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Abstract – A key question in neuroscience is to understand how a rich functional repertoire
of brain activity arises within relatively static networks of structurally-connected neural pop-
ulations: elucidating the subtle interactions between evoked ‘functional connectivity’ and the
underlying ‘structural connectivity’ has the potential to address this. These structural-functional
networks (and neural networks more generally) are more naturally described using a multilayer
or multiplex network approach, in favour of standard single-layer network analyses that are more
typically applied to such systems. In this letter, we address such issues by exploring important
structure-function relations in the Macaque cortical network by modelling it as a duplex network
that comprises an anatomical layer, describing the known (macro-scale) network topology of the
Macaque monkey, and a functional layer derived from simulated neural activity. We investigate
and characterize correlations between structural and functional layers, as system parameters con-
trolling simulated neural activity are varied, by employing recently described multiplex network
measures. Moreover, we propose a novel measure of multiplex structure-function clustering which
allows us to investigate the emergence of functional connections that are distinct from the un-
derlying cortical structure, and to highlight the dependence of multiplex structure on the neural
dynamical regime.

Introduction. – Network science provides a powerful
set of tools for studying the complex systems that arise
throughout the biological, physical, social, and informa-
tion sciences [1]. A defining feature of such systems is that
of emergence, i.e. the collective dynamics of such systems
are often poorly predicted by the dynamics of any single
node. Thus, understanding the impact of complex network
topology on the dynamic processes that these structures
sustain is of fundamental importance. Neuroscience, with
its heterogeneous, multiscale patterns of neural connectiv-
ity and rich dynamic repertoire, provides a paradigmatic
model in which to study dynamic processes on complex
networks. Synchronisation and propagation behaviour of
neural activity, for example, is considered to be a key
mechanism for many neural processes, and has been stud-
ied intensively in both idealised network structures [2–4]
and, more recently, within physiologically inspired net-
works such as cortical networks of the rat [5], cat [6, 7],
and Macaque monkey [8] and humans [9, 10].

An alternative approach to understand the influence

of network structure is to consider the interactions be-
tween the so-called ‘functional connectivity’ network, that
is evoked by dynamic processes occurring between struc-
turally connected neural populations [11], and the under-
lying anatomical connectivity network. Functional con-
nectivity refers to networks inferred from the synchro-
nisation of neural activity between brain areas (typi-
cally obtained experimentally via blood oxygenation level-
dependent (BOLD) functional MRI (fMRI), or coherence
in electro- or magnetoencephalogram (EEG/MEG) sig-
nals), as opposed to structural connections observed via in
vivo neuroimaging (typically corresponding to long-range
fibre bundles). The predominance of complex network re-
search within this area has so far focussed on summaris-
ing functional and structural networks in isolation, suc-
cessfully revealing many common features such as small-
worldness [12], the existence of hubs [13], and a hierar-
chically modular structure [14]. Importantly, a number
of recent studies have shown that brain injury and dis-
ease manifest via faulty, disrupted brain networks of both
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structure [15–18] and function [19–22]; more widely, a fun-
damental question is to elucidate how the relatively static
anatomical connectivity of the brain supports a vast func-
tional repertoire of higher brain functions, such as action,
perception and cognition [23]. Improved understanding
of the link between anatomical and functional brain net-
works has the potential to address this and yet, despite
significant progress in our understanding of human brain
connectivity over the past decade, this relationship re-
mains poorly understood (see, e.g., [24,25] and references
therein).

This letter builds upon recent theoretical advances in
complex networks that allows for the treatment of two
or more interacting network structures simultaneously
[26–28]. Specifically, we employ multiplex network models
to analyse simultaneously anatomical and functional brain
networks, thereby gaining additional insights into impor-
tant structure-function brain relationships via emergent
multiplex network properties. In particular, we employ
a multiplex approach to analyse structure-function rela-
tions, extending [8] to describe the relationship between a
physiologically relevant structural network (obtained from
the CoComac database [29]) and functional connections
derived from simulated neural activity of a set of neu-
ral subunits, whose connectivity is defined by the afore-
mentioned structural information. Under systematic vari-
ation of the model parameters, we investigate the evoked
changes in functional network topology in terms of the
structure-function relationships revealed by relevant mul-
tiplex measures. In addition, we propose a novel measure
of multiplex structure-function clustering in order to de-
scribe the emergence of functional connections between
brain regions in the absence of direct anatomical links.
Such a divergence between functional and structural net-
works is fundamental to the brain’s wide functional reper-
toire; our new quantification of this within a multiplex
framework and, in particular, our proposed new clustering
measure which seeks to measure precisely this disparity,
represents a new avenue towards understanding structure-
function relationships at a more fundamental level.

