
Int. J. Big Data Intelligence, Vol. 3, No. 4, 2016 215 

Copyright © 2016 Inderscience Enterprises Ltd. 

Generic processing of real-time physiological data 
in the cloud 

Kevin Lee* 
School of Science and Technology, 
Nottingham Trent University, 
Nottingham, UK 
Email: kevin.lee@ntu.ac.uk 
*Corresponding author 

Kiel Gilleade 
School of Natural Sciences and Psychology, 
Liverpool John Moores University, 
Liverpool, UK 
Email: gilleade@gmail.com 

Abstract: There is an emerging market in the collection of physiological data for analysis and 
presentation to end-users via web technologies for applications including health and fitness, 
telemedicine and self-tracking. As technology has improved, real-time streaming of physiological 
data, providing end-to-end user feedback has become feasible, allowing for innovative 
applications to be developed. Currently, there is no standardised method of collecting 
physiological data over the web for analysis and feedback to an end-user in real-time; existing 
platforms only support specific devices and application domains. This paper proposes a generic 
methodology and architecture for the collection, analysis and presentation of physiological data. 
It defines a standard method of encapsulating data from heterogeneous sensors, performing 
transformations on it and analysing it. The approach is evaluated through an implementation of 
the architecture using cloud computing technologies and an appropriate case study. 

Keywords: physiological computing; cloud computing; physiology; sensors; frameworks. 

Reference to this paper should be made as follows: Lee, K. and Gilleade, K. (2016)  
‘Generic processing of real-time physiological data in the cloud’, Int. J. Big Data Intelligence, 
Vol. 3, No. 4, pp.215–227. 

Biographical notes: Kevin Lee is a Senior Lecturer at Nottingham Trent University, UK. He 
received his BSc, MSc, and PhD degrees from Lancaster University. He was previously a 
Research Associate at the University of Manchester in the UK, Postgraduate Research Fellow at 
the University of Mannheim in Germany and Senior Lecturer at Murdoch University in Australia. 
He has published over 60 papers in the areas of distributed systems and adaptive systems. 

Kiel Gilleade is a Consultant and Software Developer in Biofeedback Technologies. He was 
previously a Research Assistant at Liverpool John Moores University’s School of Natural 
Sciences and Psychology in the UK. He has published in the areas of physiological computing 
and affective videogame technology and recently co-edited the Springer book Advances on 
Physiological Computing. 

 

1 Introduction 
Physiological data can be used to infer the affective, 
cognitive and physical state of the user, such as athletes 
using their heartbeat rate to track physical performance 
(Polar Electro, 2013) This information can be used in a 
range of applications including health and fitness  
(Philips, 2013), sports, telemedicine (Fergus et al., 2011), 
entertainment (Nacke, 2011), affective diaries (Lindström et 
al., 2006) and self-tracking (Gilleade and Lee, 2011) as well 
being used in research areas such as of psychophysiology 
(Stern et al., 2000) and sports science. Traditionally, 

software supporting the collection, analysis and presentation 
of physiological data is built for deployment on standalone 
machines. As technology has improved the types of 
applications that can be supported has increased, including 
using the internet to process this data. For example the 
sharing of physiological data, such as heartbeat rate 
recorded during exercise regimes, via social networks has 
become popular (Gilleade and Fairclough, 2010). 

The use of the internet allows for various application 
and research paradigms involving physiological data that 
were not previously possible or infeasible. For example, the 
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sharing of physiological data via social networks was 
initially entered in manually by the end-user onto a website. 
But as technology and methods have improved the process 
can now be fully automated. One particularly interesting 
research application that uses the internet to manage 
physiological data is in the support of ambulatory studies 
(Wilhelm and Grossman, 2010; Fletcher et al., 2010). 
Psychophysiological research is traditionally performed 
under controlled conditions in a laboratory setting in order 
to observe a given relationship between a subject’s 
physiology and their psychological state. Such controlled 
experiments, however, are not performed in a natural setting 
and a subject’s response may differ outside of the lab as has 
been found in stress research (Wilhelm and Grossman, 
2010). 

Ambulatory sensors allow physiological research to be 
taken out of the lab in order to capture more normative 
responses, however this is at the cost of controlling for the 
situational context. The interpretation of physiological data 
is limited to certain analyses unless contextual information 
is collected, for example, if using heartbeat rate in a stress 
monitoring application, physiological changes resulting 
from body motion need to be filtered in order to observe for 
changes relevant to psychological stresses. One solution is 
to develop a standalone system that captures all the required 
data streams and process them at source alongside the 
physiological data. This can be computationally expensive 
and requires specialised setup. Another approach is to 
offload processing to the cloud  which can dynamically 
adapt to the load (Lee et al., 2010) as well as providing a 
means to share the data with other interested parties in real-
time. Using web-based services to handle physiological data 
processing also decouples the data from any specific 
hardware making it possible to migrate the application 
front-end to fit its environment, for example, a stress 
monitoring application could migrate from a desktop to a 
mobile platform as a patient goes about their day. 

There are an increasing number of consumer grade 
physiological sensors on the market that provide data 
storage and analysis via proprietary web interfaces. These 
interfaces are limited in that they service a particular 
hardware device and restricted data analysis, for example 
the DirectLife activity tracking service (Philips, 2013) only 
supports their brand of pedometer. There are web services 
which provide generic support for physiological data 
streams data, e.g., Pachube (2013). However, these services 
are relatively rudimentary and do not provide the level of 
real-time analysis and presentation options that a mature 
open service could provide. 

The lack of open standards for the real-time collection, 
analysis and presentation of physiological data limits the 
support available for the design and implementation of 
innovative applications. This makes deploying certain types 
of application problematic, e.g., those analysing multiple 
live data streams. Furthermore, the lack of standardisation 
means there is limited market competition for hardware and 
support software in the physiological monitoring area. 

