary mouth, and together with brackish species (e.g. Cyathura carinata, Leptocheirus pilosus), 

dominated the faunal community over a maximum salinity gradient of 10.3 to 35 (Figure 2). In contrast, 

under high discharge conditions, this community (A1) migrated downstream. A single euryhaline-

marine amphipod Corophium arenarium was recorded at 13.44 km (O8), but was an outlier from the 

general trend.  

The second set of clusters under both low and high discharge conditions (B & B1) were characterised 

by a species-poor, mixed transitional fauna, which were composed of holeuryhaline (57 & 41.2 %), 

brackish water (6.7 & 37.9 %) and euryhaline-limnic species (32.7 & 9.3 %), together with small 

numbers of limnic-derived species (3.5 & 10.1 %) (Figures 2 and 4). These clusters were dominated by 

the holeuryhaline amphipod Gammarus zaddachi, the brackish water isopod Cyathura carinata and the 

euryhaline-limnic gastropod Potamopyrgus antipodarum (Figure 2). Under low discharge conditions, 

cluster B (O8-O13) extended from 13.4 km to just below the NTL at 20.4 km upstream (over a 7.9-0.1 

max salinity range), but retracted downstream by 2.9 km (11.3 km to 17.5 km) under high discharge 

conditions (B1; O6-O12, over a 12-0.2 max salinity range; Figure 2). This was represented by a 

downstream migration in the distribution of G. zaddachi and C. carinata and limnic-derived fauna 

Erpobdella octoculata and Asellus aquaticus. This shift in fauna was reflected in a downstream shift in 

the zone of lowest species diversity and highest dominance, which was recorded around the Freshwater 

Seawater Interface (FSI) under both discharge conditions. This general pattern was altered by site O4 

(8.7 km) under high discharge conditions, which had high abundances of G. zaddachi (520 individuals). 

This zone of highest dominance and lowest diversity shifted downstream by approximately 2 km (15 

km to 12.8 km) over salinity gradients of 3.3-0.2 and 10.3-0.2 respectively, demonstrating that salinity 

is the primary environmental variable dictating the location of this zone in the Ouse estuary. 
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The third set of clusters (C & C1) were characterised by an increasingly diverse and abundant limnic-

derived fauna, composed of limnic salt-tolerating (36.6 & 77 %) and limnic (63.3 & 22.2 %) species 

(Figures 2 and 4). Under low discharge conditions, cluster C (O14-O16) extended from above the NTL 

at 22.37 to 47.16 km upstream (in non-tidal limnetic salinities) compared to 20.39 to 28.22 km (in tidal 

(O13) and non-tidal (O14-O15) limnetic salinities) under high discharge conditions (C1). This was 

represented by a downstream shift in the distribution of limnic salt-tolerating fauna (i.e. Gammarus 

pulex and A. aquaticus) of approximately 2 km from the non-tidal river into the tidal limnetic estuary 

(Figures 2 and 4). This reflected an increase in the overall proportion of limnic-derived species in the 

total and upper estuarine fauna between low and high discharge conditions (1.3 % to 5.7 % and 4 % to 

32 % respectively). The downstream shift of G. pulex was mirrored in the downstream shift in the 

holeuryhaline and euryhaline-marine congenerics G. zaddachi and G. salinus (Figure 2).  

In contrast to the euryhaline-limnic and limnic, salt-tolerant species, most limnic species recorded did 

not exhibit a downstream shift in distribution between discharge conditions, with the exception of a 

single trichopteran Limnephilus flavicornis recorded at 16.1 km (O11) under high discharge conditions 

compared to 22.37 km (O14) under low (
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Figure  2). Several limnic species were recorded in the upper estuary (O13) in low abundances under 

low discharge conditions, however due to the low numbers recorded, these may have drifted 

downstream from the non-tidal river, rather than constituting part of a tidal limnetic community. 



15 
 
 

Figure 2. River Ouse summary diagram of species distributions, maximum salinity and significant site 

clusters (p<0.05) under high and low discharge conditions with distance from the river mouth. Species 

shown occur at >2% abundance in one or more samples and are separated into salinity tolerance 

groupings. *Species which contributed to the greatest dissimilarity (<7%) between clusters. 

