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Intravenous	cannulation	is	the	process	of	inserting	a	cannula	 into	a	vein	to	administrate	medication,	fluids	or	to	
take	 blood	 samples.	 The	 process	 of	 identification	 and	 locating	 of	 veins	 plays	 an	 important	 role	 during	 the	
intravenous	 cannulation	procedure	 to	 reduce	health	 care	 costs	 and	 suffering	of	patients.	This	paper	 compares	
between	the	three	technologies	to	assess	their	suitability	and	capability	for	the	detection	of	veins	to	support	the	
cannulation	process.	Three	types	of	cameras	are	used	in	this	study,	a	visual,	an	infrared	and	a	near	infrared.	The	
collected	 images,	 103	 I	 total,	 from	 the	 three	 technologies	 have	 been	 analysed	 using	 a	 wide	 range	 of	 image	
processing	techniques	and	compared	with	identification	templates	to	evaluate	the	performance	of	each	technology.	
The	results	show	that	the	near	infrared	technology	supported	by	suitable	LED	illumination	is	the	most	effective	for	
the	 visualisation	 of	 veins.	However,	 infrared	 thermography	 is	 found	 to	 be	 successful	when	 followed	 by	 a	 cold	
stimulation.	
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(130.3060)	 Infrared;	 (040.2480)	 FLIR,	 forward	 looking	 infrared;	 (110.3080)	 Infrared	 imaging;	 (100.2980)	 Image	
enhancement.		
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1. INTRODUCTION 
Peripheral	 intravenous	 cannulation	 is	 the	 procedure	 of	 inserting	 a	
cannula	into	the	peripheral	veins,	in	most	cases	the	veins	of	the	hand	or	
forearm.	It	is	used	for	many	medical	procedures	such	as	maintaining	
hydration,	 administering	 blood	 or	 blood	 components	 and	
administering	 drugs	 such	 as	 antibiotics	 [1].	 Numerous	 studies	 have	
identified	the	difficulties	faced	by	clinical	staff	to	perform	intravenous	
cannulation	[2].		For	example,	in	the	USA	it	is	estimated	that	more	than	
400	 million	 intravenous	 (I.V.)	 catheters	 are	 used	 daily	 to	 deliver	
medicine	 in	 the	 USA	 with	 success	 rate	 of	 about	 72.5%	 in	 the	 first	
attempt	[3].		
	 The	use	of	several	attempts	for	intravenous	cannulation	increases	
the	 suffering	 of	 patients,	 and	 could	 cause	 damage	 to	 veins	 and	
neighbouring	 tissues.	 Therefore,	 it	 is	 vital	 to	 setup	 the	 route	 of	 the	
peripheral	vein	effectively	on	the	first	attempt.	Astonishingly,	there	is	
presently	limited	literature	regarding	the	visibility	of	veins	in	patients	
or	the	patient	characteristics	associated	with	difficult	IV	access.	Earlier	

studies	reported	a	range	of	aspects	that	influence	vein	visibility	needed	
for	vein	cannulation	[4	‐	7].	Patients	who	have	difficult	venous	access	
are	 a	major	 challenge	 for	modern	medical	 care.	 A	 patient’s	 level	 of	
hydration	influence	the	ability	to	identify	their	veins.	If	 the	patient	is	
obese,	 normal	 cues	 are	 typically	 absent	 making	 venous	 access	
enormously	 complex.	 Paediatric	 patients	bring	 their	 own	 challenges	
with	smaller	vessels.	The	current	study	is	an	innovative	approach	for	
comparing	the	three	technologies	visual,	near	infrared	and	infrared	for	
identification	of	the	veins	for	intravenous	cannulation	using	scenarios	
of	different	characteristics.		
	 The	 behaviour	 of	 human	 skin	 changes	 between	 the	 visible	 and	
near	infrared	(NIR)	ranges.	Within	the	NIR	range,	scattering	becomes	
of	key	significance	in	deeper	skin	layers	while	skin	pigments	(melanin)	
become	less	significant	[8].	Hence,	the	penetration	depth	of	the	optical	
radiation	in	the	NIR	spectrum	can	become	significantly	larger	than	of	
the	 visible	 light.	 Therefore,	 skin	 images	 of	 people	 recorded	 in	 NIR	
spectrum	give	accurate	details	of	 the	blood	vessels	at	shallow	depth	
below	 the	 surface	 of	 the	 skin	 in	 comparison	 to	 visual	 cameras.	NIR	



