
Int. J. Big Data Intelligence, Vol. 3, No. 4, 2016 215

Copyright © 2016 Inderscience Enterprises Ltd.

Generic processing of real-time physiological data
in the cloud

Kevin Lee*
School of Science and Technology,
Nottingham Trent University,
Nottingham, UK
Email: kevin.lee@ntu.ac.uk
*Corresponding author

Kiel Gilleade
School of Natural Sciences and Psychology,
Liverpool John Moores University,
Liverpool, UK
Email: gilleade@gmail.com

Abstract: There is an emerging market in the collection of physiological data for analysis and
presentation to end-users via web technologies for applications including health and fitness,
telemedicine and self-tracking. As technology has improved, real-time streaming of physiological
data, providing end-to-end user feedback has become feasible, allowing for innovative
applications to be developed. Currently, there is no standardised method of collecting
physiological data over the web for analysis and feedback to an end-user in real-time; existing
platforms only support specific devices and application domains. This paper proposes a generic
methodology and architecture for the collection, analysis and presentation of physiological data.
It defines a standard method of encapsulating data from heterogeneous sensors, performing
transformations on it and analysing it. The approach is evaluated through an implementation of
the architecture using cloud computing technologies and an appropriate case study.

Keywords: physiological computing; cloud computing; physiology; sensors; frameworks.

Reference to this paper should be made as follows: Lee, K. and Gilleade, K. (2016)
‘Generic processing of real-time physiological data in the cloud’, Int. J. Big Data Intelligence,
Vol. 3, No. 4, pp.215–227.

Biographical notes: Kevin Lee is a Senior Lecturer at Nottingham Trent University, UK. He
received his BSc, MSc, and PhD degrees from Lancaster University. He was previously a
Research Associate at the University of Manchester in the UK, Postgraduate Research Fellow at
the University of Mannheim in Germany and Senior Lecturer at Murdoch University in Australia.
He has published over 60 papers in the areas of distributed systems and adaptive systems.

Kiel Gilleade is a Consultant and Software Developer in Biofeedback Technologies. He was
previously a Research Assistant at Liverpool John Moores University’s School of Natural
Sciences and Psychology in the UK. He has published in the areas of physiological computing
and affective videogame technology and recently co-edited the Springer book Advances on
Physiological Computing.

1 Introduction
Physiological data can be used to infer the affective,
cognitive and physical state of the user, such as athletes
using their heartbeat rate to track physical performance
(Polar Electro, 2013) This information can be used in a
range of applications including health and fitness
(Philips, 2013), sports, telemedicine (Fergus et al., 2011),
entertainment (Nacke, 2011), affective diaries (Lindström et
al., 2006) and self-tracking (Gilleade and Lee, 2011) as well
being used in research areas such as of psychophysiology
(Stern et al., 2000) and sports science. Traditionally,

software supporting the collection, analysis and presentation
of physiological data is built for deployment on standalone
machines. As technology has improved the types of
applications that can be supported has increased, including
using the internet to process this data. For example the
sharing of physiological data, such as heartbeat rate
recorded during exercise regimes, via social networks has
become popular (Gilleade and Fairclough, 2010).

The use of the internet allows for various application
and research paradigms involving physiological data that
were not previously possible or infeasible. For example, the

216 K. Lee and K. Gilleade

sharing of physiological data via social networks was
initially entered in manually by the end-user onto a website.
But as technology and methods have improved the process
can now be fully automated. One particularly interesting
research application that uses the internet to manage
physiological data is in the support of ambulatory studies
(Wilhelm and Grossman, 2010; Fletcher et al., 2010).
Psychophysiological research is traditionally performed
under controlled conditions in a laboratory setting in order
to observe a given relationship between a subject’s
physiology and their psychological state. Such controlled
experiments, however, are not performed in a natural setting
and a subject’s response may differ outside of the lab as has
been found in stress research (Wilhelm and Grossman,
2010).

Ambulatory sensors allow physiological research to be
taken out of the lab in order to capture more normative
responses, however this is at the cost of controlling for the
situational context. The interpretation of physiological data
is limited to certain analyses unless contextual information
is collected, for example, if using heartbeat rate in a stress
monitoring application, physiological changes resulting
from body motion need to be filtered in order to observe for
changes relevant to psychological stresses. One solution is
to develop a standalone system that captures all the required
data streams and process them at source alongside the
physiological data. This can be computationally expensive
and requires specialised setup. Another approach is to
offload processing to the cloud which can dynamically
adapt to the load (Lee et al., 2010) as well as providing a
means to share the data with other interested parties in real-
time. Using web-based services to handle physiological data
processing also decouples the data from any specific
hardware making it possible to migrate the application
front-end to fit its environment, for example, a stress
monitoring application could migrate from a desktop to a
mobile platform as a patient goes about their day.

There are an increasing number of consumer grade
physiological sensors on the market that provide data
storage and analysis via proprietary web interfaces. These
interfaces are limited in that they service a particular
hardware device and restricted data analysis, for example
the DirectLife activity tracking service (Philips, 2013) only
supports their brand of pedometer. There are web services
which provide generic support for physiological data
streams data, e.g., Pachube (2013). However, these services
are relatively rudimentary and do not provide the level of
real-time analysis and presentation options that a mature
open service could provide.

The lack of open standards for the real-time collection,
analysis and presentation of physiological data limits the
support available for the design and implementation of
innovative applications. This makes deploying certain types
of application problematic, e.g., those analysing multiple
live data streams. Furthermore, the lack of standardisation
means there is limited market competition for hardware and
support software in the physiological monitoring area.

Together these factors prevent maturity in physiological
monitoring.

Physiological sensor frameworks tend to provide
collection, analysis and presentation services on a stand
alone machine; migrating these services to the web provides
amore usable platform for developing sensor applications.
There needs to be a standard, open architecture to support
the collection, storage, analysis and presentation of
real-time physiological data in as accessible a way as
possible for many types of applications. Physiological data
is transformable to derivatives used for common analyses
(e.g., feature extraction from raw physiological signals) as
such there needs to be a way of describing the translations
between data formats and analyses. Presentation of the data
needs to be able to make use of a multitude of sensors and
transformed data. To support real-time applications
(e.g., biofeedback stress management), the collection,
analysis and presentation workflow needs to be optimised to
minimise latency.