3.1.2 River Adur 
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As in the Ouse estuary, under both discharge conditions the first clusters in the Adur estuary (A2 & A3) 

were characterised by a diverse and abundant marine dominated fauna, composed of euryhaline-marine 

(75.3% & 88.1%) and brackish water (24.7% & 11.2%) species (average dissimilarity 60 %) (See 

supplementary material Table 3 for clusters and species summary). Under low discharge conditions, 

cluster A2 extended from 0.32 to 8.3 km from the river mouth (max salinities of 35 and min salinity 

gradient of 33.7-0.2), compared to 0.32 to 3.8 km under high discharge conditions (over max salinities 

of 35 and min salinity gradient of 33.7-19.2), a reduction in extent of 4.5 km (Figure 4). However, in 

contrast to the Ouse estuary, this downstream shift in clusters was not reflected in the distributions of 

euryhaline-marine (e.g. C. arenarium, Hediste diversicolor) and brackish water species (e.g. C. 

carinata, Hydrobia ulvae), which dominated the faunal community from 0.32 to 8.27 km (over 

maximum salinities of 35) under both low and high discharge conditions (Figures 3 and 4). 

Under both discharge conditions, the second set of clusters (B2 and B3; average dissimilarity 63.8%) 

were characterised by a species-poor mixed transitional fauna, composed of holeuryhaline (5.8 % & 

11.2%), brackish (79.4% & 71.5%) and euryhaline-limnic (11.2% & 11.4%) species, with small 

numbers of limnic-derived (0.24% & 3.9%) species (Figure 4). These clusters were dominated by C. 

multisetosum and G. zaddachi (Figure 3).  Under low discharge conditions cluster B2 extended from 

10.6 to 17.9 km upstream (over a max salinity gradient of 20-0.4 and 0.2 min salinities). However, 

under high discharge conditions, cluster B3 extended from 8.3 to 17.9 km (35-0.27 salinity range), 

which is reflected in the faunal data with reductions in brackish species and an increase in limnic-

derived species downstream (Figures 3 and 4). This faunal assemblage represented the zone of lowest 

diversity and highest dominance in the Adur estuary. However, in contrast to the Ouse estuary, this 

zone stayed at 14-17.8 km from the river mouth between discharge regimes, indicating that salinity may 

not be the dominant environmental variable dictating the location of this zone in the Adur estuary 

(Figure 4). This zone is immediately upstream of the transition in environmental parameters from lower 

to upper estuary (see supplementary material Figure 1). Diversity (H’) and dominance (BP) indices 

were significantly correlated with sediment grain size parameters (under high discharge conditions), 

indicating that the transition from muddy sands and gravel to fine grained mud (perhaps in addition to 
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additional environmental variables) may limit the upstream migration of some euryhaline-marine and 

brackish species. This is supported by the stationary distributions of most euryhaline-marine and 

brackish water species at 10.6 km upstream despite tolerable maximum salinity conditions continuing 

for a further 8.7 and 4.9 km upstream (low and high discharge conditions respectively). The 

anthropogenic extension of coarse grained sediment for bank stabilisation may explain why this pattern 

was not recorded in the Ouse estuary.  

Under low discharge conditions, the third cluster (C2) was again characterised by a transitional fauna, 

but in contrast to cluster B2, was composed of holeuryhaline and limnic-derived species, rather than a 

transitional brackish community. This cluster had relatively high and increasing (towards the NTL) 

levels of diversity, abundances and richness of holeuryhaline (74.1%), euryhaline-limic (10.7%), limnic 

salt-tolerating (13.7%) and limnic (1.4%) species, however was dominated by high numbers G. 

zaddachi (74.2%), particularly in the tidal limnetic reaches (69% in site A8 and 77% in site A10; Figures 

3 and 4). This cluster extended from 17 to 20.5 km upstream, over tidal limnetic maximum and 

minimum salinities (0.39 - 0.2). The non-tidal (above the NTL) River Adur was characterised by a 

generally diverse and abundant limnic-derived fauna (Figures 3 and 4). 