radiation	can	easily	penetrate	into	the	depth	of	blood	vessels	and	the	
size	 and	 location	 of	 the	 veins	 can	 be	 easily	 visualised	 in	 this	 case.		
According	to	[8],	high	power	NIR	LEDs	with	wave	length	of	about	850	
nm	produce	the	best	result	in	this	case.	
	 Infrared	thermography	can	also	be	used	to	detect	veins	since	blood	
flow	causes	a	major	effect	on	skin	temperature	distribution	by	mainly	
thermal	convection	and	conduction.	According	to	 [9],	 the	 transfer	of	
heat	 mechanisms	 through	 blood	 flow	 is	 influenced	 by	 gravity	
opposition	to	blood	flow.	However,	the	use	of	infrared	thermography	
would	require	a	cold	or	warm	compress	to	provide	the	temperature	
variation	to	ease	visualisation.	
	 For	 finding	 three‐dimensional	 information	 for	 identification	 of	
blood	vessels	location	and	depth,	near‐infrared	(NIR)	optical	imaging	
devices	have	been	reported	to	be	effective	[10,	11].	This	can	be	done	
without	 the	 need	 of	 any	 cold	 or	 warm	 compress	 (cold	 or	 warm	
stimulation).	Traditionally,	 infrared	thermometry	 is	used	to	measure	
skin	temperature	[13],	however,	the	application	of	vein	visualisation	is	
still	 limited	 in	 industry	 and	 this	 paper	 will	 assess	 infrared	
thermography	in	comparison	to	near	infrared	and	visual	images.		It	has	
been	argued	that	the	best	NIR	wavelengths	to	optimise	vein	contrast	
are	 determined	 experimentally	 [14].	 On	 the	 other	 hand,	 infrared	
thermography	 can	 measure	 skin	 temperature	 [15]	 and	 hence	 light	
illumination	will	not	be	needed.	

A. Problem statement 

 The	 major	 problem	 faced	 by	 the	 clinical	 staff	 is	 the	
difficulty	in	accessing	veins	for	intravenous	drug	delivery.	
With	improper	detection	of	veins,	several	problems	such	
as	bruises,	rashes,	blood	clot	etc.	could	occur.	

 Subcutaneous	 fat	 or	 dark	 skin	 colour	 reduces	 the	
visualization	of	blood	vessels	underneath	the	skin.		

 Gaining	intravenous	access	in	children	can	be	difficult.		
	
To	 address	 the	 above	 mentioned	 problems	 due	 to	 improper	 vein	
detection	 especially	 in	 the	 patient	 characteristics	 associated	 with	
difficult	 IV	 access	 there	 is	 a	 strong	 need	 to	 develop	 a	 vein	 locating	
device	 with	 suitable	 technology	 and	 simple	 image	 processing	
techniques.		
	 The	present	research	work	is	an	attempt	to	design	an	algorithm	to	
evaluate	 the	 capabilities	 of	 three	 different	 technologies	 for	 the	
detection	 of	 veins	 for	 IV	 access.	 This	 paper	 is	 aiming	 to	 compare	
between	visual,	infrared	and	near	infrared	images	for	the	detection	of	
veins	and	to	establish	an	easy,	compact,	safe	and	reliable	visualization	
device	 with	 minimal	 interference	 in	 the	 usual	 routine	 of	 vessel	
puncturing.	

