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Abstract—For a dynamic traveling salesman problem (DTSP),
the weights (or traveling times) between two cities (or nodes) may
be subject to changes. Ant colony optimization (ACO) algorithms
have proved to be powerful methods to tackle such problems due
to their adaptation capabilities. It has been shown that the inte-
gration of local search operators can significantly improve the
performance of ACO. In this paper, a memetic ACO algorithm,
where a local search operator (called unstring and string) is
integrated into ACO, is proposed to address DTSPs. The best
solution from ACO is passed to the local search operator, which
removes and inserts cities in such a way that improves the solu-
tion quality. The proposed memetic ACO algorithm is designed to
address both symmetric and asymmetric DTSPs. The experimen-
tal results show the efficiency of the proposed memetic algorithm
for addressing DTSPs in comparison with other state-of-the-art
algorithms.

Index Terms—Ant colony optimization (ACO), dynamic
traveling salesman problem (DTSP), local search, memetic
algorithm.

I. INTRODUCTION

THE TRAVELING salesman problem (TSP) is one of
the most fundamental NP-complete combinatorial opti-

mization problems [20]. The classic TSP can be described as
follows: given a collection of cities, the objective is to find the
shortest Hamiltonian cycle that starts from one city and visits
each of the other cities once before returning to the starting
city. Over the years, exact methods [8], heuristics [35], [55]
and metaheuristics [13], [57] have been proposed to solve the
static TSP. Due to the strong increase in the computation time
when the problem size increases, heuristics and metaheuris-
tics are more preferable than exact methods since they trade
optimality for efficiency.
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In the last decade, there is an increasing interest to address
dynamic versions of the TSP, such as the dynamic TSP (DTSP)
where the topology of cities changes [1], [23], [24], [31], [32]
or the weights between the cities change [16], [41], [44], [51].
These kind of problems have more practical value [26], [45].
For instance, a vehicle of a small company needs to dis-
tribute items sold to different customers starting from and
returning to his base again after all the customers are sat-
isfied. The task is to optimize the time and plan a route as
efficiently as possible. Therefore, by considering the travel
time between customers it can generate the route and start.
However, the travel time between two customers may change
during its route due to traffic jams or any other factors.
Hence, the route needs to be reoptimized considering the new
factors.

Basically, a DTSP can be viewed as a sequence of differ-
ent static TSP instances that change over time. If the time
interval between the changes is long, then a straightforward
way is to apply exact methods, e.g., Concorde [8], or effec-
tive heuristics, e.g., Lin–Kernighan [35], 2-Opt [9], 3-Opt [36],
to reoptimize whenever a dynamic change occurs, assuming
that the changes are detectable. Such methods are capable of
finding the global optimum (or close to the global optimum)
solution for symmetric TSP cases in seconds. In contrast,
the field of evolutionary dynamic optimization offers sev-
eral metaheuristics that tackle DTSPs [10], [59] by using
knowledge transferred from previously optimized instances.
Such methods are suitable to speed up the reoptimization
process when the changes are small to medium [6], [27].
Furthermore, they are more appropriate in cases where the
time interval between the changes is relatively short, which
makes exact or any other computationally expensive methods
inappropriate [56].

In fact, the change interval in many real-world applica-
tions of DTSPs, e.g., in logistics [50], [52], robotics [22],
and telecommunications [2], is rather short. Another important
characteristic of such applications is that the dynamic changes
are usually asymmetric. Most exact methods, e.g., Concorde,
and heuristic methods, e.g., Lin–Kernighan, 2-Opt or 3-Opt,
are not (directly) applicable for asymmetric TSP cases since
they are based on the triangle inequality of Euclidean distance
associated with symmetric TSPs. Methods for asymmetric
TSPs are less studied with only a few exceptions [30], [53].
Of course, symmetric methods can be applied with some mod-
ifications to the problem or the method itself. But, this may
significantly increase the computation time or degrade their
effectiveness [29], [52].
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Among the metaheuristics developed in the evo-
lutionary dynamic optimization domain, ant colony
optimization (ACO) [12]–[15] algorithms are extensively
used to address (symmetric) DTSPs due to their adap-
tation capabilities. More precisely, the pheromone trails
generated before a dynamic change can be used after a
change to speed up reoptimization. Different strategies were
integrated into ACO to maintain a high quality of output
efficiently [16], [23], [24], [41], [44]. Recently, a local
search operator was integrated into an ACO-based memetic
algorithm [38]. Local search algorithms can better explore
locally a neighborhood in the search space, and together with
the adaptation capabilities of ACO, the resulting ACO-based
memetic algorithm serves as a powerful algorithm for the
DTSP. The pheromone update policy of the algorithm is
based on one of the best performing ACO algorithms,
i.e., MAX–MIN ant system (AS) (MMAS) [53]. The
local search operator used is the unstringing and string-
ing (US) operator [21]. MMAS provides its best solution
to the US operator for local search improvements before the
pheromone update procedure.

The memetic algorithm, denoted as MMASUS, performs
two node insertion and two node removal moves and assumes
that the DTSP is symmetric [38]. However, it was not designed
with the triangle inequality assumption as with other local
search operators (e.g., 2-Opt and 3-Opt). In this paper, the
MMASUS algorithm [38] is extended to also cope with
asymmetric DTSPs. The major contributions of this paper are
summarized below.

1) A memetic framework based on ACO is proposed that
triggers local search optimization whenever a new best
solution is discovered.

2) Two additional node insertion moves and two addi-
tional node removal moves are proposed for the DTSP
that improve the performance in the asymmetric cases
without affecting the performance in the symmetric
cases.

3) A DTSP benchmark generator that encompasses some
real-world applications is used to systematically inves-
tigate the performance of MMASUS.

4) The DTSP benchmark generator with weight changes
in [41] is extended to also generate asymmet-
ric dynamic changes. Although an asymmetric
dynamic change is a real-world characteristic, it
has received less attention from researchers. In this
paper, asymmetric dynamic changes are extensively
studied.

The rest of this paper is organized as follows. Section II
introduces the DTSP problem definition, different vari-
ations of DTSPs, and describes how the DTSP cases
are generated. Section III describes the methods from
the literature that have been applied to different varia-
tions of DTSPs. Section IV gives details of the proposed
MMASUS algorithm. Section V presents the experimen-
tal studies that include comparisons with other popular
heuristics and state-of-the-art algorithms. Finally, conclud-
ing remarks and future work directions are presented in
Section VI.

