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Abstract

We have extended the Universal Force Field for Metal-Organic Frameworks (UFF4MOF)

to cover all moieties present in the most extensive framework library to date, i.e. the

Computation-Ready Experimental (CoRE) database (Chem. Mater. 26, 6185 (2014)).

Thus, we have extended the parameters to include the fourth and fifth row transition

metals, lanthanides and an additional atom type for Sulphur, while the parameters

of original UFF and of UFF4MOF are not modified. Employing the new parameters

significantly enlarges the number of structures that may be subjected to a UFF cal-

culation, i.e. more than doubling accessible MOFs of the CoRE structures and thus

reaching over 99% of CoRE structure coverage. In turn, 95% of optimized cell parame-

ters are within 10% of their experimental values. We contend these parameters will be

most useful for the generation and rapid prototyping of hypothetical MOF structures

from SBU databases.
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1 Introduction

Metal-Organic Frameworks (MOFs) are a class of inorganic-organic crystalline materials,

formed by combination of a metal or metal oxide cluster (‘connector’) with an organic

‘linker’ molecule. Since the publication of the now famous MOF-5 in 1999,1 over twenty

thousand different MOFs have been synthesised and applied to tasks ranging from gas stor-

age and separation,2–4 where the high surface area and pore volume is important; optical and

chemical sensing5,6 in which the geometric arrangement of the linkers and electron transport

within the framework are important; drug delivery and catalysis,7–10 where pore geometry

and specific chemical interaction with the framework are important properties. Emphasising

the increasing prominence of MOFs in materials chemistry, the Computation-Ready Experi-

mental (CoRE) database11 of MOF structures was recently compiled from crystal structures

archived in the Cambridge Structural Database (CSD).12 CoRE is a database of over 5000

high-quality reference structures for computational screening and development and is thus

an excellent means to parameterize and validate a general force field for molecular framework

materials.

The effectively infinite number of possible frameworks combined with the varied appli-

cations mean that computational investigation of these systems is vitally important, yet the

periodic nature, and often large unit cells of MOFs, precludes the routine use of well-known

computational methods such as Density Functional Theory (DFT). In particular, the desire

to computationally screen vast numbers of plausible framework structures necessitates the

use of highly efficient computational methods. Several groups have employed a variety of

approaches in developing force fields for MOFs.13–15 A number of force fields have been de-

veloped to accurately describe individual important MOFs. One of the first such was the

extended MM316 force field for MOF-517 and for later Copper paddlewheel -based MOFs,18

both from Schmid and coworkers. Recently, Smit and coworkers derived a force field from

entirely periodic calculations to predict the CO2 and H2O adsorption isotherms in Mg-MOF-
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74 and Zn-MOF-74.19 Force fields have also been developed for In-soc-MOF,20 rht-MOF-121

and ZIF-1122

Many MOFs possess significant structural flexibility, and in these cases, this flexibility

largely dictates the behaviour of the MOF w.r.t gas adsorption, thermal expansion and

response to pressure. Grosch and Paesani developed a force field to describe the Zinc pad-

dlewheel based DMOF-1 by using a genetic algorithm to fit the bonded force field terms to

ab initio calculations of model building blocks.23 They were subsequently able to describe

the breathing behaviour that occurs with different loadings of both benzene and isopropyl

alcohol. Another force field that accurately captures breathing motion was derived for MIL-

53 from a set of both periodic and nonperiodic DFT calculations.24 Gascon also derived a

force field to investigate gas adsorption and diffusion in MIL-53.25

Moving toward more general approaches, and more transferable force fields, Schmid and

coworkers developed a genetic algorithm in order to systematically derive force field parame-

ters in their MOF-FF.26,27 Bristow, Tiana and Walsh parameterised the BTW-FF force field

from a training set containing representatives of three highly important isoreticular series,

namely, the IRMOF-n, UiO-n and HKUST MOFs.28 Probably the most general approach so

far, recently, Vanduyfhuys et. al published a program, QuickFF,29 that automates the pro-

cess of force field generation beginning from quantum mechanical calculations. In the case

of MOFs, by employing DFT calculations on both connector- and linker- centred clusters,

QuickFF was validated against previously derived force fields for MIL-53(Al)24 and MOF-517

