
Transport of phase space densities through tetrahedral meshes using

discrete flow mapping

Janis Bajars, David J. Chappell

School of Science and Technology, Nottingham Trent University, Clifton Campus, Clifton Lane, Nottingham, UK

NG11 8NS

Niels Søndergaard

inuTech GmbH, Fürther Street, 90429 Nuremberg, Germany

Gregor Tanner

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, UK NG7 2RD

Abstract

Discrete flow mapping was recently introduced as an efficient ray based method determining wave
energy distributions in complex built up structures. Wave energy densities are transported along
ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray
transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined
over meshed surfaces. Many applications require the resolution of wave energy distributions in
three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic
cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by
propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the
tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture
of analytic and spectrally accurate numerical integration. The important issue of how to choose a
suitable basis approximation in phase space whilst maintaining a reasonable computational cost is
addressed via low order local approximations on tetrahedral faces in the position coordinate and
high order orthogonal polynomial expansions in momentum space.

Keywords: Statistical Energy Analysis, High frequency asymptotics, Ray tracing,
Frobenius-Perron operator, Vibro-acoustics, Geometrical Optics/Acoustics

1. Introduction

Predicting the response of a complex vibro-acoustic system at mid-to high frequencies is a long-
standing challenge within the mechanical engineering community [1, 2]. Likewise, characterizing the
propagation of electromagnetic waves through complex environments remains a formidable task,
particularly with respect to electromagnetic interference (EMI) and compatibility (EMC) [3, 4].
Asymptotic approximations for high frequency waves lead to models based on geometrical optics,
where wave energy transport is governed by the underlying ray dynamics and phase effects are
neglected [5, 6]. Directly tracking rays or swarms of trajectories in phase space is often referred to
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as ray tracing, see for example [7]. Methods related to ray tracing but tracking the time-dynamics
of beams or interfaces in phase space, such as moment methods and level set methods, have been
developed in Refs. [8], [9] and [10] amongst others. They find applications in acoustics, seismology
and computer imaging, albeit restricted to problems with few reflections; for an overview, see [5].

Ray tracing and tracking methods can become inefficient in bounded domains, or in general for
problems including multiple scattering trajectories and chaotic dynamics. Here, multiple reflections
of the rays and complicated folding patterns of the associated level-surfaces often lead to an expo-
nentially increasing number of branches to be tracked. Instead of directly tracking trajectories, we
approach the problem here by tracking densities of rays as they are transported along trajectories
in phase space. Difficulties owing to large numbers of reflections can thus be avoided [6, 11]. More
generally, high frequency wave problems considered in this way become part of a wider class of
mass, particle or energy transport problems driven by an underlying velocity field. Such problems
arise in fluid dynamics [12], weather forecasting [13] or in general in describing the evolution of
phase space densities by a dynamical system.

The transport of phase-space densities along a trajectory flow map ϕ
τ through time τ and space

R
d can be formulated in terms of a linear propagator known as the Frobenius-Perron (FP) operator

(see, for example, [14]). The action of this operator on a phase space density f may be expressed
in the form

Lτf(X) =

∫

δ(X−ϕ
τ (Y))f(Y) dY, (1)

where X and Y are phase-space coordinates in R
2d. Solving such problems when d > 1 and for

physically relevant systems is often considered computationally intractable due to both the high
dimensionality and the presence of potentially complex geometries [15, 16]. The classical approach
for dealing with such problems in applied dynamical systems is to subdivide the phase space into
distinct cells and approximate the transition rates between these phase space regions. A relatively
simple approach whereby the phase space densities in each of the cells are approximated by constants
is known as Ulam’s method (see e.g. [17]). A detailed discussion of the convergence properties of
Ulam’s method is given in [18] and [19]. A number of related, but more sophisticated, methods
have been developed in recent years including wavelet and spectral methods for the infinitesimal FP-
operator [20, 21], periodic orbit expansion techniques [14, 22] and the so-called Dynamical Energy

Analysis (DEA) [11]. The modelling of many-particle dynamics, such as protein folding, has been
approached using short trajectories of the full, high-dimensional molecular dynamics simulation to
construct reduced Markov models [23]. The discrete ordinates method [24, 25] is a related approach
with applications primarily in radiative heat transfer. This method has been extended to multiple
dimensions for relatively simple geometries [25].

In the following we focus on geometrical optics/acoustics models of linear wave problems, al-
though the methodology developed here can be used in a more general context. Such models have
been applied in computer graphics since the mid-eighties [26] where the rendering equation is used
to transport the spectral radiance (of light). The rendering equation has also been applied in room
acoustics [16] leading to a method known as acoustic radiance transfer. However, for its general
application to complex domains, simplifying assumptions are often necessary to obtain a tractable
numerical solution scheme. One commonly applied simplification is the radiosity approximation,
which leads to more efficient computations since the density becomes independent of the (phase
space) direction coordinate. Similar techniques have been applied in the realm of high-frequency
structural vibrations [27].
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Going a step further and assuming ergodicity and mixing of the underlying ray dynamics, one
can obtain a further simplified modelling framework. Statistical Energy Analysis (SEA) (see for
example [28], [29] and [30]) is a popular method of this kind in the structural dynamics community,
which is based on sub-dividing a structure into regions where the above ray-dynamical assumptions
are approximately valid. The result is that the density in each subsystem is taken to be a single
degree of freedom in the model, leading to greatly simplified equations based only on coupling con-
stants between subsystems. A related method developed in the electrical engineering community
is the random coupling model, which makes use of random field assumptions (see [31]). The dis-
advantage of these methods is that the underlying assumptions are often hard to verify a priori or
are only justified when an additional averaging over ‘equivalent’ subsystems is considered. Possible
generalisations and extensions of SEA have been proposed in the works of Langley and Le Bot
[15, 32, 33, 34] amongst others.

