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Abstract

Osteoporosis is a prevalent bone condition, characterised by low bone mass and increased

fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture

risk is through quantification of bone mineral density (BMD) using dual energy X-ray

absorption (DEXA). However, the risk of osteoporotic fracture is determined collectively by

bone mass, architecture and physicochemistry of the mineral composite building blocks. Thus

DEXA scans alone inevitably fail to fully discriminate individuals who will suffer a fragility

fracture. This study examines trabecular bone at both ultrastructure and microarchitectural

levels to provide a detailed material view of bone, and therefore provides a more

comprehensive explanation of osteoporotic fracture risk. Physicochemical characterisation

obtained through X-ray diffraction and infrared analysis indicated significant differences in

apatite crystal chemistry and nanostructure between fracture and non-fracture groups.

Further, this study, through considering the potential correlations between the chemical

biomarkers and microarchitectural properties of trabecular bone, has investigated the

relationship between bone mechanical properties (e.g. fragility) and physicochemical material

features.
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Introduction

Osteoporosis affects approximately 200 million women around the world. In the UK alone

50% of women will suffer a fracture after the age of 50 [1], a rate which is annually

increasing due to the aging population. Osteoporotic fractures often occur in the hip, wrist

and vertebrae; although studies have shown hip fractures have the greatest detrimental effect

on an individual [2]. Hip fractures result in a significant loss of independence, and sufferers

are unable to live without support as they cannot walk unaided or perform many of their daily

activities. Worryingly, hip fractures are often associated with increased mortality [3, 4], a

statistic which is confounded by the asymptomatic nature of osteoporosis. Osteoporosis is

often assessed according to an individual’s bone mineral density (BMD) [5]. With a decrease

in BMD, the risk of fracture is significantly increased [6]. Currently the gold standard for

measuring BMD is through the use of dual energy X-ray absorption (DEXA). Unfortunately

DEXA is not without limitations and is arguably a poor predictor of fracture, with a study

carried out by Wainwright et al. showing that 54% of new hip fractures occurred in women

who did not have osteoporosis as determined by their BMD [7] and data from the National

Osteoporosis Risk Assessment, showed that 82% of post-menopausal women with fractures

had bone of 'normal' BMD [8]. The limitation of DEXA was perhaps highlighted with the

development of FRAX, the World Health Organisation (WHO) fracture assessment tool,

which uses BMD along with clinical risk factors and country-specific fracture and mortality

data to quantify a patient's 10-year probability of a hip or major osteoporotic fracture [9].

FRAX takes into account demographic information such as age, sex, a prior fracture, family

history of fracture, and lifestyles risk factors such as physical inactivity and smoking.

The limits associated with BMD to predict an individual patient’s fracture risk is arguably

because it does not measure the multiple material factors that contribute to bone strength

[10]. There are several complex determinants of bone strength and fragility, and although

properties which may increase the resistance to one type of mechanical demand, for example

static loading, may also be detrimental to other kinds such as fatigue loading [11]. For this

reason, material scientists differentiate between stiffness: how well a material resists

deformation, toughness: the ability of a material to absorb energy prior to failure and

strength: the ability of a material to resist failure when stretched or compressed. In this

manuscript, strength refers to the ability of the material to withstand loading before structural

failure occurs. The assumption is that bone strength is lower for the fracture group than that

of the non-fracture group. Further mechanical testing would be required to establish whether
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bone chemistry parameters investigated in this study are independently correlated to stiffness,

toughness or strength.

In this context, bone strength is a combination of bone density as well as ‘bone quality’,

whereby bone quality refers to bone architecture (i.e. macro and micro) and bone chemistry

[10]. A small number of studies (possibly due to the difficulty of obtaining human bone,

especially osteoporotic specimens) have shown microarchitectural properties of bone

potentially offer a superior way to differentiate between diseased bone (due to osteoporosis or

osteoarthritis) when compared to healthy controls [12 - 14]. This has recently led to the

investigation of various imaging techniques including high-resolution peripheral quantitative

computed tomography (HR-pQCT) and the development of analytical tools such as trabecular

bone score (TBS). Unfortunately, HR-pQCT is restricted to peripheral skeletal sites and

therefore the lumbar spine or proximal femur (common sites for osteoporotic fragility

fractures which are associated with the most significant quality of life burden for patients)

cannot be imaged with this technique [15]. TBS, which captures information relating to

trabecular microarchitecture by performing novel grey-level texture measurements on DEXA

images [16], is undoubtedly promising; however, this tool quantifies the micro architecture of

the bone only and does not account for bone chemistry.