B. Vein locating systems 

Many	vein	locators	are	currently	available	in	research	and	industry	to	
improve	vascular	access,	see	Table	1.	The	current	vein	locating	systems	
available	 for	 this	 purpose	 in	 the	 market	 have	 some	 limitations,	
drawbacks	and	are	somehow	costly.	There	are	various	challenges	to	be	
found	throughout	the	design	and	implementation	of	a	device	such	as	
the	 lighting	 system,	 the	 image	 processing	 algorithms,	 the	 physical	
design	and	the	cost.	
	 For	 medical	 imaging,	 infrared	 cameras	 are	 becoming	 less	
expensive	providing	high	flexibility	for	different	types	of	applications.		
Image	processing	techniques	can	be	used	to	provide	a	wide	range	of	
effective	medical	and	other	industrial	applications	[16].	Near	infrared	
cameras	 can	 be	 developed	 cheaply	 with	 the	 modification	 of	 visual	
cameras	through	filter	modifications.	However,	many	modern	cameras	
are	 available	 now	 with	 simple	 optical	 filters	 for	 the	 near	 infrared	
spectrum	[8].	

	 Although,	a	few	devices	based	on	the	infrared	technique	have	been	
implemented,	there	still	exists	a	strong	need	to	develop	such	medical	
devices.	Table	1	presents	a	summary	of	the	most	common	vein	finding	
systems	available	in	industry.	
	 To	visualise	the	veins	accurately	there	are	limitations	in	relation	to	
capabilities	of	different	vein	locating	systems	presently	available	in	the	
market.	 	The	near	 infrared	vein	 locators	or	viewers	normally	would	
produce	good	results	 in	ideal	conditions	such	as	low	fat	content	and	
clear	 skin.	 But,	 due	 to	 complex	 relationship	 between	 various	
physiological	 parameters,	 the	 performance	 can	 differ.	 This	 becomes	
also	difficult	when	estimation	of	 veins’	depth	or	diameter	 is	needed	
[32].	 For	 medical	 applications,	 the	 standardisation	 of	 protocols	 is	
essential,	and	this	must	also	be	applied	to	the	image	processing	and	the	
selection	of	repeatable	regions	of	interest	[33].	
	 Other	technologies	such	as	radiography	can	be	used	to	obtain	clear	
images	of	vessels	with	diameters	of	200	µm	or	less	cannot	be	obtained	
by	conventional	radiography	[34],	however,	this	technology	is	beyond	
the	focus	of	this	paper.	
	 The	main	focus	of	this	study	is	on	the	detection	of	veins	and	the	
enhancement	of	visualisation	using	different	camera	technologies	and	
image	processing	techniques.	
	
Table	1.	Vein	Locators	with	their	Working	Methods,	Approximate	
Comparative	Prices1	and	Schematic	Diagrams	

	

2. METHODOLOGY 
Schematic	 diagram	 of	 the	 methodology	 is	 shown	 in	 Figure	 1.	 Case	
studies	 have	 been	 selected	 from	 a	 pool	 of	 volunteers	 to	 present	
extreme	difference	in	characteristics	associated	with	the	veins	clarity,	
                                                                                 
1	The	price	figures	are	approximate	comparative	values	and	should	not	
be	 considered	 as	 an	 exact	 price	 or	 an	 accurate	 quotation	 due	 to	
significant	variability	in	the	options	and	pricing.		