Rather than directly deriving force fields from ab initio data, a different approach to-

ward a force field that may be applied universally to MOFs is to build upon the Universal

Force Field of Rappé.30 UFF has been applied broadly to systems as far ranging as or-

ganic molecules, metal complexes and even MOFs.31 Garberoglio and Taioli found that UFF
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compared favourably to DFTB for bonded interations in MOFs.32 Allendorf and coworkers

compared UFF with bespoke force fields for noble gas diffusion in HKUST-1 and ZIF-8.33

Recently, Schmidt and coworkers evaluated UFF against force fields derived using Symmetry

Adapted Perturbation Theory (SAPT)34,35 for calculation of gas uptake in MOFs and found

that while there were quantitative differences between the general and ab initio force fields,

both predicted a similar ranking.36 These studies support the use of standard force fields

such as UFF in the study of MOFs, however, the UFF parameters for many metals were

derived from structures where a metal-carbon single bond could be identified and where

there was a lack of crystal data, others were interpolated. It was the lack of UFF parameters

appropriate for common MOF building blocks, most notably octahedral Copper and Zinc,

that prompted the development of UFF4MOF.37

The UFF4MOF extension to UFF focussed on a training set of specific, inorganic building

blocks that partially comprise several common MOFs. Zn4O(CO2)6 is the inorganic build-

ing block in the IRMOF series;38,39 paddlewheels (PWs) may contain various metal ions,

Cu and Zn are most common, as in HKUST-1,40 DMOF-141 and SURMOFs;42,43 and M3O

oxo-centred trimers, as in the MIL-100, MIL-10144 and MOF-23545 MOFs. Additionally,

parameters were derived for the Kuratowski-type SBU present in MFU-446,47 and the 1-D

aluminium building block in MIL-53,48,49 which is well known for its strong breathing effect.50

The 18 UFF4MOF parameters introduced, therefore facilitate calculation of a vast num-

ber of common and important MOFs, however, an increasing number of frameworks are being

synthesised using heavier elements, including Palladium,51 Silver52–54 and Ruthenium.55,56 It

is clearly desirable to be able to calculate these structures rapidly, either post-synthesis or in

predictive calculations. A force field that can accurately predict structures of a broad range

of metal containing building blocks would allow such building blocks to be used in predict-

ing the structures of hypothetical MOFs57 using software such as AuToGraFS58 or Zeo++.59
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In order to derive UFF parameters applicable to MOFs featuring metals from the entire

periodic table, high quality reference data is required. The Computation-Ready Experimen-

tal (CoRE) database contains 5109 3-D “MOF” structures with a pore limiting diameter

greater than 2.4Å.11 The database was compiled by an automated search of the Cambridge

Structural Database (CSD)12 followed by several post-processing steps that ensured all struc-

tures in CoRE are truly 3-D connected, removed disordered atoms and solvent molecules.

The search criteria used to extract structures from the CSD required at least one M—(O,

N, B, P, S, C) bond and at least one (O, N, B, P, S, C)—(N, P, S, C) bond. These criteria

therefore include frameworks such as Zeolitic Imidazolate Frameworks (ZIFs), while exclud-

ing simple mineral compounds such as metal oxides and carbides.

In this paper we present a set of parameters designed to further extend UFF4MOF for the

accurate calculation of framework materials from the entire periodic table. New parameters

are presented for all alkali, alkaline earth metals, transition metals and lanthanide atoms

observed in the CoRE database. In line with our work on UFF4MOF,37 where UFF does not

include atom types corresponding to the molecular geometry observed in the framework, we

introduce the corresponding new atom type. All parameters presented here can be appended

to the already existing UFF4MOF (and thus UFF) parameter lists and thus are readily

available for any software with an UFF implementation.

2 Methods

2.1 Atom Typing

For a UFF calculation to proceed, a UFF atom type and connectivity information must be

assigned to each atom in the input structure. The atom typing procedure is implemented in

Python, employing the ASE library.60 For each CoRE framework structure, a first guess for
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connectivity is generated, based on the interatomic distances and covalent radii.61 Double

and triple bond radii are extrapolated as being shorter by 0.15 A and 0.3 A respectively.

