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Abstract

The feasibility of heating sector integration into future highly renewable electrical grid is examined for a

regional and pan-European network. A novel geographical weather dependent model for calculating the heat

demand using a temporal resolution of an hour with a spatial resolution of 40x40km2 and an optimized

solution for the utilization of excess renewable generation with least energy needs is presented. Heating

sector is modeled and coupled separately with two different heat coupling models, heat-pump coupling and

electric-resistance coupling, both having heat-storage and gas-boiler. Results show coupling with the regional

network requires least heat-storage capacity and coupling with an individual country network requires the

least gas-boiler capacity. However, coupling with the pan-European network results in least balancing energy

needs. It is found that heat-pump coupling provides more benefit than the electric-resistance coupling, with

4 times more heat-storage energy and 38% less requirement for the gas-boiler energy. Optimum energy mix

between the heat-storage energy and gas-boiler energy suggests that the present amount of excess generation

is not enough to fully support the heating sector, but if the renewable energy generation is increased by 50%

then heat-storage will play an important role.

Keywords: Renewable energy; excess generation; heat pump; heat coupling; heat storage; district heating.

1. Introduction

With recent environmental and health concerns, there is an immense increase in the integration of de-

centralized generation into the electrical grid. In 2009, the European Union (EU) set an ambitious target of

achieving an 80% reduction in greenhouse gas (GHG) emissions by the year 2050 from the level recorded in

1990 [1]. In the recent report titled ‘energy roadmap 2050’, the EU has proposed six different strategies which5

focus on the electrification of the heating sector [2]. Furthermore, several researchers have suggested that it
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Nomenclature

αWn share of wind generation in the total renew-

able energy generation

∆n mismatch

γn gross share of the renewable energy genera-

tion

KEn heat-storage capacity

KNn household natural gas-boiler capacity

〈.〉 time average of all 8760 hours from Jan

2011 to Dec 2011

ω proportionality factor between the degree

days and the annual space heat demand

σ share of the energy content from the ther-

mal heat-storage∑
t sum of all 8760 time-step values in a region

or country

∆̃Hn
heat mismatch

υn(t) residual heat mismatch

B balancing energy

En energy content from the thermal heat-

storage

GSn(t) solar generation

GWn (t) wind generation

Gn generation

GBn backup energy

Hn heat demand

Ln electrical-load

n index to represent each region or a country

separately

Nn energy content from the household natural

gas-boiler

p population density

Pn residual electrical mismatch

Pex excess generation

Qdhw domestic hot water demand

Qsh space heat demand

R2 square of the Pearson product moment cor-

relation

T outside dry bulb temperature

t index representing an hour from Jan 2011

to Dec 2011

tbh base temperature

COP coefficient of performance

DHDN district heating distribution network

DHW hot water required for household activities

HDD heating degree days

HP large scale heat-pump

HTS high temperature storage

R electric-resistance

SH heat required to heat buildings

TES thermal energy storage

is feasible to fulfill 100% energy requirements using renewable resources. Delucchi et al. [3] and Jacabson

et al. [4] proposed the possibility of providing all energy using wind, water and solar power, Lund et al.
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[5] and Connolly et al. [6] discussed 100% renewable energy systems for Denmark and Ireland respectively.

Glasnovic et al. [7] and Lund et al. [8] have provided the vision of renewable energy as a source of electric10

power for sustainable development.

Wind and solar electrical generation have dominated other renewable generation sources and their cost

effectiveness is already comparable to fossil fuels [4]. However, the dependence of wind and solar generation on

weather makes the electrical grid vulnerable to power outages and shortages. Recent studies have found that

for higher penetration of renewable electricity systems, it is more economical to have excess generation rather15

than using electrical storage [9] or generating according to the demand [10]. The coupling of the heating sector

with excess generation for the cost optimum operation is recommended in [11, 12], but technical feasibility for

the secure operation of the European energy network is still unknown and the main objective of this study.

In this paper the feasibility and an optimum strategy for the coupling of heating sector with pan-European

and regional network is discussed. Previously, Budischak et al. [13] and Pensini et al. [14] have concluded20

that the heat coupling systems are both technically and economically feasible for the US electrical grid and

utilization of excess renewable generation in such system not only leads to reduction in the electrical storage

but also to a decrease in the cost of electricity generation.

However, limited knowledge is available on the European electrical grid from this aspect. Bossmann et al.

[15] has calculated the potential of electric heating systems for the integration of renewable energy sources25

and found it to be relatively higher for the United Kingdom than for Germany and France. Bach et al. [16]

and Ommen et al. [17], has discussed the technical and private economic aspects of the integration of large

scale heat pumps and lowering the district heating temperature. Lund [18] has identified electric heating

conversion as central solution for achieving CO2 reduction targets in Denmark and Thellufsen et al. [19], has

recommended the benefit of coordinating savings from the synergies of the electricity and district heating30

sector. The potential benefits of a strong renewable friendly policies for a German heating market have been

estimated by Bauermann [20] and the large scale implementation of district heating system for 30 European

countries by Persson et al. [21]. But there are still several unanswered questions:

• how our will network behave after integrating different heat coupling model variants?