varying	 from	 cases	with	 very	 visible	 veins	 and	 other	 cases	 that	 are	
characterised	by	challenging	veins	with	less	visibility.	The	visual	(N	=	
38),	near	infrared	(N	=	40)	and	infrared	(N	=	25)	images	are	captured	
of	volunteers	with	different	skin	tones,	ethnicities,	weights,	gender	and	
age	groups	(19	‐	55).	The	captured	images	are	processed	by	different	
image	processing	techniques	to	enhance	the	visualisation	of	the	veins.	
Regions	of	interest	are	selected	in	all	three	types	of	captured	images	
(raw	data).	This	research	paper	presents	a	novel	approach	to	calculate	
the	error	based	on	a	combination	between	image	processing	and	an	
identification	template	(vein	map)	for	comparison.	
	 On	one	hand,	templates	(N	=	103)	are	generated	manually	by	most	
probable	 visible	 veins	 for	 all	 three	 types	 of	 cropped	 images	 (expert	
interpretation).	After	that,	templates	are	converted	into	grayscale	and	
thresholding	is	applied	for	comparison	with	processed	images.	On	the	
other	 hand,	 a	 series	 of	 image	 processing	 techniques	 are	 applied	 on	
three	types	of	cropped	images	(N	=	103)	to	enhance	the	visualisation	of	
veins.	 To	 assess	 the	 efficiency	 of	 the	 three	 different	 technologies	
differences	are	 found	between	 templates	and	 the	processed	 images.	
Finally,	 errors	 are	 calculated	 (%	 pixels)	 for	 all	 images	 of	 the	 three	
different	types.	Also,	mean	error	(%	pixels)	and	standard	deviation	of	
errors	(%	pixels)	for	each	technology	are	found.		
	

	
Fig.1.	The	implemented	methodology	of	this	research	work.		

A. Image processing techniques 

Grayscale	is	used	in	this	research	work	for	transforming	images	from	
colour	 to	 grayscale.	 Average	 method	 is	 used	 to	 calculate	 the	 grey	
values.	It	calculates	the	mean	of	the	red,	green	and	blue	colours	values:	

        (1) 

Where	R,	G	and	B	are	the	red,	green	and	blue	values	of	each	pixel.		
Difference	 of	 Gaussians	 is	 also	 used.	 It	 is	 a	 feature	 enhancement	
algorithm	that	finds	difference	of	 lower	type	of	actual	blurred	image	

from	 its	 higher	 type	 [36].	 Mathematically,	 given	 an	 m‐channels,	 n‐
dimensional	image	

    (2) 

The	difference	of	Gaussians	(DoG)	of	the	image	 	is	the	function	

 (3) 

	 Histogram	equalization	is	implemented	in	this	research	work.	The	
contrast	of	many	 images	 is	 raised	 by	 histogram	 equalisation	mainly	
when	 the	 usable	data	of	 the	 image	 is	 represented	 by	 close	 contrast	
values.		
	 Consider	a	discrete	grayscale	image	{x}	and	let	ni	be	the	number	of	
occurrences	of	gray	level	i.	The	probability	of	an	occurrence	of	a	pixel	of	
level	i	in	the	image	is:	

  (4) 

Where	L	being	the	total	number	of	gray	levels	in	the	image,	n	being	the	
total	number	of	pixels	in	the	image,	and		Px(i)	being	in	fact	the	image's	
histogram	for	pixel	value	i,	normalized	to	[0,1]	as	presented	by	[37].		
	 Unsharp	Mask	is	used	to	sharpen	the	edges	in	the	image.	Without	
increasing	noise	or	blemish	the	unsharp	mask	filter	sharpens	edges	of	
the	elements	 [38].	 	Digital	unsharp	masking	 is	usually	 controlled	by	
three	settings:	
Amount:	the	magnitude	of	each	overshoot	is	controlled	by	amount	and	
amount	is	recorded	as	a	percentage.	
Radius:	the	width	of	the	edges	is	defined	by	radius.	
Threshold:	the	minimum	 brightness	 change	 is	 handled	 by	 threshold	
that	will	be	sharpened	[39,	40].	
	 Finally,	 thresholding	 is	 used	 to	 change	 the	 images	 to	 black	 and	
white	figures	to	calculate	the	error.	Thresholding	changes	each	pixel	in	
an	image	with	a	black	pixel	if	the	image	intensity	Ii,j	is	less	than	some	
fixed	constant	T	or	a	white	pixel	if	the	image	intensity	is	greater	than	
that	constant	[41].	