The special cases of paddlewheels, hydrogen and halogen bonds are identified and explicitly

assigned. In paddlewheels, metal-metal bonds are assigned using Cotton’s values.62 Atom

types are then assigned by matching the given geometry to prototypical atom types (i.e.

octahedral, tetrahedral) and choosing the available atom type that best fits the bond an-

gles and connectivity. Rings are detected using a Breadth First Search and aromaticity is

detected firstly by the identification of planar rings, and secondarily by summing atomic

number.

At each parameter identification, the bonding information is updated: resonant bonds for

members of an aromatic ring, half bond order is assigned between oxygens and metals, and

a nominal bond order (set to 0.25) is set between metals in a metal cluster. Finally, carbon

connectivities are corrected to avoid valences greater than four. Any atoms that are not

explicitly connected are assigned the parameter with the largest bond radius of those avail-

able. Using this process, only 20 out of 5109 CoRE structures contained an atom that was

unable to be automatically assigned. These problematic structures are primarily structures

containing Cs and Rb atoms. One third were charged structures where charge-balancing

ions are equally bonded to multiple atoms, particularly π- or haptic ligands. A list of these

structures, and the atoms that are untyped is contained in the Supplementary Information.

2.2 Parameter derivation

The Universal Force Field30 contains both connectivity-based (valence) and nonbonded pa-

rameters: Connectivity-based parameters are the coordination number, single bond radius,

and bond angle. The bond length between any two atoms i and j, rij, is the sum of each

bond radius, plus a correction for bond-order (i.e., double, triple, resonant..., supplied by

the user) and a fixed electronegativity correction (Eq 2 in Ref30). Nonbonded parameters
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include the Lennard-Jones potential parameters and a scaling parameter ζ that allows fine-

tuning the shape of the potential. For most elements, a value of ζ = 12 is chosen, coinciding

with the Lennard-Jones potential.

Following the UFF atom type formalism, we consider an atom type to be entirely defined

by specification of the bond radius and angle, all other parameters being equal for atom

types of the same element. We do not re-derive any non-bonded parameters, leaving them

the same as the original UFF values. The parameter derivation procedure is broadly similar

to that outlined in our previous work,37 where bond angles are determined by observation

and radii are determined by fitting to reference data. All calculations were carried out us-

ing the General Utility Lattice Program (GULP).63,64 As in the original derivation of UFF

parameters, no partial charges were employed30 in either cluster or periodic calculations.

Cluster models were cut from the reference crystallographic information files and saturated

with hydrogen atoms as needed. For each cluster model, the geometry was optimised, chang-

ing the prototype new parameter (bond radius) in 0.02Å increments from 0.9 - 2.3Å, the

bond radius was then chosen to minimise the error in metal-metal and metal-oxygen bond

distances. In the case of alkali and alkaline earth metals the scan range was extended to 0.9

- 2.6Å. All scan data is presented in the Supplementary Information. Parameters are named

according to the standard UFF convention, whereby the first two characters correspond to

the chemical symbol, using an underscore as the second character in the case of a single

character chemical symbol. The third character symbolizes the geometry, in addition to

those geometries already defined by Rappé,30 we add 8 = cubic antiprism. The final two

columns are used to indicate alternate parameters, such as oxidation state. In these columns

we employ the letter “f” to indicate framework parameter and leave the (assumed positive)

oxidation state in the final column.

The original UFF4MOF added two new oxygen atom types (O 3 f and O 2 z) that were

straightforwardly derived as hybrids of the existing (Rappé) UFF atom types. In a similar
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fashion, we propose a hybrid sulfur parameter, S 3 f, which uses the 0.854Å bond radius of

Rappé’s S 2 parameter, but has a tetrahedral angle. An example of a structure where this

parameter yields better agreement with the experimental structure (compared to the Rappé

parameter S-3+6, which has a significantly longer bond radius of 1.027Å) is CSD refcode

LUNBAX.65

2.3 Breathing and solvent-stabilized MOFs

The solvent removal procedure employed in generating the CoRE database does not consider

whether the removed solvent molecules are essential to maintaining the structural integrity

of the framework. A notable case of such stabilization by solvent molecules is the well-known