Bone chemistry is more complex, with studies often providing contradicting results and

conclusions [17 – 23]. Unfortunately, many of the studies which investigate the chemistry of

osteoporotic bone are limited by relatively low sample numbers (n ≤ 10 for both osteoporotic

and ‘normal’ specimens) [20, 24, 25] and/ or utilise ovariectomized (Ovx) animal models [26,

27]. Exceptionally, a more recent study by Boskey [22], investigated the material properties

of a large number of cortical and trabecular specimens (n = 120) using Fourier transform

infrared spectroscopy (FTIR). The bone specimens were collected from the iliac crest (as a

proxy for fractures at other sites) between 6 months and 5 years after a fracture. Several

previous studies have examined the physicochemical properties of the inorganic bone

component (i.e. the hydroxyapatite mineral) characterised by X-ray diffraction (XRD) [17,

24, 25] and the organic component (i.e. collagen) as characterised by Raman spectroscopy

[28, 29] or Fourier transform infra-red spectroscopy (FTIR) [26, 30 - 33]. Perhaps of most

relevance are those reports detailing differences between osteoporotic and ‘normal’ tissues,

although inconsistencies are frequent. For example, reports such as those of Thompson et al

[17] and Faibish and Boskey [34] suggested an increase in crystallite size in osteoporotic
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tissue. However, these two reports differ in conclusions regarding the crystal chemistry;

Thompson suggested a decrease in carbonate [17], while Faibish and Boskey [34] argued for

an increase when comparing osteoporotic to normal bone. An increase in both crystallite size

and carbonate content was reported by Gadeleta et al [18]. Several reports have been unable

to demonstrate significant differences between osteoporotic and normal bone tissue when

considering crystallite size [20, 27, 35] although a review by Boskey in 2003 reported that the

general consensus accepts that osteoporotic bone mineral has larger crystallites than the non-

osteoporotic counterparts [19]. It is evident from the literature this view point is contentious.

A more recent study by Boskey et al. [22] reported a decrease in carbonate to phosphate

ratios in fractured bone compared to non-fractured cortical bone, suggesting either a decrease

in carbonate and/ or an increase in phosphate. No other differences were observed for either

cortical or trabecular bone. In contrast, McCreadie et al. reported an increase in the carbonate

to phosphate ratio between specimens collected from women with and without osteoporotic

fractures [28].

There have been a few studies that have examined changes to the hydroxyapatite unit cell

parameters (as a proxy for lattice substitutional modifications) of osteoporotic and/or aged

bone mineral [35, 36]. The major substitution in biological hydroxyapatite is carbonate,

which substitutes for the hydroxyl (A – type) and/ or phosphate (B-type) in the crystal lattice

or exists on the apatite surface (labile carbonate) [37, 38]. In general, a decrease in ‘a’ axis

and an increase in the ‘c’ axis lattice parameters has been reported with age [36]. These

trends are consistent with increased in B-type carbonate substitution [37] observed in

synthetic apatites. In contrast other studies were unable to detect differences in the lattice

parameters of osteoporotic bone [35]. As a further bone characteristic measured by FTIR, it

has been reported that for osteoporotic tissues the mineral to organic ratio is lower than that

of normal bone [18, 30]. Thus in general, the literature contains several previous studies of

bone physicochemical characteristics but these very often provide apparently conflicting

findings and results. This, in the context of our work, is considered in further detail within

our Discussion section.

The study described herein reports the physicochemical properties assessed using XRD and

FTIR for trabecular bone obtained from the femoral head of individuals who suffered a

femoral neck fracture and from a corresponding group where no fracture was reported.

Further to this investigation, the data provided an opportunity to explore relationships
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between the ultrastructure material building blocks and the derived architectural properties.

Thus the potential relationship between the bone mineral chemical properties – and the micro

architectural properties of bone was investigated. This novel component of the work only

involved the fracture group as relatively large deviations in architecture would be expected in

this group.

Materials and Methods

Bone Specimens

A sample set of 20 femoral heads were collected from osteoporotic female patients who had

suffered fragility fractures at the femoral neck and consequently required hip replacement

surgery. Of these 20, the donor’s age was available for 16 of the femoral heads, ranging from

59 – 91 years old. Ethical approval for the collection and use of these specimens was

provided by Gloucestershire NHS trust REC. Non-fracture femoral head specimens were

collected from 39 female donors within the Melbourne Femur Collection. All donors from

this source were coronial cases and had therefore died suddenly and unexpectedly as result of

accidents. Ethical approval for the collection and use of these specimens was provided by

Melbourne University. Population characteristics for both fracture and non – fracture

specimens are provided in Table 1.