3. EXPERIMENTAL WORK 
The	vein	 locating	systems	have	been	designed	 to	take	 images	of	 the	
veins	 in	hands/forearms	using	 all	 infrared,	 near	 infrared	 and	visual	
cameras.	Technical	specifications	associated	with	infrared	camera	FLIR	
E25	 are;	 resolution	 (thermal	 image	 quality)	 =	 160x120,	 thermal	
sensitivity	<0.1	°C,	temperature	range	=	‐20	°C	to	+	350	°C,	built‐in	2	
Mpixels	camera,	 spectral	 range	=	7.5	 ‐	13	µm,	detector	 type	=	Focal	
Plane	 Array	 (FPA),	 uncooled	 microbolometer	 160	 x	 129	 pixels,	
accuracy	=	2	%	of	temperature	reading,	built‐in	LED	light,	visual	and	
thermal	image	fusion	and	image	transfer	to	PC	via	USB.	The	thermal	
time	constant	is	estimated	to	be	about	12	ms.	An	exact	time	constant	
value	 is	 not	 specified	 because	 there	 can	 be	 slight	 variations	 in	 the	
manufacturing	process	of	the	readout	integrated	circuits	(ROICs)	used	
in	FLIR’s	uncooled	devices.	A	1.3	Mpixels	Logitech	QuickCam	webcam	
has	been	used	to	capture	visual	images	of	640	x	480	pxels.	Field	of	view	
(FOV)	is	60°,		Focal	Length	4.0	mm,	Optical	Resolution	(True)	 1280	 x	
960	1.2MP,	 Image	Capture	 (16:9	W)	360p,	480p,	 720p,	Frame	Rate	
(max)	 30fps	 at	 640x480.	 The	 near	 infrared	 CMOS‐based	 sensor	
technology	is	used	with	plastic	lens,	wave	length	700	to	900nm,	field	of	
view	 (FOV)	 is	60°,	 	 Focal	 Length	4.0	mm,	Optical	Resolution	 (True)
	 1280	 x	 960	 1.2MP,	 Image	 Capture	 (16:9	W)	360p,	 480p,	 720p,	
Frame	Rate	(max)	 30fps	 at	 640x480.	 The	 vein	 locators	 are	
connected	to	a	laptop	in	which	three	software	are	used	to	capture	data	
in	the	form	of	images	which	are	AMCap	for	visual	camera	by	Wintec,	
Quickcam	for	near	infrared	camera	by	Logitec	and	FLIR	report	2.2	for	
high	 resolution	 (thermal)	 infrared	 camera	 FLIR	 E25.	 The	 above	
software	are	used	only	for	the	capturing	of	images	from	different	types	
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of	cameras	whereas,	for	the	application	of	image	processing	techniques	
and	 finding	 errors	 (%pixels)	 same	 software	 have	 been	 used	 for	 all	
images	(N	=	103);	namely	MATLAB,	GIMP	2.8,	Photoshop	and	DiffImg	
2.2.	Same	image	processing	techniques	have	been	applied	on	all	103	
images	of	three	different	types.	
	 The	vein	finding	system	consists	of	a	camera	holder/fixture	with	a	
rigid	support	to	rest	the	subject’s	hand/arm,	several	types	of	cameras	
and	an	electronic	circuit	to	control	the	intensities	of	visible‐light	LEDs	
and	 infrared	 LEDs	 for	 visual	 and	 near	 infrared	 images	 as	 shown	 in	
Figures	2	and	3.	The	distance	between	the	cameras	and	the	rigid	base	
upon	which	a	subject	places	arm/hand	is	28	cm,	which	has	been	kept	
constant	for	capturing	all	images	of	three	different	types.	
	
	

	
	
Fig.	2.	Block	diagram	of	the	experimental	set‐up.	

	

	
Fig.	3.	A	photo	of	the	camera	system	with	the	laptop	and	the	software;	
the	 near	 infrared	 and	 visual	 cameras	 (a),	 and	 FLIR	 E25	 infrared	
camera	(b).	

