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Abstract 

Memory research has long been one of the key areas of investigation for cognitive aging 

researchers but only in the last decade or so has categorization been used to understand age 

differences in cognition. Categorization tasks focus more heavily on the grouping and 

organization of items in memory, and often on the process of learning relationships through 

trial and error. Categorization studies allow researchers to more accurately characterize age 

differences in cognition: whether older adults show declines in the way in which they 

represent categories with simple rules or declines in representing categories by similarity to 

past examples. In the current study, young and older adults participated in a set of classic 

category learning problems, which allowed us to distinguish between three hypotheses: (i) 

rule-complexity: categories were represented exclusively with rules and older adults had 

differential difficulty when more complex rules were required, (ii) rule-specific: categories 

could be represented either by rules or by similarity, and there were age deficits in using 

rules, and (iii) clustering: similarity was mainly used and older adults constructed a less-

detailed representation by lumping more items into fewer clusters. The ordinal levels of 

performance across different conditions argued against rule-complexity, as older adults 

showed greater deficits on less complex categories. The data also provided evidence against 

rule-specificity, as single-dimensional rules could not explain age declines. Instead, 

computational modelling of the data indicated that older adults utilized fewer conceptual 

clusters of items in memory than did young adults.  

Keywords: aging, categorization, learning, task complexity, clustering  
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Deficits in Category Learning in Older Adults: Rule-Based Versus Clustering Accounts 

Categorization is the process of grouping and organizing sensory information and 

draws upon many constructs in cognitive science including learning, decision making, 

reasoning and attention (Pothos & Wills, 2011). Understanding how individuals form 

categories from patterns in the environment is central to human learning (Feldman, 2000) and 

is relevant to a variety of circumstances in everyday life: Is it high or low fat? Are their 

policies left or right wing? Will this medication raise or lower blood pressure?  

Surprisingly, given the extensive research into age differences in memory (e.g., 

Naveh-Benjamin & Ohta, 2012), there has been far less research into how young and older 

adults differ in the learning of categorical information (cf. Maintenant, Blaye, & Paour, 

2011). Categorization research has the potential to deliver new insight into age-related 

changes in memory because these tasks can involve precise manipulations of the structure of 

categories in order to reveal the underlying representation. Therefore, categorization tasks 

can better assess the details of learning and the interference between competing items in 

memory than can most memory tasks. 

A main point of contention in category learning is whether individuals are using rules 

or similarity in order to make their judgments. Rule-based approaches classically assume that 

there is a set of features that describe a category and a new stimulus is either entirely a 

category member or not (Bourne, 1970; Bruner, Goodnow, & Austin, 1986; Nosofsky, 

Palmeri, & McKinley, 1994). In contrast, similarity-based approaches assume that a new 

stimulus is compared either directly to exemplars experienced in the past, or to a single 

prototype of these past examples, producing a graded category membership (Medin & 

Schaffer, 1978; Nosofsky, 1986; Reed, 1972). The most flexible similarity-based approach is 

clustering, which because it clusters past exemplars into multiple prototypes, can produce 
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representations that match exemplar models, prototype models, or anywhere in between 

(Anderson, 1991; Love, Medin, & Gureckis, 2004; Rosseel, 2002; Vanpaemel & Storms, 

2008). 

Initial conceptions of categorization were rule-based, but following theoretical and 

empirical arguments for graded category membership, similarity approaches became standard 

(Rosch, 1973; Wittgenstein, 1953). Later research leveraged the strengths of both rule-based 

and similarity-based categorization, through the development of hybrid models that have both 

an explicit rule-based system and an implicit similarity-based system (Ashby, Alfonso-Reese, 

Turken, & Waldron, 1998). Although there are empirical effects in category learning that 

point to both rule-based and similarity-based representations, it is possible that deficits in 

category learning in older adults are just of one type. Therefore, our question is: are age 

deficits best described as deficits in rule-based categorization or as deficits in similarity-based 

categorization? 

Investigations into categorization deficits in older adults have compared young and 

older adults across various category structures to determine where the deficits for older adults 

lie, exploring both rule-based and clustering accounts. One rule-inspired hypothesis is that 

older adults are differentially worse at more complex categories (Cerella, Poon, & Williams, 

1980), which we will term rule-complexity. For example, in Racine, Barch, Braver, and 

Noelle (2006) one category was composed of examples lying at the extremes of the space of 

possible continuous-feature stimuli, while the other was composed of examples lying in the 

middle of the space of possible stimuli. Participants were told what rule to follow, where 

category membership was defined by either a two- (low complexity) or three- (high 

complexity) part conjunctive rule. Racine et al. found that older adults performed 

differentially worse on the categories defined by more complex rules. Other categorization 

studies have supported the rule-complexity hypothesis by showing that as the task becomes 
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more difficult, age-related deficits increase (so long as floor/ceiling effects are avoided). 

Additionally, studies involving functional relations (which are similar to categorization tasks 

in that participants must learn rules linking stimuli to responses) demonstrate greater age-

related deficits for more complex relations, such as inverse (Griego & Kliegel, 2007) and 

multiplicative (Chasseigne & Lafon, 2002) relations. 