Multiplex brain setup. – A general multiplex net-
work comprises N nodes, connected via edges belonging
to the M layers. Such a multiplex is fully specified by the
vector A = [A[1], . . . , A[M ]] whose entries A[α] = {aαij} are
matrices with non-zero entries in the ijth position if node
i connects to node j in layer α, otherwise {aαij} = 0. The
degree vector, k(i), naturally extends the notion of net-
work degree to the multiplex setting such that its entries

k[α](i) =
∑
j a

[α]
ij give the standard network degree of node

i restricted to layer α, and with obvious generalisation to
a directed multiplex with in- and out-degree vectors hav-

ing entries given by k
[α]
in =

∑
j a

[α]
ji and k

[α]
out =

∑
j a

[α]
ij

respectively.

Herein, we consider only two-layer networks (duplexes)
in which the structural network (layer 1) is given by the
known cortical network of the Macaque monkey and the

(a) Structure (b) Function

Fig. 1: An example multiplex brain network, indicating (a) the
underlying structural network (the known cortical network of
the Macaque monkey) and (b) a functional network derived
from synchronisation of neural populations governed by (1).

functional network (layer 2) is derived by measuring pair-
wise correlations between time series of simulated neural
activity on all nodes (representing cortical areas). Figure
1 shows an example multiplex brain network constructed
in this way. More specifically, we use a parcellation of the
Macaque cortex consisting of 47 brain regions which are
linked by 505 directed fibres [29], yielding a binary con-

nectivity matrix A[1] such that {a[1]ij } = 1 if brain region i
projects onto brain region j, and is otherwise zero.

To determine A[2], each cortical area is modelled by a
Wilson-Cowan [30] node of two interacting populations of
neurons:

dui
dt

= −ui + f(c1ui − c2vi + P + ε
∑
j

w
[1]
ij uj)

dvi
dt

= −vi + f(c3ui − c4vi +Q).

(1)

Here, ui(t) denotes the activity of the population of ex-
citatory neurons within region i, and vi(t) the activity of
inhibitory neurons. The population firing rate is given
by the sigmoid f(x) = 1/ (1 + exp (−x)); interconnectiv-

ity is encoded by the matrix wij = a
[1]
ij /
∑
k a

[1]
ik , in which

entries of a
[1]
ij are normalised in order that each node re-

ceives comparable input. The global between-node con-
nectivity strength is controlled by the parameter ε which
we henceforth set to unity; for ε = 0 the network decou-
ples, with node dynamics determined only by the parame-
ter values and initial data. The constants c1, . . . , c4 define
the strength of within-node interactions between neural
populations and are chosen to be c1 = c2 = c3 = 10
and c4 = −2 as in [31]. The remaining parameters, P
and Q, are control parameters that represent the basal
input to each population. Equation (1) represents a sim-
ple (but historically important) model of the oscillatory
behaviour of interacting neural populations. More sophis-
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Fig. 2: Bifurcation sets of a single Wilson-Cowan node for c1 =
c2 = c3 = 10 and c4 = −2. The dashed curve is the saddle-
node bifurcation set, the solid curve is the Hopf bifurcation
set.

ticated neural mass models that more faithfully reproduce
observed EEG and fMRI data (see, e.g., [32–34] and refer-
ences therein) may be employed with little difficulty; how-
ever, our focus is to interrogate the relationship between
the underlying structural network and the evoked func-
tional connections, rather than on detailed analysis of neu-
ral population dynamics. The model (1) supports transi-
tion between trivial steady-state dynamics and oscillatory
neural-like behaviour via a Hopf bifurcation. A skeleton of
the bifurcation diagram for a single Wilson-Cowan node is
displayed in Figure 2, highlighting, in particular, the Hopf
bifurcation set (see [31] for a detailed bifurcation analy-
sis). In view of the important role of rhythmic brain activ-
ity in neural processing we study only parameter choices
that support oscillations. The model (1) supports transi-
tion between trivial steady-state dynamics and oscillatory
neural-like behaviour under variation of P,Q; in view of
the important role of rhythmic brain activity in neural
processing we study only parameter choices that support
oscillations.

