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Toward an understanding of the origins of the favourite-longshot bias:  Evidence 

from online poker markets, a real-money natural laboratory 

 

Abstract 

Evidence of differential returns to bets placed with different probabilities of success has 

revealed a broadly systematic tendency for low/high probability events to be relatively 

over/under-bet, a phenomenon known as the favourite-longshot bias. While most of the 

literature focuses on sports, especially horse racing, we report here the existence of the 

same phenomenon in online poker games. We find that misperception rather than risk-

love offers the best explanation for the behaviour we identify. The paper contributes to 

the more general literature explaining betting behaviour as well as the prevalence of the 

favourite-longshot bias in betting markets. 

I. INTRODUCTION 

I.I Existence of the favourite-longshot bias 

Evidence of a differential return to bets placed with different probabilities of success 

can be traced to laboratory experiments by Preston and Baratta (1948), Yaari (1965) 

and Rosett (1971). They each reported evidence of a systematic tendency by subjects to 

under-bet or under-value high-probability events and to over-bet or over-value low-

probability events. Tests for the existence of such a bias in non-laboratory conditions 

can be traced to Griffith (1949), who investigated the ‘pari-mutuel’ betting markets 

characteristic of US racetracks. In these markets, winning bets share the pool of all bets. 

Griffith confirmed a tendency for bettors to over-value events characterized by low 

probability (‘longshots’) and to relatively under-value events characterized by higher 

probability (‘favourites’), a tendency which is consistent with higher expected returns at 

lower odds than at higher odds. This behavioural tendency has become known as the 
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‘favourite-longshot bias’ (FLB), and has since been observed across a range of betting 

markets in a range of contexts (Vaughan Williams, 1999; Snowberg and Wolfers, 2010; 

Ottaviani and Sorensen, 2008, survey the literature), while Busche and Hall (1988) and 

Busche (1994) highlight some exceptions to the general pattern.  

Evidence for the existence of the FLB tends to be derived from observation of the 

bias in sports betting markets, and horse race betting markets in particular. In this 

paper, however, we examine whether a similar bias exists in a quite distinct and 

different betting market, i.e. online poker. If we can identify the bias in this arena, this 

provides a complementary context in which we can investigate this phenomenon.   

We use a very large data set of rounds of betting from an online poker website 

that collects this information for Texas Hold’em poker. While this setting does not 

appear to resemble racetrack or sports betting, we demonstrate that data drawn from 

online poker games can be used to test hypotheses about pricing behaviour even though 

no traditional ‘market prices’ exist. However, poker is effectively a pari-mutuel game 

where the pot of all player contributions is distributed (minus operator commission, 

called the 'rake') from losing players to the winner of each game. We use the fact that 

the later in a round of betting the player is required to make betting decisions, the more 

information is available from the bets already placed by other players. Similarly, since 

there are multiple stages of the game (called the preflop, flop, turn and river stage), 

where more cards are revealed and more bets have been placed, more information is 

revealed as the game proceeds. Within a round of betting, the informational advantage 

should result in the expected return to bets placed later in the round exceeding the 

expected return to bets placed earlier in the round (the last to play is the equivalent to 

the ‘favourite’ in a racetrack betting setting). ‘Over-betting’ by a player in a round of 

betting can now be interpreted, when assessed over the entire data set, as betting more 
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than is warranted in terms of the distribution of expected returns at different points in 

the game. In particular, the amount bet later in the round of betting should on average 

be higher than earlier in the round.  

If we find that the amounts bet in given positions in the round of betting do not 

conform to the expected returns to bets placed in those positions, this is evidence of a 

behavioural bias, and potentially a FLB.  The FLB exists if players on average 

under/over-bet when acting later/earlier in the round relative to the expected return to 

be earned in that position.  

We develop a theory of how perfect and behavioural/recreational players play 

poker. We use the actual behaviour of players in ‘folding’, ‘calling’ and ‘betting/raising’ 

to disaggregate the large data set into bets on outcomes that have small, moderate and 

high probabilities of occurring.  This allows us to test a rich range of hypotheses on 

betting behaviour that strongly support the existence of a FLB amongst 

behavioural/recreational players relative to that of more perfect/informed players. 

These results are highly statistically significant and we demonstrate that this has a 

significant economic impact on the recreational players relative to the more informed 

group. 

I.II Explanations for the favourite-longshot bias 

A number of explanations have been proposed to explain the existence of the FLB. The 

main theoretical explanations for the bias have been reviewed and arranged by 

Ottaviani and Sorensen (2008) into seven convenient categories. These are 

misestimation of probabilities (Griffith, 1949; Snowberg and Wolfers, 2010), market 

power by informed bettors (Isaacs, 1953); preference for risk (Weitzman, 1965; Quandt, 

1986), heterogeneous beliefs (Ali, 1977; Gandhi and Serrano-Padial, 2015), market 

power by uninformed bookmakers (Shin, 1991, 1992), limited arbitrage (Hurley and 
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McDonough, 1995), and simultaneous betting by partially informed insiders (Ottaviani 

and Sorensen, 2009, 2010).    

In this paper, in addition to demonstrating the existence of the FLB in online 

poker, we seek to arbitrate between two widely cited broad classes of explanation for 

the bias: ‘risk preferences’ and ‘misperceptions’. In particular, we determine which of 

these two explanations is most consistent with our data.  To this extent, one of our 

research questions is similar to that asked, for example, by Jullien and Salanié (2000), 

Gandhi (2007) and Snowberg and Wolfers (2010), who each attempt to differentiate 

between preference and perception-based explanations of the FLB, but in their cases 

using racetrack betting data.  

It is important to note here that misperceptions can refer to a number of 

different possibilities and in subsequent analyses we seek to arbitrate further between 

two different types of misperception. The first type of misperception arises from 

incomplete processing of information and errors in the processing of such information 

and leads to heterogeneity of the beliefs about the probabilities of winning hands.  The 

more complex the information, the more heterogeneity of beliefs we would expect to 

observe and therefore the more variation in the estimation of the probabilities of 

winning hands.  

Second, experimental evidence suggests that non-linearity in the probability 

weighting function of individuals may exist and this is captured in the general literature 

on cumulative prospect theory (see Tversky and Kahneman, 1992). This assumes that 

there are systematic biases in perception leading to under-weighting of high probability 

events and over-weighting of low probability events. The degree of non-linearity is not 

related to the amount of information and so is not expected to vary with choice 

complexity. Such ideas have been applied in the betting context (see, for example, Jullien 
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and Salanié, 2000; Gandhi, 2007; Chiappori et al., 2009, 2012). It should be noted that 

these types of misperception are not mutually exclusive. It is possible that there may 

exist systematic biases in perception as well as random noise in perception as a result of 

information complexity. 

These differences are noted by Gandhi and Serrano-Padial (2015), where the 

equilibrium prices predicted by a heterogeneous beliefs based model will be different 

for two horse races with the same fundamentals but different public information, while 

the predictions yielded by a probability weighting function based model would be the 

same. They test this at the US racetrack using different types of races characterized by 

different levels of information, and show that a beliefs-based model provides a 

significantly better explanation of what is observed than probability weighting function 

based theories.   

