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Abstra
t

We study 
onditions for sustained growth of 
omplex-

ity in an abstra
t model of parasiti
 
oevolution. Pre-

vious resear
h has found that 
omplexi�
ation is hard

to a
hieve if the evolution of the symbiont population

is 
onstrained by the hosts but the evolution of the

hosts is un
onstrained, or, more generally, if the task

di�
ulty is mu
h higher for the symbionts than for

the hosts. Here we study whether three bioinspired

methods known from previous resear
h on a
hieving

stability in 
oevolution (balan
ing, ni
hing, and re-

du
ed resistan
e) 
an restore 
omplexi�
ation in su
h

situations. We �nd that redu
ed resistan
e, and to

a lesser degree ni
hing, are su

essful if applied to-

gether with trun
ation sele
tion, but not if applied

together with �tness proportional sele
tion.

1 Introdu
tion

Evolutionary algorithms have been used su

essfully

to solve various optimization problems in
luding for

s
heduling, symboli
 regression in astronomy, opti-

mizing antenna designs and shapes of 
ar parts, �nd-

ing ele
troni
 
ir
uits that perform a given fun
tion,

and game playing (e.g., [1, 2℄). In the �eld of evolu-

tionary roboti
s, they are used to evolve topologies

and 
onne
tion weights of neural networks that in

turn 
ontrol robot behavior [3℄. However, when evo-

lution is used to 
reate robot behavior, the resulting


omplexity is typi
ally rather limited, espe
ially if


ompared to the results of more traditional engineer-

ing methods. It is therefore desirable to better un-

derstand how evolutionary pro
esses 
an lead to the

emergen
e of 
omplex adaptations, and what kinds

of adaptations they 
an produ
e.

In theoreti
al biology (where these questions are

also important), it is well understood that dire
t evo-

lution towards a �xed target 
annot produ
e some

kinds of 
omplexity [4℄. Coevolutionary pro
esses,

on the other hand, 
an over
ome some of these lim-

itations [5℄. Within the �eld of evolutionary 
ompu-

tation, it has been found that the 
oevolution of solu-

tion 
andidates with solution quality tests 
an lead to
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better results than dire
t evolution of solution 
andi-

dates against a stati
 �tness fun
tion [6℄. Obviously,


oevolution 
an provide a path of in
remental learn-

ing for autonomous agents. However, 
oevolutionary

dynami
s 
an also lead to undesired out
omes. Well

known problems are:

Disengagement: One population be
omes vastly su-

perior to the other su
h that no gradient

for learning is available any more;

Overspe
i�
ation: One population be
omes very su
-


essful in intera
tions with the parti
ular

individuals of the other population, but

la
ks su�
ient generality;

Strategy 
y
ling: Populations 
annot �nd a gener-

ally superior strategy, but only strategies

that are su

essful against some types of

intera
tion partners (
f. the �ro
k /pa-

per / s
issors� game), whi
h leads to the


y
li
 re-emergen
e of simple strategies

that are su

essful only against the 
ur-

rently present intera
tion partners.

A number of te
hniques have been used to prevent or

redu
e su
h problems:

Redu
ed virulen
e: Sele
ting for individuals in the

superior population that are less than op-

timal 
an prevent disengagement [7℄;

Balan
ing: Redu
ing the speed of evolution (i.e., in-


reasing generation length) for one pop-

ulation 
an help the other not to loose

tra
k [8℄;

Ni
hing: If the resour
es that 
an be provided by

the intera
tion with one parti
ular hosts

are limited and have to be shared by all

symbionts, this 
an enhan
e diversity in

the symbiont population [9, 10℄, whi
h

makes the population more adaptable in

the long run;

Spatial stru
ture: Only allowing lo
al intera
tions

between symbionts and hosts and/or for

sele
tion within one population 
an also

promote diversity [6, 11℄;

Hall of fame 
oevolution: If individuals have to 
om-

pete against intera
tion partners from

previous generations as well, this 
an pre-

vent strategy 
y
ling [8℄.