Age Matched
(70 + years)

Fracture
Non-

Fracture
Fracture

Non-
Fracture

p-value

Donors 16 39 15 21

Age Range (yrs) 59 - 91 20 – 90 73 – 90 71 - 90

Age Mean (yrs) 82.4 ± 6.4 66.1 ± 17.9 82.5 ± 4.1 79.4 ± 5.4 0.064

Weight Range (kg) 41 - 79 40 - 121 41 - 79 49 - 87

Weight Mean (kg) 61.1 ± 8.9 66.7 ± 19.7 60.8 ± 9.1 63.69 ± 13.0 0.494

Stature Range (cm) 155 - 173 145 - 169 155 - 173 146 - 169

Stature Mean (cm) 163.9 ± 5.2 159.6 ± 6.7 164.3 ± 5.1 159.6 ± 7.1 0.060

Table 1: Population characteristics for the fracture and non-fracture groups including

characteristics once age matched (70 + years). The standard deviations for all mean values

are provided. p – values are provided for comparison of the age matched data (age, weight
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and stature) for the two groups. p – values were calculated using a t-test, with a confidence

level of 95%, after assessing normality and differences in variances. Note weight and stature

data was only available for n = 24 for all the non - fracture donors and n = 13 for the age

matched non-fracture donors.

Sample Preparation

Trabecular bone was obtained and analysed for this study from the femoral head. Overall the

strategy was to select random samples with respect to femoral head location although each

sample was cut to include tissue from at least two quadrants of the head. The femoral head is

often defined into four quadrants: anterior, posterior, inferior and superior [39, 40]. It is

important to note that samples were obtained from trabecular bone only, and did not include

cortical bone. For a complete description of the sampling and sectioning procedure refer to

[41 - 43]. Prior to data collections, the specimens were homogenised using a Retsch mixer

miller (mm 2000) and a zirconium oxide milling basket and ball. The specimens were cut into

smaller sections, to reduce the number of milling cycles and milled for one minute. Once

powdered, the specimens were sieved through a stainless steel mesh sieve of 106 μm to 

ensure a homogenous fine powder sample.

X-ray diffraction (XRD)

The powdered trabecular bone specimens were individually loaded on to low background

scattering (off-cut silicon) XRD holders. The bone powder was spiked with a NIST standard

reference silicon powder (640c) to provide an internal standard required for determining

accurate lattice parameters. XRD analysis was carried out using a PANalytical X’Pert PRO

Multi-Purpose Diffractometer with Cu Kα radiation. A PIXcel strip detector was used to 

collect data as stepped scans across an angular range of 15 – 80 2θ (o) (5.90 – 1.20 Å). The

count time at each step was equivalent to ~ 1 second. Data was also collected for two further

stepped scans under the sample conditions but across an angular range of 23 – 27 2θ (o) (3.86

– 3.30 Å d-spacing) and 50 – 55 2θ (o) (1.82 – 1.67 Å d-spacing), and with a count time at

each step equivalent to ~ 3 seconds. The two additional stepped scans were collected to

provide greater quality data for the 002 and 004 Bragg maxima respectively. This data was

used to accurately calculate the full width half maximum (FWHM) of both the 002 and 004

Bragg maxima. The FWHM values were then used to calculate coherence length using the
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Scherrer equation, as described below. Bruker Topas software (Version 4.1, 2008) was

employed to undertake profile fitting of each diffraction profile. This provided quantitative

crystallite size and morphology parameters through calculation of the coherence length and

structural parameters of the crystal lattice through the lattice parameters.

Coherence length was calculated for two orthogonal crystallographic directions, <00ℓ> and 

<0k0> using the Scherrer equation, which uses the instrument corrected, full width half

maximum of the desired peak, as described in [44]. The lattice parameters were calculated

from whole pattern fitting refinement of diffraction profiles to obtain the 2θ peak positions. 

Sample displacement was refined and lattice parameter data corrected accordingly. No unit

cell content model was applied and analytical peak shapes were pseudo-Voigt. The data

collection, correction and analyses were repeated three times for five randomly selected

specimens to assess repeatability.

Fourier Transform Infrared Spectroscopy (FTIR)

FTIR analysis was carried out using an attenuated total reflectance (ATR) – FTIR. ATR-

FTIR reduces sample preparation as there is no requirement for preparation of potassium

bromide (KBr) pellets and the bone powder can be examined directly. This reduces potential

contamination. Although ATR spectra measured by FTIR are similar to those collected by

transmission measurements it is worth noting there are subtle differences. This is due to the

wavelength dependency of the penetration depth in the sample and the anomalous dispersion

of the IR-light. Consequently in ATR, which is a surface analysis technique, IR absorbance

bands at long wavelengths will be of higher absorbance than those of shorter wavelength.