• how variation in the wind and solar mix (α) and renewable energy generation (γ) will affect our network?35

• how much heat-storage energy and gas-boiler energy will be required?

• will a connected pan-European electrical network affect the required heat-storage capacity and gas-

boiler capacity?

This study answer these questions by using the same heat coupling models as used by Pensini et al.

[14] and investigates how different networks will respond to fluctuating weather patterns. For this purpose,40

historical weather and energy consumption data is used with a temporal resolution of an hour and a spatial

resolution of 40 x 40 km2. Furthermore, all parameters and technological constraints have been normalized
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with respect to electrical-load and heat demand requirements making these results more robust, practical

for long term analysis and usable for pricing schemes of future networks. The use of such weather based

modeling is well-established and has been used for several important findings such as;45

• determining an optimal mix between the wind and solar generation [22, 23].

• identifying electrical grid storage needs [9, 24].

• impact of transition to a pan-European renewable electrical grid [11, 25–27].

• feasibility of interconnected fully renewable US electrical grid [12, 28],

• calculating backup flexibility in large-scale renewable systems [29].50

In this study, two different variants of the heat coupling models have been investigated: heat-pump

coupling and electric-resistance coupling. Besides the method of heat conversion, the major difference between

these two models is the presence of district heating distribution network. Heat-pump coupling model assumes

a centralize heat-storage, which is integrated into the already present district heating distribution network.

Any excess heat is stored in the centralize heat-storage and heat is provided when required by the customers.55

While, electric-resistance model does not have a centralize heat-storage. Excess generation is delivered

directly to the consumers and stored in an on-site heat-storage.

The paper will proceed as follows: the methodology for electrical grid and heating sector modeling is

explained in section 2.2 and 2.3 respectively. Subsequently, the geographical weather dependent model for

calculating the heat demand and heat coupling models is introduced in section 2.4 and 2.5. It is assumed,60

that each region and country has its own heat coupling and they can share their heat-storage energy and

gas-boiler energy with each other. Then, in section 3 both heat coupling model are analyzed and compared

for different networks and the optimum wind and solar mix for reduced backup energy, gas-boiler energy

and heat-storage energy need is calculated. Finally, in section 3.4 the need for required heat-storage and

gas-boiler capacity and the optimum energy mix between heat-storage and gas-boiler energy is discussed.65

The results are presented in section 4 and we discuss the strategy that is most suitable for the heat coupling.

2. Methodology

2.1. Weather driven modeling

This analysis is based on a robust weather driven modeling, where 35 years (1979-2013) of weather

data is taken from NCEP(National Centers for Environmental Prediction)-CFSR(Climate Forecast System70

Reanalysis) [30, 31] and 8 years (2000-2007) of wind, solar generation and electrical-load time-series for

30 European countries is taken from Ref [22, 24, 32]. Both of these historical data-sets have a temporal

resolution of an hour and a spatial resolution of 40 x 40 km2. Wind and solar are taken as renewable energy

sources, as they constitute major share in the variable renewable energy sources. However, other energy
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sources (biomass, hydro, tidal and conventional generation) are assumed to be present for instantaneous or75

emergency backup purposes. Data for each country is collected by the sum of 40 x 40 km2 regions and

represented by a node n and accumulation of 30n nodes give a pan-European analysis. This method of

modeling has been previously used for several findings in [9, 11, 12, 22–29].

2.2. Electrical grid modeling

Calculating the mismatch ∆n is central to this research. Mismatch ∆n at a node n is the difference80

between the electrical-load Ln and the generation Gn from wind GWn (t) and solar GSn(t) generation.

Gn(t) = GWn (t) +GSn(t) (1)

αWn =

〈
GWn

〉
〈Gn〉

(2)

γn =
〈Gn〉
〈Ln〉

(3)

∆n = γn 〈Ln〉
[
(1− αWn ).GSn(t) + αWn .G

W
n (t)

]
− Ln(t) (4)

In the above expression, wind and solar generation at a node n and time t is first normalized to an

average of unity and then scaled with the gross mean electrical-load 〈Ln〉. Here, the symbol 〈.〉 represents

time average and Ln is the electrical-load in MW at a node n and time t. The share of wind generation in

total renewable energy generation Gn is defined by αWn . The relative share of wind generation is denoted by85

αWn .G
W
n and the corresponding share of solar generation is (1−αWn ).GSn . Renewable energy generation γn is

the gross share of renewable energy generation. It is a ratio between the average renewable energy generation

and average electrical-load and used as a scaling factor to model the network with different gross share of

renewable generation.

Excess generation Pex in a network is calculated from intervals where the mismatch is positive. Whereas,90

backup energy GBn is calculated from intervals where the mismatch is negative. Backup energy GBn is the

energy deficit in a network and needs to be fulfilled by other energy sources.

Pex(t) =

|∆n(t)| if ∆n(t) ≥ 0,

0 otherwise.

(5)

GBn (t) =

|∆n(t)| if ∆n(t) ≤ 0,

0 otherwise.