So far, 
oevolution has been typi
ally used either for

solving �xed problems like fun
tion approximation

(e.g., [6℄) or for �nding desired behaviors in evolution-

ary roboti
s (e.g., [12℄), and su

ess has been de�ned

mainly either subje
tively by inspe
tion of evolved

behavior, or as rea
hing the �xed goal. While a 
er-

tain amount of 
omplexi�
ation will typi
ally have to

o

ur in 
oevolutionary roboti
s for the emergen
e of

an interesting strategy (e.g., [13℄), this 
omplexi�-


ation is typi
ally neither the main fo
us, nor is it

expli
itly measured. In fa
t, 
omplex strategies do

not ne
essarily 
orrespond to 
omplex internal stru
-

tures of agents. They 
an also arise by intera
tion

with a su�
iently 
omplex environment [14℄. How-

ever, natural agents typi
ally have mu
h more 
om-

plex internal stru
tures (e.g., nervous systems) than

have arti�
ially evolved agents. Furthermore, their

behavioral 
omplexity far ex
eeds the 
omplexity so

far a
hieved in arti�
ial evolution. Besides, within

a given environment, there is 
ertainly a 
orrelation

between the internal 
omplexity and the 
omplexity

of the behavior. It is therefore desirable to study

more expli
itly whi
h 
onditions 
an lead to 
oevolu-

tionary 
omplexi�
ation of autonomous agents. The

type of 
omplexi�
ation that we are interested in is

not just an in
rease in the number of 
omponents.

We are interested in the number of 
omponents that,

taken together, solve a parti
ular problem arising as

a 
onsequen
e of the need to survive and reprodu
e,

or in other words, that 
an be seen as performing a

parti
ular fun
tion.

Abstra
t models of 
oevolution allow measure-

ments of 
omplexity, and make identi�
ation of the

fa
tors leading to 
omplexity more easy. Previous re-

sear
h on 
oevolutionary number games (e.g., [15℄)

may provide a starting point. However, this resear
h

was targeted at other questions about 
oevolutionary

dynami
s, and the used en
odings (single numbers or

ve
tors of a few 
omponent numbers) do not provide

the potential for 
omplexi�
ation. Previous biologi-


al resear
h on �Gene for Gene� 
oevolution models
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and various related extensions [16, 17℄ has fo
used on

the dynami
s of one gene or a �xed number of genes

with several (typi
ally 2) alleles ea
h that 
an make a

host resistant to infe
tion, or a pathogen virulent. In

these models, the more powerful alleles typi
ally in-


ur �tness 
osts, and the distributions of alleles over

time in the two populations are studied. These mod-

els are not 
on
erned with questions of 
omplexi�
a-

tion over time or the di�
ulties of �nding powerful

alleles in the �rst pla
e, and �arms ra
es� [18℄ arising

in these models typi
ally 
onsist of 
y
les where the

frequen
ies of a �nite number of di�erent strategies

in the populations in
rease and de
rease.

Further theoreti
al biology resear
h on 
oevolution

has been done using the Webworld family of models

[19℄. In the basi
 Webworld model, a spe
ies is 
har-

a
terized by a �xed size list of features. It intera
ts

with spe
ies that have other features as de�ned by a

randomly initialized feature intera
tion matrix. The

model 
onsists of phases were spe
ies sizes are 
om-

puted iteratively by means of di�erential equations

until the food web be
omes stable. In between these

phases, new spe
ies are 
reated by randomly 
hang-

ing the feature lists of existing spe
ies. This model

has been extended su
h that the number of features

of a spe
ies 
an vary within bounds, and a growth in


omplexity has been observed in the extended model,

although the reasons for that growth were not entirely


lear [20℄.