This paper argues for the need for a standard, open
architecture to support the collection, storage, analysis and
presentation of real-time physiological data. It proposes a
generic architecture for physiological data processing; this
encompasses data collection and storage, analysis and
presentation. It aims to enable researchers to rapidly create
new physiological applications by just specifying its
processing workflow. It also aims to enable researchers
from multiple fields to work together on macro
physiological projects through a common workflow.

The remainder of this paper is as follows. Section 2
introduces physiological data monitoring, architectures for
physiological data processing and analyses existing
frameworks. Section 3 introduces a generic architecture
physiological data processing. Section 4 presents an
evaluation of the architecture through an application case
study and deployment in the cloud. Section 5 discusses
issues that have emerged from the deployment and
evaluation. Finally, Section 6 presents some conclusions.

2 Background
This section provides a background on physiological data
monitoring, overview of architectures for physiological data
processing using the web and an analysis of existing
frameworks for physiological data processing.

2.1 Physiological data monitoring
The human body generates a range of signals that can be
captured using sensor technology; examples of commonly
captured physiological signals are heartbeat rate, skin
conductivity and brainwave activity. This data provides a
wealth of information about the user’s mental and physical
state which can be used to determine, for example, if an
individual is stressed, exercising or asleep. Physiological
data can be captured in its raw format (e.g., bio-electrical
impulses that trigger muscles in the heart) or presented as a
derivative of the raw signal (e.g., heartbeat rate).

 Generic processing of real-time physiological data in the cloud 217

Physiological data is a real-time signal which can be
captured at a variety of sample rates which is typically
dependant on the measure being monitored.

Physiological data can be used in a variety of
applications including health and fitness, telemedicine,
affective diaries (e.g., reliving memories) and self-
experimentation (e.g. sleep management). The capture of
this data can be automated and streamed over the internet,
for example the Body Blogger project (Gilleade and
Fairclough, 2010) shares the researchers heartbeat rate on
Twitter 24 hours a day. There are several key advantages to
capturing physiological data in this manner:

a the data can be submitted for professional analysis, for
example sharing blood pressure statistics with your
doctor (BP Chart, 2013)

b sharing with friends can provide motivation to achieve
a given goal, for example, the sharing of physical effort
as measured by heartbeat rate recorded during exercise
to help motivate future performance (EA, 2013)

c it can be combined with other data sources to provide
mash-up interfaces (Gilleade and Lee, 2011).

The collection, storage, analysis and presentation of
physiological data is commonly done on a standalone
machine given its application in specialised domains. With
the rise in low-cost physiological sensors a number of
commercial services have appeared which have migrated
the analysis of physiological data and its presentation to
web-based services.

2.2 Architectures for internet-based physiological
data processing

There are a range of commercial physiological sensors used
for health and fitness tracking including Polar personal
trainer (Polar Electro, 2013), EA Sports Active 2 (EA,
2013), DirectLife (Philips, 2013) and SenseWear
(Bodymedia, 2013). Physiological data is asynchronously
transmitted to the web service for analysis and presentation.
These services are typically tied and limited to a single
product, with both the hardware and software being
packaged by the same retail company.

Commercial physiological data service providers
support the collation of data from physiological sensors and
provide a variety of analysis tools. For example, the
Microsoft Health Vault (Microsoft, 2013) is an open
platform for the collection and storage of an end-user’s
medical data which can be shared with, for example, other
users or the end-user’s doctor. Sensors can be added to the
service along with data analysis applications. Microsoft
Health Vault and similar systems such as Google Health
(Google, 2011) are, however, not intended for real-time
collection, analysis and presentation of physiological data.
FitLinxx (2013) provides real-time capabilities for its
physiological data store ActiHealth for any device that
supports their BodyLAN interface. Support for new
applications is provided by widgets in ActiHealth; these are

small self-contained applications hosted on the ActiHealth
portal, in a software as a service (SaaS) model. There are
also a number of other physiological data service providers
that support a range of sensors but are intended for use in a
particular application, many of which are aimed at the
health and sports domains (e.g., RunKeeper, 2013).

There is also a range of academic developed
architectures aimed at supporting internet-based
physiological data processing. i-Calm (Fletcher et al., 2010)
is both a low-cost/power ambulatory sensor, measuring skin
conductance, heart rate and motion, and a web service that
provides data collection, analysis and presentation for the
device. The i-Calm web service uses IIS Server and an
ASP.net front-end client with a MS SQL backend providing
near real-time data streaming to end-users. Data can be
annotated and also provides an event marker function for
experimental situations (via wireless push button). A
similar system is The Body Blogger project (Gilleade and
Fairclough, 2010) that supports a singular user in streaming
real-time physiological data to Twitter.

The EMOListen (Kosunen et al., 2010) system supports
real-time streaming of physiological data over a mobile
phone for conversion to audio and replay on another device.
EMOListen is used to support the deployment of mobile
multi-user biofeedback applications. This platform currently
supports a range of physiological sensors [e.g., Polar (Polar
Electro, 2013)]. Physiological data is streamed via mobile
phones to Amazon S3 that translates the input to an audio
file. PRESEMO (Chanel et al., 2010) is a similar multi-
modal multi-user real-time system but is aimed at
augmenting different presentation formats (e.g., workshops,
meetings, games) with a visualisation of the user’s
physiological state.

Open web-based services exist that allow users to push
and pull generic real-time sensor data streams using the
internet. Pachube (2013) is aimed at capturing environment
data (e.g., from sensor motes) through a HTTP API using
push/pull requests in which any time series-based data
stream can be supported. The contents of a data stream
can be described by providing the relevant metadata
(e.g., measurement units). A basic graphing service is
provided with further analysis and presentation provided via
third party apps which pull the data stream.

2.3 Analysis of existing frameworks
Existing systems have a number of shortcomings such as
device support, analysis techniques and presentation support
that prevents the growth and development of physiological
data services. The majority of internet services supporting
the collection and analysis of physiological data are aimed
at single sensor models. Where support is provided for
multiple sensor models, the analysis and presentation
services are either limited or proprietary preventing
validation of experimental approaches. Support for complex
real-time analysis and presentation is also limited.