Together these factors prevent maturity in physiological 
monitoring. 

Physiological sensor frameworks tend to provide 
collection, analysis and presentation services on a stand 
alone machine; migrating these services to the web provides 
amore usable platform for developing sensor applications. 
There needs to be a standard, open architecture to support 
the collection, storage, analysis and presentation of  
real-time physiological data in as accessible a way as 
possible for many types of applications. Physiological data 
is transformable to derivatives used for common analyses 
(e.g., feature extraction from raw physiological signals) as 
such there needs to be a way of describing the translations 
between data formats and analyses. Presentation of the data 
needs to be able to make use of a multitude of sensors and 
transformed data. To support real-time applications  
(e.g., biofeedback stress management), the collection, 
analysis and presentation workflow needs to be optimised to 
minimise latency. 

This paper argues for the need for a standard, open 
architecture to support the collection, storage, analysis and 
presentation of real-time physiological data. It proposes a 
generic architecture for physiological data processing; this 
encompasses data collection and storage, analysis and 
presentation. It aims to enable researchers to rapidly create 
new physiological applications by just specifying its 
processing workflow. It also aims to enable researchers 
from multiple fields to work together on macro 
physiological projects through a common workflow. 

The remainder of this paper is as follows. Section 2 
introduces physiological data monitoring, architectures for 
physiological data processing and analyses existing 
frameworks. Section 3 introduces a generic architecture 
physiological data processing. Section 4 presents an 
evaluation of the architecture through an application case 
study and deployment in the cloud. Section 5 discusses 
issues that have emerged from the deployment and 
evaluation. Finally, Section 6 presents some conclusions. 

2 Background 
This section provides a background on physiological data 
monitoring, overview of architectures for physiological data 
processing using the web and an analysis of existing 
frameworks for physiological data processing. 

2.1 Physiological data monitoring 
The human body generates a range of signals that can be 
captured using sensor technology; examples of commonly 
captured physiological signals are heartbeat rate, skin 
conductivity and brainwave activity. This data provides a 
wealth of information about the user’s mental and physical 
state which can be used to determine, for example, if an 
individual is stressed, exercising or asleep. Physiological 
data can be captured in its raw format (e.g., bio-electrical 
impulses that trigger muscles in the heart) or presented as a 
derivative of the raw signal (e.g., heartbeat rate). 
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Physiological data is a real-time signal which can be 
captured at a variety of sample rates which is typically 
dependant on the measure being monitored. 

Physiological data can be used in a variety of 
applications including health and fitness, telemedicine, 
affective diaries (e.g., reliving memories) and self-
experimentation (e.g. sleep management). The capture of 
this data can be automated and streamed over the internet, 
for example the Body Blogger project (Gilleade and 
Fairclough, 2010) shares the researchers heartbeat rate on 
Twitter 24 hours a day. There are several key advantages to 
capturing physiological data in this manner: 

a the data can be submitted for professional analysis, for 
example sharing blood pressure statistics with your 
doctor (BP Chart, 2013) 

b sharing with friends can provide motivation to achieve 
a given goal, for example, the sharing of physical effort 
as measured by heartbeat rate recorded during exercise 
to help motivate future performance (EA, 2013) 

c it can be combined with other data sources to provide 
mash-up interfaces (Gilleade and Lee, 2011). 

The collection, storage, analysis and presentation of 
physiological data is commonly done on a standalone 
machine given its application in specialised domains. With 
the rise in low-cost physiological sensors a number of 
commercial services have appeared which have migrated 
the analysis of physiological data and its presentation to 
web-based services. 

2.2 Architectures for internet-based physiological 
data processing 

There are a range of commercial physiological sensors used 
for health and fitness tracking including Polar personal 
trainer (Polar Electro, 2013), EA Sports Active 2 (EA, 
2013), DirectLife (Philips, 2013) and SenseWear 
(Bodymedia, 2013). Physiological data is asynchronously 
transmitted to the web service for analysis and presentation. 
These services are typically tied and limited to a single 
product, with both the hardware and software being 
packaged by the same retail company. 

Commercial physiological data service providers 
support the collation of data from physiological sensors and 
provide a variety of analysis tools. For example, the 
Microsoft Health Vault (Microsoft, 2013) is an open 
platform for the collection and storage of an end-user’s 
medical data which can be shared with, for example, other 
users or the end-user’s doctor. Sensors can be added to the 
service along with data analysis applications. Microsoft 
Health Vault and similar systems such as Google Health 
(Google, 2011) are, however, not intended for real-time 
collection, analysis and presentation of physiological data. 
FitLinxx (2013) provides real-time capabilities for its 
physiological data store ActiHealth for any device that 
supports their BodyLAN interface. Support for new 
applications is provided by widgets in ActiHealth; these are 

small self-contained applications hosted on the ActiHealth 
portal, in a software as a service (SaaS) model. There are 
also a number of other physiological data service providers 
that support a range of sensors but are intended for use in a 
particular application, many of which are aimed at the 
health and sports domains (e.g., RunKeeper, 2013). 

There is also a range of academic developed 
architectures aimed at supporting internet-based 
physiological data processing. i-Calm (Fletcher et al., 2010) 
is both a low-cost/power ambulatory sensor, measuring skin 
conductance, heart rate and motion, and a web service that 
provides data collection, analysis and presentation for the 
device. The i-Calm web service uses IIS Server and an 
ASP.net front-end client with a MS SQL backend providing 
near real-time data streaming to end-users. Data can be 
annotated and also provides an event marker function for 
experimental situations (via wireless push button). A  
similar system is The Body Blogger project (Gilleade and 
Fairclough, 2010) that supports a singular user in streaming 
real-time physiological data to Twitter. 