Approximately 2 mg of homogenised bone powder (~106 μm particle size) was used for

analysis. Three x 2 mg of bone powder per specimen was analysed to assess repeatability.

FTIR spectra were collected using a Bruker Alpha Platinum ATR and analysis carried out

using PerkinElmer Spectrum software. A scan resolution of 4 cm-1 and 16 scans was

employed for data collection, within a range of 2500 – 400 cm-1.

FTIR analysis was employed to provide semi-quantitative data on the organic and carbonate

content in the specimens. Following convention [45 - 48], the mineral: organic ratio was

assessed through measuring the area of the v3 phosphate (1200 – 900 cm-1) and the amide I
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(1750 – 1600 cm-1) bands. The carbonate: phosphate was assessed through measuring the

area of the v2 carbonate (890 – 850 cm-1) and v3 phosphate bands.

Micro Computed Tomography (µ - CT)

The relationship between architectural properties and physicochemical parameters were

investigated for this study. The architectural properties of the fracture specimens, obtained

from µ- CT, have previously been reported, details of which can be found elsewhere [41].

Parameters such as trabecular number (TbN), structure model index (SMI), trabecular

thickness (TbTh), bone volume to total volume (BV/ TV) and tissue mineral density (TMD)

were previously reported. It is important to note that the same specimens quantified using µ-

CT were pulverised once imaged and analysed for this study. Additional tissue from the same

patient was not utilised.

Statistical Analysis

Linear regression analysis was carried out to statistically assess correlations between various

material characteristics parameters and age for the non-fracture group. A general linear model

ANOVA analysis was also undertaken to determine significant differences between the

parameters measured for age matched fracture and non-fracture groups. Donors of age 70

years and greater were utilised for quantitative comparisons between the two groups, to avoid

any bias arising from differences in age distributions. For the fracture group, n = 15, as one

donor, a 59 year old, was excluded from the age matched statistical analysis. For the non –

fracture group, n = 21 when age matching. p < 0.05 was considered statistically significant

for both the linear regression and ANOVA analysis.

Results

This study reports the material quality of trabecular bone from human fracture and non –

fracture specimens, with the parameters analysed correlated to age. Further, the material

quality parameters associated with the fracture specimens have been correlated to the

microarchitecture properties (previously reported in [41]). This provides a more
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comprehensive understanding of how a change in the material chemistry can be associated

with parameters such as trabecular number (TbN), tissue mineral density (TMD), structure

model index (SMI) and bone volume to total volume (BV/TV). The average values and

associated errors of the material properties derived from both XRD and FTIR analysis are

presented in table 2, along with the p-values associated with age matched ANOVA analysis

of fracture (n = 15) and non-fracture groups (n= 21).

All Specimens Age Matched (70+ yrs)

ANOVA
Non -

Fracture vs
Fracture

(Age
Matched)

Fracture
Non –

Fracture
Fracture

Non –
Fracture

p – value

N 16 39 15 21 -

CL 00ℓ (nm) 
27.5
(0.6)

28.9
(0.3)

27.4
(0.4)

28.8
(0.4)

0.020

CL hk0 (nm)
8.24

(0.10)
8.21

(0.08)
8.25

(0.09)
8.32

(0.10)
0.487

LP ‘a’ axis (Å)
9.402

(0.001)
9.406

(0.001)
9.403

(0.001)
9.407

(0.001)
0.002

LP ‘c’ axis (Å)
6.896

(0.0006)
6.895

(0.002)
6.897

(0.0004)
6.896

(0.002)
0.320

Mineral: Organic
7.10

(0.08)
7.06

(0.08)
7.02

(0.03)
7.23

(0.09)
0.077

Carbonate:
Phosphate

0.0199
(0.0004)

0.0185
(0.0002)

0.0202
(0.0003)

0.0184
(0.0003)

0.000

Table 2: Average values (in bold) and the associated errors (± SEM) in brackets for the

material parameters obtained from XRD and FTIR analysis, for fracture and non-fracture

groups. p – values for age matched ANOVA analysis of fracture (n = 15) and non-fracture

groups (n= 21), for each material characteristic parameter are also provided.