MIL-53, where the narrow pore structure is stabilized by hydrogen bonds between (i) solvent

oxygen and hydrogen from the [AlO4(OH)2] octahedra, (ii) solvent hydrogen molecules and

framework oxygen atoms and (iii) solvent oxygen and solvent hydrogen.66,67 In these cases,

näıve optimization of the solvent-free structure, that fails to adequately consider the effects

of temperature and dispersion, will result in a different structure being obtained (the large

pore structure for MIL-53). Where geometry optimization produced a structure with any

cell parameter deviating by > 20% from the original CoRE structure, we retrieved the orig-

inal structure from the CCSD to confirm adsorbed molecules as the cause of the deviation

and we exclude them from analysis in this work. We have manually repaired many of these

frameworks and we will consider them in a future work. After this exclusion, we are left

with 4892 frameworks.
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3 Results and Discussion

According to Chung et al., the CoRE database contains more than 50 distinct types of metal

and lanthanide clusters.11 After typing analysis applied to alkali, alkaline earth, transition

metals and lanthanides, we identify 163 distinct metal atom environments. If restricted to

environments that occur in at least five different structures, this reduces to 105 distinct

environments. The distribution of environments is shown in Figure 1.

Figure 1: Occurrences of metal, alkali and alkaline earth metals in the CoRE database,
coloured by bond angle.

From these 105 environments, 14 were adequately covered by Rappé’s UFF parameters,

12 had parameters previously derived in UFF4MOF,37 in two cases an existing tetrahedral

parameter could be applied to an antiprism geometry and in six cases there was no suit-

ably regular structure from which to derive a new parameter. Consequently there were 71
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environments for which a UFF parameter could be derived. These 71 new UFF4MOF pa-

rameters are shown in Table 1. For each of the 71 environments a single model structure

from CoRE was chosen to use as the basis for parameter derivation. The structure that best

matched the “ideal” environment (e.g: perfect planarity and 120 degrees angles for a trigonal

planar environment.) was chosen, and in the case that more than one structure was equally

suitable, the one with phenyl-based linkers was preferred, ensuring that the metallic cluster

was consistently well described by a cutout. A complete list of the detected environments

and the CCSD refcodes of the structures used to derive the new UFF parameters (i.e. the

training set) is contained in the Table S1.

Table 1: List of the new force field parameters (extension to UFF4MOF) introduced to UFF. When UFF
already includes a parameter for the given element and angle, this parameter’s radius is included for com-
parison purposes

UFF4MOF Rappé’s UFF

New atom types Angle θ0 (degrees)
Coordination

number
Bond rI (Å ) UFF Atom type Bond rI (Å )

Li3f2 109.47 4 1.28

Na3f2 109.47 4 1.623

Na4f2 90.0 4 1.79

Mg6f3 90.0 6 1.525

Al3f2 109.47 4 1.28 Al3 1.244

K 3f2 109.47 4 2.38

K 4f2 90.0 4 2.01

Ca3f2 109.47 4 1.705

V 3f2 109.47 4 1.12 V 3+5 1.402

Mn1f1 180.0 2 1.38

Mn3f2 109.47 4 1.18

Mn8f4 109.47 8 1.52

Co1f1 180.0 2 1.28

Cu1f1 180.0 2 1.24

Cu2f2 120.0 3 1.11

Cu3f2 109.47 4 1.19 Cu3+1 1.302

Zn1f1 180.0 2 1.30

Zn2f2 120.0 3 1.30
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. . . continued

UFF4MOF Rappé’s UFF

New atom types Angle ϑ0 (degrees)
Coordination

number
Bond rI (Å ) Bond rI (Å )