(6)

The equation for residual electrical mismatch Pn at specific node n becomes

Pn(γn, αn; t) = ∆n(γn, αn; t) +GBn (t)− Pex(t) (7)
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2.3. Heating sector integration modeling

Heat mismatch ∆̃Hn plays an important role in the integration of the heating sector. Heating sector is95

modeled exactly in the same way as the electrical grid in 2.2 and the heat demand Hn is normalized to the

mean heat demand 〈Hn〉. Heat mismatch ∆̃Hn
at a node n and hour t, is the difference between the excess

generation Pex in an electrical grid and heat demand Hn. Using eq(7),

∆̃Hn
(γn, αn; t) = ∆n(γn, αn; t) +GBn (t)− Pex(t) +Hn(t) (8)

Heat mismatch ∆̃Hn
is negative for intervals where the network has excess heat and can be stored into the

heat-storage En. Whereas, heat mismatch ∆̃Hn is positive for intervals where the network has heat-deficit100

and the gas-boiler Nn is to be used as backup heat.

En(t) =

|∆̃Hn
(t)| if ∆̃Hn

(t) ≤ 0,

0 otherwise.

(9)

Nn(t) =

|∆̃Hn(t)| if ∆̃Hn(t) ≥ 0,

0 otherwise.

(10)

Residual heat mismatch υn(t) after the integration of heating sector at a node n then becomes,

υn(t) = ∆̃Hn
(t) + En(t)−Nn(t) (11)

Figure 1: Seasonal pattern of electrical-load Ln, heat demand Hn and excess generation Pex at an hourly resolution for a

pan-European network. Fig (a) show electrical-load and heat demand and fig (b) show excess generation and heat demand.

These seasonal patterns indicate similarity between the wind generation and heat demand, as both are higher in winter and

lower in summer. Here, heat demand is normalized to the average heat demand and excess generation is normalized to the

average electrical-load.

Backup energy GBn and gas-boiler Nn will collectively be called ‘Balancing’ Bn, as they balance the

network. Before introducing the heat coupling models, we will introduce our geographical model which has

been used for calculating the heat demand.105
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2.4. Geographical weather dependant heat demand model

Unfortunately unlike the electricity sector, there are several small scale operators in the heating sector

which limits the availability of heat demand data. There are few geographical models proposed for calculating

the heat demand in [33–37], but none of these provide heat-demand time-series for an entire country or Europe.

Therefore, we have created a geographical weather dependent model for calculating the heat demand which110

take variations in outside temperature for the heat demand estimation, with a temporal resolution of an hour

and a spatial resolution of 40 x 40 km2. This geographical model has been validated by calculating heat

demand for the city of Aarhus (Denmark) and comparing it with that given in [38].

This geographical model uses temperature data taken from NCEP CFSR [30, 31] and population density

p from [39]. Heat demand Hn is initially calculated at a regional scale of 40 x 40 km2 and then aggregated115

for a country and entire European scale. Heat demand Hn can be distinguished into space heat demand Qsh

and hot water demand Qdhw.

Hn(t) = Qsh(t) +Qdhw(t) (12)

Space heat demand is the heat required by buildings and is calculated by using ‘degree-day method’.

Whereas, water demand is the heat required for domestic purposes i.e. shower, washing etc and has been

assumed to remain constant throughout the year.120

In figure 2, it can be observed that few regions of Germany, the Netherlands and United Kingdom have

more space heat demand than others. Even the northern part of Europe has more colder climate and

temperature variations but the central Europe has greater space heat demand. Another conclusion that can

be drawn that the central European countries have more heat losses than Nordic countries. This can be

realized as our geographical model only uses temperature variations for calculating the space heat demand.125

2.4.1. Degree-day method

Degree-day method is a commonly used to estimate space heat demand. Estimations are pretty close

to the real heat demand as space heat demand Qsh depends on the outside temperature. This method has

been used for several studies in [40–48] and compares the outside dry bulb temperature T from the base

temperature tbh. Where, base temperature tbh is the temperature below which space heat is needed in the130

buildings.

Heating degree days (HDD) at a certain hour are calculated by subtracting the temperature T of that

hour from the base temperature tbh and if the temperature T is above the base temperature tbh then the

heating degree days are zero. Space heat demand Qsh is calculated by multiplying heating degree days (HDD)

with the heat factor ω. Heat factor ω is a ratio between the cumulative annual heating degree days (HDD)135
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Figure 2: Results from the geographical heat demand calculation model, annual heat demand Hn at a spatial resolution of 40 x

40 km2 for the year (2011). Fig (a) show population density p [normalized] and Fig (b) show cumulative annual heating degree

days (hours) - onshore. Figs (c) and (d) show, the annual distribution of space heat demand Qsh and hot water demand Qdhw

in different regions of Europe. (For interpretation of the references to color in this figure legend, the reader is adviced to refer

to the web version of this article).

and annual space heat demand Qshannual
. It is taken from Ref [49, 50] and shown in fig 3.

HDD(t) =

tbh − |T | if |T | ≤ tbh,

0 otherwise.

(13)

Qshannual
= ω.p.