10

X-ray Diffraction (XRD)

Coherence length, which provides a quantitative estimate of crystallite size and strain

combined (i.e. the total lattice disorder), did not change with age for the non – fracture group

in the <00ℓ> crystallographic direction, but was found to increase (p = 0.016) with age when 

the <0k0> direction was considered (Figure 1A). The coherence length values for the fracture

group were lower (p = 0.020) when age matched to the non – fracture group specimens in the

<00ℓ> direction (see Table 2). With increasing age, the lattice parameters associated with the 

‘a’ axis and ‘c’ axis remain constant, within experimental errors, for the non – fracture group,

ranging from approximately 9.40 – 9.41 Å for the ‘a’ axis (Figure 1B) and 6.85 – 6.90 Å for

the ‘c’ axis. The ‘a’ axis lattice parameter values for the fracture group are less (p = 0.002)

than those of the non – fracture group (see Table 2). No difference in the ‘c’ axis lattice

parameters were observed between the two groups.
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Figure 1: Relationship between XRD parameters and age (A: coherence length (CL) values

along the 00ℓ direction vs age, B: ‘a’ axis lattice parameters vs age), for fracture and non-

fracture specimens. Errors have been excluded from the graphs for clarity. Standard box and

whisker plots for the age matched data (70 years +) are included as inserts in each graph. The

horizontal line within the box indicates the median, boundaries of the box indicate the 25th

and 75th percentile, and the whiskers indicate the highest and lowest values of the results. The

‘◊’ marked in the box indicates the mean.  

Linear Regression Analysis
Non - Fracture Correlations with

Age

p - value R2 Δ                                      
(per 5 yrs)

CL00ℓ 

(nm)
0.910 0.00 -

CLhk0

(nm)
0.016 0.15

0.050
(0.020)

LP 'a'
axis (Å)

0.407 0.02 -

LP 'c' axis
(Å)

0.213 0.04 -

Table 3: p – values and R2 calculated from linear regression statistical analysis when

comparing the various XRD material characteristic parameters and age for the non-fracture
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group. For the parameters were a significant trend was observed, the rate of change (∆) per 5 

years is also reported. Associated errors are provided in brackets.

Fourier Transform Infrared Spectroscopy (FTIR)

The carbonate to phosphate ratio was found to be greater (p = 0.000) for the fracture group in

comparison to the non-fracture group, when age matched. No age related trends were

observed for the non – fracture group (Figure 2A). The value of the mineral to organic ratio,

which indicate an increase in collagen and/ or a reduction in phosphate, are presented in

figure 2B for both fracture and non – fracture groups. The variability in the mineral to

organic ratio for the non – fracture group is evident. When age matched, the mineral: organic

values are not different (p = 0.077) for the fracture group in comparison to the non – fracture

group. However, with age, an increase in mineral to organic ratio values was observed (p =

0.019) for the non-fracture group.
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Figure 2: Relationship between FTIR parameters and age (A: carbonate: phosphate values vs

age, B: Mineral: organic values vs age), for fracture and non-fracture specimens. Errors have

been excluded from the graphs for clarity. Standard box and whisker plots for the age

matched data (70 years +) are included as inserts in each graph. The horizontal line within the

box indicates the median, boundaries of the box indicate the 25th and 75th percentile, and the

whiskers indicate the highest and lowest values of the results. The ‘◊’ marked in the box 

indicates the mean.

Linear Regression Analysis
Non - Fracture Correlations with

Age

p -
value

R2 Δ 
(per 5 yrs)

Mineral:
Organic

0.019 0.15
0.051

(0.020)
Carbonate:
Phosphate

0.978 0.00 -

Table 4: p – values and R2 calculated from linear regression statistical analysis when

comparing the various FTIR material characteristic parameters and age for the non-fracture

group. For the parameters were a significant trend was observed, the rate of change (∆) per 5 

years is also reported. Associated errors are reported in brackets.
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Microarchitecture and Material Characteristics

We have also examined correlations between the material properties and the architectural

properties for the fracture group, in order to explore the potential influence bone chemistry

may have on the architecture of compromised specimens. There is significant evidence from

previous studies that bone mechanical properties (e.g. fragility) are affected by

physicochemical material features [18, 49 - 53], although there remains controversy

concerning the precise nature and magnitude of such relationships. The composition of

apatite is known to markedly affect its crystallite size and shape. For example phosphate

substitution by carbonate (bone apatite contains ~5 % wt. CO3
2-) results in smaller crystallites

than the corresponding unsubstituted chemistry [54, 55], as the increase in lattice disorder

produces increased solubility of the crystallites [55, 56].