4. RESULTS 
Tables	2,	3	and	4	present	some	examples	of	the	total	images	(N	=	103)	
of	this	study	in	the	form	of	visual,	 infrared	and	near	infrared	images	
respectively.	All	images	have	been	captured	at	the	same	distance	from	
three	 different	 cameras	 (28cm)	 with	 all	 possible	 combinations	 of	
intensities	of	visible‐light	and	 infrared	LEDs	especially	 for	 the	visual	
and	near	infrared	technologies.	Total	103	images	have	been	captured	
by	 three	 different	 types	 of	 cameras	 of	 volunteers	 associated	 with	
different	characteristics	such	as,	skin	tone,	ethnicities,	gender,	age	and	
weight.		
	 For	 visual	 and	 near	 infrared	 systems	 visible‐light	 LEDs	 and	
infrared	LEDs	have	been	used	for	illumination	purpose.	A	super	pure	
yellow	LED	emits	7000mcd	(millicandela)	at	20mA	of	current,	which	is	
the	luminous	intensity	of	the	visible‐light	LED	in	this	study.	Whereas,	
the	range	of	luminous	intensity	of	infrared	LEDs	are	between	16mW	
(milliwatts)	to	26mW	at	50mA.		However,	the	terms	‘high’,	 ‘low’	and	
‘medium’	 in	 the	Tables	2	 and	4	 refer	 to;	 an	LED	 that	 gives	 off	 very	
(fully)	bright	light	has	a	high	luminous	intensity,	when	an	LED	doesn’t	
shine	 very	 brightly	 will	 have	 a	 lower	 luminous	 intensity	 and	 in	
between	these	two	states	will	have	a	medium	luminous	intensity.	
	 Infrared	(thermal)	 images	have	been	captured	with	and	without	
the	application	of	cold	stimulation	for	all	volunteers.	There	is	no	role	of	
external	LEDs	in	case	of	thermal	images	because	FLIR	E25	has	built‐in	
LED	light.		
	
Table	2.	Visual	Images	Data	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
Table	3.	Infrared	Images	Before	and	After	Cold	Stimulation	

	
	
Table	4.	Near	Infrared	Data	for	Different	Intensity	Combinations	

	

	 All	 captured	 images	 by	 three	 technologies	 including	 the	 sample	
images	which	are	presented	in	Tables	2,	3	and	4	are	processed	by	the	
previously	suggested	image	processing	techniques.	 An	example	of	the	
application	of	the	image	processing	techniques	for	near	infrared	data	is	
illustrated	in	Figure	4.	

 
Fig.	4.	Flow	chart	showing	a	sequence	of	image	processing	techniques	
applied	on	NIR	image.	
	 Firstly,	the	regions	of	interest	are	selected	for	all	images.	Secondly,	
all	 NIR	 and	 visual	 images	 are	 transformed	 into	 grayscale.	 Thirdly,	
colour	 levels	 are	 adjusted	 using	 histogram	 equalization	 technique	
because	images	are	varied	in	contrast	and	brightness	due	to	different	
combinations	of	LED’s	intensities.		Fourthly,	edge	detection	(difference	
of	Gaussians)	is	applied	after	selecting	smoothing	parameters	such	as	
radius	1	=	250	and	radius	2	=	8.0.	Then,	unsharp	mask	enhancement	is	
performed	 on	 all	 NIR	 and	 visual	 images	with	 the	 following	 chosen	
parameters	such	as	radius	=	380,	amount	=	4.7	and	 threshold	=	38.	
Finally,	thresholding	is	performed	on	both	types	of	images.	The	reason	
of	selecting	a	set	value	 for	some	of	 the	parameters	 is	 to	achieve	the	
enhancement	 of	 the	 visualisation	 of	 the	 veins	 by	 image	 processing	
because	 best	 enhancement	 results	 has	 been	 found	 on	 these	 values.	
	 For	IR	images,	temperature	range	of	thermal	images	is	adjusted	in	
FLIR	report	2.2	to	enhance	the	visualization	of	veins.	Same	techniques	
have	 been	 applied	 on	 IR	 images	 with	 slightly	 different	 parameters	
using	 the	 same	 soft‐wares.	 After	 selecting	 ROI,	 infrared	 images	 are	
transformed	 into	 invert	 grayscale.	 Then,	 colour	 levels	 are	 adjusted	
using	histogram	equalization	technique	as	 in	case	of	visual	and	near	
infrared	images.	Afterwards,	edge	detection	(difference	of	Gaussians)	is	
applied	with	the	following	smoothing	parameters:	radius	1	=	34	and	
radius	2	=	17.	Here	the	values	of	the	parameters	are	chosen	differently	
due	 to	 the	 different	 nature	 of	 the	 thermal	 images	 but	 the	 main	
objective	is	the	same	which	is	to	enhance	the	visualisation	of	the	veins	
through	image	processing	techniques.	Similar	to	other	images,	unsharp	
mask	 enhancement	 is	 performed	 on	 IR	 images	 too.	 Finally,	
thresholding	is	performed.	
	 Some	of	the	examples	of	the	processed	NIR,	visual	and	IR	images	
after	 the	application	of	 image	processing	techniques	are	arranged	in	
Table	5	 for	making	a	comparison	between	the	three	technologies	to	
assess	their	suitability	for	the	detection	of	veins.	
	