II. DYNAMIC TRAVELING SALESMAN PROBLEMS

A. Problem Formulation

Typically, a TSP instance is modeled by a fully connected
weighted graph G = (N, A), where N = {v1, . . . , vn} is a set
of n nodes and A = {(vi, vj) | vi, vj ∈ N, i �= j} is a set of
arcs. For the classic TSP, nodes and arcs represent the cities
and the links between them. Each arc (vi, vj) ∈ A is asso-
ciated with a non-negative value dij ∈ R

+, which for the
classic TSP represents the distance or travel time between
cities vi and vj. A TSP instance is considered to be symmetric
if dij(t) = dji(t),∀(vi, vj) ∈ A, or asymmetric if dij(t) �= dji(t)
for at least one (vi, vj) ∈ A. Often, an undirected or directed
graph G is used for a symmetric or asymmetric TSP instance,
respectively. The asymmetric TSP appears to be more chal-
lenging to solve than the symmetric TSP because an algorithm
needs to consider the direction of the arcs as well [7], [28].
The most studied and well known special case of symmetric
TSP is the version in which the distances among cities always
satisfy the triangle inequality (e.g., dij + djk ≥ dik), known as
Euclidean TSP. There are many existing methods, both exact
and heuristic, that are based on the triangle inequality [8], [35].
However, the corresponding asymmetric special case may not
always satisfy the triangle inequality.

Considering that all undirected graphs can be viewed as
directed graphs (e.g., by duplicating the arcs in both direc-
tions), then a symmetric TSP can be considered as a special
case of the asymmetric TSP. In contrast, it is also possi-
ble to transform an asymmetric TSP instance to a symmetric
one by doubling the number of nodes [29]. The symmet-
ric version of TSP is one of the most studied versions of
TSP in the literature, whereas the asymmetric version has
attracted less attention [7]. For instance, Gerhard Reinelt’s
TSP library (TSPLIB)1 offers much fewer and smaller prob-
lem instances for the asymmetric TSP in comparison with the
symmetric TSP.

The TSP, either symmetric or asymmetric, becomes more
realistic and challenging if it is subject to a dynamic environ-
ment. Specifically, for the DTSP where the weight matrix is
subject to changes, it can be defined as follows:

D(t) = {
dij(t)

}
n×n (1)

where t is the period of a dynamic change. A particular solu-
tion s = [s1, . . . , sn] in the search space is specified by a
permutation of the nodes, and for the DTSP, it is evaluated as
follows:

f (s, t) = dsns1(t)+
n−1∑

i=1

dsisi+1(t). (2)

B. Dynamic TSP Benchmark Generators

The concept of DTSPs was initially introduced
by Psaraftis [47]. Since then, several variations
of DTSPs were introduced, where the set of
nodes N [1], [23], [24], [31], [32], [56] and/or the cost

1A library that consists of TSP problem instances
with their optimal solutions, which is available at
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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from the set of arcs A [16], [41], [44], [51], [56] cause
the weight matrix D(t) to change during the optimization
process. However, there is still no any unified benchmark
problem for DTSPs, which makes the comparison with
algorithms from the literature a very challenging task. One
popular benchmark is the DTSP where cities are exchanged:
half of the cities from the problem instance are removed to
create a spare pool [23], [24], [39], and the cities from the
spare pool are then used to replace cities from the problem
instance. Another popular benchmark is the DTSP where the
weights of arcs change probabilistically [41] (the complete
benchmark generator description is given in Section II-C).
In [16] and [51], only the weights of arcs that belong to the
best tour increase or decrease accordingly.

Younes et al. [60] introduced a benchmark generator for the
DTSP with different modes: 1) topology change as in [24];
2) weights change as in [16]; and 3) swap cities. Based on
the last mode (i.e., swap cities) of the aforementioned bench-
mark generator, a general dynamic benchmark generator for
permutation-encoded problems (DBGP) was proposed that can
generate test cases with known optima [42]. DBGP can convert
any stationary TSP instance into a DTSP with specific proper-
ties (i.e., frequency and magnitude of changes). Although with
DBGP one can observe how close to the optimum an algo-
rithm converges, it sacrifices real-world models for the sake
of benchmarking.

Since DBGP was used for the preliminary analysis of
MMASUS in [38] and showed that the algorithm recovers rel-
atively close to the global optimum (for symmetric cases), in
this paper we consider a benchmark generator that models real-
world situations (i.e., the DTSP where weights change [41])
to further investigate the proposed MMASUS.

C. Generating Dynamic Test Cases

Considering the problem formulation above, a dynamic test
case of a TSP can be generated by modifying the value of the
arc between nodes vi and vj as follows:

d′ij ← dij × tij (3)

where tij represents the change on the link between nodes vi

and vj, which is generated as follows:

tij =
{

tij ← 1+ r ∈ [FL, FU], if q ≤ m
tij ← 1, otherwise

(4)

where r is a random variable uniformly distributed in [FL, FU],
where FL and FU define the lower and upper bounds of the
change, respectively, q is a random variable uniformly dis-
tributed in [0, 1], and m defines the magnitude of change that
satisfies 0 < m ≤ 1. For every arc, a different r value is gen-
erated to embed real-world characteristics in the constructed
DTSP. In this way, links with higher changes are generated
when r values are closer to FU , or links with smaller changes
are generated when r values are closer to FL. For example,
traffic jams are not the same in every street. Similarly, delays
are not the same in all the links where packets are sent in com-
munication networks. If tij is set to 1, it indicates that there
is no change between nodes vi and vj. Although r may define

the degree of a change in a single arc individually, the overall
magnitude of change is expressed by the number of arcs that
will change, i.e., m.

So far, only the magnitude of change was discussed. The
frequency of change defines how quickly changes will occur.
For this DTSP, the frequency f of change is synchronized
with the algorithm: every f algorithmic iterations/evaluations,
a change occurs as defined in Eq. (4).