Only very few models have been 
reated to study


omplexi�
ation with abstra
t individual based mod-

els so far. The Food
hain model [21℄ models symmet-

ri
 
ompetitive 
oevolution between individuals that

are strings of letters with a �xed length. Some let-

ters 
an be used for atta
k, others for defense, and

the rest have no fun
tion. Mat
hing is done between

sequen
es of atta
k and defense letters present in the

genome of two individuals to determine whi
h one

gains from the intera
tion. Point mutations and du-

pli
ations are used in an evolutionary pro
ess that

leads to 
omplexi�
ation, i.e., a growth of fun
tional

subsequen
es in the genomes. One of us has pub-

lished more general work on number sequen
e games

[22℄. It was shown in this work that 
omplexi�
ation


an o

ur in models of mutualism, parasitism, and


ommensalism between two spe
ies. In some 
ases,

the growth of 
omplexity was apparently unbounded.

It has also been argued that these models therefore

ful�ll a previous formal de�nition of open-ended evo-

lution [23℄. Those few systems that were designed to

ful�ll this de�nition before were either very 
omplex,

making it hard to understand why they exhibited

this open-ended evolution, [24℄, or relied on diversity

rather than 
omplexi�
ation to produ
e open-ended

evolution [25℄. In the new model, the in�uen
e of

di�erent mutation and sele
tion methods, as well as

that of relative task di�
ulties for the two spe
ies,

were also investigated. It turned out that signi�-


ant and sustained 
omplexi�
ation only o

urs in

these models if the task di�
ulty for the symbionts

is not mu
h more di�
ult for the hosts. Of 
ourse,

when working with more realisti
 tasks (e.g., in evo-

lutionary roboti
s), the task di�
ulty for the various

populations is unknown in advan
e. Therefore, it is

desirable to have a method of 
oevolution that 
an

a
hieve 
omplexi�
ation over a wide range of task

di�
ulty ratios. We study here whether three of the

above mentioned te
hniques 
an 
ontribute to this

goal. We fo
us on balan
ing, ni
hing, and redu
ed

virulen
e (the last method is 
alled redu
ed resistan
e

here be
ause unlike in the work where the method

was introdu
ed, it is applied to the host population

here, not to the symbiont population). These meth-

ods are applied on parasiti
 
oevolution (the mutu-

alisti
 
ase is not of interest here be
ause as it has

been de�ned in [22℄, the task di�
ulty is always the

same for both populations). Furthermore, be
ause

previous resear
h has indi
ated that 
omplexi�
ation

in these s
enarios also depends on the used sele
tion

method (with trun
ation sele
tion typi
ally leading

to faster and more stable 
omplexi�
ation than �t-

ness proportional sele
tion), we 
ondu
t experiments

using both trun
ation sele
tion and �tness propor-

tional sele
tion here.

2 Methods

2.1 Number sequen
e games

There are two populations in the number sequen
e

games studied here. The genotype � and the phe-
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notype � of a member of either population is a se-

quen
e of numbers. These numbers 
an, for example,

represent enzymes that need to be expressed in a par-

ti
ular temporal order, or behavioral primitives that


an be 
omposed to rea
h a 
ertain goal. Typi
al

parasiti
 s
enarios in
lude host defense enzymes, and


orresponding neutralizing parasite enzymes, or be-

havioral primitives in a pursuit and evasion s
enario.

In every generation, ea
h organism in one popu-

lation is tested against every organism in the other

population. In the basi
 parasiti
 model, symbionts

gain a �tness bonus for every host organism whose

number sequen
e they 
ompletely mat
h. This means

that there must be pairwise mat
hes between 
orre-

sponding host and symbiont numbers. This pairwise

mat
hing is performed until either only the host se-

quen
e ends (the symbiont wins), only the symbiont

sequen
e ends (the host wins), both sequen
es end

(the symbiont wins), or a wrong number event o

urs

in the host sequen
e (the symbiont wins). A wrong

number event means that the defense produ
ed by

the host is ine�e
tive be
ause it violates externally

provided 
onstraints. To use su
h 
onstraints in the

parasiti
 model has proved to be bene�
ial in pre-

vious resear
h on the model be
ause otherwise the

problem to be solved by the symbionts (whi
h have

to exa
tly mat
h the host numbers) is mu
h more

di�
ult than the problem to be solved by the hosts

(whi
h 
an 
hoose any number), whi
h normally leads

to the hosts es
aping from the symbionts early in evo-

lution. We will report experiments below where we

remove these 
onstraints. A mat
h between two num-

bers is de�ned as equality here, but other relations

(like 
omplement) would be equivalent as long as they

do not 
hange the number of possible solutions.