In this paper we further develop the DEA methodology introduced in [11]. Like the Ulam
method, this approach is based on a discrete representation of the FP operator. However, rather
than discretising the phase space volume, the FP operator is reformulated as a phase-space boundary
integral equation leading to an equivalent model to the rendering equation with illumination points
along the entire boundary of the physical space. This boundary integral equation is then written
in a weak Galerkin form with a basis approximation applied in both the position and momentum
variable. In Ref. [11] the full domain is divided up into a number of SEA-type subsystems and then
the boundary integral formulation is posed on this multi-domain system. In this way the level of
precision in the basis approximations gives rise to an interpolation between SEA (at zeroth order)
and full ray tracing (as the basis order tends to infinity). Higher order basis approximations thus
relax the underlying ergodicity and quasi-equilibrium assumptions of SEA. A more computationally
efficient approach using a boundary element method for the spatial approximation has been applied
to both two and three dimensional problems in [6] and [35], respectively. A major advantage of
DEA is that by removing the SEA requirements of diffusive wave fields (equivalent to the ergodicity
assumption) and quasi-equilibrium conditions, the choice of subsystem division is no longer critical.

The modelling of three-dimensional problems using DEA was first presented in [35]. However,
the combination of high dimensionality and costly quadrature routines including near singularities
meant that even performing the relatively low order simulations presented in [35] required com-
putation times too long to give a viable numerical method. In order to improve the efficiency
of computing these multi-dimensional integrals, the discrete flow mapping (DFM) approach was
proposed in [36, 37]. DFM provides an efficient numerical implementation of DEA on meshes and
facilitates the computation of phase space densities on complex two-dimensional shell and plate-type
structures by making use of the geometric simplicity of typical mesh elements. A further conse-
quence of discretising the flow into short ray-segments on a mesh is that the use of convex elements
avoids any potential issues with ray path obstruction/shadow regions, which can be problematic for
boundary integral based ray methods [16, 27, 35]. An alternative approach using convex domain
subdivisions and also including diffractive contributions has been proposed in [38]. On the other
hand, the finite dimensional projection of the ray density on each element boundary also leads to
issues with numerical diffusion as reported in [36]. The results in the two-dimensional case have
opened up the possibility of modelling of large structures with millions of degrees of freedom [39]
and point to the potential for much faster algorithms in three dimensions. Preliminary work towards
developing DFM for three dimensional problems was discussed in a recent conference paper [40].
In this work we detail a DFM approach for tetrahedral meshes and by extension, tetrahedralised
three-dimensional structures in general.
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The paper is structured as follows. In Section 2 we outline the governing operator equations
for describing the evolution of a phase-space density through a flow map between the faces of a
tetrahedral mesh. Section 3 details the discretisation of this operator equation, and in particular,
the efficient evaluation of the discretised evolution operator using a combination of analytic and
spectral numerical integration methods. In Section 4 we present numerical results for two examples;
we consider one example with a regular geometry and an exact solution for verification, but which
is typically unsuitable for a DFM model. The second example considered was provided by an
industrial collaborator and is a tetrahedral mesh that was originally used for a finite element model
of a vehicle interior.

2. Frobenius-Perron operator on a tetrahedral mesh

Consider the propagation of a density f through a tetrahedral mesh M =
⋃N

j=1 Tj ⊂ R
3

consisting of N tetrahedra Tj , j = 1, ..., N , such as depicted in Fig. 1. Let us assume that the energy
of the trajectory flow is governed by piecewise constant Hamiltonians of the form Hj(r,p) = cj |p| =
1 in Tj , where cj is the phase velocity for r ∈ Tj and the momentum coordinate p lies on a sphere of
radius c−1

j . This Hamiltonian is associated with the Helmholtz equation with inhomogeneous wave
velocity c(r) (see [5]). We restrict our discussion to scalar propagation for simplicity; extensions to
the vectorial wave equations arising in elasticity and electromagnetics are possible. In this case the
wave propagation needs to be characterised by more than one Hamiltonian per tetrahedron.

Denote the phase space on the boundary of the tetrahedron Tj as Qj = ∂Tj × D1/cj , where
the notation DR refers to the open disk of radius R and centre at the origin. Then the associated
coordinates are given by Xj = [sj,pj ] ∈ Qj with sj ∈ R

2 parameterising ∂Tj , the boundary of
the jth tetrahedron, and pj ∈ D1/cj parameterising the component of the inward momentum (or
slowness) vector tangential to ∂Tj . Next we define ϕij : Qj → Qi to be the boundary flow map,
which takes a vector in Qj and maps it along the Hamiltonian flow given by Hj to a vector in Qi,
see Fig. 1. Note that ϕij is generally only defined on a subset of ∂Tj and only maps to a subset of
D1/ci . The propagation of a density f along the boundary flow map ϕij is therefore given by the
FP operator acting on this map as follows

Lf(Xi) =
∑

j

∫

Qj

δ(Xi −ϕij(Xj))f(Xj) dXj . (2)

The operator L describes propagation of f along a trajectory with endpoint on the boundary of
tetrahedron Ti and start point on the boundary of each neighbouring or coincident tetrahedron
Tj . In cases where a tetrahedral face is shared by the tetrahedra Ti and Tj with i 6= j, then a
reflection/transmission law should be applied to specify the probability that the trajectory endpoint
lies in each of ∂Ti and ∂Tj . In order to include reflection/transmission along with other physics such
as dissipation (or mode conversion for vectorial equations) we add a weighting function wi,j(Xj),
see Eq. (4) below. Note that wi,j(Xj) acts simply as a probability term to appropriately weight
the energy reflection/transmission; changes in direction due to refraction are accounted for via the
boundary flow map ϕij .