The EMOListen (Kosunen et al., 2010) system supports 
real-time streaming of physiological data over a mobile 
phone for conversion to audio and replay on another device. 
EMOListen is used to support the deployment of mobile 
multi-user biofeedback applications. This platform currently 
supports a range of physiological sensors [e.g., Polar (Polar 
Electro, 2013)]. Physiological data is streamed via mobile 
phones to Amazon S3 that translates the input to an audio 
file. PRESEMO (Chanel et al., 2010) is a similar multi-
modal multi-user real-time system but is aimed at 
augmenting different presentation formats (e.g., workshops, 
meetings, games) with a visualisation of the user’s 
physiological state. 

Open web-based services exist that allow users to push 
and pull generic real-time sensor data streams using the 
internet. Pachube (2013) is aimed at capturing environment 
data (e.g., from sensor motes) through a HTTP API using 
push/pull requests in which any time series-based data 
stream can be supported. The contents of a data stream  
can be described by providing the relevant metadata  
(e.g., measurement units). A basic graphing service is 
provided with further analysis and presentation provided via 
third party apps which pull the data stream. 

2.3 Analysis of existing frameworks 
Existing systems have a number of shortcomings such as 
device support, analysis techniques and presentation support 
that prevents the growth and development of physiological 
data services. The majority of internet services supporting 
the collection and analysis of physiological data are aimed 
at single sensor models. Where support is provided for 
multiple sensor models, the analysis and presentation 
services are either limited or proprietary preventing 
validation of experimental approaches. Support for complex 
real-time analysis and presentation is also limited. 

None of the current approaches provide a consistent and 
open method of transforming physiological data (e.g., from 
a raw signal to a required derivative). Furthermore, there is 
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no possibility for building pipelines of transformations 
using standard modules. This makes it hard to use these 
frameworks to conduct repeatable ambulatory experiments 
using different sensor technologies and between different 
research groups. The sharing of experimental conditions in 
psychophysiological research also tends to be problematic 
as it depends on authors describing in precise detail their 
experimental protocols. These frameworks can help the 
sharing of the experimental protocol to support the 
repetition and verification of results. 

The lack of standardisation, prevents the development of 
an eco-system of higher level research that depends on a 
maturing underlying technology. For example the 
development of ethical and social responsibility frameworks 
for physiological data monitoring on the internet. The 
research discussed has shown that there are no generic, open 
architectures for collection, analysis and presentation of 
physiological data in real-time on the internet. The 
following section tackles these issues by proposing a 
generic architecture for physiological data processing. 

3 A generic architecture for real-time 
physiological data processing 

3.1 Overview 
As discussed in Section 1 there is currently no standard, 
open system for the collection, analysis and presentation of 
physiological data in real-time using web services. Section 2 
argued that there is a need for such a system that will allow 
researchers to rapidly create applications that obtain and 
utilise physiological data. This section attempts to meet 
these goals, by setting out the requirements for such an 
architecture and proposing a generic architecture design to 
meet these requirements. 

3.2 Architectural requirements 
A generic architecture that supports the collection, storage, 
analysis and presentation of physiological data for real-time 
web services must meet some fundamental goals. There are 
many types of physiological sensor and many types of 
processing, including a variety of data translations and 
analysis that a generic architecture needs to support.  
Real-time physiological data is often collected for visual 
interpretation (e.g., biofeedback and medical diagnostics), 
so supporting multiple presentation applications and 
integrating with other real-time data sources is vital. For it 
to be globally applicable, a generic architecture needs to 
support a common workflow for the collection, analysis and 
presentation of real-time physiological data. It is useful to 
define the requirements from the point of view of the two 
sets of stakeholders that will use this architecture, 
application developers and end-users. 

• Application developers need to be able to define many 
types of applications involving physiological data such 
as remote patient monitoring. They should not have to 
concern themselves with storage, processing or 

performance elasticity issues; they should be able to 
focus on domain-specific tasks and the defining of the 
application parameters. 

• End users are individuals or groups of people who 
participate in physiological monitoring activities and 
upload this data in real-time to online repositories. 
Depending on the application definition and type,  
a user may or may not need to visualise their data in  
real-time and provide context about their actions. 

To support both these stakeholders and the wide variety of 
applications discussed in Section 2.1 a generic architecture 
must be flexible in its data processing support. The 
visualisation of physiological data can include real-time, 
historical and domain specific information. To integrate and 
prepare this data for further processing or presentation, it 
can be transformed using computational transformations 
(e.g., converting from the time domain to the frequency 
domain). 

Physiological data is in one of three transformational 
states 

1 raw unprocessed data 

2 white box derivative data which is processed in a 
transparent manner from the raw or another white box 
dataset 

3 black box data which has been processed from a data 
source using a proprietary technique. 

For real-time data presentation an application developer 
needs to be able to control data transmission properties to 
require hard, firm or soft timing (e.g., a real-time heart 
monitoring service for an outpatient with cardiac problems 
would require firm timing). An architecture supporting 
different sensor types and analysis techniques will enable 
the multiplexing of different sensor data and provide real-
time multi-modal analysis. 

For such an architecture to be viable, it must accepted 
by the community it is seeking to serve. The user experience 
must be consistent and enable real-time low latency 
feedback for end users. Physiological data is inherently 
personal information, as such, the issue of privacy needs to 
be supported through end-user preferences. End-users 
require data input and export facilities to maintain control of 
their data. For the application developer, the system has to 
be flexible and become usable long term with minimal 
maintenance. There are also issues inherent in controlling 
the interpretation of physiological data (Gilleade and Lee, 
2011). 