	
	



Table	5.	Processed	Near	Infrared,	Visual	and	Infrared	Images	for	
Comparison	of	Three	Technologies	

	

A. Quantitative analysis of performance 

To	assess	the	accuracy	of	three	technologies	to	detect	veins,	a	pattern	
of	most	 probable	 visible	 veins	 (template)	 is	 generated	manually	 for	
every	single	original	image	of	all	three	types.	Templates	are	converted	
into	 grayscale	 first	 and	 then	 thresholding	 is	 performed	 on	 them.	
Ultimately,	a	one	 to	one	comparison	 is	made	 for	every	single	 image	
with	 its	 template	 image	 to	 find	 the	 differences.	 Consequently,	 the	
errors	are	calculated	for	testing	the	efficiency	of	the	three	technologies	
for	the	detection	of	veins.	Some	statistics	such	as	error	(%	pixels)	for	all	
images,	 mean	 error	 (%	 pixels)	 for	 each	 technology	 and	 standard	
deviation	of	error	(%	pixels)	for	each	technology	are	calculated.	Errors	
(%	pixels)	for	some	of	the	visual,	near	infrared	and	infrared	images	are	
listed	in	Tables	6,	7	and	8	respectively	along	with	the	original	images,	
templates	and	processed	images.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Table	6.	Visual	Images	with	Error	Calculations	

	
	
Table	7.	Near	Infrared	Images	with	Error	Calculations	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
Table	8.	Infrared	Images	Before	and	After	Cold	Stimulation	with	
Error	Calculations	

	
	
	 Thus,	the	errors	(%	pixels)	for	all	103	images	of	all	three	types	of	
the	present	 study	are	 calculated	by	comparing	 the	processed	 image	
with	its	identification	template	in	DiffImg.	Mean	errors	(%	pixels)	are	
calculated	 for	 each	 technology	 to	 assess	 their	 suitability	 for	 the	
detection	 of	 the	 veins.	 For	 visual	 images	 (N	 =	 38)	mean	 errors	 (%	
pixels)	are	 found	 to	be	24.37	and	standard	deviation	3.55.	For	near	
infrared	images	(N	=	40)	average	errors	(%	pixels)	are	calculated	17.16	
and	standard	deviation	4.38.	However,	 for	 infrared	 images	 (N	=	25)	