These misperceptions can be distinguished in explaining the FLB from an 

explanation based on risk-loving behaviour (see Weitzman, 1965; Quandt, 1986). Based 

on this interpretation, individuals are aware of the true probabilities but act according 

to their preferences which, using the traditional description, we assume to follow a 

convex value function. This should result in a preference for risky alternatives. 

The poker data provides us with the rare opportunity of examining the existence 

of FLB and undertaking tests to arbitrate between the risk-love and different types of 

misperception as possible explanations in a real world context.  In attempting this, we 

are seeking to address a concern highlighted by Pope and Schweitzer (2011, p.129): 

"Critics of the decision bias literature believe that biases are likely to be extinguished by 

competition, large stakes and experience." This idea echoes Barberis (2013) and Levitt 

and List (2008, p.909),: "Perhaps the greatest challenge facing behavioral economics is 

demonstrating its applicability in the real world. In nearly every instance, the strongest 
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empirical evidence in favour of behavioural anomalies emerges from the lab. Yet, there 

are many reasons to suspect that these laboratory findings might fail to generalize to 

real markets." The remainder of the paper is structured as follows: We introduce the 

nature of ‘Texas Hold'em’ and the theory behind our hypotheses in section II. The data 

and analysis is described in section III. Results are presented and discussed in section IV, 

and some concluding remarks follow in section V. 

II. IDENTIFYING FAVOURITE-LONGSHOT BIAS IN POKER MARKETS 

II.I “Texas Hold’em” – the nature of the game. 

Texas Hold’em can be played by different numbers of players but our dataset consists 

only of six player games. Consequently, throughout our paper, the analysis is based on 

six player Texas Hold'em games.  

Before any cards are dealt in a Hold’em hand, two players post forced bets of a 

predetermined amount, called ‘blinds’—a ‘small blind’ by the player to the dealer’s 

immediate left and a ‘big blind’ by the next player to the left . The small blind is equal to 

one-half the amount of the big blind in our dataset. The deal rotates after each hand so 

that all players participate equally in the posting of any forced blind bets.  

Once the blinds have been contributed to the pot, each player is dealt two cards 

face down, followed by a round1 of betting (the preflop). After this first round of betting, 

three (community) cards available to all the players (the flop) are dealt face upright, 

followed by a second round of betting. After this round of betting a fourth card (the turn) 

is made available to all players by being dealt upright on the table, followed by another 

round of betting. A final community card (the river) is then dealt upright, and this is 

followed by a final round of betting.  

                                                           
1 This and any other betting stage can involve multiple rounds of betting if players keep raising instead of 

simply calling. For simplicity, we just refer to such sequences of betting during a given stage as a "round" of 

betting. 
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In the first round of betting, the player immediately to the left of the big blind is 

the first to act, and so on leftward around the table.  In subsequent rounds, the small 

blind plays first, followed by the other players in order, with the ‘Button’ playing last. 

When it is a player’s turn to act, they may choose to bet (choose an amount to bet on the 

hand if there has been no previous bet made in the round—an integer multiple of the 

big blind), or call (stake an amount equal to  the current outstanding bet) or raise 

(match the current outstanding bet and  stake additional money) or check (pass without 

betting, which is allowed if there is no current outstanding bet) or fold (withdraw from 

the hand, leaving all previously wagered money in the pot). Betting moves around 

clockwise until each player who is still in the round contributes the same amount into 

the pot, or until there is only one player left active. In that case, the remaining player 

wins the pot, and has the right to keep their hidden cards secret. If more than one player 

remains in the hand after the final round of betting (river stage), there is a showdown 

and the player with the best poker hand—formed by using any combination of the five 

community cards and the player’s two hidden cards—wins the pot. In the event of a tie, 

the pot is divided. 

II.II Identifying the existence of FLB 

In the context of poker, we argue that a FLB exists if we find evidence of over-betting on 

hands with a low probability of winning and under-betting on hands with a high 

probability of wining, to a degree that does not maximise expected value. Consequently, 

in order to demonstrate the existence of the FLB, we need to show that: (1) some hands 

have a lower probability of winning than others; (2) those hands with a higher 

probability of winning are under-bet and those with a lower probability are over-bet; 

and (3) players demonstrating element 2 are not maximising expected value. These 
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components are developed below into three hypotheses (H1.1- H.1.3) which are tested 

to confirm that these elements are present in online poker.  

II.II.I Seating Position-Based Favourite-Longshot Bias 

In poker, new information is presented to each player at each stage of the game (Preflop, 

Flop, Turn, River) and within the betting at each stage. This occurs as each player in 

each seating position (Early, Middle, Cutoff and Button2) sequentially either raises, calls 

or folds. The sequential nature of the game means that players who make betting 

decisions later in a given round (indicated by seating position) or at later stages of the 

game (i.e. the river and turn compared to the flop and preflop stages) have more 

information available. For example, they know whether earlier players have folded or if 

earlier players have contributed a particularly large amount to the pot.  

 We first explore whether some seating positions do indeed have an 

informational advantage. In particular, we examine whether the earliest position (i.e. 

Early) has lower win rates (i.e. a longshot) compared to the latest seating position (i.e. 

Button), which should have the greatest win rate (i.e. the favourite). Consequently, we 

test Hypothesis 1.1: There is a significant increase in win rate from the Early to the 

Button seating position. 

II.II.II Recreational vs More Informed Players  

In order to determine whether the players in a poker game are betting in a manner 

which consistently under/over-bets in favourable/unfavourable seating positions (i.e. 

demonstrating a FLB), we need a benchmark against which to assess optimal staking.  

To achieve this, we assume that informed players play perfectly. Consequently, we 

assume that the informed player has, at each stage of the game, a subjective probability 

                                                           
2 Given that the small blind and big blind are forced to contribute to the pot, we exclude these seating 

positions from the analysis. These blind positions provide the initial liquidity for each hand. 



11 
 

density function over three dimensions: new and future contributions that they will 

make to the pot (c), size of final pot (p) and probability of winning (q). This subjective 

probability density function ( , , )c p q  which refers to the probabilities and density 

associated with one particular hand of cards, is revised with each piece of new 

information. Their expected profit is thus given by: 

   ( )  =  ( , , ) *     
c p q

E c p q q p c dq dp dc     (0) 

Each piece of information is valuable as it changes the subjective probability density 

function. Typically, but not always, the change in ( , , )c p q  reduces the range of 

possibilities that have to be considered in constructing the new ( , , )c p q . For example, if 

the previous player folds, this reduces the range of future possibilities. The decision that 

a player has to make at each stage is whether to fold, call or raise and, in the latter case, 

how much to raise. The action that gives the greatest new expected profit determines 

the preferred decision. 