The stationary density ρ(Xi) on Qi, i = 1, ..., N , due to an initial boundary distribution ρ0 on
Qj , j = 1, ..., N , is the density accumulated in the long time (many reflection) limit. That is

ρ(Xi) =
∞
∑

n=0

Bnρ0(Xi), (3)
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Figure 1: Discrete flow mapping on a mesh of a vehicle interior showing the boundary flow map ϕij between the
faces of a pair of adjacent tetrahedra. (Online version in colour.)
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where Bn describes the transport of the initial density ρ0 through n reflections. Explicitly, Bn is
the nth iterate of the operator B given by

Bf(Xi) =
∑

j

∫

Qj

wi,j(Xj)δ(Xi −ϕij(Xj))f(Xj) dXj . (4)

In this work we consider only the case of deterministic propagation operators. Stochastic prop-
agation may be described by replacing the δ-distribution in (4) with a finite-width kernel (see for
example Ref. [41]). If wi,j = 1, or more generally, if there are no dissipative terms and the initial
phase space density is conserved, that is,

∑

i

∫

Qi

[Bnρ0] (Xi) dXi =
∑

i

∫

Qi

ρ0(Xi) dXi ∀n,

then the operator B defined in (4) is of Frobenius-Perron type as in (2) with a maximum eigenvalue
of 1. To obtain convergence of the sum in Eq. (3), a dissipative factor needs to be added; typically
we apply an absorption factor of the form exp(−µjL), where L is the length of the trajectory
and µj > 0 is the damping coefficient in tetrahedron Tj . We also consider an example where the
dissipative contribution is instead provided by an open boundary region.

In the case where the sum in Eq. (3) converges, then from the standard Neumann series result
we have that the stationary density ρ(Xi) may be computed by solving the following phase space
boundary integral equation

(I − B)ρ(Xi) = ρ0(Xi). (5)

Note that since the trajectory flow only maps to neighbouring tetrahedra, a matrix representation
of B over the whole of

⋃N
i=1 Qi is in general sparse. In the next section we design a discretisation

strategy for efficiently computing such a matrix representation of B and hence numerically solving
Eq. (5).

3. Discretisation

In this section we describe a finite basis approximation of the stationary density ρ and the
linear integral operator B defined in (4). We provide an algorithm for computing the entries of the
resulting matrix representation B of the operator B. Furthermore, we describe a fast semi-analytic
and semi-spectral integration strategy for computing the integrals arising in the definition of the
entries in B.

3.1. Finite basis approximation

We consider a finite dimensional approximation of the stationary boundary density ρ on Qj

using a (product) basis expansion of the form

ρ(sj ,pj) =

Nj
∑

l=1

Np
∑

n=0

n
∑

m=−n

ρ(j,l,n,m)bl(sj)Z̃
m
n (pj), (6)

where Nj is the number of boundary elements on the tetrahedron Tj . For simplicity, we assume
that each triangular face forms a single element only and thus Nj = 4 for all j = 1, . . . , N . We note
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however that the precision of the spatial approximation may be improved by further sub-dividing the
tetrahedral boundary faces. Also, Np is the order of the basis expansion in the direction coordinate
pj . We apply orthonormal piecewise-constant basis functions bl in the space coordinate sj , with
support only on △j,l ⊂ ∂Tj , the lth boundary element on Tj . Hence

bl(sj) =
1

√

| △j,l |

if sj ∈ △j,l and is zero otherwise, where we use | △j,l | to denote the area of △j,l. The functions

Z̃m
n form an orthonormal basis in the direction coordinate pj ∈ D1/cj and are given by

Z̃m
n (pj) = cjZ

m
n (p̃j), (7)

where Zm
n are the Zernike polynomials and p̃j := (̺j , φj) ∈ [0, 1) × [0, 2π) is a re-scaling of pj =

(c−1
j ̺j , φj) to the unit disk.
In fact, there are many possible candidates for an orthogonal basis on a disc as outlined in

Ref. [42]. The main advantages for the choice of Zernike polynomials here are their spectral con-
vergence for interpolating analytic functions and their relative tractability in comparison with, for
example, the Logan-Shepp ridge polynomials [42]. In addition, only half as many degrees of freedom
are required to represent a complicated function on the disk compared with a Chebyshev-Fourier
basis [42]. The latter property results from the fact that the inner sum in (6) only runs over the
index values of the sum to Np, and that Zm

n ≡ 0 for n−m odd.
The Zernike polynomials are defined as

Zm
n (p̃j) = Rm

n (̺j) cos(mφj), m ∈ Z
+
0 ,

Zm
n (p̃j) = R|m|

n (̺j) sin(|m|φj), m ∈ Z
−,

where n ∈ Z
+
0 and Rm

n are polynomials of the radial coordinate only. Note that Rm
n ≡ 0 for n−m

odd, leading to the corresponding property for Zm
n described above. The relative tractability of the

Zernike polynomials stems from the fact that their radial and angular dependence is separable into
terms that can be easily calculated. The radial part is defined recursively via

Rm
n (̺) = ̺

(

R
|m−1|
n−1 (̺) +Rm+1

n−1 (̺)
)

−Rm
n−2(̺), R0

0(̺) = 1, R1
1(̺) = ̺,

for any ̺ ∈ [0, 1] and the angular part is simply a trigonometric function. For completeness, note
that the orthogonality property of Zernike polynomials (for n−m even) is given by

∫ 2π

0

∫ 1

0

Zm
n (p̃j)Z

m′

n′ (p̃j) ̺jd̺jdφj =
ǫm′π

2n′ + 2
δn,n′δm,m′ ,

where ǫm′ = 1 for all m′ 6= 0 and ǫ0 = 2.