8760∑
t=1

HDD(t) (14)

ω =
Qshannual

p.
∑8760
t=1 HDD(t)

(15)

Qsh(t) = p.ω.HDD(t) (16)

It is important to realize, the reliability of heat demand estimation from the degree-day method depends

upon the accuracy of temperature measurement T and the selection of correct base temperature tbh. Incorrect

base temperature tbh may lead to quite misleading results. Moreover the degree-day method assumes a linear

relationship between the temperature above or below the base temperature tbh and space heat demand is140

proportional to the heating degree days [42, 45].
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Figure 3: Country specific average annual energy demand in Europe. Fig (a) show annual electrical-load Ln (blue) and annual

heat demand (red), taken from [26, 32, 49]. Fig (b) show share of space heat demand Qsh (magenta) and share of hot water

demand Qdhw (yellow) in the annual heat demand Hn, taken from [50]

2.4.2. Regression analysis

As discussed above, the importance of correct base temperature tbh selection. There is no fixed standard

value in the literature. The base temperature tbh varies between 15 to 20oC by country and region. The base

temperature tbh is taken as 17oC for the United Kingdom in [42]. Whereas, it is taken as 15oC and 18.5oC145

for the Greece in [43, 46]. It is necessary to have a constant base temperature value for the comparison of

heat demand between different geographical regions. Therefore, we have calculated an optimum value of

base temperature tbh by regression analysis on actual heat demand data (year 2011) for the city of Aarhus,

Denmark. This is the method used by Burzynski et al. in [42].

Yi = jxi + βi (17)

In the above expression, Yi is the space-heat demand, j is the gradient, x is the degree days and β is the150

error or intercept. The value of base temperature tbh which gives the square of Pearson product moment

correlation (R2) closest to 1 is chosen as an optimum. The correlation is calculated between the space heat

demand and degree days. Results from the fig 4 and table 1 show 15oC as an optimum base temperature tbh.
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Figure 4: Regression analysis on heat demand (year 2011) for the city of Aarhus (Denmark).

tbh 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0

Gradient 31.8 31.1 30.5 29.9 29.5 29.1 28.7 28.4 28.1 27.9 27.6

Intercept 123.6 115.5 107.0 98.2 89.0 79.4 69.4 59.1 48.6 37.9 27.0

R2 0.845 0.84 0.834 0.83 0.828 0.822 0.82 0.819 0.816 0.813 0.80

Table 1: Results for calculating the optimum base temperature tbh from regression analysis.

2.4.3. Water heat demand

Hot water demand Qdhw is calculated from the average annual hot water demand Qdhwannual
, taken from155

[50]. It is assumed that the hot water demand remains constant throughout the year and is proportional to

the population density p.

Qdhw(t) =
Qdhwannual

8760
(18)

2.5. Heat coupling models

The feasibility and operational behavior of the following two heat coupling models will be analyzed with

different combinations of wind and solar mix (αn) and renewable energy generation (γn). These two heat160

coupling models, heat-pump coupling and electric-resistance coupling were first discussed for the US network

(PJM Interconnection) by Pensini et al. in [14]. Besides the method for heat conversion the major difference

is the location of heat-storage. Heat-pump coupling has a large scale heat-pump connected with centralize

heat-storage, whereas electric-resistance coupling is an on-site model which is installed the consumer’s end.

However both couplings use an on-site gas-boilers as backup.165

Considerable system losses have been taken to get realistic results and assumed that the losses are basically

thermal heat losses. The district heating distribution network (DHDN) and heat-storage, thermal energy

storage (TES) and high temperature storage(HTS) have an efficiency of 90%, electric-resistance (R) and

gas-boiler (N) have an efficiency of 100% and heat-pump (HP) has a coefficient of performance (COP) of 3.

These are the same efficiencies used by Pensini et al. in [14] and results can be compared.170
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Technically, there is no difference between the two heat-storage (TES) and (HTS), except the limit on

the capacity available for the energy content storage. Thermal energy storage (TES) is a large water energy

storage tank located at the district heating company. Conversely, high temperature storage (HTS) is a small

ceramic storage (3-6 m2) which can store the hot water for few days [14]. Both (TES, HTS) will be called as

heat-storage to overcome the confusion.175

2.5.1. Heat-pump coupling

Heat-pump coupling uses heat-pump to convert excess generation into heat. Heat from the heat-pump

(HP) enters the district heating distribution network (DHDN) and is then delivered to consumers. An on-site

gas-boiler (N) is also present as a backup heat. In case, if less amount of heat is required by consumers then

a centralize heat-storage (TES) is available for the storage of this excess heat. The detailed working principal180

of this coupling is graphically shown in figure 5.

Figure 5: Functional flow block diagram of heat-pump coupling
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2.5.2. Electric-resistance coupling

This coupling is simpler than the previous. It uses electrical resistance (R) to convert excess generation

into heat which is delivered directly to consumers and an on-site gas-boiler (N) is present as a backup. In

case, if there is excess heat then an on-site heat-storage (HTS) is available at consumers end. The detailed185

working principal of this coupling is graphically shown in figure 6.