A different rule-inspired hypothesis for age deficits follows from the model COVIS 

(Ashby et al., 1998). COVIS is a hybrid model consisting of two systems: an explicit system 

that can learn simple rules and an implicit system that can be considered similarity-based. It 

has been argued that categorization deficits in older adults (Rabi & Minda, 2016) and 

children (Minda, Desroches, & Church, 2008), relative to young adults, are larger for 

complex rule-based categorization tasks compared to implicit categorization tasks. Likewise, 

when increasing the number of irrelevant dimensions in a rule-based categorization task, 

Filoteo, Maddox, Ing, Zizak, and Song (2005) found a trend for older participants to perform 

differentially worse. Older adults may therefore have difficulty with explicit, rule-based 

categories which are arguably more reliant on effortful processing. Age-related memory 

deficits are generally reduced or absent for implicit tests of memory (La Voie & Light, 1994; 

Light, Prull, La Voie, & Healy, 2000), where effortful strategic encoding and retrieval 

processes are not required. Furthermore, age deficits in executive prefrontal processing 

(West, 1996) of rules have been used to describe older adults’ poor performance at the 

Wisconsin Card Sorting Test (Rhodes, 2004). Therefore, it seems that a dual-system account 

such as COVIS could explain age deficits in categorization in only its rule-based system but 

not the implicit system, a hypothesis we term rule-specificity. However, other researchers 

have shown the contrary effect: a larger age deficit in the implicit system than in the rule-

based system (e.g., Filoteo & Maddox, 2004; Mata, von Helverson, Karlsson, & Cüpper, 

2012). 
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In contrast to these rule-based accounts is the possibility that age deficits are implicit, 

and particularly the notion that older adults may not generate as detailed an implicit category 

representation as do young adults (Love & Gureckis, 2007), a hypothesis we call clustering. 

The assumption behind this hypothesis is that people use multiple prototypes (e.g., clusters) 

to represent categories, and the more clusters that are used the more detailed the category 

representation can be. Studies have shown that older adults can construct simple prototype 

representations as well as can young adults, but do not represent complex categories with as 

much detail as do young adults (Hess, 1982; Hess & Slaughter, 1986). Also, older adults have 

poorer memory for category members that are exceptions to rules (Davis, Love, & Maddox, 

2012; Love & Gureckis, 2007). For example, Davis et al. (2012) showed participants images 

of beetles that were categorized into two groups. The features of the beetles were arranged 

such that the majority of beetles in one group would possess a given feature (e.g., thick legs) 

but a small subset would have the opposite feature (e.g., thin legs – an exception to the rule). 

Older adults showed a deficit relative to young adults when categorizing these exception 

stimuli. This can be explained as older adults constructing fewer clusters than young adults to 

represent categories.  

In summary, we have identified three hypotheses related to age differences in 

categorization: (i) rule-complexity: differential difficulty with category structures defined by 

more complex rules in a rule-only categorization model, (ii) rule-specific: age deficits in the 

use of explicit rule-based but not implicit systems of a hybrid model, and (iii) clustering: a 

tendency for older adults to construct fewer clusters in similarity-based categories. These 

explanations are difficult to tease apart: they can imitate one another quite closely as more 

complex categories also generally require both more complex rules and more clusters in order 

to be represented accurately. Researchers have only begun to test these accounts against one 

another: Rabi and Minda (2016) compared the two rule-based accounts and found evidence to 
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support rule-specificity over rule-complexity. The key evidence was smaller age deficits in a 

more complex categorization task compared to a less complex categorization task. However, 

this study did not rule out age deficits due to clustering. The current study aimed to replicate 

and further explore this key empirical finding to determine if a rule-specificity account of 

deficits is plausible, and also to establish if the empirical age deficits could be explained 

better with a clustering account. 

The Current Study 

Here, we compare the rule-complexity, rule-specificity, and clustering hypotheses of 

age deficits against one another using a seminal paradigm from the categorization literature, 

the category learning problems of Shepard, Hovland, and Jenkins (1961). In this task, 

participants learn to place a series of eight geometric images into two categories across a 

series of learning blocks. The eight images were formed by factorial combinations of three 

binary dimensions (see top panel of Figure 1), which were form (square/triangle), color 

(black/white) and size (large/small). Four of the shapes were assigned to an ‘alpha’ group and 

four to a ‘beta’ group.  

Shepard et al. (1961) identified six meaningfully distinct ways to form two groups of 

four stimuli from the set of eight geometric images (Types I, II, III, IV, V and VI). These 

groupings are based upon categorization rules of varying complexity and Types I to IV were 

used in the current study (see bottom panel of Figure 1). Type I is the simplest condition 

where a single dimension defines category membership (e.g., all the black images are in the 

alpha category and all the white images are in the beta category) and the other dimensions 

(e.g., size and form) are irrelevant. Type II defines category membership by two dimensions 

(e.g., black triangles and white squares are in the alpha group) with one irrelevant dimension 

(e.g., size). Type III uses all three dimensions to define category membership and categories 
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are defined by a rule with an exception (e.g., all the black objects are in the alpha group apart 

from the small black square). Type IV also uses all three dimensions and all category 

members share the majority of their features with other category members (e.g., most of the 

large, black and triangular shapes are in the alpha group). Types III and IV seem similar and 

indeed often lead to similar levels of performance (e.g., Shepard et al., 1961) but one key 

difference is that participants can respond with 75% accuracy by paying attention to any 

single dimension for Type IV but can only achieve 75% accuracy in Type III with a single 

dimension for two out of the three dimensions (e.g., responding on the basis of color or form 

alone for Type III in Figure 1 would yield 75% accuracy but size would yield 50% accuracy).  