Since many real-world problems can be formulated as
DTSPs and methods for solving static TSPs can be applied
to solve them [7], [22]; the dynamic changes generated in this
paper can be generalized and may represent different factors
depending on the application. For example, in logistics, they
may represent traffic on the road system or in telecommuni-
cations they may represent delays on the network. Therefore,
the factor tij in Eq. (3), i.e., traffic jam, is multiplied with the
normal travel time or physical distance of the road, i.e., dij.
In this way, the factor is normalized according to the scale of
the dij values. In another DTSP benchmark generator [56], the
dynamic changes are generated with the addition of factor tij
generated from a normal distribution (also negative values are
allowed) rather than a uniform distribution (only positive val-
ues are allowed) as in our case. Such dynamic changes make
more sense for real-world problems where the original weights
are also possible to be deducted.

Furthermore, the existing benchmark generator has only
been used to generate symmetric cases of DTSPs [39]. For
example, the dynamic changes generated between nodes vi

and vj satisfy the following policy: tij = tji. It is straightfor-
ward that from the same problem instance a corresponding
asymmetric case of the DTSP can be generated in which the
dynamic change of one direction tij may be different from the
opposite direction tji. In fact, such case is closer to a real-
world scenario, e.g., the traffic jams on the road system are
not necessarily the same in both directions.

III. METHODOLOGIES FOR SOLVING DTSPS

The challenges of algorithms in solving NP-complete
problems in static environments are well-known in terms of
computational complexity [20]. But, addressing NP-complete
problems in dynamic environments is even more challeng-
ing for algorithms because the objective is not only to locate
the global optimum efficiently, but also to track it over the
environmental changes. This requires repeated optimization
whenever a dynamic change occurs. In the following sections,
we briefly review existing algorithms designed to address
different variations of DTSPs.

A. ACO Algorithms

Angus and Hendtlass [1] applied a conventional ACO algo-
rithm to solve a small DTSP instance (e.g., Burma14 with 14
cities), where a single city was removed during the execu-
tion. They observed that reoptimizing via adaptation in ACO
is faster than a complete restart.

Eyckelhof and Snoek [16] considered a differ-
ent DTSP where the weights between cities change
with time, representing sudden changes in the traffic.
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A “shaking” technique was proposed to the basic AS,
where the pheromone trails are smoothed after a dynamic
change.

Guntsch and Middendorf [23] proposed local restart strate-
gies for the DTSP where the topology of cities changes. The
idea is that, instead of reinitializing all the pheromone trails,
the pheromone trails of the cities affected by the dynamic
changes, i.e., inserted or removed cities, are reinitialized
heuristically. Later on, they also introduced one of the most
studied ACO for the same DTSP, known as the population-
based ACO (P-ACO), where no pheromone evaporation is
used [24]. The framework consists of a memory of limited
size, where the best ant of every iteration is added. The mem-
ory uses a first-in-first-out policy. When the dynamic changes
affect the ants stored in the memory, they are repaired heuris-
tically using a keep-elitist strategy [25]. The pheromone trails
are updated according to the solutions currently stored in the
memory. An improvement of the P-ACO was proposed in [39],
denoted as memetic P-ACO, where simple and adaptive inver-
sions [55] were adaptively applied to the best ant before it is
added to the memory.

Immigrants schemes were integrated with ACO to address
the DTSP with weight changes [41]. The idea is to generate
immigrant ants that will deposit pheromone, either randomly,
e.g., in random immigrants ACO, or in a guided way, e.g.,
in elitism-based immigrants ACO (EIACO). Furthermore,
multicolony approaches were also applied to the same DTSP.
For example, the multicolony schemes proposed in [43] use
a separate pheromone table for each colony whereas the mul-
ticolony schemes proposed in [44] consist of a single colony
with several castes (i.e., a group of ants that have the same
behavior but different from other groups of ants) that use the
same pheromone table. The 3-Opt local search is applied to
improve solution quality in all castes. The colonies/castes use
different exchange policies to communicate.

B. Evolutionary Algorithms

Zhou et al. [61] integrated three operators, i.e., insert, delete
and change, to the inver-over algorithm [55] to cope with the
insertion, deletion, and modification, respectively, of cities in
TSPs. Li et al. [32] further improved the inver-over algorithm
using a pool that maintains a set of the most promising gene
segments by applying several heuristic rules. The algorithm
was applied to the DTSP that is based on the CHN146+3
benchmark [31] that consists of 145 cities, a geo-stationary
satellite, and three mobile satellites.

Liu et al. [37] proposed an immune system-based genetic
algorithm for the DTSP where the topology of cities changes.
A permutation-based dual operator is integrated into the
immune operation to maintain diversity and a memory scheme
is used to guide individuals to the promising areas of the search
space. Dazhi and Shixin [11] proposed an agent-based evolu-
tionary search to address a DTSP where cities are swapped. A
recombination and local updating procedure is applied to the
closest neighbor of each agent. The resulting offspring replaces
the agent if it has better fitness; otherwise, it is accepted
probabilistically to enhance exploration.

Tinós et al. [56] integrated an explicit memory to an elitism-
based immigrants genetic algorithm (EIGA) to address both
DTSPs where the topology of cities changes and where the
links of the cities vary cyclically. The best individuals are
stored in the memory and they are retrieved via the recombi-
nation operator (i.e., parents are selected from both the actual
population and the memory).

Simões and Costa [51] integrated immigrants schemes with
cross-generation elitism selection, heterogeneous recombina-
tion and cataclysmic mutation (CHC)-based algorithm for the
DTSP with weight changes. The CHC framework does not use
a normal mutation but reinitializes the population by preserv-
ing only the best individual and randomly swaps a part of it
to generate the remaining individuals.

C. Other Methods

A discrete version of particle swarm optimization was
applied to the DTSP where the topology changes [4], [5].
A pheromone table was used to allow particles to commu-
nicate. In [46], a scatter search algorithm was hybridized with
a prediction mechanism for diversity maintenance whereas
in [34] a simple parallel multistart of the common 2-Opt [9]
local search operator was investigated for the DTSP.

IV. PROPOSED ACO-BASED MEMETIC ALGORITHM

A. Memetic Framework

Local search algorithms can better explore locally a neigh-
borhood in the search space. For our case, the neighborhood
of a solution s is a set of different solutions that can be
generated from s with a single move. For example, in the
popular 2-Opt local search algorithm two arcs are deleted and
reconnected in a different possible way. This specific move
generates a neighbor solution. The same holds for the 3-Opt
local search algorithm where three arcs are reconnected to
generate a neighbor solution.