We assume that the informed player has a subjective probability density function 

that uses the available information to the greatest possible extent. By comparison, the 

recreational player’s subjective probability density function suffers from biases caused 

by poor information processing skills, and cognitive bias as predicted by Prospect 

Theory, many other behavioural theories and experimental evidence (e.g., see Tversky 

and Kahneman, 1992). These two possible causes of biases relate to the two possible 

types of misperceptions discussed earlier. The informed player is better at processing 

and using new information and better at making decisions. Thus, they are assumed to 

maximise expected profit. As such, we expect that their contributions to the pot should 

reflect the informational advantage based on the seating position.  
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We assume, in line with the evidence presented in Fiedler (2011) and Fiedler 

and Rock (2009), that most online poker players are recreational players and these 

generally play in small blind games, whereas those involved in higher stake games (i.e., 

in larger blind games) tend to be more sophisticated players. We expect these larger 

blind players to be less prone to decision biases in the face of the increased information 

(see, for example, Sonsino, Benzion and Mador, 2002), which occurs through sequential 

rounds of betting. 

Clearly, it is possible to argue that low stakes games may be populated by lower 

income individuals, and that income effects may play a role, but an examination of the 

gambling habits of online poker players by Fiedler (2011) suggests instead that a more 

useful way of framing behavioural differences between higher and lower-blinds players 

is in terms of player experience and sophistication. Based on this view, we aim to 

determine the degree of under/over-betting by recreational, lower stake, players by 

comparing the contributions in low stake games in each seating position against that of 

the higher stake games containing relatively more informed players. Consequently, we 

test Hypothesis 1.2: Recreational players have a lower/higher contribution rate 

when in the Button/Early seating positions relative to the contribution rates of the 

more informed players. 

Assuming that the evidence supports H1.1 and H1.2, the final piece of evidence 

required to demonstrate that this is indicative of a FLB is that the recreational players 

should attain a lower rate of return than the more informed players in the initial seating 

positions3 and recreational players should obtain higher rates of return in the later 

                                                           
3 Note that we do not expect all the higher-stake players to exhibit perfect betting behaviour. 

However, we still expect them to more closely reflect the true informational advantage of 

seating position and therefore attain higher rates of return compared to recreational players. 
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seating positions. We, therefore, test Hypothesis 1.3: Recreational players have a 

lower rate of return in the earlier  seating positions relative to that of more 

informed players and a lower rate of return compared to the returns for 

recreational players in the later seating positions.  

Our results, as indicated below, confirm hypotheses 1.1-1.3, so we next explore 

the observed FLB in more detail. 

II.II.III Explaining the Favourite-Longshot Bias: Risk Love vs. Misperception 

To examine the degree to which the FLB is displayed in the actions of poker players and 

to examine its causes, we undertake a more disaggregated analysis that examines 

betting on different types of poker hands. In particular, we first explore, for preflop card 

hands, whether there is under/over-betting on higher/lower probability hands when 

the return is higher (and positive)/lower (and negative).  

It is important to examine the preflop stage when testing our hypotheses for a 

number of reasons. In particular, at this stage, all players are present, only the blind 

amounts have been contributed to the pot, and each player has only two cards. As such, the 

probability mix is identical for both the higher stake games and the lower stake games. At 

later stages, some players may have folded and so the number of players varies between 

games, the players will have contributed different amounts relative to their stack, more 

community cards will have been turned over, etc. Therefore, from an experimental 

perspective, the preflop stage is naturally more controlled than later stages.  

For this reason, players’ decisions at the preflop stage are likely to be closely 

related to the quality of the cards they are dealt and seating position, and we can 

examine their responses (i.e. fold, call and raise) to determine whether the hands are of 

poor, medium or high quality. Therefore, the preflop stage provides us with the best 

chance of differentiating those with high vs. low quality hands on the basis of their 
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responses. The reason being that the decision to fold, call or raise at this stage of the 

game depends on the player's probability of winning with the hand they are dealt and 

the informational advantage afforded by their seating position. This is also the only 

stage in which all players are guaranteed to be present, as subsequently any player may 

have folded. Furthermore, the decision to fold, call or raise in later stages of the game 

(i.e. flop, turn and river) will depend increasingly on the additional information gained 

from observing the behaviour of other players.  

It is assumed that informed players attempt to maximise expected profit using 

their subjective probability density functions. In order to represent this behaviour 

schematically, Figure 2 illustrates a stylized example of the probability density function 

for different hands in ascending order of their probabilities of winning. In Figure 3, we 

contrast stylised subjective relative frequency distributions of the recreational4 and 

more informed players that ought to result in a FLB for recreational players. For a FLB 

to occur, the recreational players must over-bet low probability outcomes. 

Consequently, the recreational players’ relative frequency function will display a greater 

probability mass to the right for low probability events (cf. the more informed players’ 

true probability density function). In addition, the recreational players are likely to 

under-bet high probability outcomes (cf. the more informed players) and consequently 

there is a lesser probability mass to the right for high probability events (cf. the more 

informed player’s true probability density function).  

An explanation for this shape of the probability density function of the 

recreational player can be predicted by cognitive bias in the form of a non-linear 

probability weighting function (i.e. Prospect Theory). The critical probabilities of 

                                                           
4  The subjective probability density function for the recreational player includes a non-linear probability 

weighting function. 
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winning that ensure positive expected profit from calling and greater expected profit 

from raising are represented by the two vertical lines (𝑞𝐹𝐶  and 𝑞𝐶𝑅), and the associated 

probability masses are denoted by the letters F, C and R. These lines and areas are 

represented schematically in Figure 35. The vertical lines are the same for the 

recreational and more informed players on the assumption that they each attempt to 

maximise expected profit using subjective probabilities.6 It is clear from the distribution 

for the recreational players that, because high probabilities (‘raise situations’) are 

underweighted, they will tend to call when they should raise. Equally, and because they 

overweight low probability events (‘fold situations’), they will tend to call when they 

should fold. Overall, therefore, we should expect higher call rates and lower fold and 

raise rates amongst the recreational (cf. more informed) players.  

The heterogeneity explanation of a FLB considers the information processing abilities 

of recreational and informed players. With no information at all, the probability of winning in 

a six person game is simply one sixth. Information on seating position, quality of the preflop 

cards and the observed behaviour of rivals allows the informed player to generate a more 

informed opinion of the likelihood of winning. By comparison, a less informed, recreational 

player with the same information would move less far from the original estimate of one sixth.  

In addition, the recreational player may exhibit cognitive biases in their information 

processing and a degree of random error. Heterogeneity exists in such players’ beliefs from 

three possible sources: the degree of use of new information, the degree of bias in judgements 

based on new information and sheer random error in judgements.  The incomplete use of 

information by recreational players and cognitive bias (as described in the previous paragraph) 

                                                           
5 Note that both 𝑞𝐹𝐶  and 𝑞𝐶𝑅  do not necessarily have to be above the cross-over points of the density 
functions, as shown. It is equally possible that one or both could be below and the conclusions would still 
hold. 
6 It should be noted that moving from calling to raising cannot be exactly represented on the two 
dimensional figure as the pot and additional contributions are likely to alter with the action of raising. 
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are likely to lead to less folding and raising by such players. An independent random error in 

the use of information by less informed players will lead to a more widely dispersed 

frequency distribution with more probability mass in the tails. We believe that such a random 

effect is likely to be less important than the incomplete use of information and cognitive bias 

effects. We come to this view as the heuristics and bias literature demonstrates the 

importance of incomplete use of information and cognitive bias effects as explanations of  

behaviour, with less emphasis being placed on random errors (Kahneman, Slovic and 

Tversky, 1982). On the assumption that random errors are less important, we predict less 

folding and raising by recreational players. 