In contrast to low discharge conditions, under high discharge conditions, cluster C3 extended from 18 

km to above the tidal limits at 26.5 km (encompassing sites A8-A12) over tidal and non-tidal limnetic 

conditions (<0.5; Figure 4). Cluster C3 was characterised by increasing diversity, abundances and 

numbers of limnic-derived species (99.8%) and was similar in faunal composition (average dissimilarity 

61.9%) to the abundant and diverse non-tidal limnic community which constituted the fourth cluster 

(D2) under low discharge conditions (above the NTL at 24 km).  In contrast to the distributions of 

euryhaline-marine and brackish species, this downstream shift in limnic-composed faunal clusters under 

high discharge conditions, was recorded in the distributions of some species, with a number of 

euryhaline-limnic species (i.e. I. elegans) extending their range downstream by 2.44 km (after the 

removal of P. antipodarum) and limnic salt-tolerating species (e.g. A. aquaticus, E. octoculata, 

Gammarus pulex, H. sahlbergi, Potamopyrgus geometra & S. lutaria) by 1.96 km under high discharge 
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conditions (Figures 3 and 4). This is reflected in the proportion of limnic-derived fauna recorded in the 

total and upper estuary between low and high discharge conditions (4.3 % to 21.4 % and 11.2 % and 72 

% respectively).  As in the Ouse estuary, the downstream shift of G. pulex was mirrored in the 

downstream shift of G. zaddachi (Figure 3). 

In contrast to the euryhaline-limnic and limnic, salt-tolerating species, the downstream distribution of 

limnic classified species remained static at 18.01 km (although within the tidal limits) as in the Ouse 

estuary. 
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Figure 3.  River Adur summary diagram of species distributions, maximum salinity and significant 

site clusters (p<0.05) under high and low discharge conditions with distance from the river mouth. 

Species shown occur at >2% abundance in one or more samples and are separated into salinity 

tolerance groupings. *Species which contributed to the greatest dissimilarity (<7%) between clusters. 
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Figure 4. Summary diagrams of salinity parameters, significant site clusters (p<0.05), community 

composition indices and relative abundance of salinity tolerance groups with distance from the river 
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mouth under low and high discharge conditions (i.e. high and low saline incursion extents) for the 

River Adur (a) and River Ouse (b). 
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Figure 5. Modified Remane diagrams showing number of species per salinity tolerance grouping 

along the average salinity gradient of the River Adur (a) and River Ouse (b) under low (1) and high 

(2) discharge conditions.  

3.2 Environment-species relationships 

Under low and high discharge conditions, saltwater penetrated 16.98 km and 13.25 km into the Adur 

estuary and 16.06 km and 14.91 km into the River Ouse estuary respectively; a reduction in incursion 

extent of 3.73 km for a 0.52 m3 s-1 reduction in river discharge in the Adur and 1.15 km for a 0.7 m3 s-1 

reduction in the Ouse (Table 2). A corresponding reduction in the maximum (high tide) salinity gradient 

was also recorded.  

In the Adur and Ouse estuaries there was a clear division into lower and upper estuarine zones (at 14.06 

km and 13.44 km respectively). The lower estuaries were characterised by high maximum salinities, 

macroalgal cover, high dissolved oxygen concentration (63-91%) and poorly sorted sediment (silty mud 

with sand containing shells and gravel) with a high calcium carbonate (up to 72%) and low organic 

content (2–5%). At sites O2-O5 on the lower Ouse estuary, a surface layer of coarse sediment (chalk or 

limestone riprap) had been used to stabilise the channel banks (Environment Agency, 2010). In contrast, 

the upper Adur and Ouse estuaries were characterised by low maximum salinity (3.3) to tidal limnetic 

(<0.5) conditions, a shift from saltmarsh vegetation to emergent macrophytes, relatively low dissolved 

oxygen concentration (6–67%) and fine grained sediments (silty mud) with decreasing calcium 

carbonate content (17–3%) and increasing organic content (2–21%) (See supplementary material Figure 

1 for summary of environmental variables). 

A DCCA of the combined macrofaunal and environmental data showed a distinct clustering of samples 

within the biplot and the location of major faunal changes within and between and the Adur and Ouse 

under both discharge conditions (Figure 6). The pattern of species distributions indicates a strong 

salinity signal over the marine to freshwater transition, with the transition from euryhaline-marine to 

brackish to limnic species identifiable from left to right within the biplot, with holeuryhaline (i.e. 

Gammarus zaddachi) and euryhaline-limnic (i.e. Potamopyrgus antipodarum) species occupying 
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central positions (Figure 6). The biplot indicates spatial and temporal shifts in faunal assemblages 

between discharge conditions.  This is most clear (based on biplot position) in the mid to upper-estuary 

sites (O6-O12 & A4-A10), with lower estuary sites showing less difference between discharge regimes 

(Figure 6). The general pattern of faunal distributions suggested that these two rivers were broadly 

comparable in terms of the resident macroinvertebrate species recorded and their relationships with 

environmental variables.  
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Figure 6. Detrended Canonical Correspondence Analysis (DCCA) triplot for the combined faunal 

dataset of the River Adur and River Ouse (sites O1 – O13), under low and high discharge conditions, 

showing selected environmental variables with sites (a.) and most abundant species (b.). 