Coherence length

<00ℓ> coherence length values were found to correlate with various microarchitecture 

parameters previously reported for the fracture group (Figure 3). With increasing coherence

length values, an increase in trabecular thickness (TbTh) (p = 0.028, R2 = 0.24, Figure 3A),

tissue mineral density (TMD) (p = 0.006, R2 = 0.35, Figure 3B) and bone volume to total

volume (BV/TV) (p = 0.036, R2 = 0.22).
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Figure 3: Relationship between microarchitecture properties and coherence length (00ℓ 

direction), for fracture specimens, A: TbTh vs CL, B: TMD vs CL. Errors have been

excluded from the graphs for clarity.

Discussion

Although bone performs biologically critical mechanical and homeostatic functions [57], the

relationships between its hierarchical constituents are not well understood. The basic

chemical composition (non-stoichiometric hydroxyapatite), crystallises into a variable ultra-

structure (nano-crystallites) that together with organic components form the fundamental

building blocks of bones microarchitecture. Thus, in order to understand mechanical failures

associated with compromised bone tissue such as osteoporotic material, it is crucial to

understand the fundamental chemistry of the biological mineral.

In contrast to previous studies where the osteoporotic stage of the bone is unknown (e.g.

Ovx) [18, 27, 58], our specimens have fractured and therefore present particularly

compromised material. Further the power of some previous studies [20, 24, 35] may be

insufficient to demonstrate the significant differences observed within our work.

It is important to note here that some of the fundamental mechanical properties of bone may

be due to natural engineering processes and cannot be attributed to osteoporosis solely. For

example, pre-stressed material components are found within bone and teeth. These stresses

not only allow for the structure of bone to perform in its preferred mode of loading [59], but

also protect the microstructure from cracking [60]. Collagen dehydration upon mineralisation
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has been found to be at the origin of the compressive pre-strains commonly observed in bone

mineral [61]. This creates tension within the collagen fibrils, which has been proposed to

offer additional protection against fibril buckling under compression, reducing the danger of

bending the fibres, which would lead to fracture [60].

Current literature focuses on the microarchitecture of bone [12 – 14], but few studies have

investigated the material crystallographic characteristics of compromised bone mineral [17 –

21, 24]. The potential relationship between parameters at the nanoscale (i.e. in the mineral

chemistry) and the microarchitecture parameters of human bone has, to the authors’

knowledge, not previously been directly considered. X-ray coherent scatter provides

information specifically regarding the physicochemical characteristics of bone mineral.

Differences in the material properties between osteoporotic and ‘normal’ material,

particularly derived from X-ray diffraction, are not consistent across the literature [17, 24, 27,

35, 36].

XRD: Crystallinity

The absolute values for coherence length from this study are consistent with previously

published examinations of human bone [35, 62, 63]. We were unable to detect changes in

<00ℓ> coherence length or lattice parameters with age. A previous study of Handschin and 

Stern [64] reported an increase in crystal length up to the age of 25 years old and no

significant changes until the age of 50 years old, whereupon the average length decreased.

The observed changes at 25 years and 50 years old may not have been apparent in the data

presented in our study due to limited power. Handschin and Stern utilised a greater number of

specimens (n = 117), across a wider age range (0 – 90 years old). An increase in coherence

length along the <0k0> direction, which suggests an increase in crystallite size and a decrease

in lattice disorder, was observed with age in the study reported here.

When age matched, significant differences between fracture and non-fracture material were

demonstrated.  The <00ℓ> coherence length was found to be lower for the fracture group than 

the non- fracture group (p = 0.020). This is surprising and counter to previous FTIR studies

[18, 34]. However, a possible mechanism to consolidate our view with others is to consider

that in OP apatite the carbonate ions preferentially replace those phosphate ions within the

most shallow potential wells i.e. those most disordered and measured through the 1020 cm-1
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IR band, thus causing an apparent increase in crystallinity as measured through the IR

crystallinity index (1030/ 1020). The X-ray diffraction coherence length is consequently

reduced, and thus the crystallinity appears to decrease. This is further corroborated by a

reduction in the ‘a’ axis lattice parameter.

Our study therefore suggests a smaller coherence length corresponds to a material which is

more susceptible to fracture, suggesting the mechanical strength would be less than that of

non-fractured material. Previous studies have suggested that crystal size is related to

mechanical strength [65 - 67], and that increased bone mineral crystal size is associated with

increased bone fragility [65]. However, after reporting a decrease in crystal thickness with

age as crystal length increases, Boskey and Mendelson suggested from their preliminary data

that mechanical strength is greater when the average crystallinity is greater [68]. Boskey also

argued in favour of an optimal situation in which there is a broad distribution of crystal sizes

[19] and Fonseca et al. reported that bone strength is favoured by greater mineral crystal size

heterogeneity [11]. Further, Chachra et al. [69] reported that a reduction in crystallite size of

bone mineral is associated with a decreased load accommodation and increased fracture risk.