Importantly, these patterns are not what we ought to expect given greater risk 

love by recreational players. Risk love predicts an aversion to folding and a preference 

to call but also a preference to raise since we assume that risk love simply pushes the 

critical probabilities (𝑞𝐹𝐶  and 𝑞𝐶𝑅) to the left. Therefore, we can directly test risk-love vs 

non-linear weighting function explanations by comparing two hypotheses.  

The risk-love prediction is as follows, Hypothesis 2.1:  At the preflop stage, 

there is less folding and more calling and raising by recreational (cf. more informed) 

players. 

The misperception prediction is as follows, Hypothesis 2.2:  At the preflop 

stage, there is less folding and less raising but more calling by recreational (cf. 

more informed) players. 

 Since both Hypothesis 2.1 and 2.2 have identical predictions for calls and folds, 

our main evidence for risk-love vs. misperception is whether or not recreational players 

raise more (Hypothesis 2.1) or raise less (Hypothesis 2.2) than the more informed 

players. 
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Our results actually indicate that Hypothesis 2.2 is true and based on this we can 

go further to differentiate the two types of misperception explanation. It would be 

expected that, for each type of game, the rate of return would be higher for more 

informationally favourable positions. In addition, since we expect recreational players 

to call when they should fold, the rate of return from calling may be negative in the 

Early position and then increase across superior positions. This effect may exist in both 

types of games but more weakly in the higher stakes games as it is populated by 

relatively fewer recreational players.  

Importantly, however, if recreational players call when they should raise because 

of a non-linearity in the weighting function, then average rates of return in lower stake 

games from raising may actually be higher than otherwise and, in particular, in 

comparison with higher stake games. If, on the other hand, heterogeneity of beliefs is 

the explanation then recreational players ought to process information less accurately 

in general than informed players and make random mistakes. As such, they may raise 

inappropriately on some card hands and this would reduce the average rate of return. 

Therefore, only if recreational players’ average rates of return, on those few favourites 

that are raised, are less than those of informed players then this would support the view 

that the recreational players make random heterogeneous probability mis-estimations 

that cause these implied losses.  

We test the heterogeneity of beliefs explanation in Hypothesis 2.3: 

Recreational players who have raised at the preflop stage will achieve lower rates 

of return (cf. more informed players) on those raises. 

In summary, risk love is a parsimonious explanation only if Hypothesis 2.1 is true 

whereas misperception is a better explanation if Hypothesis 2.2 is true. If we also find 
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that Hypothesis 2.3 is true, then we find evidence in favour of heterogeneity of beliefs 

occurring. 

 

II.III Origins of the Favourite-Longshot Bias: Further examination of the impact of 

new information on misperception. 

To arbitrate further between different misperception explanations for the FLB, we 

compare a key measure of voluntary contribution (bets and raises) to the pot at various 

points in the cycle of betting rounds. In doing so, we examine how the impact of 

additional information affects the risk-taking since as the game progresses from the 

preflop to the river stage, more complex information is revealed and the uncertainty is 

converted into more clearly defined risks for the informed players that are able to 

process this complex information. 

 It is important, here, to make a distinction between risk and 

uncertainty/ambiguity and how these elements change during the course of a game of 

poker. At the preflop stage, little information has been revealed beyond seating position 

and hand quality. Hence, the final risks are not so clearly defined and 

uncertainty/ambiguity is at its highest, but the new information load for players is low. At 

later stages, more information is revealed which increases the complexity of the decision 

for players, but much of the uncertainty is resolved by informed players, revealing more 

clearly defined risks.  

The change in risk over the course of the game is difficult to determine. On the 

one hand, the number of players will tend to decline, and correspondingly, the win rate 

at each position will tend to increase, as the rounds of betting progress (i.e. as some 

players will fold). Consequently, risk, measured by the probability of losing, will tend to 
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be higher in the earlier rounds. However, the potential pot size increases throughout 

the game and so the potential monetary loss also increases. 

 What is certain, however, is that the advantage of the Button seating position 

compared to the Early Position should continue to exist. We can determine this by 

examining the ratio of voluntary pot contributions in the Button compared to the Early 

position as the game progresses. 

We discuss above that the non-linear weighting function explanation is not 

expected to depend on new information (Gandhi & Serrano-Padial, 2015). Therefore, if 

non-linear weighting functions explains behaviour, then the degree of bias exhibited by 

recreational players at the preflop stage compared to more informed players should be 

similar to the degree of bias compared to more informed players at the river stage. In 

essence, the degree of FLB between the Button and the Early position should be the 

same throughout the game.  This is tested in Hypothesis 3.1 The degree of under-

betting the Button and over-betting the Early position by recreational players 

compared to the more informed players will remain the same throughout the game. 

However, unlike non-linear weighting functions, heterogeneity is expected to 

increase with the amount/complexity of information. This can be the result of increased 

complexity which, through the need to deal with more information (as experienced in 

the latter stages if the game), has been shown to lead to proportionally less exhaustive 

analysis and a propensity to use heuristics and biases in forming judgements (see, for 

example, Katsikopoulos, 2011; Kahneman, Slovic and Tversky, 1982).  

Therefore, we should expect greater heterogeneity with regard to incomplete 

information processing at the river stage compared to the preflop stage. This element of 

heterogeneity for recreational players should lead to greater perceived uniformity in 

information and assessment of probabilities and, thus, pot-contributions between the Button 
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and Early positions, as the game progresses. This could, therefore, cause an increase in the 

FLB since it would result in under-betting seating positions that should be raised more 

(notably the favourite, Button position) and over-betting positions that should be raised less 

(notably the longshot, Early position). 

This is tested in Hypothesis 3.2 The degree of under-betting the Button and 

over-betting the Early position by recreational players compared to the more 

informed players will increase through the stages of the game as recreational 

players adjust less to the information advantage afforded by seating position. 

 In summary, if non-linear weighting functions explain the FLB, then the degree of 

bias relative to more informed players should be the same throughout the game 

(Hypothesis 3.1). However, if heterogeneity plays a role in the FLB, then as more 

potential information is revealed at each stage of the game, then the degree of bias 

should increase (Hypothesis 3.2).  

 II.IV Economic Significance 

To establish the importance of any observed FLB amongst recreational players, it is 

important to establish the economic impact of this bias. Consequently, we determine the 

differential in the returns of recreational and more informed players in each seating 

position. If the FLB causes differences in these returns, then we would expect that those 

players who bet more/less on the longshot (Early position) than the favourite (Button 

position) should have a worse/better return. Consequently, we determine the relative 

returns of players who bet more and less in accordance with the FLB in order to assess 

the penalty imposed by any observed FLB.  