 

DCCAs performed on the Adur and Ouse datasets independently under both low and high discharge 

conditions, suggested that the variance explained by axis 1 was strongly driven by salinity, although 

co-variation was observed with macrophyte cover and organic content and sediment grain size in the 

Ouse estuary (Figures 7 and 8). Faunal changes were clearly identifiable along the salinity gradient (35 

– 0.1) and in response to salinity differences at sites along both estuaries, although these were most 

pronounced in the lower zones, where the largest changes in average, maximum and minimum salinity 

occurred (Figures 7 and 8). A significant negative (p<0.01) relationship existed for all salinity 

parameters in both estuaries when plotted against DCA axis 1 sample scores, emphasising the 

importance of salinity influencing species distributions. As the lower catchment area for both rivers is 

situated on chalk, it is expected that calcium carbonate covaried with these salinity parameters. Whilst 

this might be largely coincidental, sites O2 and O3 on the Ouse estuary appeared more strongly 

associated with CaCO3 content and coarse grain size parameters, which may be the result of shell 

deposits and/or human modification of the channel at these sites (i.e. addition of chalk cobbles for bank 

stabilisation; see supplementary material Figure 1). Salinity was inversely related to organic content 

and macrophyte cover, which were important parameters in the upper estuary and above the NTL 

(Figures 7 and 8). 
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Figure 7. Detrended Canonical Correspondence Analysis (DCCA) triplot of the River Adur under low 

(a) and high (b) discharge conditions, showing selected environmental variables and selected most 

abundant macroinvertebrate species. 
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Figure 8. Detrended Canonical Correspondence Analysis (DCCA) triplot of the River Ouse estuary 

(sites O1 – O13) under low (a) and high (b) discharge conditions, showing selected environmental 

variables and selected most abundant macroinvertebrate species. 

3.3 Future saline incursion projections 

Projected RSLR under the SRES A1FI scenario for the years 2020, 2050 and 2080 resulted in an 

increase in salinities and the upstream extent of saline incursion in the Adur and Ouse estuaries when 

compared to current salinity profiles (Table 2). However, these increases were relatively small, even 

for the greatest projected RSLR (0.677 m; 95th %ile for 2080) under low discharge conditions. In the 
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Adur estuary this RSLR resulted in a 0.32 km and 0.78 km increase in saline incursion between low 

and high discharge conditions respectively, compared to 0.15 km and 0.89 km in the Ouse estuary 

(Table 2). The small increases predicted for both estuaries under low discharge conditions (compared 

to high) is probably due to the influence of increasing bed gradient in the upper estuary. This is reflected 

in the Ouse estuary where an artificial increase in gradient at a cut-through channel acts as a partial 

barrier to the upstream ingress of saline water (Figure 1). The differences in salinity and saline incursion 

extent recorded between discharge conditions highlight the importance of river flow in determining 

salinities in these estuaries (Table 2). It is important to note, however, that neither projected increases 

in tidal amplitude (related to RSLR) or extreme tide height events (i.e. storm surges) were included in 

these projections, which are likely to increase salinity and saline incursion extents projected for these 

estuaries. 

 

Table 2. Recorded and predicted saline incursion extents in the River Ouse and Adur estuaries under 

low and high discharge conditions for the SRES: A1FI RSLR scenarios for the years 2020, 2050 and 

2080. 

 

4 Discussion 

Salinity is the primary environmental variable driving species distributions and community composition 

in estuaries (Attrill, 2002; Bulger et al., 1993; Elliott and Whitfield, 2011; Remane and Schlieper, 1971; 
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Whitfield et al., 2012) and large increases in salinities (in response to reductions in river discharge) 

have resulted in upstream shifts in the distributions of brackish and marine species and the local loss of 

freshwater-derived species (Attrill et al., 1996; Bessa et al., 2010; Herborg et al., 2005; Kingsford et 

al., 2011). As shown here, once river flows increase and salinities subsequently decrease, euryhaline-

limnic and limnic salt-tolerating freshwater species repopulate these upper estuarine areas via 

downstream drift (Attrill et al., 1996). In the Adur and Ouse estuaries the decrease in salinities and 

saline incursion between low and high discharge conditions resulted in a downstream shift in the 

distribution of some species thus changing community composition indices. The extent of these 

changes, however, differed within and between the Adur and Ouse estuaries, indicating a hierarchical 

response of the benthos to both environmental and biological variables to varying degrees (Ferraro and 

Cole, 2012). 