 In young adults, performance generally decreases from Type I to Type IV (Type I > 

Type II > Type III = Type IV; Kurtz, Levering, Stanton, Romero, & Moris, 2013; Nosofsky, 

Gluck, Palmeri, McKinley, & Glauthier, 1994; Shepard et al., 1961). For the rule-complexity 

hypothesis (Cerella et al., 1980), the prediction is simply that – unless there are floor/ceiling 

effects – age differences will follow this same pattern, that is, increasing age differences from 

Type I to Type IV. This hypothesis about rule-complexity based on learning difficulty is 

bolstered by formal mathematical analyses of the complexity of the rules needed to learn 

Types I-IV. Feldman (2000) introduced an explicit Boolean complexity measure of the 

Shepard et al. (1961) types, finding that this formal measure of complexity corresponded 

fairly closely to learning difficulty. Although there is some disagreement about the relative 

difficulty of Type III, Boolean complexity and various other measures of complexity agree 

that Type IV is more complex than Type II which itself is more complex than Type I 

(Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Vigo, 2006; 2009). Therefore, both 

mathematical and behavioral accounts of complexity would predict greater age differences 

for Type IV than for Type II and greater age differences for Type II than for Type I.  
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Rabi and Minda (2016) found age differences that clearly went against the predictions 

of rule-complexity. Whereas young adults showed better performance on Type II than Type 

IV, older adults showed the opposite: their Type IV performance exceeded their Type II 

performance. The deficit in Type II was taken as evidence of rule-specificity in age deficits. 

It was argued that older adults were generally not able to use multi-dimensional rules, 

because of their poor overall performance on Type II. Also it was argued that older adults 

were unable to transition to the more flexible implicit system, and so “applied single-

dimensional rules during Type II learning, but frequently switched rules during the course of 

the task to avoid negative feedback” (p. 194). We thus formulate the rule-specificity 

hypothesis to mean that older adults cannot use multi-dimensional rules, and must use either 

single-dimensional rules or their intact implicit system instead. This rule-specificity account 

was bolstered by an association between backward digit span and Type II performance, 

plausibly tying complex rule-based categorization to working memory capacity. Rule-

specificity was also suggested to explain the reliable deficit older adults showed in Type IV 

performance: this was potentially a result of older adults following simple rules in Type IV 

rather than switching over to the more flexible implicit similarity-based system, as young 

adults do (e.g., Maddox et al., 2010).  

Explanations based on deficits in rule use, however, are not the only kind of 

explanation for these age deficits. A different hypothesis was investigated by Davis et al. 

(2012) who found that older participants struggled much more with learning the exceptions to 

rules (summarized earlier). They proposed a clustering account of their results, that is, items 

were grouped into clusters, each of which is represented as a prototype of the items in a 

cluster. Clustering explanations essentially represent a category by multiple prototypes, 

which interpolates between the extremes of single prototype models and exemplar models 

(which represent all of the previously experienced items individually). Davis et al. supposed 
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that older adults have more difficulty in constructing new clusters of items in memory, 

meaning that categories are represented more coarsely by older adults (see also Love & 

Gureckis, 2007). Their argument was bolstered by fitting their data with a clustering model of 

categorization, the Rational Model of Categorization (RMC; Anderson, 1991), and showing 

that the parameters indicated that older adults did not construct as many clusters as did young 

adults.  

Intuitively, a clustering account could also explain the pattern of age deficits found by 

Rabi and Minda (2016). Types I and IV can both be represented well by a single cluster or 

prototype per category because the two categories in these tasks are linearly separable: a 

straight plane can be placed in the space of stimuli in Figure 1 for these two tasks that 

perfectly separates the two categories. In contrast, representing each category in Type II with 

a single cluster would be a catastrophe: because of the symmetric arrangement of the stimuli 

in each category, the prototype of each cluster would be exactly in the middle of the cube of 

stimuli, and so the inferred categories are indistinguishable and performance would be at 

chance. Thus the number of clusters is more critical in Type II than in Type I or Type IV, and 

so if older adults have greater difficulty constructing more clusters, then larger age 

differences are expected in Type II compared to Types I or IV, matching the empirical 

results. 

Although it is intuitive that a clustering account can explain age deficits, we cannot 

know whether rule-specificity or clustering deficits better match human behavior until we 

evaluate them against data. We collected our own data in the Shepard et al. (1961) tasks, 

including Type III in addition to Types I, II, and IV, which first allowed us to determine if the 

pattern of age deficits replicated. Type III provides another benchmark against which to 

evaluate Types I, II, and IV, and an opportunity to see if Types III and IV are also equally 

difficult for older adults, as seen in young adults and as many complexity approaches predict. 
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Using these new data, we then evaluated the plausibility of the idea that older adults were 

using single-dimensional rules, employing a variety of measures. We finally fit the RMC to 

the trial-by-trial data to see if a clustering account could quantitatively match the data. 

Method 

Design 

Young and older adults learned to categorize eight shapes into two groups. Each 

participant completed four conditions (Types I to IV) where group membership was 

determined by separate rules as outlined in the introduction. 