III. DATA AND PROCEDURES 

III.I Datasets 
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We employ a data set of 19,171,284 hands from a real-world natural laboratory, namely 

online real-money ‘Texas Hold’em’ poker games. The data was purchased from 

www.hhdealer.com and comprises 12,466,677 hands at the $0.5/$1 blind level (‘more 

recreational’ players), 6,704,607 hands at the $5/$10 blind level (‘more informed’ 

players), from the period 10th August 2007 to 29th May 2011.  

The numbers of players in poker games may vary but we employ data from the 

popular variant involving only six players. Those players seated in the ‘Blind’ positions 

are forced to make fixed contributions to the pot. Consequently, they are unable to 

regulate their initial bet based on the information advantage they may possess. In 

addition, unlike the ‘non-Blind’ positions, they are required to act at different points in 

the betting cycle depending on the phase of the betting (for example, the small blind 

acts next to last before the ‘flop’, but first after the ‘flop’). As a result, we exclude these 

players from our analysis, but note that, as poker is a nearly zero sum game, our results 

below indicate that most non-Blind positions win money and the Blind seating positions 

are those that tend to lose money. 

In order to test our hypotheses, we largely employ data from the preflop stage. 

We focus on this stage because it is naturally more controlled, from an experimental 

perspective, than later stages (see the reasons outlined in Section II.II.III).  

 

III.II Variables 

III.II.I Win Rate 

The win rate in a given position is defined as the total number of games won in that 

position divided by the total number of games played, e.g. for the Early position 

1,499,063 games are won from 12,466,677 games played, leading to a win rate of 

12.02%. In addition, we define the ‘win rate ratio’ as the win rate in a position divided 

http://www.hhdealer.comdata/
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by the win rate in the Early position (the position with the least information advantage). 

For example, the win rate ratio for the Middle position is the win rate for that position 

(13.40%) divided by the win rate in the Early position (12.02%) giving a measure of 

1.11.  

III.II.II Contribution Rate 

We define contribution rate as the percentage contributed in a given position divided by 

the total contributed in all positions. For example, the total contributed to the pot by all 

players in the ‘Early’ position, in games involving recreational players ($0.5/$1 blind 

games), was $33,038,014.10, and this was compared to the total amount contributed to 

the pot in all positions ($258,663,676.75); thus the market pot contribution for the 

‘Early’ position was determined as 12.77%. We also assess the extent to which the 

market pot contribution in a given position exceeds the market pot contribution in the 

position with the least information advantage (i.e. the Early position), by calculating the 

ratio of the market pot contributions in these two positions: the ‘pot contribution ratio’. 

For example, the market pot contribution in the Middle position was 13.90% and this 

divided by the market pot contribution in the Early position (12.77%) yields a pot 

contribution ratio of 1.09. Finally, we define the ‘ratio difference’ as the difference 

between the pot contribution ratio and the win rate ratio.  

III.II.III Rate of Return 

We define the ‘return rate’ for a position as the total net return for all players in that 

position divided by the total contribution to the pot by all players in that position.  A 

player’s ‘net return’ in a given game is defined as the total returned to the player from 

the pot in a game, minus that player’s total contribution in that game (including ‘the 

rake’). The rake is a transaction cost whereby the game host (casino/website) takes a 

specified percentage of the pot. For example, in a game with a rake of 5 per cent, where 
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two players contribute $10, $10, and the rest $0, the player who wins the hand wins the 

pot and receives a net return of $20 minus his/her contribution to the pot and minus 

the $1 he paid for the rake. The losers make a negative net return equal to their 

contribution to the pot. By combining the results of all games in the sample we are able 

to assess the net return across all players in each position. 

III.II.IV Preflop Actions  

The dataset enables us to determine the actions taken by players at each stage of the 

game (preflop, flop, turn, river). Since there may be multiple actions in a given round, 

we define a ‘preflop fold’ as any string of actions at the preflop stage which ended in a 

fold, a ‘preflop raise’ as any string of preflop actions that did not end in a fold (i.e. 

continued to at least the flop stage), and had at least one raise action, and  we define a 

‘preflop call’ as any string of preflop actions that did not end in a fold and did not 

include any raises. 

III.II.V Percent Voluntary Put in Pot (%VPIP) 

The %VPIP is the percentage of games which reached a particular stage (i.e., the preflop, 

flop, turn and river) in which a voluntary contribution is made to the pot from a given 

position (excluding, where someone is required to bet a given amount when they are 

sitting in a Blind position or reactive bets, where someone calls to remain in the game). 

We use %VPIP to measure the degree of proactive risk taking, as it only accounts for 

bets, raises and re-raises.   

III.II.VI. Blind Adjusted Net Return 

In the larger and smaller blind games, players in the large blind position pay $10 or $1, 

respectively. Consequently, in order to make comparisons between the average net 

return per game in these two types of game, we divide the average net return per game 

by the blind levels ($10 and $1 respectively). 
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III.3 Bootstrapping 

Our analysis is undertaken at an aggregate level and it was therefore necessary to 

estimate the statistical significance of aggregated contribution rates, the ratio of 

contributions in seating positions relative to the Early position and aggregate return 

rates. To achieve this, we employed bootstrapping to estimate the standard errors of 

these aggregate statistics. Due to the large dataset (19,171,284 hands each of which has 

6 seating positions resulting in 115,027,704 database rows), in the interests of 

processing efficiency, we adopted m of n bootstrapping to test hypotheses 1.2 and 1.3 

(Santana, 2009).  

Standard bootstrap procedures involve: (1) Taking a bootstrap sample of n 

independent observations, X1,X2,X3,…,Xn, with replacement, from the population, where n 

is the size of the population; (2) calculating the relevant statistic θn = θn(X1,X2,X3,…,Xn)   

for the generated sample; (3) independently repeating steps 1 and 2, B times. The 

resulting B replications of the statistic (θn1,θn2,θn3,…,θnB,) are then used to estimate the 

statistic’s sampling distribution. The mean of the replications is the estimate for the 

statistic 𝜃𝑛 = 𝜃𝑛1, 𝜃𝑛2, 𝜃𝑛3, … , 𝜃𝑛𝐵   and the standard error of the statistic 𝜃𝑛  can be 

expressed as (Santana, 2009); 

                                                         𝑆𝐸(𝜃𝑛) = √𝑉𝑎𝑟(𝜃𝑛)                                                            (2) 

For the m of n bootstrap, rather than take a bootstrap sample of size n we take a smaller 

sample, with replacement, of size m based on a scaling parameter, k, where 𝑚 = 𝑛𝑘 (in 

our case we used k = .7). For this the standard error is calculated as follows; 

  

𝑆𝐸(𝜃𝑛) = √
𝑚

𝑛
𝑉𝑎𝑟(𝜃𝑛)      (3) 
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The disaggregated analysis we performed to test hypotheses 1.1, 2.1, 2.2, 3.1 and 3.2 

involved smaller subsets of data. This enabled us to employ full n bootstrapping for the 

relevant statistics. 

 

IV. RESULTS 

IV.I Seating position favourite-longshot bias 

The results displayed in Table 1 indicate that the win rate increases monotonically from 

the Early position (around 12%) to the Button position (around 18%) for games 

involving both recreational and informed players. These results confirm Hypothesis 1.1 

and suggest that later seating positions have an information advantage. 