None of the current approaches provide a consistent and
open method of transforming physiological data (e.g., from
a raw signal to a required derivative). Furthermore, there is

218 K. Lee and K. Gilleade

no possibility for building pipelines of transformations
using standard modules. This makes it hard to use these
frameworks to conduct repeatable ambulatory experiments
using different sensor technologies and between different
research groups. The sharing of experimental conditions in
psychophysiological research also tends to be problematic
as it depends on authors describing in precise detail their
experimental protocols. These frameworks can help the
sharing of the experimental protocol to support the
repetition and verification of results.

The lack of standardisation, prevents the development of
an eco-system of higher level research that depends on a
maturing underlying technology. For example the
development of ethical and social responsibility frameworks
for physiological data monitoring on the internet. The
research discussed has shown that there are no generic, open
architectures for collection, analysis and presentation of
physiological data in real-time on the internet. The
following section tackles these issues by proposing a
generic architecture for physiological data processing.

3 A generic architecture for real-time
physiological data processing

3.1 Overview
As discussed in Section 1 there is currently no standard,
open system for the collection, analysis and presentation of
physiological data in real-time using web services. Section 2
argued that there is a need for such a system that will allow
researchers to rapidly create applications that obtain and
utilise physiological data. This section attempts to meet
these goals, by setting out the requirements for such an
architecture and proposing a generic architecture design to
meet these requirements.

3.2 Architectural requirements
A generic architecture that supports the collection, storage,
analysis and presentation of physiological data for real-time
web services must meet some fundamental goals. There are
many types of physiological sensor and many types of
processing, including a variety of data translations and
analysis that a generic architecture needs to support.
Real-time physiological data is often collected for visual
interpretation (e.g., biofeedback and medical diagnostics),
so supporting multiple presentation applications and
integrating with other real-time data sources is vital. For it
to be globally applicable, a generic architecture needs to
support a common workflow for the collection, analysis and
presentation of real-time physiological data. It is useful to
define the requirements from the point of view of the two
sets of stakeholders that will use this architecture,
application developers and end-users.

• Application developers need to be able to define many
types of applications involving physiological data such
as remote patient monitoring. They should not have to
concern themselves with storage, processing or

performance elasticity issues; they should be able to
focus on domain-specific tasks and the defining of the
application parameters.

• End users are individuals or groups of people who
participate in physiological monitoring activities and
upload this data in real-time to online repositories.
Depending on the application definition and type,
a user may or may not need to visualise their data in
real-time and provide context about their actions.

To support both these stakeholders and the wide variety of
applications discussed in Section 2.1 a generic architecture
must be flexible in its data processing support. The
visualisation of physiological data can include real-time,
historical and domain specific information. To integrate and
prepare this data for further processing or presentation, it
can be transformed using computational transformations
(e.g., converting from the time domain to the frequency
domain).

Physiological data is in one of three transformational
states

1 raw unprocessed data

2 white box derivative data which is processed in a
transparent manner from the raw or another white box
dataset

3 black box data which has been processed from a data
source using a proprietary technique.

For real-time data presentation an application developer
needs to be able to control data transmission properties to
require hard, firm or soft timing (e.g., a real-time heart
monitoring service for an outpatient with cardiac problems
would require firm timing). An architecture supporting
different sensor types and analysis techniques will enable
the multiplexing of different sensor data and provide real-
time multi-modal analysis.

For such an architecture to be viable, it must accepted
by the community it is seeking to serve. The user experience
must be consistent and enable real-time low latency
feedback for end users. Physiological data is inherently
personal information, as such, the issue of privacy needs to
be supported through end-user preferences. End-users
require data input and export facilities to maintain control of
their data. For the application developer, the system has to
be flexible and become usable long term with minimal
maintenance. There are also issues inherent in controlling
the interpretation of physiological data (Gilleade and Lee,
2011).

As well as the explicit properties discussed, there are a
number of emergent properties associated with the
deployment of the system. Having an open, standard
repository and workflow will enable researchers to interact
on projects. This will enable the crosschecking of
experiment methodologies, the development of new
approaches to analysis and also the crowd sourcing of the
data analysis. The flexibility of a generic architecture will

 Generic processing of real-time physiological data in the cloud 219

enable new and exciting applications to emerge such as
real-time ambulatory physiological monitoring.

Figure 1 The layered approach to physiological data processing
(see online version for colours)

The goal of the architecture is to enable a flexible a service
model. This is achieved through a layered service model
approach as illustrated in Figure 1. The bottom layer
provides the core services that allow interfacing between
sensors and storage. The application support services layer
provides support for different types of physiological data
transformations. The three types of applications supported
by the architecture are;

1 built-in applications which allow individual users to
experiment with collecting data from physiological
sensors, perform simple transformations and visualising
their data

2 application developer services created by third-party
developers

3 user defined services which individual users can create.

3.3 Design
This section discusses the design of a system that
implements the requirements of a generic architecture for
real-time physiological data processing (GAPP) as defined
in Section 3.2. Figure 2 illustrates the relationship between
the different entities of the proposed system. To achieve

flexibility, it uses cloud services to provide elasticity and
flexibility for its processing and storage requirements.

The desirable system structure, as illustrated in Figure 2,
is one where there can be many users with each having one
or more physiological sensors all collecting physiological
data in real-time, transmitting this to cloud-based storage
services and retrieving it in real time (along with other
domain-specific data) for visualisation. Use of the system
by end-users or application developers is through the GAPP
system interface, which allows the specification of an
application based on its input, transformation and
presentation requirements. Applications can be developed
that use sensed data together with domain-specific and
application specific data stored in the cloud. Applications
define what transformations are performed on the data prior
to presentation for the user (e.g., converting a raw
electrocardiogram signal of volts/per sample to beats per
minute, see Figure 9).

The following describe the different stages of usage of
the system based on standard web service technologies;
XML messages transferred using the RESTful paradigm
that use simple HTTP GET and POST between the different
components of the system. The system interface supports
the management of users and applications, as follows.

3.3.1 User data management
A new end-user can be registered with the GAPP service
with a simple XML message, using a HTTP POST, which
states the requested user name; as illustrated in Figure 3.
The GAPP service performs a simpleMD5 hash of a
randomly generated string and returns this to the user as an
authentication token along with their user id. This
authentication token must be included in all subsequent
requests to the service. Once a user has authorised their
activity they can participate in the data collection process by
registering the required data streams.