Participants 

Forty-eight young adults (42 female) aged 18–21 years (M = 19.3, SD = 0.7) and 48 

healthy older adults (32 female) aged 60–87 years (M = 74.7, SD = 5.6) took part in the 

experiment. Ten of the older adults were in their 60s, 30 in their 70s, and eight in their 80s, 

with all except four aged 66-83. Young participants were recruited from the University of 

Warwick and received course credit. Older participants were active members of our Age 

Study Panel who were visited in their own homes and received £5 ($7); their self-rated 

eyesight, hearing, and general health averaged 4.1, 4.0, and 4.0 (equivalent to “good”), 

respectively, on a five-point scale (1 = “very poor” to 5 = “very good”). Participants were 

recruited in two batches (though all were tested within a seven-week period, January-March 

2015), and the statistical implications of this are discussed in the results. All participants 

provided written informed consent, and the study was approved by the University of 

Warwick’s Humanities and Social Sciences Research Ethics Committee. 
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Young and older participants did not show evidence of a difference in their years of 

education, t(53.87) = 1.88, BF10 = 1.011 (Myoung = 14.01, SDyoung = 0.93; Molder = 14.97, 

SDolder = 3.41). To assess cognitive functioning, participants completed the Digit Symbol 

Substitution test from the Wechsler Adult Intelligence Scale – Revised (Wechsler, 1981) as a 

measure of processing speed, and the multiple choice part of the Mill Hill vocabulary test 

(Raven, Raven, & Court, 1988) as a measure of crystallized intelligence. The results were 

consistent with the literature (e.g., Salthouse, 2010): young adults performed better than older 

adults at the speed task, t(94) = 10.98, BF10 = 2.42 x 1015 (Myoung = 74.63, SDyoung = 10.04; 

Molder = 51.96, SDolder = 10.19), and older adults performed better than young adults at the 

vocabulary task, t(94) = 8.99, BF10 = 1.95 x 1011 (Myoung = 16.83, SDyoung = 3.47; Molder = 

23.67, SDolder = 3.96). 

Materials 

Images of eight geometric shapes were constructed for use in the experiment. Large 

images had a base of width 250 pixels and small images had a base of width 125 pixels, 

corresponding to widths of approximately eight and four degrees of viewing angle on screen, 

respectively. Triangles were equilateral and both square and triangle image bases were 

horizontal. Images were presented in black or white on a mid-gray background. 

Counterbalancing. The four conditions were within participants so this resulted in 24 

possible test orders for Types I to IV. Additionally, each condition had several permutations 

(e.g., Type I had three permutations because category membership could be defined by color, 

form or size). Types II, III and IV had 3, 12 and 4 permutations, respectively. Twenty-four 

versions of the experiment were created (one for each test order) and the permutations of 

each type were randomly assigned to each version such that each permutation was used 

                                                           
1 See later for explanation of the use of Bayes factors for comparisons. 
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equally across the experiment (for simplification, Type III was reduced to 3 permutations by 

assigning all but one dimension randomly). Category memberships ‘alpha’ and ‘beta’ were 

also randomly determined. These 24 versions of the experiment were then used four times 

(twice with young and twice with older adults). 

Procedure 

 Participants were initially shown rule-based instructions taken verbatim from Kurtz et 

al. (2013) who found that such instructions are more likely to yield the typical Type II 

advantage (relative to Types III and IV) shown in the literature. These instructions encourage 

participants to ‘learn a rule that allows [them] to tell whether each example belongs in the 

alpha or beta category’ (Kurtz et al., 2013, p. 6). Participants were then shown a single screen 

containing all eight shapes (in no particular arrangement, and without any category 

information) so that they could clearly see the differences between the shapes. They were 

informed that these were all of the shapes that would be used in the experiment. Following 

this, they commenced the first condition of the experiment. 

 In each trial, an image was presented centrally on the screen. Participants were 

initially required to guess if it belonged in the alpha or beta category by pressing the keys “F” 

and “J” on the computer keyboard, which were relabelled ‘Alpha’ and ‘Beta’, respectively 

(the words Alpha and Beta were also displayed in the bottom left and right corners of the 

screen, respectively). The image remained on screen until a response was made, then after 

500 ms of blank screen, feedback was provided. The image reappeared on screen and either 

‘Correct!’ appeared above it in green or ‘Incorrect!’ in red. For both feedback options, below 

the feedback image appeared the correct response in blue, for example, ‘Answer = Alpha’. 

The feedback remained on screen until the participant pressed the spacebar, then a further 

500 ms of blank screen was displayed before the next trial. 
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 In the first two blocks, all eight shapes were presented in the first half of the block and 

then again in the second half. This limited the possibility of the same shape appearing in 

adjacent trials. In subsequent blocks, the eight shapes were presented twice in each block of 

16 trials without any constraints. This ordering replicates the original Shepard et al. (1961) 

study. Participants completed the task for six blocks (96 trials) or until they reached a 

criterion of perfect performance in two consecutive blocks. Once a condition was complete, a 

message on screen indicated that ‘a new rule [would] determine which images belong to each 

category’. Participants could rest between conditions as they wished. The experiment 

continued until the participant had completed all four categorization conditions. 

Results 

During our data collection process, we found interesting trends (qualitatively identical 

to those we report below) after testing 48 participants (i.e., 24 young and 24 older), but the 

key comparison (namely, the age by condition interaction) did not reach the standard value 

for statistical significance. Therefore, we tested an additional 48 participants and stopped our 

experiment at that point. This stopping rule invalidates the p-values calculated using standard 

null hypothesis significance (e.g., Wagenmakers, 2007), so we report test statistics and effect 

sizes without the p-values. Instead we report Bayes factors, which provide a valid measure of 

the evidence provided by the data even when the rule for stopping data collection depends on 

the results of a test (Rouder, 2014). This measure even provides strong guarantees about how 

much an experimenter can influence the statistical results, in particular when finding 

evidence that favors the alternative hypothesis (Sanborn & Hills, 2014).   