3.2. Discretisation of the integral operator B

We apply a Galerkin projection of the operator B (4) onto the finite basis described above. This
procedure introduces a second phase-space integral with respect to Xi in the right hand side of Eq.
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(4). The sifting property of the delta distribution can then be invoked to remove the additional
integration, resulting in a matrix representation B with entries given by

BI,J =
2n′ + 2

ǫm′π

∫

Qj

wi,j(Xj)Z̃
m′

n′ (ϕp(Xj))bl′(ϕs(Xj))Z̃
m
n (pj)bl(sj) dXj . (8)

Here the subscripts I and J denote multi-indices I = (i, l′, n′,m′) and J = (j, l, n,m), respectively.
The boundary map ϕi,j = (ϕs,ϕp) from Qj to Qi is separated into spatial and directional com-
ponents and the weight function wi,j contains absorption and reflection/transmission factors, as
before. Once the entries of B given in (8) have been computed, the approximation of the stationary
boundary density ρ is obtained by solving the linear system corresponding to the discrete form of
equation (5) for the expansion coefficients ρ(j,l,n,m) in (6).

In order to write the entries of B more explicitly in the form we compute them, we substitute
(7) into (8) and perform a change of variables ̺j = sin(θj), where θj ∈ [0, π/2) is the angle of the
trajectory with respect to the normal vector on △j,l. Furthermore, we write out fully the factors in
the weight wi,j and separate the four integrals into two pairs to emphasise the relative simplicity
of the spatial integrand as follows:

BI,J =
(2n′ + 2)ci

ǫm′cjπ
√

| △j,l || △i,l′ |

∫ 2π

0

∫ π/2

0

λi,j(θj , φj)Z
m′

n′ (p̃′
i)Z

m
n (p̃j)







∫∫

▽j,l

e−µjL(sj,s
′

i) dsj







sin(2θj)

2
dθj dφj .

(9)

Here we have written ϕi,j(Xj) = [ϕs(Xj),ϕp(Xj)] = [s′i,p
′
i] for brevity and L(sj , s

′
i) is the Eu-

clidean length of the trajectory connecting sj and s′i. Note that p̃′
i is simply p′

i after re-scaling to
the unit disc. Furthermore, ▽j,l ⊆ △j,l is the triangular subset of points in △j,l that are mapped
to △i,l′ by ϕij(Xj). Note that this subset depends on the direction of propagation (θj , φj). The
restriction of the spatial integration to ▽j,l results from the basis function bl′ in (8) setting the in-
tegrand to zero for trajectories where s′i /∈ △i,l′ . In addition, we have separated the weight function
into the product of the reflection/transmission probability λi,j(θj , φj) and the absorption factor
exp(−µjL).

In the case of flat-faced polyhedra, the Euclidean length L(sj , s
′
i) is a linear function of sj and

hence the spatial integral over ▽j,l can be computed analytically. We are then left with an integral
over the unit disc to compute numerically. The strategy for performing the exact integration over the
tetrahedral mesh element faces provides information about the regularity of the remaining integrand
as a function of the direction coordinates. We describe this strategy in the next section and use it
to motivate the design of a spectrally converging quadrature scheme for the outer integrals.

3.3. Computation of the matrix entries BI,J

In this section we describe the necessary steps for computing the four-dimensional integrals
given in (9). For the purposes of illustration, consider a single tetrahedron with vertices A, B, C
and D as shown in Fig. 2. The figure shows the admissible sets of start and end points for rays
travelling in a specified fixed direction from face ABC to face CBD. Each tetrahedral face has a
prescribed local coordinate system with origin at one of the vertices (vertex A in Fig. 2). The local
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Figure 2: Tetrahedron with vertices A, B, C and D. The shaded sub-regions show the admissible sets of start and
end points for rays starting from face ABC and arriving in face CBD. The set of admissible start points within
triangle ABC is equal to the spatial integration domain ▽j,l. Each of the four sub-plots shows these regions for a
different fixed outgoing ray direction (θj , φj). The trajectory of maximum length Lmax is indicated by the black
arrow. Upper left: the set of admissible trajectory end-points is equal to the whole of CBD. Upper right: the sets
of admissible start and end points are subsets of ABC and CBD, respectively. Lower left: the set of admissible
trajectory start points is equal to the whole of ABC. Lower right: the sets of admissible start and end points are
both empty. (Online version in colour.)
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Figure 3: Tetrahedron with vertices A, B, C and D = (D1,D2,D3) viewed from above. The dashed lines A−B+,
B−C+ and C−A+ extend the three edges of triangle ABC and demonstrate the subdivision of the xy-plane into
seven sub-regions. For given direction (θj , φj), the point P connects the xy-plane with vertex D. If P lies outside
the triangle ABC, then the point O is obtained by projecting P onto the boundary of ABC. Such points P span
the xy-plane via circles of radius D3 tan(θj) and origin (D1, D2). (Online version in colour.)

x-axis is taken to be aligned with one of the edges (edge AB in Fig. 2) and the local z-axis is taken
parallel to the inward normal vector of the face. We rotate and translate each tetrahedron in the
mesh, together with its neighbouring tetrahedra, such that the local face coordinates used for the
spatial integration variables coincide with the global Cartesian coordinates as shown in Fig. 2.