Ga3f2 109.47 4 1.15 Ga3+3 1.26

Ga6f3 90.0 6 1.48

Sr8f4 109.47 8 1.82

Y 6f3 90.0 6 1.60

Y 8f4 109.47 8 1.68 Y 3+3 1.698

Zr8f4 109.47 8 1.68 Zr3+4 1.564

Nb8f4 109.47 8 1.37 Nb3+5 1.473

Mo3f2 109.47 8 1.24 Mo3+6 1.484

Mo4f2 90.0 4 1.40 Mo6+6 1.467

Mo8f4 109.47 8 1.28 Mo3+6 1.484

Tc4f2 90.0 4 1.32 1.322

Ru4f2 90.0 4 1.32 Ru6+2 1.478

Pd6f3 90.0 6 1.19 Pd4+2 1.338

Ag1f1 180.0 2 1.22 Ag1+1 1.386

Ag2f2 120.0 3 1.34

Ag3f2 109.47 4 1.48

Ag4f2 90.0 4 1.51

Cd1f1 180.0 2 1.40

Cd3f2 109.47 4 1.29 Cd3+2 1.403

Cd4f2 90.0 4 1.46

Cd8f4 109.47 8 1.64 Cd3+2 1.403

In3f2 109.47 4 1.33 In3+3 1.459

In6f3 90.0 6 1.53

In8f4 109.47 8 1.53 In3+3 1.459

Ba3f2 109.47 4 2.04

La8f4 109.47 8 1.66 La3+3 1.943

Ce8f4 109.47 8 1.76

Pr8f4 109.47 8 1.83

Nd8f4 109.47 8 1.78

Sm8f4 109.47 8 1.78

Eu6f3 90.0 6 1.60 Eu6+3 1.771

Eu8f4 109.47 8 1.74

Gd6f3 90.0 6 1.55 Gd6+3 1.735

Gd8f4 109.47 8 1.70
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. . . continued

UFF4MOF Rappé’s UFF

New atom types Angle ϑ0 (degrees)
Coordination

number
Bond rI (Å ) Bond rI (Å )

Tb8f4 109.47 8 1.64

Dy6f3 90.0 6 1.58 Dy6+3 1.710

Dy8f4 109.47 8 1.70

Ho8f4 109.47 8 1.70

Er8f4 109.47 8 1.64

Tm8f4 109.47 8 1.67

Yb6f3 90.0 6 1.45

Yb8f4 109.47 8 1.62

Lu8f4 109.47 8 1.66

Hf8f4 109.47 8 1.46 Hf3+4 1.61

W 3f2 109.47 4 1.16 W 3+4, W 3+6 1.380, 1.526

W 4f2 90.0 4 1.345 W 6+6 1.392

W 8f4 109.47 4 1.27 W 3+4, W 3+6 1.380, 1.526

Re6f3 90.0 4 1.23 Re6+5 1.314

Os4f2 90.0 4 1.24 1.372

Pt4f2 90.0 4 1.125 Pt4+2 1.364

Au1f1 180.0 2 1.11

Hg3f2 109.47 4 1.248

Pb4f2 90.0 4 1.67

U 6f3 90.0 6 1.65 U 6+4 1.684

U 8f4 109.47 8 1.73

S 3 f 109.47 3 0.854 S 3+6 1.027

Because the atom typing process relies on comparison with idealised reference geome-

tries, the inclusion of a less than complete set of reference geometries will alter the assigned

atom types. To consider only a single bond angle as a simple example; an angle of 100◦

may be typed as either octahedral (90◦) or tetrahedral (109.47◦). When a parameter is

available for both environments, the better fitting one, where all angles are fitted with the

least deviation is chosen. In the simple 1-D case above, the tetrahedral parameter (which

has an error of 9.47◦) vs. an error of 10◦ in the octahedral case), will be chosen. However,

if only an octahedral parameter is available, then this parameter will be assigned with only
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marginally less confidence. Therefore, to illustrate the performance of the new UFF4MOF

parameters, we consider three distinct sets of CoRE MOFs: Firstly all structures were typed

using UFF4MOF parameters (those developed so far and the extension currently presented

here), but any structures containing non-Rappé parameters were discarded. This resulted

in 1894 structures being retained and 1761 of these (that were not missing essential sol-

vent molecules) were optimized. Secondly, all structures were typed using only the original

UFF parameters. A total of 2309 structures were successfully typed (of which 2281 were

optimized). The difference between these two subsets, shows that 415 structures contained

atomic environments that were able to be typed more than one way and are better typed

using the UFF4MOF parameter. Finally, structures were typed using the complete set of

UFF + UFF4MOF parameters. 5089 of the 5109 CoRE structures were successfully typed

with these parameters and 4892 were optimized. The difference between the second and third

sets immediately illustrates the utility of the UFF4MOF parameters, raising the number of

calculable CoRE systems from less than half, to over 99.5%.