Many of the described algorithms from the liter-
ature (Section III) are not integrated with a local
search operator to further improve the solution qual-
ity [16], [23], [37], [41], [51]. On the other hand, the algo-
rithms that integrate local search improvements apply the
operator either to the best solution [39] or to all solu-
tions [34], [44], [46], [56].

Recently, MMASUS was proposed for symmetric
DTSPs [38]. The US operator may not be a very popular
local search operator, but it was previously used to solve
difficult combinatorial optimization problems under static
environments with promising results [17], [18]. MMASUS
clearly showed that a local search operator can significantly
improve the solution quality of a conventional MMAS.2

The experiments showed that MMAS can provide promising
starting points for the US operator for symmetric DTSP cases.
In this paper, the US operator is extended to address both
symmetric and asymmetric DTSP cases (see more details in
Section IV-D).

2Thomas Stützle’s ACOTSP, Version 1.03. Available at
http://www.aco-metaheuristic.org/aco-code.

http://www.aco-metaheuristic.org/aco-code
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Algorithm 1 MMASUS

1: INPUT: none
2: OUTPUT: sbs % best solution at any time
3: t← 0 % iteration count
4: sib % iteration best ant
5: τ0 % initial pheromone trail
6: τmin, τmax % minimum and maximum pheromone trail
7: InitializePheromones(τ0)
8: while (termination condition not satisfied) do
9: ConstructSolutions % using Eq. (5)

10: sib ← FindBest
11: if (f (sib, t) < f (sbs, t)) then
12: sbs ← sib

13: UpdatePheromoneBounds(τmin, τmax)
14: USLocalSearch(sbs) % using Algorithm 2
15: end if
16: UpdatePheromones % using Eqs. (6) and (7)
17: if (stagnation behaviour detected) then
18: InitializePheromones(τmax)
19: end if
20: t← t + 1
21: end while

Stützle and Hoos [53] applied local search operators to the
iteration-best ant of MMAS after every iteration, whereas
in [54], they further applied local search operators to all ants.
Such extensive usage of local search may not be very effi-
cient for dynamic optimization problems (DOPs) because the
computation time naturally increases significantly since local
search operators are computationally expensive algorithms. As
discussed before, for DOPs, algorithms must produce high
quality solutions quickly [56]. Therefore, the local search oper-
ator in MMASUS is applied to the best-so-far-ant (a special
ant that may not necessarily belong to the current population)
only when a new best solution is found. This is because the
local search operator is executed until no further improvement
is possible. In case a new best solution is not found, the local
search is not applied because it will unnecessarily increase
the computation time to potentially “improve” a solution for
which basically no further improvement is possible.

The general framework of the ACO-based memetic algo-
rithm MMASUS is given in Algorithm 1.

B. Constructing Solutions

Ants read pheromones to construct solutions and write
pheromones to store solutions. Each ant k uses a probabilistic
rule to choose the next city to visit. The probability of the kth
ant to move from city vi to city vj is calculated as follows:

pk
ij =

[
τij

]α[
ηij

]β
∑

l∈N k
i
[τil]α[ηil]β

, if j ∈ N k
i (5)

where τij and ηij are the existing pheromone trail and the
heuristic information available a priori between cities vi and vj,
respectively. The heuristic information is defined as ηij = 1/d′ij
where d′ij is defined as in Eq. (3). N k

i is the set of unvis-
ited cities for ant k adjacent to city vi. α and β are the two

parameters which determine the relative influence of τij and
ηij, respectively.

C. Pheromone Update Policy

The pheromone trails in MMAS are updated by applying
evaporation as follows:

τij ← (1− ρ)τij, ∀(i, j) (6)

where ρ is the evaporation rate, which satisfies 0 < ρ ≤ 1,
and τij is the existing pheromone value. After evaporation, the
best ant deposits pheromone as follows:

τij ← τij +�τ best
ij , ∀(i, j) ∈ sbest (7)

where �τ best
ij = 1/Cbest is the amount of pheromone that the

best ant deposits and Cbest defines the solution quality of tour
sbest. The best ant that is allowed to deposit pheromone may
be either the best-so-far ant (sbs), in which case Cbest = Cbs,
or the iteration-best ant (sib), in which case Cbest = Cib, where
Cbs and Cib define the solution quality of the best-so-far ant
and the iteration-best ant, respectively. These two types of ants
are applied in an alternate way. More precisely, the iteration-
best ant is allowed to deposit pheromone to early iterations
and the emphasis is gradually shifted to the best-so-far ant
(more details in [54]). In this way, a stronger exploration is
achieved at early stages of the optimization process and a
stronger exploitation at later stages.

The lower and upper limits τmin and τmax of the pheromone
trail values are imposed. The τmax value is bounded by
1/(ρCbs), where Cbs is initially the solution quality of an esti-
mated optimal tour (calculated by a nearest-neighbor heuristic)
and later on is updated whenever a new best-so-far ant solution
quality is found. The τmin value is set to τmin = τmax/2n.

Since a local search operator generates strong exploitation,
the algorithm may lose its adaptation capabilities. To maintain
the diversity, the pheromone trails are occasionally reinitialized
to the value τmax. For example, whenever the stagnation behav-
ior3 occurs or when no improved solution is found for a given
number of iterations, the pheromone trails are reinitialized.
This is a mechanism embedded to the conventional MMAS
algorithm and it is very useful for MMASUS, especially after
US is applied.

D. US Local Search Operator

The US operator basically removes (or “unstrings”) and
inserts (or “strings”) nodes from a tour into such position that
improves the overall tour cost. In [38], only symmetric cases
of DTSP were considered and tackled with types I and II
insertions (see Figs. 1 and 2) and types I and II removals
(see Figs. 5 and 6), whereas in this paper both symmetric and
asymmetric DTSPs are considered. Hence, it is necessary to
extend the US operator to cope with the asymmetric cases.
Two other types of insertions and removals are defined for
the DTSP: types III and IV insertions (see Figs. 3 and 4) and

3Detected using the λ-branching scheme [19] that calculates the statistics
regarding the distribution of the current pheromone trails.
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Fig. 1. Type I insertion of vx between vi and vj.

Fig. 2. Type II insertion of vx between vi and vj.

Fig. 3. Type III insertion of vx between vi and vj.

types III and IV removals (see Figs. 7 and 8) to effectively
tackle asymmetric cases.