Standard null hypothesis significance tests assess the probability of a test statistic 

arising from the null hypothesis, limiting researchers to only evaluating the plausibility of the 

null, and leaving them in an awkward position if there is not enough evidence to reject the 

null. In contrast, Bayesian methods explicitly compare the probability of the null and 
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alternative hypotheses on even ground, so that evidence can be found in favor of the 

alternative hypothesis, the null hypothesis, or neither (Gallistel, 2009; Rouder, Speckman, 

Sun, Morey, & Iverson, 2009). A common Bayesian measure of evidence is the Bayes factor 

(BF10; Kass & Raftery, 1995) which provides an odds ratio for the alternative/null hypotheses 

(values < 1 favor the null hypothesis and values > 1 favor the alternative hypothesis). For 

example, a BF10 of 2.5 would indicate that the alternative hypothesis is 2.5 times more likely 

than the null and a BF10 of 0.40 would indicate the converse (see Jarosz & Wiley, 2014). 

Associating labels with these values is arbitrary, but in past work labels such as ‘substantial’, 

‘strong’, and ‘decisive’ have been associated with Bayes factors of 3, 10, and 100, 

respectively (Wetzels et al., 2011). These Bayes factors were calculated using the JASP 

computer software (Love et al., 2015). All t-tests are two-tailed using the standard Cauchy 

prior width of 0.707. The Bayesian ANOVAs construct a model for each of the possible 

combinations of terms and we report BFinclusion for each term because it gives a summary of 

the evidence for including that term in the models.  

 For the accuracy data, where a condition was terminated early due to a participant 

reaching criterion, 100% accuracy was assumed for all subsequent uncompleted blocks (as is 

typical with this paradigm: e.g., Kurtz et al., 2013; Nosofsky, Gluck et al., 1994). Figure 2 

shows the overall means for Blocks 1-6, while Figure 3 shows overall age differences, for 

Types I-IV. Performance accuracy was entered into a 2 (Age: young, older) x 4 (Condition: 

Types I to IV) x 6 (Block: 1-6) repeated measures ANOVA. Young adults were more 

accurate than older adults, F(1, 94) = 48.86, MSE = 0.17, ƞp
2= .34, BF10 = 3.16 x 1012. There 

was a main effect of condition,2 F(2.59, 243.10) = 129.83, MSE = 0.07, ƞp
2= .58, BF10 > 1012, 

with Type I learned better than all other conditions (performance on Types II to IV is 

                                                           
2 Throughout this article, any violations of sphericity in ANOVAs were corrected using the Greenhouse-Geisser 

correction. 
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investigated further below). A main effect of block showed that performance improved over 

time, F(3.31, 311.55) = 138.91, MSE = 0.02, ƞp
2= .60, BF10 > 1012. Age interacted with 

condition, F(2.59, 243.1) = 3.26, MSE = 0.07, ƞp
2= .03, BF10 = 7651, but there was no 

evidence that it interacted with block, F(3.31, 311.55) = 4.02, MSE = 0.02, ƞp
2= .04, BF10 = 

0.88. There was sizeable evidence against the three-way interaction between age, condition 

and block, F(10.64, 999.82) = 3.31, MSE = 0.02, ƞp
2= .03, BF10 = 4 x 10-3. As can be seen in 

Figure 2, the young adults’ Type I performance was near ceiling, which could potentially be 

driving the age by condition interaction (see Figure 3). 

In order to investigate potential age interactions without ceiling performance, the 

above ANOVA was repeated but with Type I excluded from the condition factor. Young 

adults performed better than older adults, F(1, 94) = 53.78, MSE = 0.14, ƞp
2= .36, BF10 = 1.33 

x 1012, there was evidence for a main effect of condition, F < 1, BF10 = 3.62, and accuracy 

improved across blocks, F(3.46, 324.82) = 87.48, MSE = 0.03, ƞp
2= .48, BF10 > 1012. There 

was an age by block interaction, F(3.46, 324.82) = 7.61, MSE = 0.03, ƞp
2= .08, BF10 = 1.02 x 

104, due to slower learning in older adults. Importantly, the age by condition interaction 

remained, F(1.70, 159.94) = 3.61, MSE = 0.06, ƞp
2= .04, BF10 = 20.50, confirming the 

different age-related deficits between Types II-IV evident in Figure 3; this interaction is 

investigated further below. There was evidence against the other interactions in the analysis 

(Condition x Block, F < 1.36, BF10 = 2 x 10-3, Age x Condition x Block, F < 1, BF10 = 2.65 x 

10-5).  

To interpret the above age by condition interaction, the condition by block (3 x 6) 

ANOVA was run separately for young and older adults. Older adults had a main effect of 

condition, F(1.78, 83.51) = 4.83, MSE = 0.04, ƞp
2= .09, BF10 = 186.6, but there was evidence 

that young adults did not, F < 1, BF10 = 7.5 x 10-2. T-tests (collapsed across blocks) revealed 

that older adults performed best at Type IV, M = 0.62, SD = 0.08, which was better than Type 
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II, M = 0.57, SD = 0.11, t(47) = 3.10, BF10 = 10.04, and possibly better than Type III, M = 

0.59, SD = 0.08, t(47) = 2.36, BF10 = 1.92 (whereas Type II and III performance appeared the 

same, t < 1, BF10 = 0.24). Numerically, young adults performed best at Type II, M = 0.74, SD 

= 0.16, but there was evidence that performance did not differ from that in Type III, M = 

0.72, SD = 0.12, t(47) < 1, BF10 = 0.229, and Type IV, M = 0.72, SD = 0.11 t(47) < 1, BF10 = 

0.232. There was also evidence that performance did not differ between Type III and Type 

IV, t(47) < 1 , BF10 = 0.157. 