Ea
h �tness bonus has a value of 1.0. To arrive

at the �nal �tness of an organism, these bonuses

are added, and then a �tness 
ontribution due to

genome length fl(o) = clp exp(−0.1·[genome length])
is added, where clp is a 
onstant that determines the


osts of adding and maintaining further genes.

The externally imposed 
onstraints on the host

number sequen
e are designed to ensure that only

a fra
tion 1/np of the newly added genes will be ef-

fe
tive, so the spa
e of host solutions is 
onstrained

exa
tly as mu
h as the spa
e of symbiont solutions

(where also only one number will mat
h at a given

position). In prin
iple, a random number 
ould be

drawn for ea
h sequen
e position at various stages

during 
oevolution when the 
onstraint information

is needed for the �rst time, but it is equivalent (and

easier to implement) to 
hoose the whole 
onstraint

sequen
e on
e at the beginning of evolution. Be
ause

this sequen
e is of potentially in�nite length, we take

the following rule-base approa
h: The �rst number

in the sequen
e must be 1, and a number at position

n+1 must have the value v(n+1) = (v(n) + 1)%np,

where 0..np−1 is the range of possible gene values and
'%' denotes the modulo operation. Thus, the only ef-

fe
tive gene sequen
e of length n < np takes the form

[1, .., n]. Now the resulting sequen
e is obviously one

of high regularity and therefore low algorithmi
 (Kol-

mogorov) 
omplexity, but it should be noted that nei-

ther the geneti
 system nor the �tness fun
tion (apart

from this 
onstraint) use any notion of neighborhood

of numbers, and there is no way of predi
ting future


onstraints based on previously seen 
onstraints with

the simple geneti
 representation and mutation oper-

ators that we use here, so we 
ould equivalently use

any other 
onstraint sequen
e, in
luding a 
ompletely

random one.

Simple �tness proportional sele
tion (without any

elite me
hanism) and trun
ation sele
tion (where

10% of the population is used as parents) is used.

All experiments use a well-mixed population without

any spatial stru
ture.

2.2 Geneti
 representation and oper-

ators

As already mentioned, the genome is basi
ally a se-

quen
e of numbers. Three mutation operators are

used on these sequen
es: add a number (with prob-

ability 0.2), delete a number (with probability 0.1),

and 
hange a number (with probability 0.2). Val-

ues are always randomly drawn with uniform prob-

abilities over the whole range. The operations are

only applied at the end of the sequen
e. Previous re-

sear
h has shown that if mutations are applied with

equal probabilities over the whole sequen
e length,


omplexi�
ation be
omes slower and mu
h less sta-

ble, and typi
ally needs very strong sele
tion to be
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Figure 1: Measuring irredu
ible fun
tional unit size

(IFUS) in symbionts. In this example, the host pop-

ulation size is 3, and the symbiont sequen
e mat
hes

all host sequen
es. IFUS is de�ned as the maximum

of the number of irredu
ible sites in a mat
hing se-

quen
e, where irredu
ible means that there is no in-

termediate reward provided by other mat
hes.

maintained at all [22℄. We have argued elsewhere that

applying mutations only to the most re
ently evolved

elements 
an not only be 
onsidered as a useful simple

�extreme 
ase � model of 
ertain biologi
al s
enarios,

but 
an also lead to sustained 
omplexi�
ation of so-

lutions in evolutionary roboti
s [26℄.

All populations are seeded with a 
ommon an
estor

that has a random sequen
e of length 1. Re
ombina-

tion is not used in the experiments reported here.