As well as the explicit properties discussed, there are a 
number of emergent properties associated with the 
deployment of the system. Having an open, standard 
repository and workflow will enable researchers to interact 
on projects. This will enable the crosschecking of 
experiment methodologies, the development of new 
approaches to analysis and also the crowd sourcing of the 
data analysis. The flexibility of a generic architecture will 
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enable new and exciting applications to emerge such as  
real-time ambulatory physiological monitoring. 

Figure 1 The layered approach to physiological data processing 
(see online version for colours) 

 

The goal of the architecture is to enable a flexible a service 
model. This is achieved through a layered service model 
approach as illustrated in Figure 1. The bottom layer 
provides the core services that allow interfacing between 
sensors and storage. The application support services layer 
provides support for different types of physiological data 
transformations. The three types of applications supported 
by the architecture are; 

1 built-in applications which allow individual users to 
experiment with collecting data from physiological 
sensors, perform simple transformations and visualising 
their data 

2 application developer services created by third-party 
developers 

3 user defined services which individual users can create. 

3.3 Design 
This section discusses the design of a system that 
implements the requirements of a generic architecture for 
real-time physiological data processing (GAPP) as defined 
in Section 3.2. Figure 2 illustrates the relationship between 
the different entities of the proposed system. To achieve 

flexibility, it uses cloud services to provide elasticity and 
flexibility for its processing and storage requirements. 

The desirable system structure, as illustrated in Figure 2, 
is one where there can be many users with each having one 
or more physiological sensors all collecting physiological 
data in real-time, transmitting this to cloud-based storage 
services and retrieving it in real time (along with other 
domain-specific data) for visualisation. Use of the system 
by end-users or application developers is through the GAPP 
system interface, which allows the specification of an 
application based on its input, transformation and 
presentation requirements. Applications can be developed 
that use sensed data together with domain-specific and 
application specific data stored in the cloud. Applications 
define what transformations are performed on the data prior 
to presentation for the user (e.g., converting a raw 
electrocardiogram signal of volts/per sample to beats per 
minute, see Figure 9). 

The following describe the different stages of usage of 
the system based on standard web service technologies; 
XML messages transferred using the RESTful paradigm 
that use simple HTTP GET and POST between the different 
components of the system. The system interface supports 
the management of users and applications, as follows. 

3.3.1 User data management 
A new end-user can be registered with the GAPP service 
with a simple XML message, using a HTTP POST, which 
states the requested user name; as illustrated in Figure 3. 
The GAPP service performs a simpleMD5 hash of a 
randomly generated string and returns this to the user as an 
authentication token along with their user id. This 
authentication token must be included in all subsequent 
requests to the service. Once a user has authorised their 
activity they can participate in the data collection process by 
registering the required data streams. 

Figure 2 The GAPP architecture (see online version for colours) 
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Figure 3 Example user registration message 

<UserRegistration> 
<UserName>Bob Smith</UserName> 

</UserRegistration>  

The following are the parameters for data stream 
registration: 

• UserID – user’s registration ID 

• AuthToken – user’s authentication token 

• Name – name of the data stream 

• Description – description of the data stream 

• Format – data format definition. 

The data format definition describes what kind of data is 
being uploaded and how it is to be structured. In order to 
support transformations a data stream must be stored in a 
consistent format in order to guarantee it can be applied. For 
a stream involving physical hardware the data needs be 
bound to a sensor that is done using the following 
parameters: 

• Name – name and model of the sensor 

• Description – description of the sensor 

• Location – physical location of the sensor. 

Location data can be a location on the body or a GPS 
location as with environmental sensors. Using the properties 
listed above, a user can register a heartbeat rate sensor with 
a data stream which provides inter-beat interval information 
(i.e., time between individual heart beats), this is illustrated 
in Figure 4. 

This message is sent using a HTTP POST and will 
receive a HTML response or error code in return. A 
successful message will receive a 200 OK code, 400 bad 
request, 401 unauthorised, etc. A user has to perform a data 
registration for each data stream they require to be 
collected, including physiological, environmental or 
contextual. For each data registration, the user receives a 
data registration id that allows the user to submit a data 
reading. 

3.3.2 Data collection 
Once a data source has been registered, data can be 
submitted by building a message consisting of 
authentication and the following parameters: 

• StreamID – the ID returned on a successful data 
registration 

• Timestamp – time the sample was measured (YYYY-
MM-DD??HH:MM:SS) 

• Fractional – second fractional of timestamp 

• Value – sensor reading. 

Using these properties, data can be submitted as illustrated 
in Figure 5. A data submission can contain any number of 
data readings; single events, collections of data points, 
aggregate data or derived data. 

3.3.3 Data processing and presentation 
Data streams made up of data points are processed by 
defining a series of transformations that operate on an input 
data stream, perform some processing and produce an 
output data stream. A user or application developer can 
specify that instance of a transformation implementation be 
spawned by the system interface. A transformation is 
registered using a XML message to the system interface 
consisting of authentication and the following parameters: 

• Name – is the transformation name 

• Description – is human readable description 

• Input – is the data source(s) for an input(s), specifying 
the URL, format and StreamID. 

Each transformation is instanced as a new web application 
on the system. The registering user is provided with a web 
service URL of this instance that can be used to retrieve 
transformed data from this transformation. Figure 6 
illustrates an example of a transformation that converts 
inter-beat intervals to heart beats per minute for an hours 
worth of data. 