We first find the triangular region▽j,l ⊆ △j,l over which the spatial integration takes place, for a
given direction (θj , φj). Consider the upper left plot of Fig. 2, where the outgoing direction is parallel
to the normal vector, that is, θj = 0. Here the point O forms the triangle ▽j,l = OBC ⊂ ABC
over which to perform the spatial integration. Outside this region (OBC) rays parallel to the
normal direction OD will not approach face BCD, but instead approach one of the other two faces,
ABD or CAD. However, the point O may not be located inside the triangle ABC, but rather
on the boundary of ABC as shown in the other three plots of Fig. 2. The region ▽j,l is therefore
determined by finding the location of the point O. In order to do this, first consider the point P in
the local xy-plane such that the vector PD coincides with the direction vector specified by (θj , φj),
as illustrated in Fig. 3; this figure shows the tetrahedron from Fig. 2 viewed from above. We see
that each direction value (θj , φj) specifies a unique point P ∈ R

2. For example, when the angle
θj is fixed but the angle φj varies from zero to 2π, the points P lie on circles of radius D3 tan(θj)
and have origin (D1, D2), where (D1, D2, D3) are the local coordinates of the point D. We extend
the three edges of ABC as illustrated by the dashed lines in Fig. 3 and indicate the end-point
limits of these infinitely extended dashed lines by A±, B± and C±. The lines A−B+, B−C+ and
C−A+ divide R2 into seven regions, and the region in which the point P lies prescribes one of seven

10



possible locations for the point O; the point O can be located either inside the triangle ABC, or
on one of its three vertices, or along one of its three sides (not including the vertices).

In the simplest case, the point P already lies on or within the triangle ABC and then O = P.
On the other hand, if P lies in one of the three triangular areas, A−AA+, B−BB+ or C−CC+,
then the point O is obtained by projecting P onto the vertex shared with triangle ABC. If the
point P lies in one of the three quadrilateral areas, e.g. A+ABB−, then the point O is obtained by
projecting the point P onto the edge shared with triangle ABC. This projection is taken along the
line connecting the point P to the vertex of triangle ABC not on the shared edge. In the illustrative
example shown in Fig. 3, the point O is defined by the intersection of the lines AB and PC.

In addition to finding the domain ▽j,l for the spatial integrals in (9), we also need to find
the maximal ray length between the two faces under consideration for a prescribed fixed direction
(θj , φj). In other words, we find

Lmax = max {L(sj, s
′
i)} ,

where the distance function L is expressed in the local coordinate system of ▽j,l. For example,
consider the tetrahedron ABCD in the upper-left plot of Fig. 2. Here, Lmax = D3 and we place
the origin of the local coordinate system of triangle OBC = ▽j,l at the vertex B such that the
x-axis coincides with edge BC. More generally, when the point O lies inside the triangle ABC, then
the ray of maximum length Lmax (indicated by a black arrow in Fig. 2) will intersect the vertex
D. If instead the point O lies on an edge of ABC that is not on the destination face CBD, then
the ray of maximum length will approach one of the edges of the destination face not on ABC as
depicted in the upper right plot of Fig. 2. When the point O coincides with the vertex A of ABC
(not on the destination face CBD) as shown in the lower left plot of Fig. 2, then the longest ray
will approach a point E inside the destination face and the spatial integration domain ▽j,l = △j,l.
Finally, if the point O lies on an edge or vertex of the receiving face CBD, the region ▽j,l = ∅
and there is no need to compute Lmax since the corresponding contribution to the matrix entry
BI,J is zero. Note therefore that the direction coordinate space is also divided into seven distinct
sub-regions according to the seven possible locations for the point O on triangle ABC. For three
of these sub-regions, the corresponding spatial integral will be zero as in the latter case described
above.

Once we have obtained the integration domain ▽j,l and the maximal ray length Lmax, we can
proceed with the analytical evaluation of the spatial integrals appearing in (9). These integrals
have a relatively simple form since the distance function L(sj, s

′
i) is a linear function of the local

coordinates of triangle ▽j,l. Considering again the tetrahedron ABCD in the upper-left plot of
Fig. 2 and taking h to be the minimum distance from the point O to the edge BC, then in this
case the spatial double-integral is given by

∫∫

OBC

e−µjL(sj,s
′

i) dsj =
h|BC|

(µjLmax)2
(

µjLmax − 1 + e−µjLmax
)

, µj > 0.

In the case µj = 0, the integrand simplifies to unity and the integral is simply the area of the
domain ▽j,l.

In order to complete the evaluation of the matrix entries BI,J in (9), we need to find the re-
flected/transmitted ray directions p̃′

i = (sin(θ′i), φ
′
i) and compute the reflection/transmission prob-

abilities λi,j(θj , φj), before (numerically) integrating over (θj , φj). We apply Snell’s Law to relate
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the reflection angle θr ∈ [0, π/2) to the transmission angle θt ∈ [0, π/2) via

sin(θt) =
ci
cj

sin(θr).

The reflection angle θr corresponds to a specular reflection of the incoming ray. If i = j then θ′i = θr,
otherwise we have θ′i = θt. Once we have found θ′i, then the azimuthal angle φ′

i must be represented
in the local coordinates of each face of the tetrahedral mesh using linear transformations of the
incoming ray direction. We find that the reflection/transmission probability function is dependent
only on reflection/transmission angles θr and θt. For acoustic waves the transmission probability is
given by

λt(θj , φj) =
4zizj cos(θr) cos(θt)

(zi cos(θr) + zj cos(θt))2
,

where the specific acoustic impedance zj = ρfj cj is the product of the fluid density ρfj and the
propagation speed cj in tetrahedron Tj . Then we have λi,j = λt if i 6= j and λi,i = 1− λt.

Consider a quadrature rule for the integration over the direction coordinates (θj , φj). For each
pair (θj , φj) specified by the quadrature rule, we carry out the following five steps:

1. Determine the triangular region ▽j,l.

2. Compute the maximal length of rays travelling from face △j,l to face △i,l′ .

3. Compute the spatial (double) integral over the triangular area ▽j,l analytically.

4. Find the reflection/transmission angles (θ′i, φ
′
i) in the local face coordinates of Ti.

5. Compute the Zernike polynomials Zm
n (p̃j) and Zm′

n′ (p̃′
i), and the reflection/transmission func-

tion λi,j(θj , φj).

The numerical integration strategy is further detailed in the next section.