The results also demonstrate that pot contributions of recreational and more 

informed players echo the monotonic win rate pattern over seating positions, with 

monotonically increasing pot contributions (significant at .01% level) for every position 

from the Early to the Button. However, the recreational players contribute significantly 

less (cf. more informed players) in the ‘favourite’ position (Button) and significantly 

more in the longshot position (Early) (p < .001). These differences in the behaviour of 

recreational and informed players are highlighted by the contribution ratio statistics in 

Table 1. These reveal that informed players contributed 1.62 times more to the pot in 

the Button compared to the Early position, whereas this ratio for recreational players is 

significantly less (1.39, p < .001). Taken together, these results support Hypothesis 1.2 

that recreational players have a lower/higher contribution rate when in the 

Button/Early seating positions relative to the contribution rates of the more informed 

players. 

The contribution ratios are compared to the win rate ratios used to capture 

informational advantage (see Table 1). For example, the win rate ratio for informed 
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players in the Button position (1.52) is significantly greater than that for recreational 

players (1.47, p<.001). Comparing the ratio difference between the win rate ratio (WR) 

and the contribution rate ratio (CR), we observe that the Middle, Cutoff and Button 

positions, have ratio differences (CR-WR) which are negative for the recreational 

players and positive for the informed players. Bootstrapping estimates reveal that the 

CR-WR statistics are significantly lower for recreational players than informed players 

(p < .001 at each position). Further evidence that this behaviour is indeed a FLB is 

indicated by the fact that the recreational players have lower rates of return in every 

position compared to the informed players (p < .001) and have lower rates of return in 

the initial seating positions compared to the later positions for recreational players (p 

< .001) . This result confirms Hypothesis 1.3. It is interesting to note that the rates of 

return for the informed players are higher despite playing against other similarly 

informed players.  

Additional evidence indicative of a FLB is provided by the results displayed in Table 2. 

In particular, these results demonstrate that, by comparison with informed players, 

recreational players over-bet weak hands (i.e. those likely to have a low probability of 

winning) by over-calling and under-bet strong hands (i.e. those likely to have a high 

probability of winning) by under-raising. For example, informed players in the Early 

seating position fold 81.8% of the time, raise 15.6% of the time and call 2.6% of the time 

whereas recreational players in the Early seating position fold 80.2% of the time, raise 

12.9% of the time and call 6.8% of the time. The same pattern of differences between 

recreational and informed players is observed in all seating positions and these 

differences are statistically significant (p < .001) in all cases.   

IV.II Risk-Love vs. Misperception 
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The results displayed in Table 2 support Hypothesis 2.2 rather than Hypothesis 2.1. In 

particular, recreational players fold and raise significantly less often across all seating 

positions than more informed players (p < .001 for all seating positions). This indicates 

that recreational players call more often than more informed players across all seating 

positions. Taken together the evidence suggests that misperception rather than risk 

love is the explanation for the FLB.  

The results displayed in Table 2 also indicate that the percentage of games called 

or raised at the preflop stage increases monotonically with seating position for both 

recreational and informed players (p < .001). In addition, the results displayed in Table 

3, indicate that the recreational players’ rates of return are significantly lower (cf. more 

informed players; p < .001) in all seating positions for games called and raised preflop. 

Notably, the rates of return in all seating positions for recreational players in games 

which they call in the preflop are all negative. By contrast, the more informed players 

are profitable when calling in all seating positions, other than the Early which has the 

greatest information disadvantage. These results suggest that the lower rates of return 

achieved by recreational players result from their sub-optimal betting decisions.  

It is of interest to disaggregate players’ hands into call and raise hands. This 

allows investigation of high probability events (e.g. when a player raises) and the 

associated rates of raise/call frequencies, win and return and compares these results 

between informed and recreational player games. Table 4 shows the results of this 

disaggregation for raise hands at the preflop stage and shows lower raise frequencies 

but also lower rates of win and return for recreational (cf. more informed) games. These 

results suggest that the misperception arises from poor information processing and can 

be considered as evidence in favour of heterogeneity in beliefs causing the resulting bias. 

These results support Hypothesis 2.3 and suggest recreational players do lose money 
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despite raising less often, suggesting misperception causes errors in those raising 

decisions rather than simply a systematic under weighting of high probability events. 

These differences are all statistically significant at p<0.001.  

Overall, we observe a systematic over-betting on low-probability events (Early 

seating positions with a poor hand) and under-betting on high-probability events 

(Button seating positions with good hands) by recreational players relative to more 

informed players. These differences in betting patterns are economically significant 

given that the recreational players attain a lower average rate of return than the more 

informed players, despite the fact that the more informed players are playing against 

better competition.  

Taken together, the results presented above suggest that recreational players are 

subject to the FLB. Ultimately, the tendency to under-raise in the lower stake games 

suggests that the FLB they display may be caused by their misperception of 

probabilities rather than risk-love. Furthermore, the fact that these player attain lower 

rates of return on those raises compared to more informed players is suggestive of 

heterogeneity of beliefs.  

IV.III Misperception under increasing information complexity 

The non-linear weighting function explanation and the heterogeneity of beliefs 

explanation differ in their predictions regarding the impact of new information 

(Hypothesis 3.1 vs. 3.2). We test which prediction is true in this section. The results 

presented in Table 5 show that in the preflop betting round recreational players are less 

likely to bet than informed players in all seat positions and these differences are 

statistically significant at the 0.1% level. However, moving through the betting rounds 

these differences are mostly reversed. Similarly, Table 5 indicates that the proportion of 

games in which a voluntary contribution is made to the pot at various stages of the 
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game increases the later in the betting round (from ‘Early’ to ‘Button’) that the player 

acts in 45 out of the 48 possible comparisons and these are all statistically significant at 

the 1% level.  

This result holds for both the recreational and more informed players. In fact, 

differences in proportions tests, comparing differences in proportions of voluntary 

contributions in different positions, confirm that these are all significant at the 0.1% 

level for both recreational and informed players for all stages of play (preflop, flop etc.). 

This shows a general tendency for both the recreational and more informed players to 

bet more when in stronger seating positions.  

As the game progresses from the preflop to the river stage, the pro-active risk 

ratio (indicating the degree of risk taken in terms of bets and raises) remains above 1.2 

for the more informed players. However, it reduces for recreational players. The pro-

active risk ratio for recreational players significantly exceeds that of more informed 

players in the preflop (p<.001) by a small amount but this ratio for more informed 

players exceeds that of the recreational players in later stages of the game. In fact, the 

effect size of the differences in these ratios between games involving more recreational 

and more informed players is lowest at the preflop stage and tends to increase through 

the stages of the game (Cohen's d statistics7: dpreflop = 15.98, dflop = 42.29, dturn = 405.27, 

and driver = 258.26). This is important, since it reveals that there is an increase in the 

difference between the more informed and the recreational players as the game 

progresses. This is initial evidence in support of Hypothesis 3.2 (heterogeneity) rather 

than Hypothesis 3.1 (non-linear weighting functions). 