Figure 2 The GAPP architecture (see online version for colours)

220 K. Lee and K. Gilleade

Figure 3 Example user registration message

<UserRegistration>
<UserName>Bob Smith</UserName>

</UserRegistration>

The following are the parameters for data stream
registration:

• UserID – user’s registration ID

• AuthToken – user’s authentication token

• Name – name of the data stream

• Description – description of the data stream

• Format – data format definition.

The data format definition describes what kind of data is
being uploaded and how it is to be structured. In order to
support transformations a data stream must be stored in a
consistent format in order to guarantee it can be applied. For
a stream involving physical hardware the data needs be
bound to a sensor that is done using the following
parameters:

• Name – name and model of the sensor

• Description – description of the sensor

• Location – physical location of the sensor.

Location data can be a location on the body or a GPS
location as with environmental sensors. Using the properties
listed above, a user can register a heartbeat rate sensor with
a data stream which provides inter-beat interval information
(i.e., time between individual heart beats), this is illustrated
in Figure 4.

This message is sent using a HTTP POST and will
receive a HTML response or error code in return. A
successful message will receive a 200 OK code, 400 bad
request, 401 unauthorised, etc. A user has to perform a data
registration for each data stream they require to be
collected, including physiological, environmental or
contextual. For each data registration, the user receives a
data registration id that allows the user to submit a data
reading.

3.3.2 Data collection
Once a data source has been registered, data can be
submitted by building a message consisting of
authentication and the following parameters:

• StreamID – the ID returned on a successful data
registration

• Timestamp – time the sample was measured (YYYY-
MM-DD??HH:MM:SS)

• Fractional – second fractional of timestamp

• Value – sensor reading.

Using these properties, data can be submitted as illustrated
in Figure 5. A data submission can contain any number of
data readings; single events, collections of data points,
aggregate data or derived data.

3.3.3 Data processing and presentation
Data streams made up of data points are processed by
defining a series of transformations that operate on an input
data stream, perform some processing and produce an
output data stream. A user or application developer can
specify that instance of a transformation implementation be
spawned by the system interface. A transformation is
registered using a XML message to the system interface
consisting of authentication and the following parameters:

• Name – is the transformation name

• Description – is human readable description

• Input – is the data source(s) for an input(s), specifying
the URL, format and StreamID.

Each transformation is instanced as a new web application
on the system. The registering user is provided with a web
service URL of this instance that can be used to retrieve
transformed data from this transformation. Figure 6
illustrates an example of a transformation that converts
inter-beat intervals to heart beats per minute for an hours
worth of data.

Figure 4 Example user data management message

<StreamRegistration>
<UserID>1</UserID>
<AuthToken>90eb503faff5501f833532d0e0454312</AuthToken>
<Stream>

<Name>Heart Rate</Name>
<Description>My Heart Rate</Description>
<Format>IBI</Format>
<Sensor>

<Model>BM-CS5</Model>
<Description>Single ECG channel chest-strap</Description>
<Location>Chest</Location>

</Sensor>
</Stream>
<Stream>

<Name>Triggers</Name>
<Description>Time Index of Events</Description>
<Format>Trigger</Format>

</Stream>
</StreamRegistration>

 Generic processing of real-time physiological data in the cloud 221

Figure 5 Example data submission message

<Submission>
<UserID>1</UserID>
<AuthToken>90eb503faff5501f833532d0e0454312</AuthToken>
<Stream>

<StreamID>3</StreamID>
<Sample>

<TimeStamp>2011-06-2T14:08:23</TimeStamp>
<Fractional>0</Fractional>
<Value>750</Value>

</Sample>
<Sample>

<TimeStamp>2011-06-2T14:08:23</TimeStamp>
<Fractional>75</Fractional>
<Value>1000</Value>

</Sample>
</Stream>

</Submission>

Figure 6 Example transformation registration message

<Transformation>
<UserID>1</UserID>
<AuthToken>90eb503faff5501f833532d0e0454312</AuthToken>
<Name>IBI to HR</Name>
<Description>Convert IBI to HR</Description>
<Input>

<URL>/GAPP/GAPPServlet?service=getdata</URL>
<Format>IBI</Format>

<StreamID>3</StreamID>
</Input>

</Transformation>

Data can be retrieved using HTTP GET requests using
simple URL notation as illustrated in Figure 7. The URL of
the servlet is called with an additional ‘?service=getdata’ to
request data, ‘&datastreamid=40’ to request a data stream,
‘&starttimestamp=2011-07-13T06:00:00’ to specify the
starting time stamp and ‘&endtimestamp=2011-07-
13T07:00:00’ to specify the end time. An XML message of
varying size depending on the number of data entries which
fit the criteria of the request is returned to the client. HTTP
GET requests also return standard HTTP error codes
indicating the success or failure of the request.

Figure 7 Requests the last hour of samples from a data stream

HTTP://URL:8080/GAPP?service=getdata&userid=1&
authtoken=90eb503faff5501f833532d0e0454312&
datastreamid=3&starttime=2011-07-13T06:00:00&
stoptime=2011-07-13T07:00:00

Transformations are implemented as self-contained web
applications. When a user wishes to transform a data stream
into another format they must first register the type of
transformation they wish to perform with the system. The
system creates a instance of that transformation’s associated
web application and will send the user a unique URL which
they can perform HTTP GET requests as they would with a
normal data stream. Transformed data can be retrieved by
performing a HTTP GET request to the URL of the

transformation instance previously registered by the user
with the appropriate parameters, as illustrated in Figure 8.
3.3.4 Transformation workflows
To support complex processing needs, workflows of
transformations can be built up in the same way that Grid-
based scientific workflow processing is performed
(Deelman et al., 2005). Globally available web service
URLs are used for the input and outputs to transformation
process; the implementation of each transformation handles
the processing and storage at each stage. This abstraction
allows for flexibility of storage location and also for the
dynamic building of transformation pipelines at runtime.
Transformation processes can be anything that takes a data
input, performs some processing and produces some output;
these can be an executable program or a web service as long
as they provide a globally accessible web service URL.

The processing performed by each transformation can
be applied to simple datasets or complex data streams. The
technique used to implement transformations can be simple
receive-store-process or stream processing with implications
for state maintenance. Continuous query languages can be
used to group and process events as data streams using
stream query-processing techniques (Arasu et al., 2006) and
even perform complex analyse on events streams (Lee et al.,
2008).