Figure 6: Functional flow block diagram of electric-resistance coupling

3. Analysis and discussion

This section present results from this study and compares the outcome from heat coupling models for

three different networks i.e pan-European, country and regional network. First, the scope of simulations for

the minimum excess generation and backup energy for each electrical grid is discussed. Then the minimum190

heat-storage energy and gas-boiler energy for both heat couplings is analyzed. Subsequently, the balancing

energy with combining both electrical grid and heating sector is evaluated. Later the design parameters for

the heat-storage capacity and gas-boiler capacity are calculated. Finally, an optimum energy mix between

the heat-storage energy and gas-boiler energy is found.

Electrical-load, generation and heat demand time-series are first calculated at a regional scale of 40x40195

km2 from the section 2.2 and 2.4, and then aggregated for a country and pan-European network. Electrical
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grid is assumed to be unconstrained and without losses. In simulations, Denmark is chosen for a country

network and the city of Aarhus is selected for a regional network analysis. The actual electrical-load (2009)

and heat demand (2011) time-series for the city of Aarhus, Denmark were taken from the Aarhus municipality.

The behavior of each network with combinations of varying wind and solar mix (α) and renewable energy200

generation (γ) is analyzed, and following questions are answered for different scenarios: energy required after

the integration of the heating sector, the required heat-storage capacity and gas-boiler capacity required with

sharing mismatches, the behavior of a connected pan-European network and decentralized regional networks

with heat coupling models.

3.1. Minimizing excess generation and backup energy205

Excess generation Pex and the possible reduction in backup energy GBn between networks is calculated

by comparing the mismatch ∆n for a regional electrical grid,

PRegional
extotal

=

8760∑
t

∞∑
n

[∆n(t)]+,G
BRegional

ntotal
=

8760∑
t

∞∑
n

[∆n(t)]− (19)

with the pan-European electrical grid.

PPan-European
extotal

=

8760∑
t

[
30∑
n

∆n(t)

]
+

,GB
Pan-European

ntotal
=

8760∑
t

[
30∑
n

∆n(t)

]
−

(20)

In regional electrical grid eq.(19), excess generation and backup energy is calculated from the sum of

positive and negative mismatch ∆n in a 40x40 km2 region. However, for the country and pan-European210

electrical grid eq.(20) the mismatches for all 40x40 km2 regions are first added together and then the positive

and negative mismatch ∆n is calculated. Thus, one region’s positive mismatch is canceled by others negative

mismatch.

In total six simulations are performed and the excess generation and backup energy is analyzed by varying

wind and solar mix (α) from 0-1 and renewable energy generation (γ) from 0-2. The share of wind generation215

is maximum at α =1. When γ ≤ 1, the renewable energy generation is below or equal to the average

electrical-load demand, but when γ > 1 the renewable energy generation is more generated than the required

electrical-load demand. This excess generation and backup energy calculation at γ > 1 extends the earlier

finding in [9, 24, 26, 28] and adds regional electrical grid into the analysis.

It is observed that all electrical grids behave similarly but the pan-European electrical grid has least220

requirement for the backup energy. The backup energy in all networks reduces with the increase in wind

generation and renewable energy generation, but it reduces drastically at the renewable energy generation

γ ≥ 1.5. These results are similar to the ones discussed by Rolando et. al [26] and Becker et. al [28], where

the connected electrical grid leads to the reduction of backup energy by around two fifth for a pan-European

network and around one fourth for the contiguous US electrical grid.225
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The excess generation shows trend opposite to the backup energy. In this study it is found that this

reduction in backup energy GBn comes at an expense of reduction in the excess generation Pex. Excess gener-

ation for the pan-European electrical grid is reduced by almost 40% than available in the regional electrical

grid. This limits the feasibility of the heat coupling for the pan-European electrical grid. Furthermore, there

is quite an increase in the excess generation obsereved after the renewable energy generation γ > 1. This is230

similar to the high penetration of renewable energy in the US network (PJM Interconnection) discussed by

Budischak et al. [13] and Pensini et al. [14]. These results for the backup energy and excess generation are

shown in fig 7.

Figure 7: Excess generation 〈Pex〉 and backup energy
〈
GB

n

〉
, as a function of wind/solar mix (α) and renewable energy generation

(γ) for the pan-European electrical grid (first column), Denmark electrical grid (central column) and Aarhus electrical grid (last

column). Figs (i),(ii),(iii) represents the excess generation 〈Pex〉 and figs (iv),(v),(vi) represents the backup energy
〈
GB

n

〉
. Here,

excess generation 〈Pex〉 and backup energy
〈
GB

n

〉
are the mean of annual time-series (8760) and both are normalized to each

networks average electrical-load. (For interpretation of the references to color in this figure legend, the reader is adviced to refer

to the web version of this article).

3.1.1. Optimum wind and solar mix

Backup energy GBn in each network has to be fulfilled from other conventional and instantaneous emer-235

gency energy sources, as no electrical storage is assumed to be present. An optimum wind and solar mix for

the minimum backup energy is calculated and results are compared.