                                                           
7 Where d = (X1 – X2) / sp, where X1 and X2 are the means sp is the square root of the pooled standard 

deviation (Hedges, 1982). 
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Importantly, at the preflop stage, t-tests also reveal that the recreational players 

have a higher Button/Early pro-active risk ratio (i.e. betting more in the Button relative 

to the Early position) compared to the more informed group (p < .001). However, at 

later stages, the recreational players have lower ratios compared to the more informed 

group (p < .001 for all) confirming Hypothesis 3.2 rather than 3.1.  

The more informed players continue to use the seating position information 

advantage throughout the game, whereas the recreational players appear to make less 

use of this information advantage as the game advances. The full use of seating position 

advantage may be regarded as requiring good information processing skills that most 

recreational players lack. However, there are advantages of seat position that come 

automatically, such as players folding before others players have to make a decision 

about folding, calling or raising.  

These findings are consistent with the recreational players being subject to a 

specific type of misperception that increases as more information is revealed. This 

finding, as expected, fails to confirm Hypothesis 3.1 but does confirm Hypothesis 3.2, 

suggesting that misperceptions (leading to heterogeneity)rather than non-linear value 

functions is the underlying cause of this result. 

IV.IV Demonstrating Economic Significance 

The results presented in Table 6 demonstrate that recreational players make 

significantly less money than informed players in the advantageous positions. The 

‘game cost’ indicated in Table 6 is the difference in the blind adjusted net return per 

game between the recreational and the more informed players. When multiplied by the 

average number of games played by a recreational player (437.3) this provides the 

expected cost to recreational (cf. informed) players over their gaming lifespan.  The final 

column in Table 6 indicates the ‘market cost’, that is the game cost multiplied by the 
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number of games in the recreational dataset (12,466,467). This final column indicates 

that the total expected cost to recreational players (cf. informed players) in our data set 

is over $3.1 million. 

Furthermore, we find that those recreational/more informed players that clearly 

displayed FLB (i.e. bet more in the Early than the Button position) earned on average 

$0.64/$0.66 (p < .001) blind adjusted dollars per game less than those that bet more in 

the Button position than the Early Position. This demonstrates the cost per game when 

acting against the informational advantage of the seating positions. However, it is 

possible that over-betting on the Button relative to the Early (i.e. an inverse FLB) could 

also be detrimental to performance.  The relationship between the average blind 

adjusted net return per trade for a player should then be a second order polynomial 

function of the ratio of Button/Early contributions, where the peak of the function 

should indicate the optimal distribution of Button to Early contributions.  

Further evidence in favour of the heterogeneous beliefs explanation of the FLB in 

poker data is explored through estimating second order polynomial functions of the 

rate of return against Button/Early contribution ratios for the lower and higher stake 

games, as shown in Figure 4.   The highest rate of return is given by the Button/Early 

contribution ratios in the region of 1.2. There is wide variation in the distribution of 

players’ contribution ratios and this suggests a strong heterogeneity in beliefs of players.   

Despite this heterogeneity, the representative/median player gets the decision very 

roughly right in assessing the informational advantage afforded by the Button seating 

position over the Early position. This is shown by the fact that the highest rate of return 

is approximately in the middle of the range of the different Button/Early contribution 

ratios.  

V. CONCLUSIONS 
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Evidence of differential returns to bets placed with different probabilities of success has 

been reported in many different environments over many decades.  In general, the 

evidence is of a higher expected return to bets placed on higher-probability outcomes, 

known as the favourite-longshot bias (FLB).  There are many potential explanations for 

the persistence of this bias. The two we seek to arbitrate between here are broadly 

categorized as preference-based (e.g. risk-love) and misperception-based (notably 

belief heterogeneity and non-linear weighting function) theories. Using very large data 

sets of real-money online poker games, we identify the existence of the bias in this real-

world natural laboratory. In fact, we demonstrate consistent over-betting on low 

probability hands and under-betting on high probability hands by recreational 

compared to more informed poker players, to the extent that they attain a significantly 

lower rate of return. Snowberg and Wolfers (2010), demonstrated that the FLB, which 

they found in racetrack odds, imposes a significant cost on bettors. Equally, we find that 

amongst recreational poker players (i.e. in games involving lower minimum stake 

levels), the cost of the FLB is substantial, amounting to a penalty (cf. more informed 

players) of more than $3.1M over the games we examine. 

Having found evidence in favour of misperception rather than risk love in the 

raising behaviour of recreational players at the preflop stage, we then looked for 

evidence to distinguish between two different types of misperception at all stages of 

poker games. Our results revealed increasing bias by recreational players (cf. more 

informed players) as information complexity increased throughout the game, evidence 

consistent, in a completely different domain, with Gandhi and Serrano-Padial's (2014) 

recent findings using US racetrack data. In particular, our results suggest that 

heterogeneity of beliefs, rather than a non-linear weighting function, best explains the 

FLB displayed by recreational players. 
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Figure 1. Informational Advantage of Different Seating Positions. 

The order of play progresses from the Early through to the Button seating position and 

hence the informational advantage increases the later the player has to act in each 

round of betting. 
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Figure 2. The disaggregation of preflop hands in different seating positions into low, 

medium and high probability of winning, with illustration of the hand probability 

density function. 
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Figure 3: Relative Frequency of Probability of Winning 

Illustrative example of the subjective relative frequency distributions of probability of 

winning for recreational and informed players. The non-linear weighting misperception 

can be seen in the differences between the subjective relative frequency distributions for 

informed players (solid black line) and recreational players (dashed line). As shown, we 

expect recreational players to exhibit fold errors by under folding poor cards (a) and 

perhaps fold some cards they ought to call ( b). We also expect raise decision errors by 

failing to raise some cards they ought to raise (e). In general, we expect less raising (e), less 

folding (a < b), but more calling (c > d) overall by recreational players compared to more 

informed players. Rational requires that both functions integrate to one and that 

a+d+e=b+c.  
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(See attached "Figure 4.eps" file for source file) 

Figure 4. Relationship between Players’ Button/Early contribution ratios and the 

Blind Adjusted Net Returns per Game.  

The local average blind adjusted net returns per game ($) at 0.04 intervals of 

Button/Early contributions ratios for recreational players ($.5/$1 blind games) are shown 

as triangles with a solid 2nd order polynomial line fit and for more informed players 

($5/$10) are shown as crosses with a dashed  2nd order polynomial line fit.  
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Table 1. The win rate measure of relative table position advantage, pot 

contribution and return rates in each seating position. Results for the lower blind 

($0.5/$1), recreational, games are shown in normal text and for higher blind ($5/$10), 

more informed, games are shown in italics. 