Figure 4 Example user data management message 

<StreamRegistration> 
<UserID>1</UserID> 
<AuthToken>90eb503faff5501f833532d0e0454312</AuthToken> 
<Stream> 

<Name>Heart Rate</Name> 
<Description>My Heart Rate</Description> 
<Format>IBI</Format> 
<Sensor> 

<Model>BM-CS5</Model> 
<Description>Single ECG channel chest-strap</Description> 
<Location>Chest</Location> 

</Sensor> 
</Stream> 
<Stream> 

<Name>Triggers</Name> 
<Description>Time Index of Events</Description> 
<Format>Trigger</Format> 

</Stream> 
</StreamRegistration>  
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Figure 5 Example data submission message 

<Submission> 
<UserID>1</UserID> 
<AuthToken>90eb503faff5501f833532d0e0454312</AuthToken> 
<Stream> 

<StreamID>3</StreamID> 
<Sample> 

<TimeStamp>2011-06-2T14:08:23</TimeStamp> 
<Fractional>0</Fractional> 
<Value>750</Value> 

</Sample> 
<Sample> 

<TimeStamp>2011-06-2T14:08:23</TimeStamp> 
<Fractional>75</Fractional> 
<Value>1000</Value> 

</Sample> 
</Stream> 

</Submission>  

Figure 6 Example transformation registration message 

<Transformation> 
<UserID>1</UserID> 
<AuthToken>90eb503faff5501f833532d0e0454312</AuthToken>
<Name>IBI to HR</Name> 
<Description>Convert IBI to HR</Description> 
<Input> 

<URL>/GAPP/GAPPServlet?service=getdata</URL> 
<Format>IBI</Format> 

<StreamID>3</StreamID> 
</Input> 

</Transformation>  

 
Data can be retrieved using HTTP GET requests using 
simple URL notation as illustrated in Figure 7. The URL of 
the servlet is called with an additional ‘?service=getdata’ to 
request data, ‘&datastreamid=40’ to request a data stream, 
‘&starttimestamp=2011-07-13T06:00:00’ to specify the 
starting time stamp and ‘&endtimestamp=2011-07-
13T07:00:00’ to specify the end time. An XML message of 
varying size depending on the number of data entries which 
fit the criteria of the request is returned to the client. HTTP 
GET requests also return standard HTTP error codes 
indicating the success or failure of the request. 

Figure 7 Requests the last hour of samples from a data stream 

HTTP://URL:8080/GAPP?service=getdata&userid=1& 
authtoken=90eb503faff5501f833532d0e0454312& 
datastreamid=3&starttime=2011-07-13T06:00:00&
stoptime=2011-07-13T07:00:00  

Transformations are implemented as self-contained web 
applications. When a user wishes to transform a data stream 
into another format they must first register the type of 
transformation they wish to perform with the system. The 
system creates a instance of that transformation’s associated 
web application and will send the user a unique URL which 
they can perform HTTP GET requests as they would with a 
normal data stream. Transformed data can be retrieved by 
performing a HTTP GET request to the URL of the 

transformation instance previously registered by the user 
with the appropriate parameters, as illustrated in Figure 8. 
3.3.4 Transformation workflows 
To support complex processing needs, workflows of 
transformations can be built up in the same way that Grid-
based scientific workflow processing is performed 
(Deelman et al., 2005). Globally available web service 
URLs are used for the input and outputs to transformation 
process; the implementation of each transformation handles 
the processing and storage at each stage. This abstraction 
allows for flexibility of storage location and also for the 
dynamic building of transformation pipelines at runtime. 
Transformation processes can be anything that takes a data 
input, performs some processing and produces some output; 
these can be an executable program or a web service as long 
as they provide a globally accessible web service URL. 

The processing performed by each transformation can 
be applied to simple datasets or complex data streams. The 
technique used to implement transformations can be simple 
receive-store-process or stream processing with implications 
for state maintenance. Continuous query languages can be 
used to group and process events as data streams using 
stream query-processing techniques (Arasu et al., 2006) and 
even perform complex analyse on events streams (Lee et al., 
2008). 
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Figure 8 Requests the last hour of ‘transformed’ samples from a data stream 

HTTP://URL:8080/GAPP/Transform001?service=getdata&userid=1& 
authtoken=90eb503faff5501f833532d0e0454312& 
starttime=2011-07-13T06:00:00&stoptime=2011-07-13T07:00:00  

Figure 9 Transformation pipeline for two types of heart sensor (see online version for colours) 

 

 
Workflows of transformations can be built up by explicitly 
specifying inter-transformation dependencies. Figure 9 
illustrates an example of using the pipelined approach to 
transformations to analyse heart rate data. It shows the 
conversion of different raw signals into a common 
derivative (i.e., inter-beat interval) that can be further 
transformed into related derivatives (e.g., heartbeat rate). 
Many sensors can generate data using different mechanisms 
but the derivative can still be the same, for example, 
heartbeat activity can be measured using a pulse oximeter 
(measures blood flow) or an electrocardiogram (measures 
electrical activity) from which both an inter-beat interval 
can be derived from. Transformations in a pipeline don’t 
need to be physically located in the same location; in fact 
they can be in widely varying locations to take advantage of 
the cheapest or fastest resources in that moment in time. 

In order to create a transformation workflow as 
illustrated in Figure 9 the user would first register each 
transformation they wish to perform in turn and pass the 
returned URL as the input source of the next transformation 
in the workflow, e.g., the ECG-IBI transform URL would 
be passed as the input source for the IBI-HR transform. The 
user would execute the workflow by calling the final 
transformation in the sequence, which would request data 
from the previous transformation. This would continue until 
the transform reaches a data source on the system that 
would then be passed through the transform chain that has 
been established. 

The approach proposed allows data from many types of 
data sources to be processed, integrated and presented in a 
variety of formats in transformation workflows. The 
presentation can be near real-time on the monitoring device, 
e.g., a mobile phone, a website for public viewing, or 
integrated with other data for medical diagnoses. Using 
transformation workflows, combined client side 
applications, data from more than one user can be combined 
for aggregate analysis or presentation. The presentation of 
this data is left to the application developer. For example, a 
developer wishing to combine the heartbeat rate data for a 
group of athletes in order to observe the strenuousness of an 
exercise regime would 

1 register each sensors data 

2 have each sensor submit data to the service 

3 define a series of transformations to process the data 

4 build an application that pulls the output of the 
transformations and displays this to the user. 