GB
opt

n = minαW
n

∑
t

[∆n(t)]− (21)

Backup energy varies with increase in the share of wind generation and is found to be minimum at wind

and solar mix of 80/20, than the wind only generation. Backup energy for the pan-European electrical grid is
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found to be minimum among all networks and requires upto 26% of less energy than the wind only generation.240

Whereas, backup energy for the country and regional electrical grid is identical. These optimal wind and

solar mix results for the pan-European electrical grid are same as discussed by Rasmussen et. al [9] and can

be observed in fig 8.

Figure 8: Backup energy
〈
GB

n

〉
as a function of wind/solar mix (α) and renewable energy generation (γ = 1) for each network.

3.2. Minimizing heat-storage and gas-boiler energy

Heat-storage energy En and gas-boiler energy Nn is needed to effectively fulfill the heat mismatch ∆̃Hn245

between the heat demand Hn and excess generation Pexn . The possible reduction in the heat-storage energy

and gas-boiler energy is calculated by comparing the heat mismatch ∆̃Hn
between the regional network,

ERegional
total =

8760∑
t

∞∑
n

[∆̃Hn
(t)]−,N

Regional
total =

8760∑
t

∞∑
n

[∆̃Hn
(t)]+ (22)

with the pan-European network.

EPan-European
total =

8760∑
t

[
30∑
n

∆̃Hn(t)

]
−

,NPan-European
total =

8760∑
t

[
30∑
n

∆̃Hn(t)

]
+

(23)

As in 3.1, the heat-storage energy and gas-boiler energy for a regional network eq.(22) is calculated from

the negative and positive heat mismatch ∆̃Hn in a 40x40 km2 region. However, for the country and pan-

European network eq.(23) the heat mismatches for all 40x40 km2 regions are first added together and then250

the positive and negative heat mismatch ∆̃Hn
is calculated.

In total twelve simulations are performed and the required heat-storage energy and gas-boiler energy is

compared for each network. It is found, heat-storage energy is lowest for the regional network and gas-

boiler energy is lowest for the country network. The pan-European network and regional network behave

quite similarly with increase in the renewable energy generation (γ), but major difference is observed in the255

heat-storage energy.

It is usually undesirable to increase the renewable energy generation greater than the electrical-load

demand, but it is found that the gas-boiler energy becomes minimal at the renewable energy generation γ ≥

1.5. Budischak et al. [13] and Pensini et al. [14] have also concluded that energy costs for the US network

(PJM Interconnection) becomes minimal with the higher penetration of renewable energy.260
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While analyzing two heat coupling models it is observed, heat-pump coupling provides almost 4 times

more heat-storage energy and requires upto 38% less gas-boiler energy than the electric-resistance coupling.

These observations, especially increase in the heat-storage energy have been discussed for the US network

(PJM Interconnection) by Pensini et. al [14]. The behavior of both heat couplings with the variation in wind

and solar mix (α) from 0-1 and renewable energy generation (γ) from 0-2 is shown in fig 9, and results are265

summarized in table (2).

3.2.1. Optimum wind and solar mix

As mentioned above, the heat-storage energy and gas-boiler energy depends on the wind and solar mix.

An optimum wind and solar mix is substantial for calculating the minimum energy needs in each network.

Eopt
n = minαW

n

∑
t

[∆̃Hn
(t)]−, Nopt

n = minαW
n

∑
t

[∆̃Hn
(t)]+ (24)

The higher values of the heat-storage energy and gas-boiler energy will explain the greater amount of270

heat-storage capacity and gas-boiler capacity is required by the network. Heat-storage energy is found to

be minimum for the regional network and gas-boiler energy is minimum for the country network. However,

interestingly the optimum wind and solar mix for all networks is at 80/20. Heat storage energy is minimum

at the wind solar mix of 80/20, but the gas-boiler energy is minimum for wind only generation than with

the wind/solar mix. These results suggests that this strong correlation between the wind generation and275

heat demand in Europe can be used for the reduction of gas-boiler energy. This gives Europe with greater

potential of wind generation utilization for the heating sector than US network (PJM Interconnection). These

results are shown as shown in fig (10).

With heat-pump coupling, the heat-storage energy is reduced by almost 46% and the gas-boiler energy

is increased by almost 12% at wind and solar mix of 80/20, than a wind only generation. However, with280

electric-resistance coupling the heat-storage energy is reduced by almost 57% and the gas-boiler energy is

increased by almost 7% at wind and solar mix of 80/20, than a wind only generation.

It is observed that the heat-pump coupling provides 4 times more heat-storage energy than the electric-

resistance coupling. This can be explained due to the coefficient of performance (COP) of a heat-pump. These

observations give another perspective to earlier findings in [22, 26, 28], where an interconnected electrical285

grid leads to lowering the backup energy. These results for both heat couplings are summarized in table (2).

3.3. Minimizing balancing energy

Balancing energy Bn is the total energy required by a network when both electrical grid and heating

sector are combined together. It is the sum of backup energy GBn and gas-boiler energy Nn.