2.3 Measuring out
omes of 
oevolu-

tion

As in previous resear
h [22℄, we 
al
ulate irredu
ible

fun
tional unit size (IFUS) for organisms in the sym-

biont population. This is done by iterating over all


ases where an organism from the symbiont popula-

tion mat
hes an organism from the host population

in a given generation (see Fig. 1). The sites in the

symbiont genome that parti
ipated in that mat
h are

marked. All sites that also parti
ipated in shorter

mat
hes in the given generation are unmarked again.

IFUS is then de�ned as the maximum of the num-

ber of marked sites over all mat
hes. The highest

su
h values are re
orded every generation. Be
ause

IFUS takes into a

ount only sites that parti
ipated

in a
hieving a mat
h, it does not just measure se-

quen
e length, but 
omplexity of fun
tion. Be
ause

it ignores sites parti
ipating in other mat
hes, it may

a
tually underestimate 
omplexity. Nevertheless, as

explained in [22℄, it allows to study some interesting

questions about the 
apabilities of evolutionary pro-


esses, and we kept it here for 
omparability to the

earlier resear
h. A variant of the measure, fun
tional

unit size (FUS), is 
al
ulated without unmarking sites

that parti
ipated in shorter mat
hes. Its value, whi
h

is not reported here, is typi
ally higher by a small


onstant than that of IFUS in 
oevolutionary simu-

lations su
h as those reported here.

2.4 Redu
ed resistan
e

Starting from the observation that pathogens that

kill their host often do less well in the long run, a

method 
alled redu
ed virulen
e was introdu
ed in

[7℄, where symbionts that only win a fra
tion λ of

the 
ontests that the best adapted symbiont wins get

optimal �tness. Here, we deal with the problem of

es
aping hosts, so we modify the �tness of hosts 
or-

respondingly: fadj = fbest

(

2 fraw
fbest

λ
−

(

fraw
fbest

)

2

λ2

)

. This

equation des
ribes a parabola that has its maximum

at λ. The �tness adjustment 
ould be viewed as mod-

eling in a very simple way the phenomenon that hosts

that invest a lot into defense 
an spend less energy

for other fun
tions, e.g. reprodu
tion, and are there-

fore disadvantaged as 
ompared to hosts that invest

less in defense. By default, λ = 0.75 as in previous

work.

2.5 Balan
ing

In nature, hosts (e.g., mammals or birds) often have

longer generation times than symbionts (e.g., viruses

or ba
teria). This provides biologi
al motivation for

redu
ing the speed of evolution for the hosts in order

to help the symbionts not to loose tra
k. Preliminary

experiments where �xed generation ratios between

host and symbiont populations between 1:2 and 1:20

were used have not shown mu
h promise. Therefore,

we here fo
us on a method similar to balan
ing as

introdu
ed in [8℄: A new generation of hosts is only


reated if, in the previous generation, no host won

5



over all symbionts. Otherwise, only a new generation

of the symbionts is 
reated.

2.6 Ni
hing

In nature, a single host has only a �xed amount of re-

sour
es that 
an be exploited by the symbionts. The

well known evolutionary method of ni
hing, whi
h

has sometimes been applied to 
oevolution as well

[9, 10℄, models this by dividing the bonus obtainable

from winning over a given host equally among those

symbionts in the same ni
he � in this 
ase, this is

just those symbionts that won against that parti
ular

host. This simple ni
hing method does not have any

parameters, but we 
an easily generalize it by stat-

ing that ffinal =
forig

(niche count)x . Then x = 1 is the

standard 
ase and x = 0 
orresponds to not using

ni
hing at all. If we set 0 < x < 1, this 
orresponds
to a situation in whi
h several symbionts deplete host

resour
es subadditively, whereas for x > 1, they have

synergisti
 (superadditive) e�e
ts on host resour
es.