3.4. Subdivision and parametrisation for the spectral quadrature scheme

In this section we describe a subdivision and parametrisation of the direction space (θj , φj) ∈
[0, π/2)× [0, 2π) in order to obtain a spectrally convergent quadrature scheme for the integrals with
respect to (θj , φj) appearing in Eq. (9). As described in the previous section, the seven regions in
the local xy-plane indicated in Fig. 3 are associated with seven regions in the direction space on the
unit disc as shown in Fig. 4, where the labelled points correspond to the points with the same labels
shown in Fig. 3. Note that the lines A−B+, B−C+ and C−A+, which divide the seven regions,
are great circles of the unit sphere depicted in Fig. 4. The spatial integral (as the function of
direction) is smooth inside each of these subregions, but is only continuous along the lines dividing
the subregions. This property serves as a good motivation for subdividing the integration in the
direction coordinate into seven subregions as indicated in Fig. 4.

We now describe a suitable mapping and parameterisation for any of the seven subregions of the
direction space illustrated in Fig. 4. The parametrisation of any triangular or rectangular region
on the upper hemisphere can be achieved using a map of the form

f(ξ, η) = a+ bξ + cη + dξη ∈ R
3, (ξ, η) ∈ [−1, 1]2, (10)
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Figure 4: Seven subregions of the direction coordinate over the unit disc associated to the tetrahedron ABCD

presented in Figures 2 and 3. (Online version in colour.)

with

a =
1

4
(v1 + v2 + v3 + v4),

b =
1

4
(v2 − v1 + v3 − v4),

c =
1

4
(v3 + v4 − v1 − v2),

d =
1

4
(v3 − v4 + v1 − v2),

and where v1, v2, v3 and v4 are four vertices on the upper-hemisphere. For a triangular region with
vertices v1, v2 and v3, we simply set v4 = v1. Then we map f(ξ, η) onto the upper-hemisphere
using [43]

g(ξ, η) =
f(ξ, η)

|f(ξ, η)|
.

Writing the entries of vectors f = (f1, f2, f3)
T and g = (g1, g2, g3)

T , then we compute the direction
(θj , φj) as functions of (ξ, η) via the standard relations for spherical coordinates:

θj(ξ, η) = arccos(g3(ξ, η)),

φj(ξ, η) = mod

(

arctan

(

f2(ξ, η)

f1(ξ, η)

)

, 2π

)

.
(11)
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In addition, the Jacobian of this transformation including the sin(2θj)/2 factor appearing in (9) is
given by

J(ξ, η) =
f3
|f |4

det

[

f
∂f

∂ξ

∂f

∂η

]

.

Thus all sub-regions of direction space are reduced to two dimensional integrals over the square
[−1, 1]2 and, in principle, any quadrature method can be applied. In our computations we consider
a 2D adaptive Clenshaw-Curtis method. Clenshaw-Curtis quadrature converges spectrally if the
integrand is sufficiently smooth. The splitting into seven sub-regions described above is however,
not always sufficient to ensure this smoothness. If there is a change in propagation speed so that
ci 6= cj then the integration variable should be changed to the transmission direction in order to
preserve the smoothness [44]. Another reason that a loss of regularity of the integrand may occur
is that the spherical coordinate relation (11) leads to singularities in the φj -dependent terms of
the derivatives of the integrand in (9) when θj = 0. However, for sufficiently regular tetrahedral
meshes, we observe spectral convergence of the Clenshaw-Curtis quadrature despite the singular
behaviour near θj = 0. This is due to the fact that the Zernike polynomials Zm

n (̺j , φj) are equal
to zero at θj = 0 for any m 6= 0 (recall ̺j = sin(θj)). Furthermore, Z0

n(0, φj) = (−1)n/2 and is
thus independent of φj . For irregular tetrahedral meshes containing long slender tetrahedra, the
singularity may still cause numerical issues. In this case, a change of variables using functions that
are flat at θj = 0 (that is, their derivatives vanish at θj = 0) can be introduced to remove the
singularity in higher derivatives of integrand [45].

4. Numerical results

In this section we present results for two numerical examples. Firstly, we consider one-dimensional
trajectory propagation in a cuboid, since here we can compare our result with both an exact geo-
metric solution and an averaged wave solution. Secondly, we simulate the high frequency response
of a vehicle cavity to a point source excitation. Through both numerical results we demonstrate
the efficiency of DFM on tetrahedral meshes and the convergent behaviour of the solution as the
Zernike polynomial direction basis order is increased.

4.1. Verification for a cuboid cavity

As a first example we consider a density distribution inside a cuboid (x, y, z) ∈ (0, ℓ)×(−0.5, 0.5)×
(−0.5, 0.5). We prescribe a constant ray density along the boundary surface of the cuboid at x = 0
with a fixed inward direction taken along the normal direction (1, 0, 0). At all other boundaries
of the cuboid we prescribe a homogeneous Neumann (or sound hard) boundary condition. This
leads to a one-dimensional solution along the x-axis, which is independent of y and z. Due to the
geometric simplicity, this example possesses both an exact geometrical optics solution and an exact
wave equation solution that we will compare against the numerical DFM solutions for different
orders of Zernike polynomial basis approximation.

The exact solution u for the associated wave problem is given by solving a two-point Neumann
boundary value problem for the Helmholtz equation with complex wavenumber k = ω/c + iµ/2.
Here ω is the angular frequency, c is the wave speed and µ = ηω/(2c) is a frequency-dependent
dissipation rate with (hysteretic) loss factor η. It is reasonably straightforward to show that the
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solution with a unit Neumann condition at x = 0 and a homogeneous (Neumann) condition at
x = ℓ is given by a sum of left and right travelling plane waves as

u(x;ω) =
1

2k sin(kℓ)
(eik(x−ℓ) + eik(ℓ−x)). (12)

Assuming that u defines a velocity potential in a fluid of density ρf , then the acoustic energy
density is given by ρfω2|u|2/c2 and the averaged acoustic energy density over a frequency band
[ω −∆ω/2, ω +∆ω/2] can be calculated via

ρω(x) =
ρf

c2∆ω

∫ ω+∆ω/2

ω−∆ω/2

q2|u(x; q)|2 dq. (13)

The corresponding ray tracing model arises by transporting a source density ρ̃0 from x = 0
towards x = ℓ, where it is reflected back towards x = 0. After being transported though n
reflections at both x = ℓ and x = 0 (after returning), the ray density travelling from left to right is
given by

ρn+(x) = e−µ(2ℓn+x)ρ̃0, n = 0, 1, 2 . . .