Bn = GBn +Nn (25)

As calculated earlier, backup energy GBn is minimum for the pan-European electrical grid. Heat-storage

energy En and gas-boiler energy Nn are minimum for the regional network and country network respectively.
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(a) Heat-pump coupling

(b) Electric-resistance coupling

Figure 9: Heat-storage energy 〈En〉 and gas-boiler energy 〈Nn〉 as a function of wind/solar mix (α) and renewable energy

generation (γ) for the pan-European network (first column), Denmark network (central column) and regional network (last

column). Figs (a)(i),(ii),(iii) represents the heat-storage energy 〈En〉 and figs (a)(iv),(v),(vi) represents the gas-boiler energy

〈Nn〉 for networks with heat-pump coupling. Figs (b)(i),(ii),(iii) represents the heat-storage energy 〈En〉 and figs(b)(iv),(v),(vi)

represents the gas-boiler energy 〈Nn〉 for networks with the electric-resistance coupling. Here, heat-storage energy 〈En〉 and

gas-boiler energy 〈Nn〉 are the mean of annual time-series (8760) and both are normalized to each networks average electrical-

load. (For interpretation of the references to color in this figure legend, the reader is adviced to refer to the web version of this

article).
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Figure 10: Heat-storage energy 〈En〉 and gas-boiler energy 〈Nn〉 as a function of wind/solar mix (α) and renewable energy

generation (γ = 1) for each network. Figs (a),(c) show networks with heat-pump coupling and figs (b),(d) show networks with

electric-resistance coupling.

However, the pan-European network has the least amount of balancing energy Bn and is found to be minimum290

at a wind and solar mix of 80/20. This reduction in balancing energy for the pan-European network is only

because of the backup energy requirements in a lossless electrical grid, otherwise the standalone heat coupling

for the regional network has the lowest energy demand.

Heat-pump coupling requires upto 26% less balancing energy than the electric-resistance coupling. Bal-

ancing energy for each network with the varying wind and solar mix can be observed in figure 11. A brief295

comparison between networks is given in table 2.

Figure 11: Balancing energy 〈Bn〉 as a function of wind/solar mix (α) and renewable energy generation (γ = 1). Fig (a)

show networks with heat-pump coupling and fig (b) show networks with electric-resistance coupling. (For interpretation of the

references to color in this figure legend, the reader is adviced to refer to the web version of this article).
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Heat-pump coupling〈
GBn
〉
〈Pex〉 〈Nn〉 〈En〉 〈Bn〉

Pan-European 0.15 0.15 0.63 1.04 0.38

Individual country 0.24 0.24 0.57 2.06 0.43

Regional 0.24 0.24 0.65 0.93 0.51

Electric-resistance coupling〈
GBn
〉
〈Pex〉 〈Nn〉 〈En〉 〈Bn〉

Pan-European 0.15 0.15 0.83 0.08 0.48

Individual country 0.24 0.24 0.79 0.25 0.55

Regional 0.24 0.24 0.84 0.04 0.63

Table 2: Comparison between the backup energy
〈
GB

n

〉
, excess generation 〈Pex〉, gas-boiler energy 〈Nn〉, heat-storage energy

〈En〉 and balancing energy 〈Bn〉 for each network with heat coupling. These calculations are at the wind/solar mix (α = 0.8)

and renewable energy generation (γ = 1). Here,
〈
GB

n

〉
and 〈Pex〉 are normalized to average electrical-load demand 〈Ln〉 for

each electrical grid and 〈Nn〉 and 〈En〉 are both normalized to average heat demand 〈Hn〉 for each network. However, Bn is

normalized to the average of the combined electrical-load demand and heat demand 〈Ln +Hn〉 for each network.

3.4. Heat-storage and gas-boiler capacity

In this study, the most important analysis to facilite investors and policy makers is the heat-storage

capacity and gas-boiler capacity required by each network. It gives a measure of annual energy usage with

each heat coupling. Heat-storage capacity KEn is calculated from ‘quantile method’. This method is used300

for calcuating transmission and backup capacities in [11, 25, 26]. Heat-storage capacity that can cover 99%

events is estimated by taking 99% quantile of the heat-storage usage time-series.

qn =

∫ En

0

pn(En)dEn (26)

KEn = E99%
n (27)

Whereas, gas-boiler capacity KNn is calculated from the average of gas-boiler usage time-series, as calcu-

lation from the quantile method lead to its overestimation.

KNn = 〈Nn〉t (28)

It is calculated that the heat-storage capacity KEn is minimum for the regional network and gas-boiler305

capacity KNn is minimum for the country network. With heat-pump coupling, the heat-storage capacity

KEn is reduced by 3% and the gas-boiler capacity KNn is reduced by 9% as compared to the pan-European

network. However, with electric-resistance coupling the heat-storage capacity KEn is reduced by 26% and

the gas-boiler capacity KNn is reduced by 5% as compared to the pan-European network. These results are

shown and compared in figure 12.310
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This gives another perspective to the earlier findings on an interconnected pan-European electrical grid

from Becker et.al [25] and Rolando et.al [26]. We find that the pan-European with heat coupling network

does not lead to reduction in the heat-storage capacity KEn and gas-boiler capacity KNn .