In prin
iple, it is also possible to set x < 0, although
one might wonder to what kind of biologi
al s
enario

this 
orresponds. What 
omes to mind are situations

where the host's immune system 
an be overpowered

more easily if more parasites are present, and there-

fore the gain for individual parasites is greater. S
e-

narios of roughly this kind have been reported in the


ontext of investigating quorum sensing in ba
teria

[27℄.

3 Experiments and results

A �rst set of experiment examines 
omplexi�
ation

when the host population is 
onstrained and �tness

proportional sele
tion is used (Fig. 2; as for all fol-

lowing results, 20 runs with di�erent random seeds

have been performed per 
on�guration). All 
on�gu-

rations a
hieve sustained linear growth of 
omplexity

in this 
ase. Compared to plain sele
tion, ni
hing

in
reases the �nal 
omplexity signi�
antly when ap-

plied on it own or together with balan
ing, whereas

balan
ing on its own, as well as redu
ed resistan
e,

signi�
antly de
rease the �nal 
omplexity.

Figure 2: Complexi�
ation when 
onstraints are

present and �tness proportional sele
tion is used.

Bla
k: default; blue: ni
hing; green: redu
ed re-

sistan
e; red: balan
ing; purple: balan
ing + ni
h-

ing. The 
entral line indi
ates the mean of 20 runs,

whereas the surrounding ribbon indi
ates the un
er-

tainty of the mean (standard error).

When the host population is 
onstrained and trun-


ation sele
tion is used (Fig. 3), all 
on�gurations

a
hieve sustained linear growth of 
omplexity, whi
h

is even faster than when using �tness proportional

sele
tion. Compared to plain sele
tion, ni
hing alone

does not 
hange anything. Balan
ing with or without

ni
hing leads to a signi�
ant de
rease in �nal 
om-

plexity, and redu
ed resistan
e even more so.

If the host population is not 
onstrained, it be-


omes mu
h more di�
ult for the symbionts to win

over the hosts. As a result, mu
h less 
omplexity

evolves. For �tness proportional sele
tion (Fig. 4),


omplexity 
onverges at a low level for plain sele
tion,

ni
hing and redu
ed resistan
e. However, balan
ing

applied alone or with ni
hing leads to a moderate

growth of 
omplexity.
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Figure 3: Complexi�
ation when 
onstraints are

present and trun
ation sele
tion is used. Bla
k (hid-

den behind blue): default; blue: ni
hing; green: re-

du
ed resistan
e; red (hidden behind purple): balan
-

ing; purple: balan
ing + ni
hing. The 
entral line in-

di
ates the mean of 20 runs, whereas the surrounding

ribbon indi
ates the un
ertainty of the mean (stan-

dard error).

If the host population is not 
onstrained and trun-


ation sele
tion is used (Fig. 5), a moderate growth

of 
omplexity is a
hieved with plain sele
tion. Bal-

an
ing leads to 
onvergen
e (if applied with ni
hing,

the level is higher than if applied without ni
hing).

Ni
hing signi�
antly in
reases the �nal 
omplexity.

Redu
ed resistan
e leads to a mu
h more dramati


in
rease of �nal 
omplexity, rea
hing about

2
3 of the

�nal 
omplexity in the 
onstrained hosts 
ase.

Taking a 
loser look at the redu
ed resistan
e

method when applied with trun
ation sele
tion in

the un
onstrained hosts 
ase (Fig. 6) and in the


onstrained hosts 
ase (Fig. 7), we �nd that sig-

ni�
ant 
omplexi�
ation is a
hieved in a relatively

wide parameter range, although the optima are at

Figure 4: Complexi�
ation when 
onstraints are not

present and �tness sele
tion is used. Bla
k (hidden

behind green): default; blue: ni
hing; green: redu
ed

resistan
e; red: balan
ing; purple: balan
ing + ni
h-

ing. The 
entral line indi
ates the mean of 20 runs,

whereas the surrounding ribbon indi
ates the un
er-

tainty of the mean (standard error).

di�erent parameter values, and that the parameter

ranges where signi�
ant 
omplexi�
ation is a
hieved

are similar for very di�erent task di�
ulty ratios.