3.4 Summary 
This section has introduced a generic architecture for  
real-time physiological data processing. It has described the 
different parts of the system and illustrated how they are 
used for simple examples. It highlighted a novel technique 
for performing data processing using transformations 
exposed as standard web services. The grouping of multiple 
of these transformations as transformation workflows 
supports the application developer in creating innovative 
applications without having to concentrate on technical 
issues. 

4 Case study evaluation: mobile biofeedback 
interaction 

4.1 Overview 
This section describes a case study-based evaluation  
of the practical use of the generic architecture for  
real-time physiological data processing and to illustrate  
its use in a real-world scenario. Section 4.2 discusses the 
implementation of the architecture. In Section 4.3 a  
case study for a prospective real world mobile  
healthcare application is described. Section 4.4 presents an 
experimental evaluation using the case study. Finally, 
Section 4.5 presents a summary. 

4.2 Implementation 
To evaluate the design of the generic architecture for  
real-time physiological data processing with a suitable case 
study an implementation of the architecture has been 
prepared. The architecture has been implemented using 
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open standards-based technologies. This is to ensure 
maximum compatibility, flexibility of future development 
and elasticity in responding to application demand. There 
are three broad areas of implementation concern, 

1 the system interface 

2 the server back-end 

3 application development.; these are now each discussed 
in turn. 

As described in Section 3.3, the interface to the system 
between the client and server uses standard web  
service technologies; eXtensible Markup Language (XML) 
messages transferred using the RESTful paradigm that use 
simple HTTP GET and POST between the different 
components of the system. The web service is implemented 
as a Java Servlet on Apache Tomcat 7 application server 
(The Apache Software Foundation, 2013) which 
implements the request-reply programming model using the 
HTTP protocol. Secure connections can be achieved using 
HTTPS. 

Client applications construct and send XML messages 
(user registrations, data registrations, transformation 
registrations and data submissions) using HTTP POSTs to 
the system interface. All XML messages must conform to 
specifications in XML Schema Definition Language (XSD) 
for each message type; both the client and system interface 
must conform to this. For each XML message sent by the 
client there is a corresponding transaction confirmation 
message sent back to the client which confirms the success 
or failure of the request. In addition, standard HTTP error 
codes are also used to indicate to the success and failure of 
any request together with further detail such as a request 
failing due to an error in the request or an internal server 
failure. 

The server back-end consists of an Apache Tomcat 
Servlet Version 7.0.16 which utilises a MySQL or SQLite 
Database. Both the database and application server can be 
deployed on a standalone PC or deployed using a cloud  
service such as the Amazon elastic computing cloud (EC2). 
Using a cloud  service such as Amazon EC2 ensures rapid 
response to computing demand whilst minimising cost when 
demand is not at its peak. 

Broadly speaking, the servlet 

1 receives each request from the client 

2 validates the client user id and request 

3 performs the request by issuing INSERT or SELECT 
queries to the MySQL database 

4 assembles an XML reply 

5 returns the reply to the client stating the action 
performed. 

Thus, the servlet is effectively converting XML request-
reply messages to SQL queries. 

To develop an application, there are three main areas of 
implementation; data collection, system interaction and data 

presentation. Data collection involves the sensing of data, 
formatting it as XML documents and submitting this to the 
system. As applications communicate using XML over 
HTTP, client applications are not restricted in 
implementation language or platform. To interface with the 
system, the only requirement of an application is that users, 
sensors and data streams are registered before they can 
submit data, and that all messages conform to the XSD 
specifications. Data presentation is left to the application 
developer, using either the POST or GET interfaces. 

4.3 Case study description 
For evaluation the following scenario has been selected to 
demonstrate the ability of the GAPP architecture to process 
real-time physiological information and distribute it to 
stakeholders: 

• Scenario: A patient has been determined to be at risk 
from heart failure and has been advised by their doctor 
to increase their daily level of exercise as part of their 
treatment.. The patient’s medical insurance requires 
that they sign onto an approved health and fitness 
course, whereby their exercise regime will be managed 
by a professional fitness instructor, in order to retain 
their policy. 

Low heartbeat variability is a known risk factor in heart 
failure in chronic heart failure patients (Task Force of the 
European Society of Cardiology, 1996; Karemaker and Lie, 
2000). In treating cardiac patients a portable heartbeat rate 
monitor can be used to track their condition on a long term 
basis allowing for the effective deployment of resources 
when their aliment worsens (e.g., advising patients to return 
to the doctor). It can also be used to provide feedback on 
interventions designed to alleviate a condition. In the 
scenario described above we have three end user’s who 
would benefit from use of the GAPP framework, 

1 the patient 

2 the patient’s doctor 

3 fitness instructor. 

Each end-user is interested in a measure of heart activity 
suited to their role in the treatment of the patient. 

For both the patient and fitness instructor, heartbeat rate 
would be a suitable measure. This data format can be used 
to inform the patient the device is operational and the fitness 
instructor the patient’s level of exertion during exercise. The 
patient’s doctor will be interested in monitoring heartbeat 
variability as further reductions in variability could be 
indicative that a condition has worsened and may require a 
different intervention. Both these measures can be derived 
from the inter-beat interval (time between heartbeats) which 
can be collected by a chest-strap-based heartbeat monitor. 
Heartbeat variability can be assessed using both time  
(e.g., standard deviation) and spectral measures  
(e.g., Fourier transform), for the purposes of this case study 
we are interested in spectral measures which provide 
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information about different cardiac functions (e.g., balance 
between the sympathetic and parasympathetic nervous 
systems). 