222 K. Lee and K. Gilleade

Figure 8 Requests the last hour of ‘transformed’ samples from a data stream

HTTP://URL:8080/GAPP/Transform001?service=getdata&userid=1&
authtoken=90eb503faff5501f833532d0e0454312&
starttime=2011-07-13T06:00:00&stoptime=2011-07-13T07:00:00

Figure 9 Transformation pipeline for two types of heart sensor (see online version for colours)

Workflows of transformations can be built up by explicitly
specifying inter-transformation dependencies. Figure 9
illustrates an example of using the pipelined approach to
transformations to analyse heart rate data. It shows the
conversion of different raw signals into a common
derivative (i.e., inter-beat interval) that can be further
transformed into related derivatives (e.g., heartbeat rate).
Many sensors can generate data using different mechanisms
but the derivative can still be the same, for example,
heartbeat activity can be measured using a pulse oximeter
(measures blood flow) or an electrocardiogram (measures
electrical activity) from which both an inter-beat interval
can be derived from. Transformations in a pipeline don’t
need to be physically located in the same location; in fact
they can be in widely varying locations to take advantage of
the cheapest or fastest resources in that moment in time.

In order to create a transformation workflow as
illustrated in Figure 9 the user would first register each
transformation they wish to perform in turn and pass the
returned URL as the input source of the next transformation
in the workflow, e.g., the ECG-IBI transform URL would
be passed as the input source for the IBI-HR transform. The
user would execute the workflow by calling the final
transformation in the sequence, which would request data
from the previous transformation. This would continue until
the transform reaches a data source on the system that
would then be passed through the transform chain that has
been established.

The approach proposed allows data from many types of
data sources to be processed, integrated and presented in a
variety of formats in transformation workflows. The
presentation can be near real-time on the monitoring device,
e.g., a mobile phone, a website for public viewing, or
integrated with other data for medical diagnoses. Using
transformation workflows, combined client side
applications, data from more than one user can be combined
for aggregate analysis or presentation. The presentation of
this data is left to the application developer. For example, a
developer wishing to combine the heartbeat rate data for a
group of athletes in order to observe the strenuousness of an
exercise regime would

1 register each sensors data

2 have each sensor submit data to the service

3 define a series of transformations to process the data

4 build an application that pulls the output of the
transformations and displays this to the user.

3.4 Summary
This section has introduced a generic architecture for
real-time physiological data processing. It has described the
different parts of the system and illustrated how they are
used for simple examples. It highlighted a novel technique
for performing data processing using transformations
exposed as standard web services. The grouping of multiple
of these transformations as transformation workflows
supports the application developer in creating innovative
applications without having to concentrate on technical
issues.

4 Case study evaluation: mobile biofeedback
interaction

4.1 Overview
This section describes a case study-based evaluation
of the practical use of the generic architecture for
real-time physiological data processing and to illustrate
its use in a real-world scenario. Section 4.2 discusses the
implementation of the architecture. In Section 4.3 a
case study for a prospective real world mobile
healthcare application is described. Section 4.4 presents an
experimental evaluation using the case study. Finally,
Section 4.5 presents a summary.

4.2 Implementation
To evaluate the design of the generic architecture for
real-time physiological data processing with a suitable case
study an implementation of the architecture has been
prepared. The architecture has been implemented using

 Generic processing of real-time physiological data in the cloud 223

open standards-based technologies. This is to ensure
maximum compatibility, flexibility of future development
and elasticity in responding to application demand. There
are three broad areas of implementation concern,

1 the system interface

2 the server back-end

3 application development.; these are now each discussed
in turn.

As described in Section 3.3, the interface to the system
between the client and server uses standard web
service technologies; eXtensible Markup Language (XML)
messages transferred using the RESTful paradigm that use
simple HTTP GET and POST between the different
components of the system. The web service is implemented
as a Java Servlet on Apache Tomcat 7 application server
(The Apache Software Foundation, 2013) which
implements the request-reply programming model using the
HTTP protocol. Secure connections can be achieved using
HTTPS.

Client applications construct and send XML messages
(user registrations, data registrations, transformation
registrations and data submissions) using HTTP POSTs to
the system interface. All XML messages must conform to
specifications in XML Schema Definition Language (XSD)
for each message type; both the client and system interface
must conform to this. For each XML message sent by the
client there is a corresponding transaction confirmation
message sent back to the client which confirms the success
or failure of the request. In addition, standard HTTP error
codes are also used to indicate to the success and failure of
any request together with further detail such as a request
failing due to an error in the request or an internal server
failure.

The server back-end consists of an Apache Tomcat
Servlet Version 7.0.16 which utilises a MySQL or SQLite
Database. Both the database and application server can be
deployed on a standalone PC or deployed using a cloud
service such as the Amazon elastic computing cloud (EC2).
Using a cloud service such as Amazon EC2 ensures rapid
response to computing demand whilst minimising cost when
demand is not at its peak.

Broadly speaking, the servlet

1 receives each request from the client

2 validates the client user id and request

3 performs the request by issuing INSERT or SELECT
queries to the MySQL database

4 assembles an XML reply

5 returns the reply to the client stating the action
performed.

Thus, the servlet is effectively converting XML request-
reply messages to SQL queries.

To develop an application, there are three main areas of
implementation; data collection, system interaction and data

presentation. Data collection involves the sensing of data,
formatting it as XML documents and submitting this to the
system. As applications communicate using XML over
HTTP, client applications are not restricted in
implementation language or platform. To interface with the
system, the only requirement of an application is that users,
sensors and data streams are registered before they can
submit data, and that all messages conform to the XSD
specifications. Data presentation is left to the application
developer, using either the POST or GET interfaces.

4.3 Case study description
For evaluation the following scenario has been selected to
demonstrate the ability of the GAPP architecture to process
real-time physiological information and distribute it to
stakeholders:

• Scenario: A patient has been determined to be at risk
from heart failure and has been advised by their doctor
to increase their daily level of exercise as part of their
treatment.. The patient’s medical insurance requires
that they sign onto an approved health and fitness
course, whereby their exercise regime will be managed
by a professional fitness instructor, in order to retain
their policy.