To assess the accuracy of the new parameters, fully periodic classical, constant pressure ge-

ometry optimisations were undertaken from each typed structure, simultaneously optimising

both the atomic positions and lattice vectors. The molecular connectivity was kept constant,

and all 1-2 and 1-3 Coulomb interactions were excluded (i.e. molmec option in GULP), all

other cutoffs were left at their default values. No symmetry was imposed - i.e. all calcula-

tions took place in P1 spacegroup.

Cell angles were largely the same as their initial values (where all three cell angles were 90◦,

these were constrained by specifying orthorhombic cell constraints) and so we consider only

the lengths of the a,b and c lattice vectors. The distribution of these errors is shown in

Figures 2 - 4.

Employing the new UFF4MOF parameters (Figure 2), 76.5% of of cell parameters are

within 5% of the reference value, and 95.0% are within 10%. Considering absolute errors,

96.8% of cell parameters deviate less than 2Å of the experimental reference value. For
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Figure 2: Error in cell parameters, calculated as (XUFF − XExp) (a,b,c) for 4892 CoRE
structures typed and calculated employing UFF4MOF parameters.
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Figure 3: Error in cell parameters, (a,b,c) for 2281 CoRE structures typed and calculated
employing only parameters from the original UFF set.
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Figure 4: Error in cell parameters, (a,b,c) for 1761 CoRE structures typed using UFF +
UFF4MOF parameters, but calculated employing only parameters from the original UFF
set
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the structures calculated using only Rappé’s UFF parameters, the distribution in errors is

broadly similar, with 73.2 and 91.4% of cell parameters being within 5 and 10% of the ref-

erence value when structures were typed using only Rappé’s parameters (2281 structures).

These figures rise slightly to 76.6 and 94.3% when structures are typed using both UFF and

UFF4MOF parameters, but optimised using only the original UFF, discarding any struc-

tures that require UFF4MOF parameters, however, only 1761 structures are capable of being

optimized in this case. Comparing only the two sets of calculations that employed UFF pa-

rameters only, the modest increase in accuracy when atoms are typed using the superset of

UFF4MOF and Rappé’s parameters, gives an indication of the influence of mistyping ‘in-

termediate’ atomic environments, where metal atoms may be typed as either octahedral or

tetrahedral.

3.0.1 Limits on accuracy

In our previous work,37 we noted cases in which a UFF4MOF optimization might generate

atomic positions that deviate somewhat from the local reference structure, while the overall

structure is still fundamentally correct. This occurs when the number of angle terms de-

fined by the connectivity is sufficient to ‘overwhelm’ one or more distance terms. In general,

the number of angle terms in highly-connected metal oxide SBUs will tend to force these

structures to their ‘ideal’ geometries. A particular example of this occurs in paddlewheel

structures, shown in Figure 5 where the four or eight (in the case of a pillared paddlewheel)

90◦ angle terms around each metal atom force the coplanarity of the metal and its four

oxygen neighbours, such that the paddlewheel motif adopts D4h symmetry. In this case, the

metal atoms deviate by up to 0.3Å from their reference positions, but the oxygen positions

are correct and the overall unit cell is also correct in two dimensions (assuming the metal-

oxygen axes lie parallel with two cell vectors) as shown in Figure 6. Some error is made in

the third dimension (along the pillar), though this is partially compensated by an opposite
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error in the metal - pillar (nitrogen) distance. The follow-on effect of this local deviation

on the cell parameters is thus variable, depending on the framework topology, the degree

of distortion in the SBU (w.r.t the ideal, or highest symmetry SBU) and the identity of

neighbouring SBUs.

Figure 5: Pillared paddlewheel, indicating the three mutually perpendicular planes centred
on each (only one shown) metal atom. The planes are forced by eight O-M-L angles around
each octahedral (90◦) metal atom.