Likewise, the ray density travelling from right to left at the point x after n reflections at x = ℓ is
given by

ρn−(x) = e−µ(2ℓn−x)ρ̃0, n = 1, 2 . . .

The final stationary density ρ∗(x) is accumulated from the contributions from both directions after
each reflection and leads to a geometric series solution of the form

ρ∗(x) =

∞
∑

n=0

ρn+(x) +

∞
∑

n=1

ρn−(x) =
e−µx + e−µ(2ℓ−x)

1− e−2µℓ
ρ̃0. (14)

A source density ρ̃0 corresponding to the boundary condition for the averaged wave solution (13)
can be found by setting ρ∗(0) = ρω(0). Applying this condition and combining (13) and (14) at
x = 0 leads to

ρ̃0 = tanh(µℓ)ρω(0).

Note that for large ω and hence large µ, tanh(µℓ) ∼ 1 and we have simply that ρ̃0 ∼ ρω(0).
Physically, this corresponds to the solution being dominated by the initial plane wave travelling
from left to right, since the high damping leads to a negligible contribution from the returning
reflected waves. In this high frequency limit, one can also derive a frequency independent source
density as

ρω(0) ∼
ρf

1 + η2/16
.

In the 3D DFM simulations we prescribe a constant initial density value ρ̃0 across the face of
the cuboid at x = 0 with fixed direction parallel to the surface normal, that is we lift ρ̃0 to phase
space via

ρ0 = ρ̃0
δ(̺j)

2π̺j
. (15)
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Figure 5: The interior density ρT (see Eq. (16)) in a cuboid mesh with parameter values N = 972, ω = 200π,

η = 0.004, ρ
f
j = 1 and cj = 1 for all j = 1, . . . , N . The first three plots show the DFM simulation results for

log(ρT (r)) with r chosen as the centroid of each tetrahedron and with Zernike polynomial direction basis order
Np = 4 (upper left), Np = 16 (upper right) and Np = 20 (lower left). The lower right plot shows the relative mean
error of DFM simulations for different approximation orders where the exact solution is given by either the exact ray
density solution (14) or the averaged exact wave solution (13). (Online version in colour.)

Recall ̺j = sin(θj) and note that the delta distribution has been normalised for polar coordinates
so that

∫ 2π

0

∫ 1

0

δ(̺j)

2π̺j
̺j d̺j dφj = 1.

The initial density (15) is then projected onto the finite basis approximation (6) in order to perform
the numerical simulations.

The numerical results for a cuboid with ℓ = 2 are shown in Fig. 5. We employ a tetrahedral mesh
with N = 972 elements and choose the fluid density and the propagation speed to be ρfj = cj = 1
for all j = 1, . . . , N . We also take ω = 200π and apply a loss factor of η = 0.004. The numerical
integrals are evaluated using a spectrally convergent Clenshaw-Curtis rule on appropriately defined
sub-regions. Figure 5 shows the interior stationary density ρT plotted on a logarithmic scale. This
interior density may be computed at r ∈ Tj by projecting the stationary boundary density ρ onto
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the interior position space via

ρT (r) =
1

c3j

4
∑

l=1

∫

△j,l

ρ(sj ,pj)
cos(ϑ(sj , r))

|r− rsj |
2

e−µj |r−rsj
| dsj. (16)

Here rsj ∈ R
3 are the Cartesian coordinates of the point sj ∈ ∂Tj and ϑ(sj , r) ∈ [0, π/2) is the

angle between the normal vector to △j,l (pointing into Tj) and the direction vector r− rsj .
The first three plots of Fig. 5 show the interior density results computed at the centroid of each

tetrahedron. The DFM result with Np = 4 shown in the upper-left plot clearly differs from the
two higher order computations shown in the upper-right and lower-left plots. The discrepancy is
most clear towards the right of the cavity where the energy density has not decayed to the level
shown in the other plots. The plots with Np = 16 and Np = 20 are very similar suggesting that
the solution is reasonably well converged on this particular mesh. The lower-right plot shows the
relative mean error, that is, the mean absolute error divided by the mean of the exact solution
taken over all tetrahedra in the mesh. The errors are plotted for various approximation orders from
Np = 4 to Np = 20 and suggest convergence towards a solution with around 5% error compared
to the exact ray density solution (14) and around 6% error with reference to the averaged exact
wave solution (13). The exact solutions themselves are not plotted in Fig. 5, since they have a
very similar appearance to the higher order DFM results. The averaged exact wave solution was
calculated using a frequency band of ∆ω = 20π and the larger error in this case can be attributed
to the geometrical optics approximation of the wave problem. The fact that the errors in both cases
are fairly similar suggests that a ray-based model is appropriate for this problem.

The results presented could be improved by using a finer tetrahedral mesh and increasing the
Zernike polynomial approximation order until the error appears to be saturating as above. Alter-
natively, one could consider subdividing the tetrahedral faces and applying the piecewise constant
spatial basis over smaller boundary elements of the tetrahedral boundary as discussed in Sect. 3.1,
or employing higher order basis approximations in space as discussed for two-dimensional problems
in Ref. [44]. We also note that for larger damping values the solution would decay more quickly
from left to right and hence a finer spatial approximation (using one of the methods described
above) would be required to achieve the accuracy level shown in Fig. 5. Using an error tolerance
of 10−4 for the numerically evaluated integrals, the computational times for the results presented
above are around 90s for the Np = 4 result, 100 minutes for Np = 16 and 300 minutes for Np = 20.