Testing for Rule Use 

The rule-specificity hypothesis is that older adults show deficits in the rule-based 

system, but have an intact implicit system. Because older adults perform worse across all four 

types, the rule specificity hypothesis implies that all of these declines are due to worse rule-

based categorization. In particular, Rabi and Minda (2016) hypothesized that older adults are 

only rarely able to use conjunctive or disjunctive rules and instead must rely on single-

dimensional rules. This can explain the superior performance that older adults demonstrated 

on Type IV versus Type II: any single-dimensional rule would result in 75% accuracy for 

Type IV, but result in 50% accuracy for Type II.  

We first investigated whether conjunctive and disjunctive, or single-dimensional rules 

were used by looking at the consistency with which individuals were adhering to these rules 

in each of the four problems. To do so, we created a measure that is diagnostic as to whether 

single-dimensional rules are being used. First, we computed the number of mismatches (i.e., 

Hamming distance) between the responses in each block and the responses that would have 

been made using each of the three possible single-dimensional rules. Then the minimum of 

the three Hamming distances in each block was taken as the measure of adherence to the 

closest single-dimensional rule. The result is a score for each individual in each block, and 
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the mean scores for the two age groups over the blocks are shown in Figure 4. Here, perfect 

performance would result in (minimum) Hamming distances of zero for Type I, eight for 

Type II, and four for both Types III and IV. If participants are consistently using a single-

dimensional rule for any problem, then the Hamming distance will be zero. 

For each type, a 2 (Age: young, older) x 6 (Block: 1-6) repeated measures ANOVA 

was conducted. For Type I, older adults had larger Hamming distances than young adults, 

F(1, 94) = 7.57, MSE = 9.36, ƞp
2= .08, BF10 = 4.55, and the Hamming distances decreased 

across blocks showing a trajectory towards the correct distance of zero, F(3.10, 291.20) = 

81.31, MSE = 1.52, ƞp
2= .46, BF10 > 1012, with no interaction, F(3.10, 291.20) = 1.75, MSE = 

9.36, ƞp
2= .02, BF10 = 0.534. 

For Type II, older adults had smaller Hamming distances than young adults, F(1, 94) 

= 21.02, MSE = 5.63, ƞp
2= .18, BF10 = 1.42 x 107, the Hamming distances increased across 

blocks, F(4.31, 405.15) = 15.30, MSE = 1.60, ƞp
2= .14, BF10 > 1012, and to a greater extent in 

young compared with older adults, F(4.31, 405.15) = 10.11, MSE = 1.60, ƞp
2= .10, BF10 = 

2.79 x 109. Interestingly, post hoc tests revealed that young adults showed a trajectory 

towards the correct distance of eight across blocks, F(3.37, 158.49) = 25.16, MSE = 1.97, 

ƞp
2= .35, BF10 = > 1012, but there was evidence that older adults remained constant across 

blocks, F(5, 235) = 1.17, MSE = 1.43, ƞp
2= .02, BF10 = 0.05. Thus, it appears that older adults 

were neither trending toward using single-dimensional rules consistently, nor trending toward 

using the correct multi-dimensional rules consistently. Their responses in Type II problems 

were stuck between these two extremes, and did not change across blocks. 

For Type III, there was no effect of age, F < 1, BF10 = 0.153, the Hamming distances 

did not change across blocks, F < 1, BF10 = 0.003, and there was no interaction, F(5, 470) = 

1.95, MSE = 1.47, ƞp
2= .02, BF10 = 6.93 x 10-4.  



Running head: DEFICITS IN CATEGORY LEARNING IN OLDER ADULTS 19 
 

For Type IV, there was no effect of age, F = 1.00, BF10 = 0.161, the Hamming 

distances decreased across blocks, F(5, 470) = 3.52, MSE = 1.44, ƞp
2= .04, BF10 = 1.693, and 

there was no interaction, F < 1, BF10 = 0.018.  

For Types III and IV, all participants were close to the Hamming distance that perfect 

performance would produce across all blocks. However, this only shows that their responses 

showed the right amount of deviation from single-dimensional rules – clearly the actual 

responding of both young and older adults was far from perfect for these two types (see 

Figure 2).  

From the Hamming distance measures, older adults appear to be unable to learn the 

multi-dimensional rules required for Type II problems, and also do not appear to be using 

single-dimensional rules consistently instead. Of course, older adults may not be using single-

dimensional rules consistently throughout a block as the Hamming distance measures, but 

instead are quickly switching between single-dimensional rules as they accumulate negative 

feedback (Ashby et al., 1998; Rabi & Minda, 2016). Fortunately, the Shepard et al. (1961) 

stimuli allow us to assess how often quick switches in single-dimensional rules are occurring 

by looking for consecutive trials in which the stimuli are maximally distant from one another 

(i.e., in Figure 1 pairs of stimuli that are in the opposite corners of the cube from one 

another). Looking at these consecutive trials (which make up 13% of all trials), participants 

who use the same single-dimensional rule in the two trials will always make two different 

responses, no matter which single-dimensional rule is used. 