Suppose that node vx needs to be inserted between any two
nodes vi and vj. The main feature of the insertion procedure
of US is that when a node vx is inserted, it is not necessar-
ily placed between two consecutive nodes. However, after the
insertion, these two nodes become adjacent to vx. For a given
orientation of a tour, we consider a node vk in the subtour from
vj to vi and a node vl in the subtour from vi to vj. For any node
vh on the tour, we also consider vh+1 its successor and vh−1 its
predecessor. Since the potential number of choices for vi, vj,
and vx could be large, the search is restricted within a neigh-
borhood of a given size l (suggested values l ∈ [3, 5] [21]).
This is implemented in most local search operators to improve
the computation time [53]. Basically, the neighbors of a node
vj are the nearest (e.g., the minimum weight) successors and
predecessors among all nodes already included in the tour.
The selection of the best place to insert a node in the tour is
now constrained to the neighborhood of each node involved in
the alternative under consideration as well as the alternatives
tested to the removal procedures.

Fig. 4. Type IV insertion of vx between vi and vj.

More precisely, the stringing procedure suggests four pos-
sible types of insertions of node vx into the tour as shown in
Figs. 1–4, respectively.

1) Type I Insertion: Assume that vk �= vi and vk �= vj. The
insertion of vx results in the deletion of arcs (vi, vi+1),
(vj, vj+1), and (vk, vk+1); and the insertion of arcs
(vi, vx), (vx, vj), (vi+1, vk), and (vj+1, vk+1). Also, the
subtours (vi+1, . . . , vj) and (vj+1, . . . , vk) are reversed.

2) Type II Insertion: Assume that vk �= vj, vk �= vj+1,
vl �= vi, and vl �= vi+1. The insertion of vx results
in the deletion of arcs (vi, vi+1), (vl−1, vl), (vj, vj+1),
and (vk−1, vk); and the insertion of arcs (vi, vx), (vx, vj),
(vl, vj+1), (vk−1, vl−1), and (vi+1, vk). As above, the
subtours (vi+1, . . . , vl−1) and (vl, . . . , vj) are reversed.

3) Type III Insertion: Basically, this type of insertion can be
seen as the inverse of type I insertion. When node vx is
inserted between vi and vj, the subtour of nodes is rear-
ranged in such way that almost the whole sequence is
inverted. The aim is to explore other promising regions
of the search space. As in type I insertion, assume
vk �= vi and vk �= vj. The insertion of vx results in
the deletion of arcs (vi−1, vi), (vj−1, vj), and (vk−1, vk);
and the insertion of arcs (vi, vx), (vx, vj), (vk, vj−1), and
(vk−1, vi−1). As above, the subtours (vi, . . . , vj−1) and
(vk, . . . , vi−1) are reversed.

4) Type IV Insertion: Analogously, this type of insertion
can be seen as the reverse of type II insertion. As in type
II, assume that vk �= vj, vk �= vj+1, vl �= vi, and vl �=
vi+1. The insertion of vx results in the deletion of arcs
(vi−1, vi), (vl, vl+1), (vj−1, vj), and (vk, vk+1); and the
insertion of arcs (vi, vx), (vx, vj), (vi−1, vl), (vl+1, vk+1),
and (vk, vj−1). As above, the subtours (vi, . . . , vl) and
(vl+1, . . . , vj−1) are reversed.

The unstringing procedure is basically the opposite of the
stringing procedure. Since there are four types of insertions
there are four corresponding types of removals of node vi, as
shown in Figs. 5–8, respectively.

1) Type I Removal: Assume that vj belongs to the neigh-
borhood of vi+1 and vk belongs to the neighborhood of
vi−1, with vk being part of the subtour (vi+1, . . . , vj−1).
The removal of node vi results in the deletion of arcs
(vi−1, vi), (vi, vi+1), (vk, vk+1), and (vj, vj+1); and the
insertion of arcs (vi−1, vk), (vi+1, vj), and (vk+1, vj+1).
Also, the subtours (vi+1, . . . , vk) and (vk+1, . . . , vj) are
reversed.
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Fig. 5. Type I removal of vi from the tour.

Fig. 6. Type II removal of vi from the tour.

Fig. 7. Type III removal of vi from the tour.

2) Type II Removal: Assume that vj belongs to the neigh-
borhood of vi+1, vk belongs to the neighborhood of vi−1,
with vk being part of the subtour (vj+1, . . . , vi−2) and
vl belongs to the neighborhood of vk+1, with vl being
part of the subtour (vj, . . . , vk−1). The removal of node
vi results in the deletion of arcs (vi−1, vi), (vi, vi+1),
(vj−1, vj), (vk, vk+1), and (vl, vl+1); and the insertion of
arcs (vi−1, vk), (vl+1, vj−1), (vi+1, vj), and (vl, vk+1). As
above, the subtours (vi+1, . . . , vj−1) and (vl+1, . . . , vk)

are reversed.
3) Type III Removal: Assume that vj belongs to the neigh-

borhood of vi+1 and vk belongs to the neighborhood of
vi−1 with vk being part of the subtour (vi+1, . . . , vj−1).
The removal of node vi results in the deletion of arcs
(vi−1, vi), (vi, vi+1), (vj−1, vj), and (vk−1, vk); and the
insertion of arcs (vi+1, vj), (vi−1, vk), and (vj−1, vk−1).
As above, the subtours (vj−1, . . . , vk) and (vi−1, . . . , vj)

are reversed.
4) Type IV Removal: Assume that vj belongs to the neigh-

borhood of vi+1, vk belongs to the neighborhood of vi−1
with vk being part of the subtour (vl+1, . . . , vi−2), and vl

belongs to the neighborhood of vj−1 with vl being part

Fig. 8. Type IV removal of vi from the tour.