Low heartbeat variability is a known risk factor in heart
failure in chronic heart failure patients (Task Force of the
European Society of Cardiology, 1996; Karemaker and Lie,
2000). In treating cardiac patients a portable heartbeat rate
monitor can be used to track their condition on a long term
basis allowing for the effective deployment of resources
when their aliment worsens (e.g., advising patients to return
to the doctor). It can also be used to provide feedback on
interventions designed to alleviate a condition. In the
scenario described above we have three end user’s who
would benefit from use of the GAPP framework,

1 the patient

2 the patient’s doctor

3 fitness instructor.

Each end-user is interested in a measure of heart activity
suited to their role in the treatment of the patient.

For both the patient and fitness instructor, heartbeat rate
would be a suitable measure. This data format can be used
to inform the patient the device is operational and the fitness
instructor the patient’s level of exertion during exercise. The
patient’s doctor will be interested in monitoring heartbeat
variability as further reductions in variability could be
indicative that a condition has worsened and may require a
different intervention. Both these measures can be derived
from the inter-beat interval (time between heartbeats) which
can be collected by a chest-strap-based heartbeat monitor.
Heartbeat variability can be assessed using both time
(e.g., standard deviation) and spectral measures
(e.g., Fourier transform), for the purposes of this case study
we are interested in spectral measures which provide

224 K. Lee and K. Gilleade

information about different cardiac functions (e.g., balance
between the sympathetic and parasympathetic nervous
systems).

The transformations required by each end-user can be
readily supported by the GAPP architecture, the required
transformation workflow is illustrated in Figure 10. In this
scenario there is a singular input which is processed by
two different workflow paths for preparation for the three
end-users.

Figure 10 Case study transformation pipeline, preparing
heartbeat data for multiple end-users (see online
version for colours)

The case study chosen demonstrates the collection, analysis
and presentation of real-time physiological data for a health
and fitness scenario in which a singular user’s heartbeat data
is streamed to the GAPP system and is transformed to meet
the requirements of three different end-users. In Section 4.4
we describe how the case study is to be evaluated.

This example illustrates a basic single source, multiple
output scenario; the GAPP system also supports more
complex scenarios. An extension to this case study is one
where the system supports multiple patients all being
monitored by different fitness coaches and doctors.

4.4 Experimental evaluation
The main considerations for evaluating the real-time
physiological data-processing system are

1 can it support realistic physiological application
scenarios

2 can it meet the real-time performance constraints of
physiological applications and

3 are the GAPP server, transformations and end-user
client deployable within reasonable resource
constraints.

These are addressed as follows using the defined case study.

4.4.1 Supporting realistic application scenarios
The case study as defined in Section 4.3 describes a remote
patient monitoring system which collects, analyses and
presents physiological data in real-time to several
stakeholders. The described system was implemented using
the GAPP architecture.

For maximum flexibility, and to easily support the
distributed nature of the case study, this scenario utilises
cloud computing services. An Amazon Machine Image

(AMI) was prepared using Ubuntu 11.10, Apache Tomcat
7.0.16, MySQL version 14.14 and the GAPP service. This
AMI was stored on Amazon Simple Storage Service (S3)
ready to be instantiated by EC2. A single instance of this
AMI was instantiated on a standard machine type m1.large
which has 4 64-bit EC2 compute units and 7.5 GB of
memory. Amazon CloudWatch with an AutoScaling group
was configured to enable load-balancing and scale the
number of instances upon increased CPU utilisation.

An Android-based mobile phone was used to collect
heartbeat data from the patient via a Zephyr HxM (Zephyr
Technology, 2011), a Bluetooth-based chest-strap-based
heartbeat monitor. The timestamp of each detected heart-
beat is recorded using an onboard real-time clock with a
millisecond resolution. It exposes readings over a serial port
as a data packet containing several of the most recent time-
stamped heart-beats. This provides for a degree of data
recovery in a lossy environment (the slower the heart rate
the more data redundancy and vice versa). The inter-beat
interval can be derived from this by calculating the
difference between heart beat timestamps which can
subsequently be used to calculate the user’s heartbeat rate
and heartbeat variability. The Android phone collects this
data using Bluetooth and queries the GAPP web service
using the POST and GET interface as described in
Section 3.3.

A series of transformations as described in Section 4.3
were registered with the GAPP service, for consumption by
the patient, fitness coach and doctor. Client applications for
the patient and fitness coach retrieve the output from the
IBI-HR transformation using GET requests to the GAPP
service. The IBI-HR transformation converts every IBI
(in milliseconds) within the requested time period to beats
per minute and outputs it as time series in the data
submission XML format. Likewise, the client application
for the doctor retrieves the output from the IBI-HRV
transformation from the GAPP service. The IBI-HRV
performs a fast Fourier transform (FFT) on a given epoch of
inter-beat intervals. A minimum of five minutes is
recommended for this analysis though in less ideal
circumstances one or two minute epochs can be used
depending on the spectral component of interest (Berntson
et al., 1997). For example a two-minute epoch is required as
standard for the low-frequency (LF) component (0.04–015
Hz); indicative of activity in both the sympathetic and
parasympathetic nervous systems. The LF component is of
interest to the case study having been identified as a
mortality predictor in chronic heart failure patients
(Galinier, 2000). In the case study a two minute epoch is
used. As FFTs require an equidistant time series as an input
and inter-beat intervals are a non-equidistant time series the
data stream must be converted before use which is
performed as part of the IBI-HRV transform. The output of
the transformation is an XML describing the amplitudes
(ms) of the frequency spectra (Hz) in the re-sampled IBI
time series.

The flexibility of the GAPP service allows a range of
data to be derived and exposed to different end users. The

 Generic processing of real-time physiological data in the cloud 225

experiment successfully demonstrated that it was
straightforward to write simple applications which

1 registers data streams

2 registers transformations

3 allows for the multi-modal retrieval of transformed data
in real-time.

4.4.2 Meeting real-time performance constraints
The nature of real-time applications that include
physiological monitoring is that they are inherently
interactive – requiring live feedback to users on mobile and
interactive displays. To support the real-time constraints of
physiological data-processing applications the system must
have minimal latency. There are two meaningful
measurements of latency; the end-to-end transaction time
and the latency of each transformation in the transformation
workflow chain.