This is has also been observed in pathologies such as osteogenesis imperfecta [70].

XRD: Lattice substitutions

The lattice parameters reported herein are significantly less than those reported previously

[35, 36]. For this study, an internal reference in the form of silicon was employed to ensure

accuracy and our values are consistent with levels of carbonate substitution known to occur in

bone [37]. Precision was crucial in this study as differences between fracture and non-fracture

material were anticipated to be subtle. As previous studies do not use internal references, this

could explain the difference in absolute values, although it is possible that other differences

such as particle size, tissue source and prior treatment of specimens may also contribute to

inter-study inconsistencies with respect to lattice parameters.

The ‘a’ axis lattice parameter values, which are rarely reported in the literature for bone

material, were found to be lower (p = 0.002) for the fracture group in comparison to the non-

fracture group. In contrast, Mkukuma et al reported no difference between osteoporotic

material and ‘normal’ tissue when considering lattice parameters [35]. However, the relative

low power (low sample numbers) may not have revealed the relatively modest differences (<
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1%) between osteoporotic and ‘normal’ tissue. The stoichiometric ‘a’ axis lattice parameter

value for hydroxyapatite is reported as 9.42 Å [36]. The data reported herein suggests non-

fracture material is more stoichiometric than the fracture material, and therefore more

chemically stable. Changes to lattice parameters values are caused by ionic exchanges and

vacancies which induce strain into the lattice. This changes the characteristics of the apatite

which are critical to crystallite size and dissolution rate [71]. Greater dissolution rates, for

example, will be observed for mineral lattices which are highly strained and therefore less

stoichiometric. As osteoporosis is a condition associated with bone loss and perhaps greater

turnover, the more soluble lattice structure is probably a more likely state for the mineral

being formed. The reduced lattice parameters calculated for the fracture group is consistent

with the carbonate to phosphate ratios calculated with FTIR, as many studies have shown

with increasing B –type carbonate, the ‘a’ axis lattice parameter is reduced [37, 72]. No

difference was observed for the ‘c’ axis lattice parameters between the two groups. Changes

to the unit cell through ionic substitutions has previously been shown to have more of an

effect on the ‘a’ axis in comparison to the ‘c’ axis [37], which is evident when considering

the influence of carbonate substitute on the lattice parameters. LeGeros reported a systematic

change in ‘a’ that was 2.5 times that of ‘c’ for an equivalent increase in amount of B-type

carbonate substitution [37]. Therefore we propose that the sensitivity of our study is too low

to detect corresponding significant changes to the ‘c’ axis.

FTIR

The material characteristics obtained from FTIR demonstrate an increase in the mineral to

organic ratio with increasing age. This may suggest an increase in the amount of phosphate

and/or a decrease in collagen (measured through the amide vibrational peak). An increase in

mineral content with age has previously been reported [19], as well as a decrease in collagen

content [73]. When age matched, the mineral to organic ratio was not significantly different

between the fracture and non-fracture group, although the values for the fracture group were

lower. In contrast, previous studies have shown a decrease in the mineral to organic ratio in

ovariectomized animal and osteoporotic human tissue [18, 30, 33, 45, 74], suggesting either a

lower mineral content and/ or a greater collagen content. The consensus tends to be that in

osteoporotic bone, a decrease in mineral content is observed [18, 19], resulting in a reduction

in mechanical strength [11].
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Although carbonate incorporation has been reported to increase [64, 75, 76] and decrease [45,

77] with age, no correlation with age was observed for the carbonate to phosphate ratio

values in this study. This is consistent with [66], who found carbonate incorporation

remained constant after 45 years old. When age matched, a mean difference of 0.002 ±

0.0004 was observed for the carbonate to phosphate ratios between the two groups. The

average value for the fracture group was greater in comparison to the non-fracture group ( p =

0.000). This suggests greater carbonate content in the fracture material in comparison to the

non-fracture material and/ or less phosphate. A higher carbonate to phosphate ratio in the

fracture material is consistent with previous studies [18, 28, 34]. This increase is consistent

with the data reported here, where a ~ 11% increase in the carbonate to phosphate ratio was

observed for the fracture material.