The transformations required by each end-user can be 
readily supported by the GAPP architecture, the required 
transformation workflow is illustrated in Figure 10. In this 
scenario there is a singular input which is processed by  
two different workflow paths for preparation for the three 
end-users. 

Figure 10 Case study transformation pipeline, preparing 
heartbeat data for multiple end-users (see online 
version for colours) 

 

The case study chosen demonstrates the collection, analysis 
and presentation of real-time physiological data for a health 
and fitness scenario in which a singular user’s heartbeat data 
is streamed to the GAPP system and is transformed to meet 
the requirements of three different end-users. In Section 4.4 
we describe how the case study is to be evaluated. 

This example illustrates a basic single source, multiple 
output scenario; the GAPP system also supports more 
complex scenarios. An extension to this case study is one 
where the system supports multiple patients all being 
monitored by different fitness coaches and doctors. 

4.4 Experimental evaluation 
The main considerations for evaluating the real-time 
physiological data-processing system are 

1 can it support realistic physiological application 
scenarios 

2 can it meet the real-time performance constraints of 
physiological applications and 

3 are the GAPP server, transformations and end-user 
client deployable within reasonable resource 
constraints. 

These are addressed as follows using the defined case study. 

4.4.1 Supporting realistic application scenarios 
The case study as defined in Section 4.3 describes a remote 
patient monitoring system which collects, analyses and 
presents physiological data in real-time to several 
stakeholders. The described system was implemented using 
the GAPP architecture. 

For maximum flexibility, and to easily support the 
distributed nature of the case study, this scenario utilises 
cloud computing services. An Amazon Machine Image 

(AMI) was prepared using Ubuntu 11.10, Apache Tomcat 
7.0.16, MySQL version 14.14 and the GAPP service. This 
AMI was stored on Amazon Simple Storage Service (S3) 
ready to be instantiated by EC2. A single instance of this 
AMI was instantiated on a standard machine type m1.large 
which has 4 64-bit EC2 compute units and 7.5 GB of 
memory. Amazon CloudWatch with an AutoScaling group 
was configured to enable load-balancing and scale the 
number of instances upon increased CPU utilisation. 

An Android-based mobile phone was used to collect 
heartbeat data from the patient via a Zephyr HxM (Zephyr 
Technology, 2011), a Bluetooth-based chest-strap-based 
heartbeat monitor. The timestamp of each detected heart-
beat is recorded using an onboard real-time clock with a 
millisecond resolution. It exposes readings over a serial port 
as a data packet containing several of the most recent time-
stamped heart-beats. This provides for a degree of data 
recovery in a lossy environment (the slower the heart rate 
the more data redundancy and vice versa). The inter-beat 
interval can be derived from this by calculating the 
difference between heart beat timestamps which can 
subsequently be used to calculate the user’s heartbeat rate 
and heartbeat variability. The Android phone collects this 
data using Bluetooth and queries the GAPP web service 
using the POST and GET interface as described in  
Section 3.3. 

A series of transformations as described in Section 4.3 
were registered with the GAPP service, for consumption by 
the patient, fitness coach and doctor. Client applications for 
the patient and fitness coach retrieve the output from the 
IBI-HR transformation using GET requests to the GAPP 
service. The IBI-HR transformation converts every IBI  
(in milliseconds) within the requested time period to beats 
per minute and outputs it as time series in the data 
submission XML format. Likewise, the client application 
for the doctor retrieves the output from the IBI-HRV 
transformation from the GAPP service. The IBI-HRV 
performs a fast Fourier transform (FFT) on a given epoch of 
inter-beat intervals. A minimum of five minutes is 
recommended for this analysis though in less ideal 
circumstances one or two minute epochs can be used 
depending on the spectral component of interest (Berntson 
et al., 1997). For example a two-minute epoch is required as 
standard for the low-frequency (LF) component (0.04–015 
Hz); indicative of activity in both the sympathetic and 
parasympathetic nervous systems. The LF component is of 
interest to the case study having been identified as a 
mortality predictor in chronic heart failure patients 
(Galinier, 2000). In the case study a two minute epoch is 
used. As FFTs require an equidistant time series as an input 
and inter-beat intervals are a non-equidistant time series the 
data stream must be converted before use which is 
performed as part of the IBI-HRV transform. The output of 
the transformation is an XML describing the amplitudes 
(ms) of the frequency spectra (Hz) in the re-sampled IBI 
time series. 

The flexibility of the GAPP service allows a range of 
data to be derived and exposed to different end users. The 
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experiment successfully demonstrated that it was 
straightforward to write simple applications which 

1 registers data streams 

2 registers transformations 

3 allows for the multi-modal retrieval of transformed data 
in real-time. 

4.4.2 Meeting real-time performance constraints 
The nature of real-time applications that include 
physiological monitoring is that they are inherently 
interactive – requiring live feedback to users on mobile and 
interactive displays. To support the real-time constraints of 
physiological data-processing applications the system must 
have minimal latency. There are two meaningful 
measurements of latency; the end-to-end transaction time 
and the latency of each transformation in the transformation 
workflow chain. 

Because of the flexible and lightweight design of the 
GAPP service, it can be deployed on a standalone machine 
or remotely on a cloud  service with either the MYSQL or 
the lightweight SQLite database. To test end-to-end latency, 
the application implementation described in the previous 
section was deployed and a series of experiments 
performed. 

For the first experiment, 60 seconds of IBIs, derived 
from heart rate data from the HxM sensor was sent in a 
burst to the GAPP service. Table 1 illustrates (in the first 
column) the submission performance achieved. A local 
GAPP installation achieves an average 423 milliseconds per 
IBI sample; and a cloud  installation, in a realistic scenario 
using an ADSL connection, performs the submission 
marginally slower, in 447 milliseconds. Both of are well 
within the requirement for real-time performance, like, for 
example, in real-time presentation of the data. Analysis of 
the system shows that the majority of the overhead is in 
XML generation and validation. This is the overhead of a 
generic protocol and can be optimised further. 