In the lower to mid zones of both estuaries, the distributions of most euryhaline-marine and brackish 

species were closely associated with coarse grained sediment (i.e.  >4mm; i.e. granules, pebbles and 

cobbles) with the transition from sandy mud with gravel to fine grained silty mud apparently a barrier 

to the upstream distributions of some of these species, particularly in the Adur estuary, where the effect 

may have been observed on the community composition (low diversity, high dominance zone; Remane 

1934), usually linked to salinity (Whitfield et al., 2012). This sediment boundary ‘effect’ was less 

apparent in the Ouse estuary, where anthropogenic modification of the estuary banks extended coarse 

grained sediment (i.e. chalk cobbles) further upstream. The observed association between grain size and 

the distribution of euryhaline-marine and brackish water species may be related to habitat heterogeneity, 

food retention and the refuge potential of pebbles and cobbles, providing protection against aerial 

exposure (desiccation), predation and access to higher interstitial salinities in the estuary at low tide 

(Fischenich, 2003; Gray and Elliott, 2009; Hayward and Ryland, 1995; Lincoln, 1979; Williams and 

Hamm, 2002). This refuge function may extend the upstream range of euryhaline-marine and brackish 

species into areas of the estuary which would otherwise be outside their tolerance range (e.g. G. salinus, 

M. palmata, C. maenas and L. pilosus were observed partially buried in the sediment under stones and 

cobbles in sites with tidal limnetic salinities at low tide). The interstitial salinity of intertidal sediments 
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varies with season and large-scale changes in river flow (Chapman and Brinkhurst, 1981; Wolff, 1973). 

The downstream shift in these species recorded in the River Ouse under high discharge conditions, 

could therefore indicate a reduction in both the maximum salinity of the overlying water at high tide, 

and the sediment interstitial salinity at low tide. 

This sediment boundary may limit future upstream migration of these species in response to predicted 

increases in salinity and saline incursion. In both estuaries, the low diversity, high dominance, mid to 

upper estuarine zones were inhabited by species that can cross these sediment habitat boundaries (i.e. 

inhabit both mixed and fine grained sediments) and can tolerate the physiologically challenging mid to 

low maximum salinities (0.41 - 8) experienced at these sites (e.g. the estuarine ‘specialists’ G. zaddachi, 

C. carinata, C. multisetosum and P. antipodarum; Alonso and Castro-Díez, 2008; Barnes, 1994; Gérard 

et al., 2003; Lincoln, 1979). As such, rather than increasing salinities directly reflecting a shift in species 

distributions and community composition indices as per species salinity tolerances (as per Remane, 

1934); these low diversity, high dominance mid to upper estuarine zones may extend upstream. 

In the Ouse estuary, the zone of lowest faunal diversity and highest dominance was located around the 

freshwater-seawater interface (FSI), which shifted downstream between low and high discharge 

conditions.  The FSI has been highlighted as a key site for physical, chemical and biological 

interactions within the water column, but is not typically associated with zones of lowest diversity 

(Deaton and Greenberg, 1986; McLusky and Elliott, 2004; Rundle et al., 1998; Uncles, 2003). These 

zones have been predicted to exist from 5 to 8 (often termed the area of ‘critical salinity’ or 

horohalinicum), which is believed to represent an ecophysiological boundary at the point at which 

limnic species become intolerant to increases in salinity and only a few euryhaline-marine and 

brackish species can survive (Deaton and Greenberg, 1986; Remane and Schlieper, 1971; Telesh and 

Khlebovich, 2010; Wolff, 1973). With the exception of P. antipodarum, no euryhaline-limnic and 

only a small number of limnic salt-tolerating species (i.e. Eropbdella testacea, E. octoculata, A. 

aquaticus, Potamopyrgus flavomaculatus and S. lutaria) were recorded in the FSI zones, despite 

being within these species reported salinity tolerances. This may be due to the fluctuating 
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physiochemical conditions (in addition to salinity) experienced at the FSI over a tidal cycle (i.e. 

increased turbidity, decreased oxygen content and the biogeochemical processes at salinities of around 

1 – 2; McLusky, 1993; Uncles, 2003), compared to the comparatively stable tidal limnetic sites in the 

upper estuary (Uncles and Stephens, 1993). 