Algorithm 2 US LocalSearch(sbs)

1: INPUT: sbs % best solution from MMAS
2: OUTPUT: none
3: while improvement do
4: for (i = 1 to n) do
5: CalculateRemovals(sbs[i]) % all types
6: ApplyBestRemoval(sbs) % least change
7: CalculateInsertions(sbs[i]) % all types
8: ApplyBestInsertion(sbs) % greatest improvement
9: end for

10: end while

of the subtour (vj+1, . . . , vk−1). The removal of node
vi results in the deletion of arcs (vi−1, vi), (vi, vi+1),
(vj−1, vj), (vl−1, vl), and (vk, vk+1); and the insertion of
arcs (vk, vi−1), (vj−1, vl), (vk+1, vl−1), and (vj, vi+1). As
above, the subtours (vk+1, . . . , vi−1) and (vj, . . . , vl−1)

are reversed.
One key feature of the US operator is that it may allow

controlled moves that do not improve. For example, while the
operator is executed, the current move may not improve
the current solution but it is allowed to temporarily degrade
the quality slightly to explore some unvisited (possibly promis-
ing) areas in the search space when executing the local search.
This feature allows the operator to deal with possible traps of
poor local optima. In addition, searching to the same areas
is avoided because these controlled moves that degrade the
solution quality are performed while testing different types of
insertions and removals, but only the ones that improve are
finally selected.

The overall execution of the US local search oper-
ator is given in Algorithm 2. More precisely, the
CalculateRemovals method calculates the changes to the
cost of the best solution sbs for all types of removals and
applies the removal move that causes the least change using the
ApplyBestRemoval method. Then, the CalculateInsertions
method calculates the changes to the cost of the best solu-
tion sbs for all types of insertions and applies the inser-
tion move that causes the greatest improvement using the
ApplyBestInsertion method. The neighborhood is evaluated
with the addition of the difference caused from the moves of
the US operator and the cost of the original best solution sbs.
The execution terminates when no improvement is discovered
for all nodes; otherwise, the process will be restarted from the
resulting solution.
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Fig. 9. Offline performance of MMASUS without (US−) and with (US+) type III/IV moves, respectively, for symmetric (top) and asymmetric (bottom)
DTSPs.

The time complexity of a naive US operator (without tak-
ing into account any speed up techniques) is determined by
the O(n4) choices of vi, vj, vl, and vk nodes for each of
the CalculateRemovals and CalculateInsertions methods.
For ApplyBestRemoval and ApplyBestInsertion methods, it
requires O(n) time for each one, to update the weights for the
fact that vi is removed from the tour and that vx is added
in the tour, respectively, resulting in O(n4 + n) = O(n4).
Since the procedures are performed n times (i.e., for all nodes),
the overall time complexity of the US operator is O(n5).

V. EXPERIMENTAL STUDY

A. Experimental Setup

1) Generating Dynamic Environments: The benchmark
generator described in Section II-C can convert any static TSP
problem instance into a DTSP. Three (static) TSP benchmark
instances were obtained from TSPLIB, i.e., kroA100.tsp,
kroA150.tsp, and kroA200.tsp, to generate different
test cases of DTSPs. More precisely, the frequency of change
was set to f = 10 and f = 100 iterations indicating envi-
ronmental changes of high and low frequencies, respectively,
and the magnitude of change was set to m = 0.1, m = 0.25,
m = 0.5, and m = 0.75, indicating the degree of environmental
changes from small, to medium, and to large, respectively. As
a result, eight DTSPs (i.e., two values of f × four values of m)
with lower and upper bounds FL = 0 and FU = 2, respectively,
were generated from each problem instance, both symmet-
ric and asymmetric, to systematically analyze the proposed
memetic algorithm. For each DTSP test case, 100 environmen-
tal changes were allowed. All asymmetric problem instances
have an extension of .atsp in the problem label.

2) Performance Measurements: An observation of the best-
so-far solution after a dynamic change was recorded every
iteration and used to evaluate the performance for 30 inde-
pendent executions (with a different random seed for an
algorithm and the same random seed for the dynamic envi-
ronment on each execution). Therefore, the overall offline
performance [27] is defined as follows:

P̄OFF = 1

I

I∑

i=1

⎛

⎝ 1

E

E∑

j=1

P∗ij

⎞

⎠ (8)

where I is the total number of iterations, E is the number
of independent executions, and P∗ij is the best-so-far solution
cost (after a change) of iteration i of execution j. For a fair
comparison, all the algorithms performed the same number of
iterations, and for each iteration the same number of ants (eval-
uations) is allowed. The experiments were performed under
Linux Systems with an Intel Core i7-3930K 3.20 GHz pro-
cessor with 12 MB cache and 16 GB RAM. The CPU times
(in seconds) of the environmental changes were recorded and
averaged among all executions (i.e., E runs). Note that, since
we are dealing with heuristic methods, the CPU time of the
algorithms may not be exactly the same for each environmen-
tal change. Although this fact may degrade the fairness of the
comparisons a bit, the CPU times are not significantly different
according to our experimental results (see Table II later on).

3) Parameter Settings: The common parameters for all
ACO algorithms used were set to typical values, i.e., α = 1
and β = 5 in Eq. (5) for all the experiments. The colony size
consists of 50 ants for all algorithms. Since the parameter ρ in
Eq. (6) is an important parameter for ACO algorithms when
addressing dynamic environments [40]; we have performed
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TABLE I
EXPERIMENTAL RESULTS REGARDING THE SOLUTION QUALITY (OFFLINE PERFORMANCE) OF MMASUS AGAINST OTHER

MEMETIC ALGORITHMS FOR DIFFERENT DTSPS, WHERE BOLD VALUES INDICATE STATISTICAL SIGNIFICANCE

parameter tuning and the evaporation rate was set to ρ = 0.8.
Further details for tuning the evaporation rate parameter can
be found in the supplementary document of this paper.

B. Experiments on the Effect of Types III and IV Moves

To investigate the effect of types III and IV moves on
the performance of MMASUS, an algorithm variation where
types III and IV moves are allowed is compared with another
algorithm variation where types III and IV moves are omitted.
Fig. 9 presents the offline performance of MMASUS without
types III and IV insertions/removals, denoted US−,4 and with
types III and IV insertions/removals, denoted US+, for both
symmetric and asymmetric DTSPs.

From Fig. 9, it can be observed that the performance of
the two variations is almost identical on symmetric cases (see
top figures) whereas it is significantly different on asymmetric
cases (see bottom figures). Specifically, when types III and IV
moves are allowed on asymmetric cases, they have a greater
impact than when allowed on symmetric cases. This shows the
effectiveness of the asymmetric extension of the US operator
designed to cope with the asymmetric cases.