The functional network is derived from the simulated
neural activity by calculating pairwise the Pearson’s cor-
relation coefficient of the time series of all cortical ar-
eas. The resulting correlation matrix was binarised (with
threshold chosen such that the resulting functional net-
work is of equal density to the underlying structural net-
work) to obtain an undirected functional connectivity net-
work describing cortical areas with statistically similar ac-
tivity. In view of the nonlinear oscillations supported by
(1), we also investigated functional networks arising from
consideration of the mean phase coherence [35], observing
qualitatively similar results (as in [8]) which are therefore
not included. We remark that more advanced measures
may be employed to derive a directed ‘effective connectiv-
ity’ structure; however, here we concentrate on undirected
functional networks for consistency with similar studies in

the literature, and comparability with [8], in particular.
To highlight the influence of the specific topology of the

macaque cortical network we compute normalised multi-
plex measures obtained by dividing values computed for
the structure-function duplex by the corresponding ensem-
ble averages obtained from random surrogates. These sur-
rogate duplexes are constructed by simulating neural ac-
tivity on 100 directed random networks with in- and out-
degree sequences matching that of the structural layer.

Multiplex measures. – To characterise the struc-
tural properties of the duplex brain network we consider
recently forwarded multiplex measures [26–28] and, more-
over, propose a novel adaptation of particular relevance to
structure-function relationships in neural systems.

Firstly, we quantify the extent to which the link struc-
ture varies between the two layers by considering the global
overlap, O, given by

O =
∑
i 6=j

a
[1]
ij a

[2]
ij . (2)

Secondly, we consider the multiplex clustering coeffi-
cient, in view of the importance of clustering in small-
world and hierarchically modular phenomena widely ob-
served in both empirical and theoretical analyses of neu-
ral networks. Recall that the standard (single-layer) local
clustering coefficient, c(i), of node i is given by the ratio
of the number of triangles (or 3-cycles) including node i to
the number of connected tuples centered on node i. Mul-
tiplex networks, however, contain more general 3-cycles
that traverse multiple layers. Noting that we restrict here
to two-layer multiplexes, clustering on each node is given
as [27]

C(i) =

∑
j 6=i,m 6=i

(
a
[1]
ij a

[2]
jma

[1]
mi + a

[2]
ij a

[1]
jma

[2]
mi

)
k
[1]
i (k

[1]
i − 1) + k

[2]
i (k

[2]
i − 1)

(3)

which may be more succinctly expressed

C(i) =

(
A[1]A[2]A[1] +A[2]A[1]A[2]

)
ii

k
[1]
i (k

[1]
i − 1) + k

[2]
i (k

[2]
i − 1)

.

The average clustering coefficient for the network is given
by C = (1/N)

∑
i C(i). Note that both these measures,

as defined in [27], assume that intra-layer adjacency re-

lations are symmetric (i.e. A[α] = A[α]T ) thus we ignore
directionality of the structural layer when computing (2)
and (3).

In addition to these standard measures we consider a
restriction of (3) such that triads comprise a structural
tuple, closed by a functional edge, in the absence of a
structural one. Such a clustering is pertinent to the emer-
gence of functional connections that arise between struc-
turally unconnected regions in neural systems. Moreover,
we incorporate the directionality of the structural layer
thus enabling us to consider the influence of structural
patterns (i.e. 3-node motifs) on the observed synchronisa-
tion dynamics. This is given by
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C̃(i) =

∑
j 6=i,m6=i (a

[1]
ij + a

[1]
ji )a

[2]
jm(a

[1]
mi + a

[1]
im)(1− a[1]jm)(1− a[1]mj)(

k
[1]
tot(i)(k

[1]
tot(i)− 1)− 2

(
A[1]

)2
ii

)(
1− c[1]all(i)

)
=

((
A[1] +A[1]T

) (
A[2] ◦

(
E −A[1]

)
◦
(
E −A[1]T

)) (
A[1] +A[1]T

))
ii(

k
[1]
tot(i)(k

[1]
tot(i)− 1)− 2

(
A[1]

)2
ii

)(
1− c[1]all(i)

) ,

(4)

where ◦ denotes element-wise multiplication, k
[1]
tot(i) and

c
[1]
all(i) denote respectively, the total degree (i.e. the sum

of the in- and out-degrees) and the directed clustering co-
efficient, as defined in [36], for the ith structural node.

The factor (1 − c
[1]
all(i)) ensures that C̃ (i) ∈ [0, 1], while

(1 − a
[1]
jm) and (1 − a

[1]
mj) terms prohibit triads that are

closed both in the structural and functional layers. The
global version of Equation (4) is C̃ = (1/N)

∑
i C̃(i).