It can be summarized that there is also a strong correlation between the heat-storage energy and heat-

storage capacity requirement. Heat-pump coupling requires almost 4 times more heat-storage capacity and315

upto 38% less gas-boiler capacity than the electric-resistance coupling. The electric-resistance coupling re-

quires less heat-storage capacity but at the expense of higher gas-boiler capacity.

Figure 12: Heat-storage capacity KEn and gas-boiler capacity KNn as a function of at wind and solar mix (α = 0.8) and

renewable energy generation (γ = 1). Fig (a) show result for networks with heat-pump coupling and fig (b) show result for

networks with electric-resistance coupling. Here, blue cross marker represents 99% quantile.(For interpretation of the references

to color in this figure legend, the reader is adviced to refer to the web version of this article).

3.5. Optimum heat-storage and gas-boiler energy mix

Energy mix between the heat-storage and gas-boiler gives the operational parameters for each network

with heat coupling. The optimal energy mix which leads to the minimum residual heat mismatch is measured320

by assuming that both heat-storage and gas-boiler have the same operational cost. From the residual heat

mismatch υn eq (11),

υn(t) = ∆̃Hn(t) + En(t)−Nn(t)

Heat-deficit =

[
∆̃Hn(t) + [σn.En(t)− (1− σn)Nn(t)]

]
+

(29)

Heat-deficit is calculated from the positive value of residual heat mismatch υn. Here, σ defines the share

between the heat-storage En and gas-boiler Nn. The relative share of energy from heat-storage is σn.En and

the corresponding share of gas-boiler energy is (1− σn)Nn.325

The optimum energy mix is measured as 10/90 for the heat-pump coupling and 2/98 for the electric-

resistance coupling. This low share of heat-storage energy shows that currently less amount of excess gener-

ation is available for the heat-storage. But, infuture if the renewable energy generation (γ) is increased by
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50% then the optimum energy mix increases to 30/70 for the heat-pump coupling and 10/90 for the electric-

resistance coupling. Pensini et. al [14] has also suggested same for the US network (PJM Interconnection)330

and concluded that the consumption of gas-boiler is reduced to as-little as 3% with the current amount of

excess generation. These energy mix results for European networks are shown in figure 13.

(a) Energy mix at generation γ = 1

(b) Energy mix at generation γ = 1.5

Figure 13: Heat-deficit as a function of heat-storage/gas-boiler mix (σ) for each network. Figs (a)(i),(ii) show energy mix for

networks with heat-pump and electric-resistance coupling at wind/solar mix (α = 0.8) and renewable energy generation (γ = 1).

Figs (b)(iii),(iv) show energy mix for networks with heat-pump and electric-resistance coupling at wind/solar mix (α = 0.8) and

renewable energy generation (γ = 1.5).(For interpretation of the references to color in this figure legend, the reader is adviced

to refer to the web version of this article).

4. Conclusion

A unique geographical heat demand calculation model for any place in Europe has been presented and

benefits with the integration of heating sector into future highly renewable energy electrical grid are quantified.335

The possibility of excess generation utilization with two variants of heat coupling, heat-pump coupling and

electric-resistance coupling, has been discussed and analysis is performed on regional, country and pan-
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European network. The calculation for the minimum need for backup energy, gas-boiler energy and balancing

energy with varying wind and solar mix show that the optimal wind and solar mix remains constant at 80/20.

Furthermore, the heat-storage-capacity and gas-boiler capacity requirement depends on the wind and solar340

mix. Coupling with the regional network reduces the heat-storage capacity by upto 26% and coupling with

an individual country network reduces the gas-boiler capacity by upto 9%. However, coupling with the

pan-European network results into reduction of balancing energy by 34%.

Furthermore, the influence with the implementation of heat-pump coupling and electric-resistance cou-

pling on each network is investigated. It is concluded that the heat-pump coupling provides more benefit than345

the electric-resistance coupling and its integration in our system requires less alterations. With heat-pump

coupling, heat-storage energy is increased by 4 times and the requirement for gas-boiler energy and balancing

energy is reduced by upto 38% and 26% as compared to electric-resistance coupling. It is also concluded

from the optimum energy mix between heat-storage and gas-boiler that the current excess generation is not

enough to fully support the heating sector. But, if the renewable energy generation is increased by 50% then350

the required gas-boiler energy becomes minimal and the energy mix is increased from 10/90 to 30/70.

Transition to CO2 free renewable based heating sector seems realistic, but the heat-storage requirement

will be critical in the selection of heat coupling technology. If we summarize the above discussion, then a

connected pan-European electrical grid with decentralized regional heat-pump coupling seems promising.

It is also envisioned that heat-pump coupling can be instrumental in increasing energy footprints, espe-355

cially with its flexibility in combining with the latest advanced low temperature district heating and cooling

systems [51] and solar and concentrated solar power (CSP) systems [52, 53]. Cost-effective utilization of

the full resources can be achieved by demand side management, development of probabilistic models for the

correct prediction of an individual building heat demand [34] and coupling with the transportation sector

and other future energy infrastructures.360
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