C. Experiments With Other Local Search Algorithms

To evaluate the strengths and weaknesses of the proposed
memetic algorithm, i.e., MMASUS, two of the most popu-
lar and commonly used local search algorithms are considered:
2-Opt [9] due to its efficiency and 3-Opt [36] due to its perfor-
mance. These local search algorithms are integrated in exactly
the same way as the US operator is applied to MMASUS
(i.e., applied only to the new best-so-far solution each time
it is discovered until no further improvement is possible and
the best possible move is considered) for fair comparison.

4Similar with the previous version of the algorithm presented in [38].

Hence, their integrations are denoted as MMAS2−Opt and
MMAS3−Opt, respectively. Similarly, as with MMASUS,
the near-neighbor lists and do not look bits techniques are
used for MMAS2−Opt and MMAS3−Opt [3]. Similarly with
the US operator in Algorithm 2, there is no need to re-
evaluate an entire solution for 2-Opt and 3-Opt since the
difference caused by the exchanges can be added to the
original solution.

Note that the proposed MMASUS is suitable for both
symmetric and asymmetric cases, whereas MMAS2−Opt
and MMAS3−Opt are only suitable for symmetric cases.
A straightforward way to address this issue is to transform
an asymmetric case to a symmetric one and apply them
as mentioned previously. However, it may be a convenient
choice for static problems that require a transformation once.
For dynamic problems, it may require more time to per-
form/maintain the transformation, e.g., whenever a change
occurs, and hence increases the computation time significantly
(especially in large problems). Besides that, the effectiveness
of the methods may be degraded [29], [52]. Therefore, for
the sake of comparison, MMAS2−Opt and MMAS3−Opt
are modified (e.g., subtour reversals are considered). Literally
there are no any “2-opt” or “3-opt” moves for asymmetric
cases. The subtour reversal results in several node exchanges
depending on the length of the subtour and diversifies the orig-
inal solution more than what a normal local search is supposed
to. But, there is one special 3-opt move that subtour reversals
are not performed and the direction of the tour is preserved,
which is commonly used for asymmetric cases. This restricted
“asymmetric” version of 3-Opt, denoted res-3-Opt [53], is also
integrated with MMAS, denoted MMASres−3−Opt and used
in our comparisons.

The experimental results regarding the offline perfor-
mance of the memetic MMAS for all DTSPs are
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Fig. 10. Dynamic behavior of memetic algorithms for symmetric (top) and asymmetric (bottom) DTSPs.

TABLE II
EXPERIMENTAL RESULTS REGARDING THE COMPUTATION TIME (CPU-TIME IN SECONDS) REQUIRED BY MMASUS TO OUTPUT

A SOLUTION FOR EACH ENVIRONMENTAL CHANGE AGAINST OTHER MEMETIC ALGORITHMS FOR DIFFERENT DTSPS

presented in Table I. Statistical tests are performed as fol-
lows: Kruskal–Wallis for multiple comparisons, followed
by posthoc paired comparisons using Mann–Whitney tests
with the Bonferroni correction. In Fig. 10, the dynamic
offline performance for slowly changing environments for the
first 10 dynamic changes of MMAS2−Opt, MMAS3−Opt,
MMASres−3−Opt and MMASUS are plotted to better
understand the behavior of the ACO-based memetic algorithms
in symmetric and asymmetric DTSPs. Table II presents the
CPU-time results required by the investigated algorithms to
output a solution for each environmental change for all DTSPs.

Note that since the CPU-time of the algorithms is affected by:
1) how fast the local search operator terminates and 2) how
often the local search is triggered (depending on the discov-
ery of a new best solution as presented in Algorithm 1), the
results presented are approximations (e.g., an average among
the 100 dynamic changes). From the experimental results, the
following observations can be drawn.

1) Comparisons Regarding the Offline Performance: In
terms of solution quality, algorithms designed for symmetric
cases, e.g., MMAS3−Opt, outperform algorithms designed for
asymmetric cases, e.g., MMASres−3−Opt, in most symmetric
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DTSPs, and vice versa, for most asymmetric DTSPs. However,
MMASUS performs significantly better than MMAS2−Opt,
MMAS3−Opt, and MMASres−3−Opt on all DTSPs, both
symmetric and asymmetric (see Table I). From Fig. 10, we can
observe that MMASUS has strong exploitation and quickly
contributes to the offline performance with better solutions.
Although MMAS3−Opt also shows strong exploitation, it gets
stuck into a worse solution than the one of MMASUS, but it
outperforms other algorithms.

If we observe the US operator closely; applying the right
choice for the cities and neighborhoods embodies restricted
k–Opt moves (with k ≥ 3). Even though the local search opera-
tors have similar characteristics, the US operator does not stop
early in local optima as the other type of operators. As a result,
the (local) exploration in the search space is enhanced since it
allows the predecessors and successors of the nodes to control
the moves. The exploration leads to a better solution quality,
which can be observed from Fig. 10, where MMASUS main-
tains better offline performance for all the executing time. In
fact, these (symmetric) results match our previous ones found
in [38], where the symmetric variation of the MMASUS oper-
ator was applied to the DTSP where cities are swapped. This
supports the generality of the performance of our algorithm
since it is not dependent on the type of dynamic changes for
symmetric DTSPs.

2) Comparisons Regarding the Computational Time: In
terms of the computation time, all algorithms require more
computation time for asymmetric than symmetric DTSPs,
which is natural because both directions are considered in
asymmetric DTSPs. Specifically, MMASUS is competitive
with the competing algorithms on most symmetric and asym-
metric cases although it is not the most efficient one in
all DTSPs. On many asymmetric cases with f = 10, both
MMASUS and MMASres−3−Opt require more computation
time than the other algorithms. This is because they are
designed to cope with asymmetric cases and several improve-
ments are more likely to be found, whereas MMAS2−Opt and
MMAS3−Opt break quicker because further improvements
are unlikely to be found.

Although MMASUS is slightly computationally expensive
in some test cases with f = 10 (both symmetric and asymmet-
ric), the significant improvement on the solution quality from
Table I shows it is worth the effort. With the exception of some
asymmetric cases for kroA150.atsp and kroA200.atsp,
for all the investigated algorithms, the estimated CPU time
required to output their best solution is less than a second.