The cuboid example considered in this section is highly directional with propagation only along
the x–direction and thus poses a great challenge for modelling with DFM, which approximates
the whole direction space using a smooth basis. In fact, DFM is particularly suited to modelling
complex structures with many reflections where the dependence of the solution on the direction of
propagation will be far smoother. Such an example will be considered in the next section. Despite
its limitations for such highly directive problems, we note that DFM was able to reproduce the
qualitative solution behaviour to a reasonable level of accuracy.

4.2. Application to a tetrahedral mesh of a vehicle cavity

In this section we present the results of DFM simulations in a vehicle cavity discretised by
N = 1300 tetrahedral mesh elements as shown in Fig. 6. The cavity is excited with an interior point
source and is assumed to have a specularly reflecting (outer) boundary where energy is conserved,
except for a small open region in the roof through which energy is lost. We place the source point

17



Figure 6: The DFM results for the interior density ρT in a vehicle cavity mesh with parameter values N = 1300,

ω = 200π, ρfj = 1, cj = 1 and µj = 0 for all j = 1, . . . , N . The plotted quantity is log(ρT (r)) with r chosen as the
centroid of each tetrahedron. The boundary of an opening in the upper part of the cavity is indicated in white on the
lower right plot. The other three plots all show the cavity sliced approximately through the centre; only tetrahedra
with centroids in the half-space y > 0 are plotted. The source point at r0 = (0.56467, 0.024773, 0.28073) is therefore
visible in these three plots and is indicated by a black spot. The results are shown with Zernike polynomial direction
basis order Np = 4 (upper left), Np = 8 (upper right) and Np = 16 (both lower plots). (Online version in colour.)
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r0 at one of the mesh vertices r0 = (0.56467, 0.024773, 0.28073), which is located towards the front
of the vehicle cavity. The point source velocity potential gives rise to an acoustic energy density on
the boundary of any neighbouring tetrahedra Tj of the form

ρ0(sj ,pj ; r0) =
ρfj ω

2 cos(ϑ(sj , r0))δ(pj − p0(sj , r0))

16π2cj |r0 − rsj |
2

e−µj |r0−rsj
|, (17)

where rsj ∈ R
3 are the Cartesian coordinates of sj ∈ ∂Tj as before and p0(sj , r0) ∈ D1/cj is the

tangential part of the momentum vector with direction r0 − rsj . In this example we set µj = 0 for
all j = 1, . . . , N ; note that the dissipation required for the sum in Eq. (3) to converge is provided
via the losses through the open boundary region instead. The boundary of the opening is illustrated
in white in the lower right plot of Fig. 6.

In order to perform the DFM computation, we project the source boundary density (17) onto

the finite basis approximation (6). We fix ρfj = cj = 1, and compute all numerical integrals to single
precision using spectrally convergent Clenshaw-Curtis quadrature. We consider Zernike polynomial
basis orders Np = 4, 8 and 16. A cross-section of the cavity with the source point indicated by a
black spot is shown in the first three plots of Fig. 6, while the final plot (lower-right) illustrates the
whole cavity. In the first three plots the cavity is sliced approximately through the centre in the
y-direction, and only tetrahedra whose centroids are located in the half-space y > 0 are plotted.
The interior density is computed at the centroid of each tetrahedron and plotted on a logarithmic
scale as before. The computational results for approximation orders Np = 8 and Np = 16 are very
similar and illustrate the convergence of the DFM result on this particular mesh. These higher
order computations indicate a stronger shadowing effect underneath the open boundary region,
compared with the result for Np = 4. Increasing the order of the approximation in direction space
therefore better captures the loss of energy through the non-reflecting region, causing less energy
to propagate into the cavity immediately underneath to the opening.

4.3. Discussion

We note that the 3D DFM simulations presented here are vastly more computationally efficient
than the 3D DEA simulations presented in [35]. The largest computation on the more complex
vehicle cavity example (Np = 16) took approximately 10 hours to run using a MATLAB imple-
mentation of the code. A similar computation on a simpler cavity using only a second order basis
approximation in momentum took several weeks using the 3D DEA method reported in [35]. It
should be noted that DFM is also easily parallelisable using a simple parameter sweep over the
tetrahedra j = 1, . . . , N and hence the computational time could be improved further by perform-
ing parallelised computations within a high performance programming language. We also note that
although the problems modelled in this work have used conforming tetrahedral meshes, an extension
to non-conforming meshes would simply be a case of ensuring that the trajectory flows are asso-
ciated to the appropriate destination tetrahedra. Furthermore, the feasibility of the exact spatial
integration method relies only on linearity and not on the tetrahedral geometry itself; extensions
to general convex polyhedra would be possible but more complicated to implement.

5. Conclusions

We have extended the DFM approach described in [36] to model wave energy densities in three-
dimensional domains. In DFM, the densities to be computed are transported along ray trajectories
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through tetrahedral mesh elements using a finite dimensional approximation of a ray transfer op-
erator. The relative geometric simplicity of the tetrahedral mesh elements has been exploited to
efficiently compute the entries in the matrix representation of the discretised ray transfer operator.
In particular, each matrix entry requires the evaluation of a four-dimensional integral; two integrals
have been evaluated analytically, and the other two have been computed using spectrally conver-
gent quadrature methods. Numerical results have been presented to verify the methodology, and to
demonstrate its convergence and efficiency in practice for a full-scale vehicle cavity mesh provided
by an industrial collaborator.
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