Because of the flexible and lightweight design of the
GAPP service, it can be deployed on a standalone machine
or remotely on a cloud service with either the MYSQL or
the lightweight SQLite database. To test end-to-end latency,
the application implementation described in the previous
section was deployed and a series of experiments
performed.

For the first experiment, 60 seconds of IBIs, derived
from heart rate data from the HxM sensor was sent in a
burst to the GAPP service. Table 1 illustrates (in the first
column) the submission performance achieved. A local
GAPP installation achieves an average 423 milliseconds per
IBI sample; and a cloud installation, in a realistic scenario
using an ADSL connection, performs the submission
marginally slower, in 447 milliseconds. Both of are well
within the requirement for real-time performance, like, for
example, in real-time presentation of the data. Analysis of
the system shows that the majority of the overhead is in
XML generation and validation. This is the overhead of a
generic protocol and can be optimised further.

The second experiment focuses on the latency of
performing transformations and retrieving the result. Certain
transformations such as IBI-HR operate on the latest data
sample, and instantaneous performance is important. Table
1 presents (in the second column) that the end-to-end cost of
a IBI-HR transformation, which includes submitting a
single data sample and retrieving from the transformation is
958 milliseconds for a local installation and 987
milliseconds for a cloud installation. Performance can be

dramatically increased by submitting multiple data points at
the same time by buffering them at the source; this will
prevent signal drift due to computation delay.

The final latency measurement experiment, which is
presented in the third column of Table 1, is the time taken to
perform an IBI-HRV transformation on five minutes of IBI
data – which is the generally understood minimal useful
time period to look for heart rate variability. It shows that it
takes 27 milliseconds from a local and 1,544 milliseconds
from a cloud installation from the submission of the last IBI
to the output of the transformation being received. This
shows that the performance of transformations is mainly
related to the network bandwidth – due to the output being
transferred as a single XML file.

4.4.3 Deployment resource characteristics
Collecting and processing data for physiological
applications that use mobile devices and cloud computing
services requires using these scarce or costed resources,
therefore application footprint is important. There are three
locations which the application runs; server, client device
and transformation host.

The GAPP service is based on the Apache Tomcat
application server, with a Java Servlet performing the
application logic. Measurements of the memory footprint on
MacOS Lion for the default configuration application server
Java Virtual Machine version 1.6.0 with no servlets is on
average 71.5 MB including administrative and logging
applications.. The addition of the GAPP Servlet increases
the Java Virtual Machine memory usage to 81 MB,
including SQL Library (MYSQL or sqlite) and XML
processing libraries, so the GAPP service has a total
footprint of 8.5 MB. A size of 8.5 MB is reasonably
compact so can be run on cheap cloud computing services.
Memory footprint depends heavily on the OS and Java
versions but remains in a similar range.

A GAPP client program simply needs to build the
required XML requests and submit these via a HTTP
request to the GAPP servlet. The case study described in the
previous section uses a simple Java program that builds
XML messages and interacts with the GAPP service via
HTTP calls. Measurements of the system memory footprint
for a simple program including the Java Virtual Machine
shows an average of 32 MB. This is the common case, but
could be reduced dramatically using an alternative client
implementation.

Table 1 Table of performance for case study transformations using local and cloud installations

 Average submission of
an IBI sample

IBI-HR transformation
end-to-end latency

5 mins IBI-HRV
transformation

Local installation 423 ms 958 ms 7 ms
Cloud installation 447 ms 987 ms 1,544 ms

226 K. Lee and K. Gilleade

4.5 Summary
This section has presented an evaluation of the proposed
generic architecture real-time architecture for real-time
physiological data processing. It introduced an
implementation of the architecture and a case study of
mobile biofeedback interaction. A qualitative and
quantitative evaluation has been presented which shows that
the proposed architecture can meet the requirements of
wide-ranging and complex physiological monitoring
applications.

5 Discussion
The area of real-time physiological data collection, analysis
and presentation raises several issues of interest. As
physiological data is inherently personal; seeking to collect,
store and disseminate this information introduces a variety
of privacy and ethical concerns (Gilleade and Lee, 2011).
As GAPP is fundamentally a service provider for
physiological data transformations in the cloud there is a
need to consider the policies governing the type of derivate
works that can be produced from the original dataset. In this
manner the data owner can apply a level of control over the
context under which their data is interpreted.

Beyond understanding that an individual’s physiological
data is fundamentally personal, collating many individuals
physiological data introduces further challenges. With
multiple sources of information it is possible to track events
and predict behaviour. Data access must be considered,
giving access of data to any researcher, outside spammer,
insurance company must be reasoned. Ensuring access to
data is not misused, must be done by,

1 access to the physiological data feed can be controlled

2 the fidelity of the physiological data can be set to an
appropriate level for the service being provided

3 allow the user to control the context

4 allow the user to decide the granularity of the dataset.

Through the user of transformation workflows GAPP can be
readily adapted to different processing paradigms. As GAPP
uses Tomcat applications to embody unit functions to
realise the workflow and distributes these units across the
cloud according to load dynamics there is liable to be a
trade off between the number of functions in a workflow
and its efficacy at executing the entire transformation in
real-time. A potential solution for this would be a workflow
manager that can distribute unit functions in the
transformation according to both the requirements of the
transformation workflow, e.g., low latency, and the
processing load on the GAPP service.

Expanding upon this paradigm there could be used to
support crowd-sourced experiments. As sensing technology
has improved it is feasible to replicate studies using
consumer grade sensors in a participant’s own home. The
solution proposed in this paper would enable complex
analysis to be performed, at low cost with these consumer

grade sensors. In addition, it enables many users of these
low-cost sensors to collaborate in social experiments by
performing analysis on group data.

6 Conclusions
This paper has argued for the need for a standard, open
architecture for the collection, analysis and processing of
physiological data to support researchers and end user
applications. It has proposed a generic architecture for real-
time physiological data processing using cloud computing
resources. A case study of patient physiological monitoring
was used to demonstrate and evaluation the proposed
architecture. It showed that the architecture, and in
particular the transformation support, achieves the
requirements of the system.

References
Arasu, A., Babu, S. and Widom, J. (2006) ‘The CQL continuous

query language: semantic foundations and query execution’,
The VLDB Journal, Vol. 5, No. 2, pp.121–142.