The ability of limnic-derived species to inhabit the FSI and tidal limnetic zones potentially indicates a 

degree of tolerance and/or adaptability to fluctuating physiochemical tidal conditions (e.g. increased 

turbidity, oscillating water levels, decreased oxygen content and changing current velocities and 

directions; Rundle et al., 1998; Schuchardt et al., 1993a) and low salinities that are currently not 

widely recognised (Williams and Williams, 1998b). In the absence of extreme salinity increases (e.g. 

driven by droughts and storm surges) or ‘squeezing’ of the tidal limnetic zone (i.e. against in-stream 

engineering structures such as weirs/ dams), some of these species may persist in tidal conditions 

where salinity increases are gradual, particularly in estuaries and rivers where abiotic environmental 

factors (such as substratum composition) provide suitable habitat and refuges for these species 

(Williams and Hamm, 2002). For example, some studies have shown that limnic macroinvertebrate 

species have considerable physiological capacities to tolerate saline conditions (Berezina, 2003; 

Chadwick and Feminella, 2001; Chadwick et al., 2002; Kefford et al., 2007), particularly aquatic 

insects, which have traditionally been viewed as the most sensitive to increases in salinity, but most 

frequently overlooked in estuaries (Williams, 2009). Several of these taxa have been shown to 

function normally in brackish estuarine environments (Blinn and Ruiter, 2006; Müller, 1980; Piscart 

et al., 2005; Williams, 2009; Williams and Hamm, 2002; Williams and Williams, 1998a). As such, the 

response of these fauna may be more complex and occur over longer time periods than is currently 

assumed, particularly as the physiological mechanisms that allow species and populations to survive 

saltwater incursion (and other climate stressors, such as temperature, which may act synergistically) 

are still not fully understood and neither are the time-scales on which different physiological and 

evolutionary mechanisms could operate (Tills et al., 2010). The role of TFZs (and resident limnic-

derived fauna) on the structure and functioning of estuaries has not been quantified, however any loss 

or change in these areas is likely to be detrimental to estuarine food-web function (Williams and 
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Williams, 1998b) and physical, chemical and biological processes essential to ecosystem health and 

the continued provision of ecosystem services (Schuchardt et al., 1993b). 

The current study has emphasised the effect of salinity, related to tidal incursion, as the primary 

environmental driver within estuaries. However, salinity clearly acts in a hierarchy with substratum 

type; the latter being of importance due to its role in providing habitat diversity, acting as a refuge and 

retaining food. Superimposed on these factors are biotic relationships of competition and predator-

prey relationships. For example, the observed downstream shift of the limnic-derived G. pulex in both 

estuaries under high discharge conditions may explain the downstream migration of the holeuryhaline 

G. zaddachi (and subsequently the distribution of the euryhaline-marine G. salinus in the Ouse 

estuary) due to interspecific competition forced by the downstream migration of competing 

congenerics (Kolding, 1986; Korpinen and Westerbom, 2009; Lincoln, 1979).  These follow the 

scheme outlined by Wolanski & Elliott (2015) whereby the environment-biology relationships create 

and fill the set of niches in both the water column and benthic substrata and then the biology-biology 

relationships modify the resultant community.  This complex set of relationships challenges the use 

of, and assumption that, species salinity tolerances alone will determine species distributions and 

community compositional change associated with future climate-driven increases in salinity and 

saline incursion.  This is supported by the disparity between recorded species distributions and 

projected distributions based on salinity tolerance ranges. This may also reflect the current poor 

knowledge regarding the salinity tolerances of estuarine (particularly limnic-derived) species.  