In general, it is considered that newer bone contains a large quantity of carbonate and is

characterised by smaller crystals [38, 78]. In an accelerated turnover system, the consumption

rate of the more mature tissue (i.e. that preferentially targeted for remodelling) is enhanced

[79]. Crystallite populations then become biased towards reduced average dimensions, larger

specific surface areas and greater amounts of carbonate. The data presented here is consistent

with this model, as the coherence length values are lower for the fracture material whilst the

carbonate to phosphate ratio was greater.

Evaluation

The results from this study must be seen in the context of previous work and some

speculation offered for apparent inconsistencies. There is clear evidence of significant

differences in the physicochemical characteristics of bone mineral from different sample

sites. For example, Gourion‐Arsiquaud et al. reported greater cortical mineral/organic and

trabecular crystallinity values associated with increased fracture risk when iliac crest

specimens were analysed [32]. However, more recently, when investigating material

properties of femoral neck specimens, a decrease in the mineral: organic ratio for both

cortical and trabecular fractured bone was observed whilst no change in crystallinity was

reported [33] by the same research group. Such differences can also be found between local

geographic anatomies as demonstrated by Donnelly et al. [80]. Thus, it may be inappropriate

to directly compare our findings with those from studies employing femoral neck and iliac
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crest tissues as the physicochemical nature of the materials from different sites appear

significantly different.

Specific analytical differences may also compromise direct comparisons with other studies

(and between previous studies). In particular, when considering determinations of

‘crystallinity’, estimates derived from FTIR and those from XRD may superficially appear to

be inconsistent. FTIR methods determine crystallinity specifically from quantification of PO4

site disorder averaged over all crystallographic directions. In contrast, our diffraction based

crystallinity measurement is fundamentally different in that it is confined to disorder within

one crystallographic direction and concerns all phenomena that reduce disorder in this

direction [81]. A comparison between spectroscopic and diffraction estimates of crystallinity

within biological apatites has previously highlighted inconsistencies between the results of

the two approaches [82]. Thus at least for this parameter, direct comparisons between

previously FTIR studies and ours may not be appropriate. For this and other characteristics,

apparent inconsistencies between previous work and ours may also be partly as a result of

sample preparation and sampling differences. Processing involving aqueous solutions has

been shown to modify the physicochemical characteristics of bone [83-85] although in our

study the tissues were frozen. Our approach of quadrant sampling randomisation would have

increased the variability in any of the characteristics measured and thus, given the previously

reported variation between quadrant values [33], we may have expected a reduction in the

power of our experiments.

Architecture

This study has also examined relationships between the material characteristics of bone and

its corresponding architectural properties, as there is significant evidence from previous

studies that bone mechanical properties (e.g. fragility) are affected by physicochemical

material features [18, 49 – 53, 65 – 68]. In this work, the bone mineral chemical parameters

have been compared and the study provides a novel materials science insight into the

relationship between bone physicochemistry at the nanoscale and the architecture of the bone

at the microscale. The results suggest that there is a relationship between the material

characteristics (in particular the coherence length) and the microarchitecture properties.

Coherence length values are a quantification of crystallite disorder (size and microstrain). An
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increase in microstrain can indicate ionic substitutions and vacancies. This change can also

have an effect on crystallite dimensions and other factors including solubility. Previous

studies have shown the solubility of apatite increases as the lattice microstrain is increased

[71]. Further, disorder within the apatite lattice, has been proposed as a fundamental

contributor to bone mechanical compromise for more than three decades [65]. In this study,

with increasing coherence length values, increases in TbTh, TMD and BV/TV were

observed. It is proposed that bone apatite with higher coherence length values represents a

more stable, less soluble material and therefore should be associated with increased amounts

of bone mineral as reflected by the increase BV/TV, BMD and TbTh.

Conclusion

The principal main aim of this study was to investigate bone ‘quality’ in terms of mineral

chemistry and organic content of fractured and non-fractured human material. Age related

changes for the non-fracture material were also investigated. The relationship between the

bone mineral chemical characteristics and the microarchitecture parameters was also

examined. As shown through statistical analysis, the coherence length (<00ℓ>), ‘a’ axis 

lattice parameters and carbonate to phosphate ratio values (when age matched) were different

between fracture and non-fracture material from female donors. The study has also shown an

increase in crystallite size and an decrease in lattice disorder ([0k0]) as well as an increase in

the amount of phosphate and/or a decrease in collagen occurs with age for non-fracture

material. It is proposed the data reported here suggests osteoporosis may not simply be an

accelerated aging process when considering mineral chemistry and organic content, but there

are fundamental chemical differences between fracture and non-fracture material not found

with age. It is interesting to speculate that there may be a relationship between the mineral

properties of bone at the ultrastructure level and the microarchitectural properties of

trabecular bone.
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