Berntson, G.G., Bigger, J.T., Eckberg, D.L., Grossman, P.,
Kaufmann, P.G., Malik, M., Nagaraja, H.N., Porges, S.W.,
Saul, J.P., Stone, P.H. and van der Molen, M.W. (1997)
‘Heart rate variability: origins, methods, and interpretive
caveats’, Psychophysiology, Vol. 34, No. 6, pp.623–648.

Bodymedia (2013) ‘Sensewear armband’ [online]
http://sensewear.bodymedia.com (accessed 12 April 2013).

Chanel, G., Pelli, S., Ravaja, N. and Kuikkaniemi, K. (2010)
‘Social interaction using mobile devices and biofeedback:
effects on presence, attraction and emotions’, in BioSPlay
Workshop, Fun and Games Conference.

Chart, B. (2013) ‘Blood pressure chart’ [online]
http://bp-chart.com (accessed 12 April 2013).

Deelman, E., Singh, G., Su, M-H., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B.,
Good, J., Laity, A., Jacob, J.C. and Katz, D.S. (2005)
‘Pegasus: a framework for mapping complex scientific
workflows onto distributed systems’, Scientific Programming,
Vol. 13, No. 3, pp.219–237.

EA (2013) ‘Ea sports active 2’ [online]
http://www.easportsactiveonline.com
(accessed 12 April 2013).

Fergus, P., Taylor, M., Haggerty, J., Bracegirdle, L. and
Merabti, M. (2011) ‘Next generation body area networks and
smart environments for healthcare’, in Smart Healthcare
Applications and Services: Developments and Practices,
Medical Information Science Reference, Hershey, PA,
doi: 10.4018/978-1-60960-180-5.ch003, pp.46–74.

FitLinxx (2013) ‘FItLinxx’ [online] http://www.fitlinxx.net
(accessed 12 April 2013).

Fletcher, R.R., Dobson, K., Goodwin, M.S., Eydgahi, H.,
Wilder-Smith, O., Fernholz, D., Kuboyama, Y.,
Hedman, E.B., Poh, M-Z. and Picard, R.W. (2010) ‘icalm:
wearable sensor and network architecture for wirelessly
communicating and logging autonomic activity’, IEEE
Transactions on Information Technology in Biomedicine,
Vol. 14, No. 2, pp.215–223.

 Generic processing of real-time physiological data in the cloud 227

Gilleade, K. and Fairclough, S. (2010) ‘Physiology as XP – body
blogging to victory’, in Bios-Play Workshop at Fun and
Games. Leuven, Beligum.

Gilleade, K. and Lee, K. (2011) ‘Issues inherent in controlling the
interpretation of the physiological cloud’, in CHI Workshop
on Brain and Body Interfaces: Designing for Meaningful
Interaction, May 7–12, Vancouver, BC, Canada.

Google (2011) ‘Google health (discontinued)’ [online]
http://www.google.com/health/ (accessed 12 November
2011).

Karemaker, J.M. and Lie, K.I. (2000) ‘Heart rate variability:
a telltale of health or disease’, European Heart Journal,
Vol. 21, No. 6, pp.435–437.

Kosunen, I., Kuikkaniemi, K., Laitinen, T. and Turpeinen, M.
(2010) ‘Listen to yourself and others – multiuser mobile
biosignal sonification platform emolisten’, in Workshop on
Multiuser and Social Biosignal Adaptive Games and Playful
Applications.

Lee, K., Murray, D., Hughes, D. and Joosen, W. (2010) ‘Extending
sensor networks into the cloud using Amazon web services’,
in Proceedings of the 1st IEEE International Conference on
Networked Embedded Systems for Enterprise Applications,
NESEA, Suzhou, China, November 25–26, pp.1–7.

Lee, K., Paton, N.W., Sakellariou, R., Deelman, E., Fern, A.A.A.
and Mehta, G. (2008) ‘Adaptive workflow processing and
execution in Pegasus’, in 3rd Intl Workshop on Workflow
Management and Applications in Grid Environments
(WaGe08), in Proc. 3rd Intl. Conf. on Grid and Pervasive
Computing Symposia/Workshops, IEEE Press, pp.99–106.

Lindström, M., Ståhl, A., Höök, K., Sundström, P., Laaksolathi, J.,
Combetto, M., Taylor, A. and Bresin, R. (2006) ‘Affective
diary – designing for bodily expressiveness and self-
reflection’, in Extended Abstracts of CHI, ACM Press,
pp.1037–1042.

Microsoft (2013) ‘Microsoft health vault’ [online]
http://www.microsoft.com/en-us/healthvault
(accessed 12 April 2013).

Nacke, L.E. (2011) ‘Directions in physiological game evaluation
and interaction’, in CHI BBI Workshop Proceedings.

Pachube (2013) ‘The internet of things real-time web service
and applications’ [online] https://pachube.com
(accessed 12 April 2013).

Philips (2013) ‘Philips directlife’ [online]
http://www.directlife.philips.com (accessed 12 April 2013).

Polar Electro (2013) ‘Polar personal trainer’
[online] https://www.polarpersonaltrainer.com
(accessed 12 April 2013).

Runkeeper (2013) ‘Runkeeper’ [online] https://runkeeper.com
(accessed 12 April 2013).

Stern, R.M., Ray, W.J. and Quigley, K.S. (2000)
Psychophysiological Recording, in Oxford University Press,
USA.

Task Force of the European Society of Cardiology (1996) ‘Heart
rate variability standards of measurement, physiological
interpretation, and clinical use’, European Heart Journal,
Vol. 17, pp.354–381.

The Apache Software Foundation (2013) ‘An open source
JSP and servlet container, Apache Foundation’ [online]
http://tomcat.apache.org (accessed 12 April 2013).

Wilhelm, F.H. and Grossman, P. (2010) ‘Emotions beyond the
laboratory: theoretical fundaments, study design, and analytic
strategies for advanced ambulatory assessment’, Biological
Psychology, Vol. 84, No. 3, pp.552–569.

Zephyr Technology (2011) ‘Bluetooth HxM heart rate
monitor datasheet’ [online] http://www.zephyr-
technology.com/media/pdf/HxMBT-DataSheet-2010-MAR-
04.pdf (accessed 12 November 2011).