D. Experiments in Real-World Scenarios

For experimental reasons, the magnitude of change was
fixed in previous experiments and the frequency of change was
synchronized with the algorithmic iterations. In real-world sce-
narios, the magnitude of change is unknown and the frequency
of change is synchronized with real-time. Therefore, further
experiments are performed with more realistic scenarios
generated with randomly chosen values of m from a uniform
distribution in [0, 0.25], [0, 0.5], and [0, 1], where the envi-
ronments are more likely to have small, medium and large
changes, respectively. The frequency of change was set to

change every 15 and 30 s that indicates the available time
an algorithm has to optimize on every environmental change.
Both available time values are enough for the algorithms
to recover when a dynamic change occurs for small prob-
lem instances. However, as the problem size increases, the
algorithms naturally need more time (in terms of algorith-
mic iterations). Basically, the frequency of change increases
as the problem size increases because the algorithms will have
less available time to optimize (i.e., less algorithmic itera-
tions will be executed). Only asymmetric dynamic changes
are considered because most real applications have this char-
acteristic. Therefore, this problem has a more practical value as
described previously. In total, eight different problem instances
are obtained from TSPLIB ranging from 51 to 1173 nodes.
Ten environmental changes are allowed for the experiments.
Moreover, in real-world situations, the offline performance
described in Eq. (8) may not be suitable because only the
best output provided for each environment counts. Hence, the
best solution output from each environment was recorded and
averaged over 30 independent runs.
MMASUS is compared with the best per-

forming heuristic for asymmetric TSPs, i.e., the
Kanellakis–Papadimitriou (KP) [30] heuristic5 and other
state-of-the-art algorithms from the literature (see Section III):
1) P-ACO [24], an ACO framework developed to tackle
DTSPs; 2) EIACO [41], one of the best performing ACO
algorithms for DTSPs; 3) MMAS [53], one of the state-
of-the-art ACO algorithms in stationary environments; and
4) EIGA-GAPX [56], one of the best performing EAs6 in
evolutionary dynamic optimization. The experimental results
regarding the mean among all best solutions outputs (i.e.,
for ten environments) of the aforementioned algorithms for
the described scenario are presented in Table III. The same
experimental settings and statistical tests are used as with the
previous experiments.

When the scenarios change every 15 s, it can be observed
from Table III that MMASUS significantly outperforms the
other algorithms in most problem instances with m ∈ [0, 0.25]
and m ∈ [0, 0.5], with the exception of berlin52.atsp,
d198.atsp, and u574.atsp (in some cases), which
is comparable with the KP heuristic. When m ∈ [0, 1],
MMASUS becomes also comparable with the KP heuristic
on the two larger problem instances, e.g., rat783.atsp
and pcb1173.atsp. This is probably because the resulting
changing environments for this scenario may be completely
different and the time available is extremely short for
MMASUS to recover for such cases.

The same observations occur when the scenarios change
every 30 s in which more time is available for the algorithms
to recover. The only difference from the results of the scenarios

5The KP heuristic performs primary sequential k-opt moves for some odd
k ≥ 3 followed by double-bridge moves (a special 4-opt move that preserves
the direction of a tour) until no improving move of this type can be found.
Since the original KP heuristic was developed for static TSP and is determin-
istic, an application of a restart approach of KP is used for DTSP in this paper
to restart from a new solution when a local optimum is found and reoptimize
from the best-so-far solution when a dynamic change occurs.

6The generalized asymmetric partitioned crossover (GAPX) is used, which
performs better than other crossovers in asymmetric cases.
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TABLE III
EXPERIMENTAL RESULTS REGARDING THE MEAN BEST OUTPUT OF MMASUS WITH THE OTHER PEER ALGORITHMS

ON DIFFERENT REAL-WORLD SCENARIOS, WHERE BOLD VALUES INDICATE STATISTICAL SIGNIFICANCE

that change every 15 s is that now MMASUS significantly
outperforms the KP heuristic when the scenario is m ∈ [0, 1]
on the two larger problem instances, which confirms our claim
above. However, it remains comparable with the KP heuristic
on the same instances that were exceptions previously. This
observation shows that the performance of the algorithm may
also depend on the environmental changes applied to the prob-
lem instance or the topology of the problem instance itself.

For the remaining competitors, MMAS is competitive with
MMASUS and the KP heuristic on the four smaller problem
instances for all scenarios. In contrast, the solution quality of

P-ACO, EIACO, and EIGA-GAPX algorithms is far away from
MMASUS and KP for all problem instances for all scenarios.

VI. CONCLUSION

In this paper, we address the DTSP where the weights
between cities change either symmetrically or asymmetri-
cally. An ACO-based memetic algorithm, where MMAS is
integrated with the US local search operator, is designed to
address both symmetric and asymmetric DTSPs. The US oper-
ator is enhanced with additional two more types of moves to
cope especially with asymmetric cases without degrading its
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performance on symmetric cases as other local search heuris-
tics. The proposed MMASUS algorithm tends to combine the
adaptation capabilities of MMAS and the solution quality
improvement power of US.

From the experiments results of different studies, the fol-
lowing concluding remarks can be drawn. First, local search
operators are essential tools for ACO when addressing DTSPs.
They are capable of improving the solution quality signifi-
cantly. However, the overuse of local search operators has to
be avoided because the computational time will increase sig-
nificantly. The proposed memetic framework maintains a good
balance between the computation time and the solution qual-
ity of effective local search algorithms. Second, the US local
search operator performs significantly better than other pop-
ular local search heuristics when integrated with MMAS.
MMASUS performs equally well on both symmetric and
asymmetric DTSPs when all (four) types of moves are used.
Third, MMASUS maintains high output efficiently even on
quickly changing DTSPs. Such cases are more relevant from a
practical point of view. Finally, the proposed memetic frame-
work, where US is applied, is also effective for solving DTSPs
even when other local search algorithms are used.

For the future work, the dynamic version of other routing
problems that are basically variations [33] or direct extensions
of the fundamental TSP, e.g., capacitated vehicle routing prob-
lems [48] and capacitated arc routing problems [49], [58], can
be considered. For these problems, multiple routes are con-
sidered, which makes them closer to even more real-world
applications in the important area of logistics. In fact, exact
methods may not be appropriate at all for such dynamic prob-
lems because of the computational time required. Considering
the efficiency (time) and performance (solution quality) of
MMASUS, it will be a potential good candidate to tackle
these problems with either symmetric or asymmetric dynamic
changes.
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