mean	 errors	 (%	pixels)	 are	 obtained	19.43	with	 standard	deviation	
4.51.	The	values	of	errors	(%	pixels)	for	individual	images	of	all	three	
types	can	be	seen	in	Figure	5.	Figure	5	(a)	indicates	the	values	of	error	
(%	pixels)	for	all	visual	images	(N	=	38),	whereas	error	(%	pixels)	for	
all	near	infrared	images	(N	=	40)	can	be	seen	in	Figure	5	(b).	Similarly,	
Figure	5	(c)	shows	the	error	(%	pixels)	for	all	infrared	images	(N	=	25).	
The	tested	number	of	images	for	three	technologies	are	not	identical	
because	of	different	number	of	intensity	combinations	for	visual	and	
near	 infrared	 systems	 whereas	 thermal	 images	 are	 not	 intensity	
sensitive	but	influenced	by	temperature	changes	so	those	are	captured	
with	and	without	cold	stimulation.	So,	 the	number	of	 images	 for	the	
three	technologies	vary	but	all	three	technologies	cover	the	images	of	
the	same	volunteers.	
	 Hence,	 the	 experimental	 results	 are	 compared	 on	 the	 basis	 of	
statistics	and	plotted	in	the	form	of	line	graph	and	bar	chart	as	shown	
in	 Figures	 5	 and	6.	Mean	 error	 (%	pixels)	 for	 each	 technology	 and	
standard	 deviation	 of	 error	 (%	 pixels)	 for	 each	 technology	 are	
calculated	and	displayed	in	Figure	6.		
	

	
Fig.	5.		Error	level	(%	pixels)	for	three	types	of	technologies;	visual	(a),	
near	infrared	(b)	and	infrared	systems	(c).	
	

	
Fig.	 6.	 Average	 error	 (%pixels)	 of	 the	 three	 technologies	 and	 the	
associated	standard	deviation.	
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B. Discussion 

Qualitatively,	it	has	been	found	that	veins	in	NIR	images	of	Table	4	can	
be	 seen	 clearly	when	 compared	 to	veins	 in	 visual	 and	 IR	 images	of	
Tables	 2	 and	 3	 respectively.	 	 The	 most	 accurate	 results	 for	 the	
detection	of	veins	are	obtained	by	the	near	infrared	camera	at	several	
combinations	of	 intensities	 of	 visible‐light	 and	 IR	 LEDs	as	 shown	 in	
Tables	4	and	5.	Similarly,	quantitative	analysis	also	suggests	through	
statistical	data	that	the	calculated	error	(%	pixels)	is	found	in	case	of	
NIR	images	to	be	the	 lowest	 in	comparison	with	 infrared	and	visual	
results.	
	 The	 results	 for	 the	 visibility	 of	 veins	 for	 infrared	 images	 are	
obtained	better	when	followed	by	cold	compress.	This	gives	an	idea	of	
introducing	the	hot	stimulations	in	thermography	in	future	to	obtain	
better	contrast	in	veins	and	the	surrounding	tissue	for	the	visualisation	
purpose.	Standard	deviation	of	error	(%	pixels)	for	infrared	technology	
is	found	the	highest	because	of	the	higher	differences	in	error	values	
(%	pixels)	between	the	male	and	female	subjects	also	before	and	after	
cold	stimulation.	Although,	the	average	error	(%	pixels)	is	the	highest	
for	visual	 images,	 the	 standard	deviation	of	 errors	 (%	pixels)	 is	 the	
lowest	indicated	high	consistency	of	results.	

5. CONCLUSION 
This	study	has	compared	between	visual,	 infrared	and	near	 infrared	
technologies	for	the	detection	of	veins.	It	has	been	found	that	the	visual	
cameras	are	 less	 efficient	 for	vein	detection	 in	 comparison	with	 the	
near	 infrared	 and	 infrared	 systems.	 However,	 the	 results	 of	 visual	
technology	 are	 found	 the	 most	 consistent	 but	 with	 higher	 error	
percentages.	
	 Thus,	 it	 has	been	 found	qualitatively	 and	quantitatively	 that	 the	
grayscale	 image	 processing	 combined	 with	 histogram	 equalisation,	
edge	 detection	 (difference	 of	 Gaussians),	 enhancement	 (unsharp	
mask)	and	thresholding	make	the	near	infrared	technology	supported	
by	suitable	visible‐light	LEDs	and	 infrared	LEDs	 intensities	 the	most	
efficient	technology	to	be	used.		
	 Hence,	the	results	also	show	that	the	use	of	a	cold	compress	(cold	
stimulation)	for	infrared	technology	helps	to	enhance	the	visualisation	
of	veins.		
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