Our definition treats all possible directed triangles
equivalently. Of particular interest here, however, are the
distinct network properties that emerge by consideration
of different structural connectivity motifs since they have
been shown to both enrich and diversify the dynamical
landscape of synchronised cortical states [37]. Analogously
to [36] these may be characterised by considering a single
node k, with neighbours i, j; in the duplex under consider-
ation these are (i) cycles: a directed structural connection
in layer 1 between i and j via k, closed by a functional
edge in layer 2; and (ii) inward (outward): k holds two
structural inward (outward) edges.

In view of our current focus on understanding structure-
function relationships in a neural context, only three of
the four possible triangles are of interest: cycles (of which
there are two) have intuitive meaning in the context of
indirect functional connectivity, whereas outward tuples
correspond to the population synchrony that arises in the
presence of common drive; inward structures will not be
considered. Table 1 illustrates the relevant triads, together
with formulæ for the corresponding clustering coefficient.

Results. – Figure 3 compares the multiplex network
measures in (2) and (3) with standard normalised single-
layer clustering in the functional layer, for a range of
choices of P , and Q. Here and throughout, presented re-
sults depict measures normalised relative to that observed
in a random graph (i.e. O/〈Orand〉 and C/〈Crand〉). In all
cases we observe a region of (P,Q)-space in which each
measure is elevated. There are two principal features: a
central rectangular region, and a pair of branched struc-
tures. The boundary reflects closely the bifurcation struc-
ture of (1) corresponding to an uncoupled Wilson–Cowan
node (in the uncoupled case ε = 0), at which oscillatory
solutions are created; the reduced overlap and clustering
observed between the rectangular and branched structure

arises at values of P and Q at which reduced synchrony
occurs in oscillatory node dynamics [8]. Importantly, we
observe in general a strong resemblance between structural
and functional networks, and high clustering, when the dy-
namics are close to a phase transition, in agreement with
recent empirical [38, 39] and computational [25, 40] stud-
ies suggesting that structure-function relations are height-
ened as system dynamics approach criticality. Compari-
son of Figure 3(a) and (c), however, indicates significant
differences between single and multilayer clustering, ele-
vated values of the latter extending over a wider region
of parameter space and, in particular, being less tightly
constrained to critical transition regions. These results
highlight that important additional information regarding
emergent structure-function relations is revealed by con-
sidering networks simultaneously.

In figure 4 we consider measures of particular relevance
to emergent structure-function relations within neural net-
works, as defined in Table 1. Figure 4(a) illustrates our

new measure C̃ both (averaged over all nodes and nor-
malised), indicating considerable additional detail in com-
parison to Figure 3(c). Reminiscent of that shown in Fig-
ure 3(a), our new measure reflects less tightly the critical-
ity structure observed in Figures 3(b,c). Figures 4(b,c)

indicate the individual contributions to C̃ both from the
different network motifs under consideration (see Table
1), highlighting that the kind of structure-function rela-
tionships that emerge depend strongly on the dynamical
regime under consideration. In particular, we observe dis-
tinct areas of parameter space in which clustering is dom-
inated by either common drive or indirect functional con-
nectivity. Comparison with Figure 3(b) shows that when
structural and functional networks show heightened cor-
respondence, C̃ both is dominated by common drive, and
that this is especially the case within the transition re-
gions at the boundary. The converse is true in the inter-
mediate regions of lower synchrony (in [8] these regions
were highlighted as those for which synchronous solutions
are unstable in a weakly-coupled network), in which we
infer that the interplay between neural dynamics and the
particular network structure supports complex patterns
of partial synchrony that manifest as emergent functional
connections. Numerical results, corresponding to both sin-
gle node dynamics and in the connected network (that are
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(a) (b) (c)

Fig. 3: Comparison of multiplex vs. single-layer measures as a function of the basal activation parameters P and Q of the
Wilson-Cowan model (1). (a) Standard clustering of the functional layer, (b) global overlap, and (c) multiplex clustering. All
measures are normalised against random surrogates; see text.

Table 1: Patterns of inter-layer triangles comprising directed structural tuples closed by an undirected functional edge, and their
associated clustering coefficients. Here, ◦ denotes element-wise matrix multiplication, k

[1]
in (i) and k

[1]
out(i) the in- and out-degree

of the ith node in layer one respectively, and c
[1]
# (i), with {#} ∈ {cycle, out,both}, the directed, single-layer clustering coefficient

as defined in [36]. Global measures are obtained by averaging over all nodes (i.e. C̃# = 1/N
∑

i C̃
#(i)).