Standard ni
hing proves superior in terms of 
om-

plexi�
ation when 
ompared to �generalized ni
hing�

with other ni
hing 
oe�
ients, as Fig. 8 reveals.

Trun
ation sele
tion was used with these experiments

Be
ause very strong sele
tion pressure was found to

be ne
essary for some of the experiments reported in

[22℄, we also examined 
omplexi�
ation when stan-

dard ni
hing is used together with trun
ation sele
-

tion with di�erent sele
tion strengths. As a result,

it was found (see Fig. 9) that using a 5% sele
tion

threshold did not lead to better results than the 10%

threshold that is used in all other experiments here,

whereas using a 20% threshold lead to mu
h worse

7



Figure 5: Complexi�
ation when 
onstraints are not

present and trun
ation sele
tion is used. Bla
k: de-

fault; blue: ni
hing; green: redu
ed resistan
e; red:

balan
ing; purple: balan
ing + ni
hing. The 
en-

tral line indi
ates the mean of 20 runs, whereas the

surrounding ribbon indi
ates the un
ertainty of the

mean (standard error).

results.

One might expe
t that ni
hing in
reases the diver-

sity in the population in the experiments reported

here. Snapshots were taken at generation 200 for

ni
hing and no ni
hing 
on�gurations using �tness

proportional and trun
ation sele
tion. It was mea-

sured for all generations ba
k to the �rst how many

of the individuals in that generation still had o�spring

in the �nal generation, in other words, the number of

lineages that survived to generation 200 (Fig. 10).

This shows that ni
hing does not make a di�eren
e if

the host population is 
onstrained. If the host pop-

ulation is un
onstrained, a higher lineage diversity is

present transiently approximately between 20 and 60

generations ba
k when ni
hing is not used. When

ni
hing is used, there is no higher diversity than in

Figure 6: Complexity (IFUS) rea
hed after 1000 gen-

erations without 
onstraints when using redu
ed re-

sistan
e with di�erent 
oe�
ients.

the 
onstrained hosts 
ase.

4 Dis
ussion

The goal of �nding a method that leads to stable 
o-

evolutionary 
omplexi�
ation even in the 
ase of un-

equal task di�
ulties has been a
hieved. Redu
ed re-

sistan
e a
hieves this if applied together with trun
a-

tion sele
tion. The results indi
ate that this method

is relatively robust with respe
t to di�erent task dif-

�
ulty ratios (from 1:1 to 1:10) and resistan
e redu
-

tion fa
tors. Ni
hing together with trun
ation se-

le
tion also a
hieves sustained 
omplexi�
ation, al-

though mu
h slower. However, mu
h remains un
lear

about why the examined stabilization te
hniques in-

tera
t with the sele
tion methods the way they do.

For the simplest s
enarios dis
ussed here, it is possi-

ble that using analyti
al models 
ould lead to further

8



Figure 7: Complexity (IFUS) rea
hed after 1000 gen-

erations with 
onstraints when using redu
ed resis-

tan
e with di�erent 
oe�
ients.

insights regarding that question.

While we have only looked at two extreme points in

terms of task di�
ulty ratios here, previous resear
h

suggests that results for intermediate task di�
ulty

ratios will also be intermediate between the results

for the extreme 
ases presented here [22℄ in terms of

both the �nal 
omplexity a
hieved and the presen
e

of linear growth of 
omplexity.

It is also desirable to maintain a high diversity of

solutions in the population both for pra
ti
al (fur-

ther adaptability) and theoreti
al (modeling ni
hing

and spe
iation) reasons. Standard ni
hing does not

a
hieve this goal with the studied task. In the future,

further resear
h on the in�uen
e of modi�ed versions

of ni
hing on population diversity will be 
ondu
ted.

In this regard, one might expe
t that introdu
ing spa-

tial stru
ture into the populations, either on its own

or in 
ombination with the methods studied here, will

lead to mu
h higher diversity.