RSLR projections increased salinities and the extent of saline incursion in the Adur and Ouse and 

similar estuaries but these increases were moderate, even when based on the greatest projection of 

RSLR and low summer discharge conditions. However, in estuaries where river flow mainly determines 

salinity, reductions in river flow may be more critical than projected increases in relative sea level in 

determining future saline incursion extents, with only small differences between summer and winter 

discharges in the Adur and Ouse estuaries (0.52 m3 s-1 and 0.7 m3 s-1), resulting in large differences in 

salinities and saline incursion (3.73 km and 1.15 km).  Under future climate change, summers are 

projected to be warmer and drier, resulting in reductions in river discharge both directly and indirectly 
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through reductions in reservoir levels (through increases in evaporation), increased abstraction (for 

domestic, agricultural and urban use) and an increase in evapotranspiration and soil moisture deficits, 

reducing the volume and distribution of water to groundwater recharge and run-off to river systems 

(Herrera-Pantoja and Hiscock, 2008; IPCC, 2013; Murphy et al., 2009; Robins et al., 2016; Wilby et 

al., 2010). In the 2080s (under high emissions), long term mean annual potential groundwater recharge 

in SE England (the study area) is predicted to decrease by 40% (with decreases from 2011 to 2100 in 

summer and winter) together with a marked decrease in summer river flows (Herrera-Pantoja and 

Hiscock, 2008). In contrast warmer and wetter winters (Murphy et al., 2009; Telesh et al., 2011) may 

increase river discharge (and groundwater recharge), which would act to reduce salinities and result in 

extreme seasonal differences in saline incursion extents between summer and winter (Robins et al., 

2016). These changes may both reflect and be caused by changes to the North Atlantic oscillation 

(NAO) patterns (Attrill and Power, 2002). This may increase flash floods but as yet the influence of 

high-intensity, episodic events rather than chronic salinity changes on the fauna is as yet not known. 

Seasonal differences in saline incursion extents may make the distributions of mobile estuarine benthic 

species more variable and unable to progress beyond early benthic community succession as favourable 

conditions extend and contract (Santos et al., 1996; Ysebaert et al., 2005).  

Despite the above, the effect of changing climate on increased winter river flows might be negated by 

future increased abstraction of freshwater to support growing coastal populations (particularly in SE  

England), which has been estimated to considerably exceed any future effects of climate change on 

river flow regimes (Lester et al., 2011; Vorosmarty et al., 2000; Vorosmarty et al., 2010). For example,  

applying projected modelled reductions of 32 % (as per Romanowicz et al., 2006) to the summer river 

discharge of the River Adur, results in over five times the increase in saline incursion predicted for 

RSLR alone (from 0.32 km to 2 km for a 67 cm RSLR). It is also of note that these tide and salinity 

profiles have been determined under reference conditions (MHWS/MLWS tide heights and moderate 

low and high freshwater discharge regimes) and as such do not factor in extreme events (e.g. highest 

tides, storm surges, drought and flood). These profiles are therefore likely to underestimate the full 

extent of saline incursion under an extreme combination of these conditions.  
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5 Conclusions 

This research clearly indicates that salinity is the primary environmental driver of benthos 

composition in the Adur and Ouse estuaries. However, the response of estuarine benthic communities 

to climate-driven increases in saline incursion over the long-term should not be assumed to simply 

follow patterns of species salinity tolerances. We clearly illustrate that this assumption is over-

simplistic and fails to represent the complex variability of estuarine ecosystems and hierarchical 

relationships between the fauna and environmental (e.g., substratum) and biological drivers (e.g., 

competition). 

Tidal freshwater zones and their associated fauna are vulnerable to future increases in salinity and its 

incursion upstream; although the fauna probably possess greater tolerances to salinity variability than 

has previously been recognised and may persist, particularly where changes are gradual and the zones 

within the estuary are unbounded. The long-term repercussions of future climate driven changes in 

salinity and saline incursion on the structure and function of estuaries are largely unknown but 

requires much greater attention to enable the development of sustainable management strategies to 

safeguard estuarine ecosystem health and resilience into the future.  
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Appendix A. Supplementary data 

Table 1. Macroinvertebrate species recorded in the River Ouse and River Adur under high and low discharge conditions. Species listed with their allocated salinity tolerance 

grouping and primary literature sources. 
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Table 2. Macroinvertebrate species and relative abundances recorded in the significant (p<0.05) site 

clusters (with associated distances and maximum salinities) of the River Ouse under high and low 

discharge conditions. * Limnic derived species recorded within the estuarine extent. 
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Table 3. Macroinvertebrate species and relative abundances recorded in the significant (p<0.05) site 

clusters (with associated distances and maximum salinities) of the River Adur under high and low 

discharge conditions. * Limnic derived species recorded within the estuarine extent. 
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Figure 1. Summary diagram of selected environmental variables in the River Adur (a.) and River 

Ouse (b.). 
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