Figure 5 shows the proportion of trials on which young and older participants made 

the different responses to maximally different stimuli on consecutive trials, meaning that the 

two responses were consistent with using the same single-dimensional rule. The other types 

are included for completeness, but Type II is the most interesting task in this analysis because 
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of the possibility that older adults are quickly switching between single-dimensional rules as 

they are unable to use multiple dimensional rules. In Type II only there is also a clear contrast 

between correct responding and consistent single-dimensional rule use: correct responding 

predicts a value near 0 while single-dimensional rule use predicts a value near 1. As shown in 

Figure 5, young adults make the same response more than half the time, while older adults 

make the same response almost exactly half the time (and only two older adults never made 

this response). Such a low percentage of different responses cannot result from consistent use 

of single-dimensional rules even across two consecutive trials; instead it looks most like 

randomly selecting a single-dimensional rule on each trial. What is particularly striking is that 

the proportion of different responses (indicating single-dimensional rule use) is only half, 

even when older adults made the correct response to the previous trial. This is notable 

because the COVIS explicit system, which is used as the basis for the rule-specificity 

account, assumes that a rule will always be used again on the next trial if it is successful 

(Ashby et al., 1998).  

Interim Summary 

 In brief, young adults performed better than older adults at the categorization tasks 

and the two age groups had qualitatively different patterns of performance: For young adults, 

our data replicated the traditional pattern of accuracy (Type I > Type II > Type III = Type IV; 

e.g., Shepard et al., 1961). However, older adults showed superior performance in Type IV 

compared to Type II. These age differences were similar to those found by Rabi and Minda 

(2016) who hypothesized that older adults’ performance was driven by increased reliance on 

single-dimensional rules during learning. In the current study, statistical tests of single-

dimensional rule use did not support this hypothesis. 
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Model-based Analysis 

We presented the intuition above that constructing fewer clusters in the RMC 

(Anderson, 1991) would result in the observed age deficits. To verify that young and older 

adults did construct different numbers of clusters and that it could produce the same pattern 

of age deficits, we fit the RMC to the data. The RMC is a model that infers which items 

belong together in clusters, based on both their physical features and their category labels. In 

this model, the category label is treated as just another feature, so it is possible that items 

from two separate categories will be placed in the same cluster. When making category 

judgments, the RMC first finds the probability that the new item comes from each of the 

clusters (including the possibility that the item belongs in a new cluster) and then weights the 

prediction of each cluster/level of the category label by these probabilities. 

The RMC used three parameters in its original formulation: a coupling parameter, c, a 

physical salience parameter, sP, and a label salience parameter, sL. The coupling parameter 

controls the prior probability of the number of clusters. A high coupling parameter means 

there will be fewer clusters, whereas a low coupling parameter means there will be more 

clusters. The two salience parameters control how "pure" each of the clusters are along the 

physical (e.g., size, form, and color) or label features, with lower values meaning that each 

cluster is more likely to contain only a single value of each feature (e.g., this cluster will only 

have triangles or only squares). For the label salience parameter, a low value means that it is 

less likely that two items from different categories will be placed in the same cluster. The 

RMC is also often augmented by a determinism parameter, r, which acts to bring response 

probabilities either closer to chance for low r or closer to deterministic performance for high 

r (Nosofsky, Gluck et al., 1994). Full details of the RMC are given in Appendix A. 
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To investigate which parameters were responsible for the differences between the age 

groups, we created a set of 16 models. Every model was fit using the same parameters for all 

participants within an age group, but the different models allowed for different sets of 

parameters to differ between groups. A description of each model along with several 

measures of how well each fit the data is shown in Table 1. For all of these measures, a lower 

value indicates a better model. The negative log likelihood was computed across all 

participants and only measures the fit to the data, while AIC and BIC adjust the overall 

negative log likelihood with penalties for model complexity. We also converted AIC and BIC 

values into the more interpretable AIC and BIC weights, which approximate the probability 

of each model given the data, assuming the models are equally likely before the experiment 

began (Akaike, 1978; Kass & Raftery, 1995; Wagenmakers & Farrell, 2004). 

Using both AIC and BIC weights, the best model was clearly Model 14, which 

allowed for three of the four parameters to differ between young and older adults: sP, c, and r. 

The performances of young and older adults predicted by this model are shown in Figure 6, 

and they generally match the human data well. The main discrepancy is that within each age 

group the model did not learn Type I tasks as quickly as participants did, but the overall 

accuracy predicted by the best-fitting parameters matched the ordering of accuracy on the 

problem types for each age group.  

The best-fitting values of Model 14’s parameters are shown in Table 2. Older adults 

had a higher best-fitting coupling parameter than did young adults, implying that they formed 

fewer clusters. However, unlike Davis et al. (2012), we allowed the physical and label 

salience parameters to vary, as these parameters can also affect the clustering of the stimuli. 

A more direct view of how young and older adults clustered the stimuli can be obtained by 

looking at assignments of items to clusters made by the model. We found that the different 

orders in which the trials were presented led to variability in the clusters formed across 
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individuals with the same parameters. In Figure 7, we show the assignments made by the 

model for the last block of stimuli in the experiment. Whereas young and older adults both 

used two clusters for Type I, the model indicates that older adults were more likely to use 

fewer clusters to represent each of Types II-IV. Overall, older adults were not using as many 

clusters as were young adults. 