Position Win 

Rate 

(%) 

Win 

Rate 

Ratio 

(WR) 

Total Pot 

Contribution 

(%) 

Contribution 

Ratio 

(CR) 

Ratio 

Difference 

(CR-WR) 

Return 

Rate 

(%) ~ 

Early  
12.02^ 

12.53^* 

1.00^ 

1.00^* 

12.77^ 

11.37^* 

1.00^ 

1.00^* 

0.00^ 

0.00^* 

0.52^ 

3.63^* 

Middle 
13.40 

13.33* 

1.11 

1.06* 

13.93 

12.70* 

1.09 

1.12* 

-.02 

0.05* 

1.60 

4.64* 

Cutoff 
15.61 

15.70* 

1.30 

1.25* 

15.83 

15.29* 

1.24 

1.34* 

-.06 

0.09* 

2.65 

5.04* 

Button  
17.72 

19.05* 

1.47 

1.52* 

17.71 

18.43* 

1.39 

1.62* 

-0.09 

0.10* 

4.84 

6.41* 

^ indicates a main effect of seating position on the size of the statistic shown in the 

column, such that the variable in the column is found to vary  according to the seating 

position at p < .001 level. 

* indicates a (Bonferroni adjusted) significant effect of a pairwise comparison between 

the statistic for the recreational vs the more informed players (p < .001). 

~Note that since Poker is a negative sum game and the Early, Middle, Cutoff and Button 

positions have positive returns, it is the small blind and big blind positions that are in 

net loss: The total return rate (%) of both the Blind Positions for the ($0.5/$1) games 

was -14.7% whereas for the ($5/$10) games the total return rate was -15.4%. 
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Table 2. The fold, call and raise rates in the preflop stage by players in each 

seating position. Results for lower blind ($0.5/$1) recreational, games are shown in 

normal text and for higher blind($5/$10), more informed,  games are shown in italics 

Seating Position Games Folded 

Preflop 

Games Called 

Preflop 

Games Raised 

Preflop 

Early 80.2%^ 

81.8%^* 

6.8%^ 

2.6%^* 

12.9%^ 

15.6%^* 

Middle 78.3% 

80.7%* 

7.5% 

3.6%* 

14.0% 

15.7%* 

Cutoff 75.1% 

77.3%* 

8.7% 

5.1%* 

15.6% 

17.5%* 

Button 72.2% 

72.6%* 

10.9% 

7.5%* 

16.9% 

19.8%* 

^ indicates a main effect of seating position on the size of the statistic shown in 

the column, such that the variable in the column is found to vary  according to 

the seating position at p < .001 level. 

* indicates a (Bonferroni adjusted) significant effect of a pairwise comparison 

between the statistic for the recreational vs the more informed players (p < 

.001). 
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Table 3. Rates of return for games that are called or raised preflop by players in 

each seating position. Results for lower stake ($0.5/$1), recreational, games are shown 

in normal text and for higher stake ($5/$10), more informed games are shown in italics 

(note that the rate of return for folded games is -100%). 

Seating Position Games Called Preflop Games Raised Preflop 

Early -4.7%^ 

-3.0%^* 

5.2%^ 

8.0%^* 

Middle -3.4% 

0.9%* 

7.0% 

9.7%* 

Cutoff -2.1% 

1.9%* 

9.0% 

11.1%* 

Button -0.1% 

2.9%* 

11.6% 

13.3%* 

^ indicates a main effect of seating position on the size of the statistic 

shown in the column, such that the variable in the column is found to vary  

according to the seating position at p < .001 level. 

* indicates a (Bonferroni adjusted) significant effect of a pairwise 

comparison between the statistic for the recreational vs the more informed 

players (p < .001). 
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Table 4 – Percentage of hands including a raise with win and return rates at the 

preflop betting round 

 

 

 

 

 

 

 

 

 

 

 

*Indicates significance at the .1% level. 

  

Position Blinds Games % Win Rate % 
Return 
Rate % 

Early 

.5/1 
 

5/10 

12.88* 69.95* 5.23* 

15.61* 72.58* 8.02* 

Middle 

.5/1 
 

5/10 

14.00* 72.48* 6.99* 

15.72* 74.88* 9.66* 

Cutoff 

.5/1 
 

5/10 

15.64* 75.41* 9.04* 

17.45* 77.57* 11.15* 

Button 

.5/1 
 

5/10 

16.88* 78.82* 11.64* 

19.84* 80.59* 13.30* 
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Table 5: %VPIP Bets or Raises for $0.5/1 and 5/10 dollar games: The percentage 

games reaching each stage in which a proactive voluntary contribution is made to the pot 

(i.e. only bets and raises) from a given position in the preflop, flop, turn and river stages of 

the game. Lower blind, recreational, ($0.5/$1) games shown in normal text and for higher 

blind, more informed) ($5/$10) games shown in italics 

Position Blinds Preflop Flop Turn River 

Games 
.5/1 

5/10 

12,466,677 

6,704,607 

6,497,363 

2,794,629 

3,973,850 

1,755,462 

2,823,475 

1,266,035 

Small blind 
.5/1 

5/10 

10.76% 

13.72% 

13.76% 

13.50% 

13.27% 

11.64% 

11.89% 

9.64% 

Big Blind 
.5/1 

5/10 

5.99% 

7.26% 

15.26% 

13.35% 

16.37% 

15.06% 

14.56% 

13.34% 

Early 
.5/1 

5/10 

13.93% 

17.45% 

12.29% 

12.63% 

8.64% 

7.75% 

6.95% 

5.82% 

Middle 
.5/1 

5/10 

15.23% 

17.73% 

12.67% 

12.63% 

8.83% 

7.78% 

6.91% 

5.88% 

Cutoff 
.5/1 

5/10 

17.15% 

20.00% 

13.57% 

13.78% 

9.35% 

8.63% 

7.03% 

6.40% 

Button 
.5/1 

5/10 

18.33% 

22.62% 

13.81% 

15.24% 

9.58% 

9.73% 

7.02% 

7.08% 

Button/Early  

Pro-active 

Risk Ratio 

 

.5/1 

5/10 

1.32 

1.30* 

1.12 

1.21* 

1.11 

1.25* 

1.01 

1.22* 

* indicates a significant difference at the .01% level. 
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 Table 6: The average (blind adjusted) net return and costs per game ($) for each 

seating position. 

Lower stake ($0.5/$1), recreational, games are shown in normal text and higher stake 

($5/$10), more informed games are shown in italics. 

 Avg. Net Return ($) 

per Game 

Average Cost ($) 

per Game  

Average Cost  

per Player 

($) 

Total Cost  ($) 

Early 0.0140 (.0024) 

0.0813 (.0031) 
-0.0673 * -29.43 -838,993.23 

Middle 0.0461 (.0026) 

0.1159 (.0033) 
-0.0697 * -30.50 -869,421.04 

Cutoff 0.0877 (.0027) 

0.1528 (.0036) 
-0.0651 * -28.47 -811,567.00 

Button 0.1773 (.0028) 

0.2307 (.0037) 
-0.0534 * -23.35 -665,709.34 

   -111.75 -3,185,690.61 

Standard Deviations shown in brackets.  

Average Cost per Game calculated as the difference between the average (blind adjusted) 

net return attained in the higher stake games minus the average net return attained in 

the lower stake games. Average cost per player equals the average cost per game 

multiplied by average number of games played by a recreational player in the dataset 

(437.3). Total cost is the average cost per game multiplied by the number of games 

played by recreational players (12,466,467).  

* Indicates significance at the .01% level. 