Figure 8: The in�uen
e of ni
hing 
oe�
ients on 
om-

plexi�
ation. Bla
k: 1.0; blue: 0.5; green: 2.0; red:

-0.5; purple: -1.0; orange: -2.0.

The a
hieved rate of 
omplexi�
ation 
an be 
om-

pared to theories on the rate of evolution [28, 29, 30℄.

In the original 
on�guration (
onstrained sequen
es,

trun
ation sele
tion, none of the methods for enhan
-

ing 
oevolutionary stability used), whi
h is also one

of the fastest 
omplexifying, we have an IFUS of 641

after 1000 generations on average. Be
ause ea
h site


an be one of 10 di�erent numbers, the average in-


rease of information 
ontent (algorithmi
 
omplex-

ity) is ld10· 641
1000 ≈ 2.1 bit / generation (stri
tly speak-

ing, it is slightly lower be
ause the last few elements

of the sequen
e are not 
onverged in the population).

Following Worden [29℄, for a sele
tion strength of 10

(i.e.,

1
10 of the population is sele
ted as parents and

ea
h has 10 o�spring) we would expe
t a rate of less

than ld10 ≈ 3.3 bit / generation. (Noti
e that the

model assumes a �xed genome length. However, be-


ause we are applying mutations only at the end of

the sequen
e per default, the part of the genome that

is under a
tive evolution is of 
onstant size here, so we

9



Figure 9: The in�uen
e on di�erent sele
tion thresh-

olds on 
omplexi�
ation when ni
hing is used to-

gether with trun
ation sele
tion. Bla
k: 10%; blue:

20%; green: 5%.

expe
t the model to be valid for our 
ase.) Further-

more, this theory predi
ts that the rate grows log-

arithmi
ally with sele
tion strength, but is not 
or-

related to population size. As 
an be seen in �gure

11, the rate grows less than logarithmi
ally at higher

sele
tion strengths, and there is a weak 
orrelation

between the rate and population size for the exam-

ined range of parameters. As dis
ussed in [29℄, there


an be various fa
tors in any but the simplest s
e-

narios that prevent the theoreti
al speed limit from

being rea
hed. Nevertheless, the results indi
ate that

Worden's theory may be useful to get a rough esti-

mate of possible rates of evolution in this s
enario

and others, whi
h may also allow investigating how

various fa
tors related to evolutionary operators and

en
odings in�uen
e the a
tual rates of evolution in

future experiments.

The fun
tional sequen
es in the genome are essen-

tially equivalent to random sequen
es (see remarks

Figure 10: The in�uen
e of ni
hing on lineage diver-

sity. Bla
k (hidden behind blue): 
onstraints / no

ni
hing; blue: 
onstraints / ni
hing; green: no 
on-

straints / no ni
hing; red: no 
onstraints / ni
hing.

in se
tion 2.3), therefore we basi
ally measure the

algorithmi
 or Kolmogorov 
omplexity of features in-

volved in mat
hes [31℄. Of 
ourse, another funda-

mental question around the issue of 
omplexi�
ation

is whether the 
omplexity 
on
erned with the stru
-

tural regularities 
an in
rease [32℄. This questions

is not addressed by our simulations. We regard the

growth of algorithmi
 
omplexity of the genotype and

phenotype as a ne
essary (but not su�
ient) 
ondi-

tion for the (
o-)evolution of 
omplex behaviors.

Obviously, sustained linear growth of fun
tional


omplexity is a desirable goal for evolutionary

roboti
s. Some previous resear
h indi
ates that the

results a
hieved here 
an indeed be transferred to evo-

lutionary roboti
s provided that the representations

and evolutionary operators for the 
ontrollers (in this


ase, neural networks) are adjusted a

ordingly [26℄.
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Figure 11: Information gain per generation (bla
k)

as 
ompared to Worden's predi
ted speed limit for

evolution (blue). Left: For di�erent population sizes;

Right: For di�erent sele
tion strengths.
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