The second experiment focuses on the latency of 
performing transformations and retrieving the result. Certain 
transformations such as IBI-HR operate on the latest data 
sample, and instantaneous performance is important. Table 
1 presents (in the second column) that the end-to-end cost of 
a IBI-HR transformation, which includes submitting a 
single data sample and retrieving from the transformation is 
958 milliseconds for a local installation and 987 
milliseconds for a cloud installation. Performance can be 

dramatically increased by submitting multiple data points at 
the same time by buffering them at the source; this will 
prevent signal drift due to computation delay. 

The final latency measurement experiment, which is 
presented in the third column of Table 1, is the time taken to 
perform an IBI-HRV transformation on five minutes of IBI 
data – which is the generally understood minimal useful 
time period to look for heart rate variability. It shows that it 
takes 27 milliseconds from a local and 1,544 milliseconds 
from a cloud installation from the submission of the last IBI 
to the output of the transformation being received. This 
shows that the performance of transformations is mainly 
related to the network bandwidth – due to the output being 
transferred as a single XML file. 

4.4.3 Deployment resource characteristics 
Collecting and processing data for physiological 
applications that use mobile devices and cloud computing 
services requires using these scarce or costed resources, 
therefore application footprint is important. There are three 
locations which the application runs; server, client device 
and transformation host. 

The GAPP service is based on the Apache Tomcat 
application server, with a Java Servlet performing the 
application logic. Measurements of the memory footprint on 
MacOS Lion for the default configuration application server 
Java Virtual Machine version 1.6.0 with no servlets is on 
average 71.5 MB including administrative and logging 
applications.. The addition of the GAPP Servlet increases 
the Java Virtual Machine memory usage to 81 MB, 
including SQL Library (MYSQL or sqlite) and XML 
processing libraries, so the GAPP service has a total 
footprint of 8.5 MB. A size of 8.5 MB is reasonably 
compact so can be run on cheap cloud computing services. 
Memory footprint depends heavily on the OS and Java 
versions but remains in a similar range. 

A GAPP client program simply needs to build the 
required XML requests and submit these via a HTTP 
request to the GAPP servlet. The case study described in the 
previous section uses a simple Java program that builds 
XML messages and interacts with the GAPP service via 
HTTP calls. Measurements of the system memory footprint 
for a simple program including the Java Virtual Machine 
shows an average of 32 MB. This is the common case, but 
could be reduced dramatically using an alternative client 
implementation. 

Table 1 Table of performance for case study transformations using local and cloud installations 

 Average submission of  
an IBI sample 

IBI-HR transformation  
end-to-end latency 

5 mins IBI-HRV  
transformation 

Local installation 423 ms 958 ms 7 ms 
Cloud installation 447 ms 987 ms 1,544 ms 
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4.5 Summary 
This section has presented an evaluation of the proposed 
generic architecture real-time architecture for real-time 
physiological data processing. It introduced an 
implementation of the architecture and a case study of 
mobile biofeedback interaction. A qualitative and 
quantitative evaluation has been presented which shows that 
the proposed architecture can meet the requirements of 
wide-ranging and complex physiological monitoring 
applications. 

5 Discussion 
The area of real-time physiological data collection, analysis 
and presentation raises several issues of interest. As 
physiological data is inherently personal; seeking to collect, 
store and disseminate this information introduces a variety 
of privacy and ethical concerns (Gilleade and Lee, 2011). 
As GAPP is fundamentally a service provider for 
physiological data transformations in the cloud  there is a 
need to consider the policies governing the type of derivate 
works that can be produced from the original dataset. In this 
manner the data owner can apply a level of control over the 
context under which their data is interpreted. 

Beyond understanding that an individual’s physiological 
data is fundamentally personal, collating many individuals 
physiological data introduces further challenges. With 
multiple sources of information it is possible to track events 
and predict behaviour. Data access must be considered, 
giving access of data to any researcher, outside spammer, 
insurance company must be reasoned. Ensuring access to 
data is not misused, must be done by, 

1 access to the physiological data feed can be controlled 

2 the fidelity of the physiological data can be set to an 
appropriate level for the service being provided 

3 allow the user to control the context 

4 allow the user to decide the granularity of the dataset. 

Through the user of transformation workflows GAPP can be 
readily adapted to different processing paradigms. As GAPP 
uses Tomcat applications to embody unit functions to 
realise the workflow and distributes these units across the 
cloud  according to load dynamics there is liable to be a 
trade off between the number of functions in a workflow 
and its efficacy at executing the entire transformation in 
real-time. A potential solution for this would be a workflow 
manager that can distribute unit functions in the 
transformation according to both the requirements of the 
transformation workflow, e.g., low latency, and the 
processing load on the GAPP service. 

Expanding upon this paradigm there could be used to 
support crowd-sourced experiments. As sensing technology 
has improved it is feasible to replicate studies using 
consumer grade sensors in a participant’s own home. The 
solution proposed in this paper would enable complex 
analysis to be performed, at low cost with these consumer 

grade sensors. In addition, it enables many users of these 
low-cost sensors to collaborate in social experiments by 
performing analysis on group data. 

6 Conclusions 
This paper has argued for the need for a standard, open 
architecture for the collection, analysis and processing of 
physiological data to support researchers and end user 
applications. It has proposed a generic architecture for real-
time physiological data processing using cloud  computing 
resources. A case study of patient physiological monitoring 
was used to demonstrate and evaluation the proposed 
architecture. It showed that the architecture, and in 
particular the transformation support, achieves the 
requirements of the system. 
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