3.1 Atomic positions

While the small deviation of the lattice parameters from the experimental reference struc-

tures gives a high degree of confidence in the quality of the structure, it is also useful to
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Figure 6: Pillared Zn paddlewheel, with UFF4MOF optimized structure (pale) shown super-
imposed on DFT (BP86/TZP) optimized structure, showing the contraction of the Zn-Zn
bond distance.

consider the atomic positions. The UFF4MOF-optimized structures can be compared with

the reference CoRE structures, by first scaling the optimized structure to the cell dimen-

sions of the reference structure and then computing the RMSD of the atoms in each structure.

Recalling the tendency to converge to idealized geometries, we consider the accuracy

of the atomic positions overall, for metal atoms specifically, for oxygen atoms that have a

metal neighbour (which excludes oxygen atoms on linker molecules) and all other atoms

(i.e. non-metal and not oxygens bound to metal atoms), which we assume to represent the

linkers. The RMSD of each of these atom groups is shown in Figure 7. The mean RMSD

for all atoms is 0.653Å, very close to that of the linkers, 0.652Å and the distribution of the

RMSD for all atoms is also largely defined by that of the linkers. Deviation of the linker

atom positions is largely caused by flexibility in the linkers, which may rotate or flex without

affecting the overall structure quality. By contrast, the atomic positions of the metal atoms

and metal-bound oxygen atoms are somewhat more tightly conserved, with mean RMSD

values of 0.463 and 0.579Å respectively.
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Figure 7: RMSD of UFF4MOF optimized atom positions with respect to the CoRE struc-
tures

To gain a better understanding of the accuracy of the overall structure and remove the

error associated with linker flexibility, we further consider the accuracy of all bond lengths

in each framework. In this case, we compare the unscaled bond lengths emanating from each

atom in each structure. We consider firstly all bonds containing a metal atom (i.e. M-X, X

may be either metal or non-metal), all non-metal bonds (i.e. X-Y, neither X or Y may be

metal) and finally, all bonds. The RMSD for each of the three CoRE subsets in Figures 2 -

4 are shown in Figure 8. From this it becomes clear that the non-metal bonds are actually

very well described in all cases, with a mean RMSD of 0.100Å using UFF4MOF, vs. 0.108Å

for those structures typed and calculated using UFF. A larger improvement is seen when

metal bonds are considered, with the mean RMSD for metal-containing bonds calculated by

UFF4MOF, 0.158Å reduced from a value of 0.178Å observed for both UFF subsets.

A further indication of the quality of the structures is given by the volumetric and gravi-
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Figure 8: RMSD of UFF4MOF optimized bond lengths with respect to the CoRE structures.
a) shows all metal containing (M-X) bonds, b) shows all bonds without a metal atom and
c) shows all bonds. The RMSD for 4892 CoRE structures typed and optimized using the
full set of UFF4MOF parameters is shown in red, RMSD for 2281 CoRE structures typed
and calculated employing only parameters from the original UFF are shown in green and
RMSD for 1761 CoRE structures typed using UFF + UFF4MOF parameters, but calculated
employing only UFF is shown in blue.
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metric surface areas, which may be directly be compared to the analysis of Chung et al.11

As can be observed in Figure 9, the pre- and post-optimisation surface areas follow a very

similar distrubution, further supporting the quality of the optimized structures.

Figure 9: Gravimetric and volumetric surface areas of CoRE structures, as provided (blue)
and after re-optimization using UFF4MOF in GULP (green). All surface areas were calcu-
lated using Zeo++59 with a probe radius of 1.86 (corresponding to N2).

Atoms not found in CoRE

Noting some of the ‘holes’ in the newly-developed UFF4MOF parameters derived from CoRE

environments, non-periodic Technetium68 and Osmium69 paddlewheel structures were used

to derive square planar parameters (bond angles of 90◦). Bond orders between metal atoms

are taken from Cotton et al.62 The atomic radius obtained for Technetium is 1.32 Å ; almost

identical to the ri of 1.322 in Tc6+5 parameter from Rappé. Thus, its use is not warranted.