Patterns Graphs Structure-Function Clustering

Cycle

k

ji

k

ji

C̃ cyc(i) =

(
A[1]

(
A[2] ◦

(
E −A[1]

)
◦
(
E −A[1]T

))
A[1]

)
ii(

k
[1]
in (i)k

[1]
out(i)−

(
A[1]

)2
ii

)(
1− c[1]cyc(i)

)

Out

k

ji

C̃ out(i) =

(
A[1]

(
A[2] ◦

(
E −A[1]

)
◦
(
E −A[1]T

))
A[1]T

)
ii

k
[1]
out(i)

(
k
[1]
out(i)− 1

)(
1− c[1]out(i)

)
Both All graphs above C̃ both(i) =

(
A[1]

(
A[2] ◦

(
E −A[1]

)
◦
(
E −A[1]T

)) (
A[1] + 0.5A[1]T

))
ii(

k
[1]
in (i)k

[1]
out(i)−

(
A[1]

)2
ii

+ 0.5k
[1]
out(k

[1]
out − 1)

)(
1− c[1]both(i)

)

not included here for brevity), indicate that transitions be-
tween synchronous and asynchronous regions of parameter
space are associated with corresponding transitions in the
dynamical regime of (1)—in particular, critical behaviour
is associated with high frequency and/or amplitude os-
cillation. Our results therefore reflect the divergence of
anatomy and the functional network configurations that
they support [41]; moreover, they indicate that structure-
function relations at, and near, criticality are strongly de-
pendent on specific neural dynamics (in contrast with a
growing consensus [25, 40, 42, 43] that structure-function
relations can be understood predominantly in terms of
criticality) and that this is especially true in the case of
emergent functional connectivity and of more weakly syn-
chronous neural activity.

In Figures 4(d–f) we highlight the variability in network
structure for three different fixed values of the basal input
parameter pair (P,Q) (as evidenced by clustering) and

the local differences between C(i) and C̃ both(i). We ob-
serve strong inter-node variation and, moreover, that even

for low overall clustering particular network areas show
very different properties. Comparison of C(i) and C̃ both(i)

shows similar trends, although zeros exist in C̃ both(i) that
are not reflected in C(i). One of these is common across
Figures 4(d–f) and reflects the local clustering of the un-
derlying structural layer; the remainder arise due to syn-
chronisation behaviour.

Conclusion. – In this letter, we have considered the
application of multiplex network models to shed light on
the emergent structure-function relations in neural sys-
tems that are fundamental to the wide functional reper-
toire of higher brain functions. This work provides the first
demonstration that a simultaneous analysis of structure-
function networks is better placed to capture emergent
features and capabilities of neural systems than standard
single-layer analyses.

Our results indicate that (in common with [25, 40, 42]),
increased structure-function relations evidenced by mul-
tiplex measures of overlap and clustering were associated
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Fig. 4: Multiplex clustering coefficients corresponding to the neurologically relevant patterns described in Table 1. (a) Variation

of C̃ both/〈C̃ both
rand〉 as a function of the basal input parameters P and Q. (b),(c) The contribution of key network motifs to the

clustering C̃ both expressed via C̃ both/〈C̃ both
rand〉− C̃#/〈C̃#

rand〉 for (b) # = cyc, (c) # = out. (d)–(f) Comparison of local standard

multiplex clustering C(i) (shown in blue) and C̃ both(i) (shown in red) for specific parameter values (P,Q) = (−3.5,−9.1),
(−1.1,−7.8) and (1.8,−7.2) highlighted in (a) by a triangle, circle and square, respectively. The shaded region indicates a
confidence interval of width one standard deviation.

with criticality of the underlying neural model. However,
the detail of this relation differed significantly to that
obtained from single-layer measures. Moreover, by em-
ploying a novel multiplex measure, designed specifically
to accommodate the divergence between anatomical brain
networks and the functional behaviour they support, this
work supports a deeper theoretical understanding of the
neural substrates underlying cognition. Our results high-
light that the form of structure-function relations differs
significantly, depending on the specific dynamical regime
of the neural system, thereby suggesting a more subtle
dependence of network behaviour than one dominated by
criticality alone.

Important future work will incorporate more general
multilayered aspects of neural systems, including consid-
eration of the transient nature of various dynamical brain
states, in the form of time-varying multiplex structures,
for example. Such studies will have relevance to neurolog-
ical disorders (such as epilepsy, Alzheimer’s disease and
other dementias), potentially providing additional insight
to single layer analyses (see see e.g. [44, 45] for discussion
of the clinical applications of network science) that have
evidenced altered patterns of connectivity in both struc-

ture and function across a broad range of brain disorders.

∗ ∗ ∗

Multiplex network images were generated using MuxViz
[46].
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