On the contrary, the Osmium parameter Os4f2 has a distinct value of 1.24 compared to

1.372 in the UFF parameters, and should be used instead to accurately describe Osmium

paddlewheel environments.
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3.2 Computationally Predicted MOFs

The CoRE database contains only 5109 experimentally realised MOF structures representing

over 350 unique topologies,11 by contrast the large scale screening study of Wilmer et al.

scanned 137,953 hypothetical MOFs, but only employed 5 inorganic building blocks resulting

in six topologies being encountered and more than 90% of structures were of the primitive

cubic pcu topology. Several other authors have since undertaken smaller screening studies

of hypothetical MOFs, e.g. Bao et al. who used an evolutionary algorithm to search nine

topologies for methane capacity,70 Gomez-Gauldron et al. scanned four nets that are com-

patible with Zirconium-based building blocks and several ditopic and tetratopic linkers71 also

for methane deliverable capacity, highlighting subtle effects of the order of triple bonds and

phenyl groups in same length linker molecules and Banerjee et al. scanned 125,000 MOFs

for their Xe/Kr selectivity.72

It therefore seems clear that there are many millions of synthetically feasible, but as yet

hypothetical MOFs that may be subjected to calculation. Computational screening of vast

numbers of hypothetical framework materials, within some set of constraints, in order to

identify synthetic targets with desired properties is the most efficient means to identify the

best framework material(s) for any given application. Additionally, growing interest in more

exotic MOFs - MOFs that contain heavy and f−block elements, useful for their photolu-

minescence properties, means that such screening studies need to reach the entire periodic

table. In order to illustrate the capacity of such a screening study, and noting the interest

in chemically functionalizing framework linkers73–75 , we begin with the CoRE database and

functionalize each structure by replacing either 10 or 30 percent of linker hydrogen atoms

with either a fluoride or an amine functional group. The effect on the available pore fraction

is shown in Figure 10. The immediate effect of all functionalization, is to reduce the avail-

able pore volume fraction. Notably, the number of structures now having 0% available pore

volume rises from 15% in CoRE, to 26% and 28% when 10% and 30% of hydrogen atoms

are replaced with fluoride respectively. Similarly, replacing 10 and 30% of linker hydrogen
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atoms with amine functional groups raises the number of structures with fully blocked pores

to 28 and 34% respectively. The gravimetric and volumetric surface areas, shown in Figure

11 tell a very similar story with approximately 20% of functionalized structures having zero

surface area.

Figure 10: Available pore fraction of CoRE structures (blue) and functionalized structures.
Structures were functionalized with 10% fluoride (green), 30% fluoride (red), 10% amine
(aqua) or 30% amine (purple) functional groups and re-optimized.

4 Conclusions

We have further extended the Universal Force Field, providing parameters corresponding to

metal atom environments found in the Computation-Ready Experimental (CoRE) Database.

The new parameters increase the number of CoRE structures that may be calculated with
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Figure 11: Gravimetric and volumetric surface area of CoRE structures (blue) and func-
tionalized structures. Structures were functionalized with 10% fluoride (green), 30% fluoride
(red), 10% amine (aqua) or 30% amine (purple) functional groups and re-optimized.

UFF to 4892, more than double the 2281 that are possible using only the original UFF pa-

rameters while maintaining similar accuracy, with 95.0% of cell parameters being within 10%

of their experimental values. Where ambiguous geometries allow a metal to be described

as either tetrahedral or octahedral, the availability of both parameters allows for the best

fitting parameter to be employed. The new parameters may be added to any existing UFF

implementation and may be used to provide high quality initial geometries of framework

structures from the entire periodic table. As in the original derivation of UFF4MOF param-

eters, no partial charges were employed. It should be noted, though, that for the calculation

of host-guest systems involving polar molecules partial charges may become necessary. In

such cases, they can be added after calculation of the framework structure, e.g. using the

Ionizing Charge Equilibration (I-QEq) method.76

The strength and primary utility of UFF4MOF lies in rapid structure prediction. Follow-

ing a UFF4MOF calculation, the structure and consequent geometrical features are immedi-

ately available for use in screening.77 UFF4MOF naturally has the same accuracy limitations

as the underlying UFF and we therefore recommend caution in employing UFF4MOF for

the calculation of dynamic properties, for which it is not designed.
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Figure 12: TOC: UFF4MOF is extended for the entire periodic table using structures from
the Computation-Ready Experimental (CoRE) database. With this set of parameters, 99.6%
of CoRE structures are calculable.
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