The differences in parameters between young and older adults do not just impact how 

the items are clustered. These parameters also impact how a category judgment is made given 

a particular representation. Older adults had higher values of c, as well as lower values of sP 

and r. For new items, the value of c controls the influence of the existing clusters relative to a 

new cluster that contains just the new item and thus has no label information. As a result, the 

higher value of c means that older adults have stronger category preferences than young 

adults given their representation. Relatedly, lower values of sP for older adults mean that 

items will have a stronger match to clusters they belonged to in previous blocks, increasing 

the strength of category preferences. However, the lower value of r for older adults means 

that responses will be more stochastic and that the most likely category label will not be 

chosen as often.  

To determine the overall impact of these parameter differences on how category 

labels are chosen for incoming items, we looked at what would happen if older adults 

clustered like older adults, but made choices like young adults. This was done to establish 

whether the predicted reversal in Type II and Type IV performance was due to the clustering 

of items or to the choice parameters. In essence we used different parameters at different 

stages of each trial: the young adults’ parameters were used when making a category label 

prediction, but after receiving feedback the older adults’ parameters were used to assign an 

item to a cluster. The impact of using the older adults’ choice parameters on accuracy can be 

seen in Table 3. If older adults behaved like young adults while predicting category labels, 
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then they perform equivalently or slightly better than young adults for Type I (because young 

and older adults used the same clusters), and perform better but not as well as young adults 

for Types II-IV. Importantly, the performance on Type IV problems is still predicted to be 

more accurate than on Type II problems, which means that the clustering, rather than the 

choice parameters, is controlling relative performance for these two problem types for older 

adults. 

 Beyond the accuracy on Types I-IV, we also investigated what the best-fitting version 

of the RMC predicted for the statistics we developed to test for the presence of single-

dimensional rules. Predicted Hamming distances were calculated by finding the expected 

minimum distance to the set of single-dimensional rules for each block based on the model 

predictions for each stimulus. The predicted distances matched the empirical distances well, 

with the exception that participants corresponded to single-dimensional rules in the Type I 

task better than the model predicted. The Pearson correlation between model predictions and 

empirical distances across all participants, types, and blocks was 0.95. 

Figure 5 shows the RMC predictions for consecutive maximally different stimuli. For 

the lower panel (“previous response correct”), the trials selected were just the same trials 

selected in the analysis of the data. These model predictions show the same overall patterns 

as the human data, in particular the near 0.5 rate of different responding for older adults in the 

Type II task. The Pearson correlation between the model and data across age groups and tasks 

for all responses was 0.96, and for previous response correct the correlation was 0.97. 

Discussion 

We investigated three hypotheses of the source of age differences in categorization in 

our experiment: rule-complexity, rule-specificity, and clustering. In line with Rabi and Minda 

(2016), our results supported an age-related reversal of performance: Type II task 
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performance was reliably worse for older adults than Type IV task performance, but Type II 

performance was statistically the same (and numerically better) than Type IV for young 

adults.3 Because the rule-complexity hypothesis predicts that Type IV performance would be 

impacted more than Type II performance for older adults, this effect serves as strong 

evidence against a rule-complexity explanation of age deficits. More generally, it is evidence 

against any explanation that holds that age deficits will always be larger when the task is 

more difficult. More subtly, we found that while Type III and IV performance was equivalent 

for young adults, older adults were perhaps slightly better at Type IV than III, providing 

some additional evidence against a rule-complexity account. 

Rabi and Minda (2016) attributed the Type II deficit in older adults to rule-specificity. 

They argued that older adults were generally unable to learn complex verbal rules. They 

found very little evidence for perfect correspondence to single-dimensional rules in their data, 

and supposed that older adults were switching between single-dimensional rules as they 

received negative feedback on their performance. In our data, we also found evidence against 

older adults generally being able to learn complex verbal rules in our Hamming distance 

analysis. Furthermore, we looked closely at the data to see if single-dimensional rule use was 

plausible.4 Our Hamming distance analysis provided additional evidence that single-

dimensional rules were not being used consistently by older adults in the Type II task, as they 

did not appear to be moving closer to single-dimensional rules in that task. Also, our 

consecutive trial analysis showed that quickly switching between single-dimensional rules 

did not describe older adults well either. Older adults made responses consistent with using 

                                                           
3 Type II has been found to be better than Type IV for young adults, but not in every experiment. The effect is 

more likely to be found under the instructions that we used (Kurtz et al., 2012).  
4 We did not fit a model of single-dimensional rule use because there are a variety of ways to implement this 

approach, so we made a more general qualitative argument. 
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the same single-dimensional rule only on about half of trials in which this behavior could be 

assessed, even when just looking at pairs of trials in which the first response was correct.  

For a rule-based system, using a rule more often after receiving positive feedback on 

its performance is critical – otherwise no learning is occurring. Stronger assumptions have 

been made: the COVIS explicit rule-based system assumes that positive feedback always 

leads to using the same rule again on the next trial (Ashby et al., 1998). As a result, being 

inconsistent with a single-dimensional rule on half of trials after positive feedback is difficult 

to explain with a single-dimensional rule system, unless it is working extremely poorly: the 

system is randomly choosing amongst all possible rules on each trial with equal probability. 

However, we show in Appendix B that many participants responded reliably above chance. 

Together these results make for an argument against older adults using single-dimensional 

rules in the Type II task, where they showed the greatest deficits.  

A remaining possibility for the rule-specificity hypothesis is that older adults were 

attempting to use multi-dimensional rules, but were just worse at finding the correct multi-

dimensional rules compared to young adults. Our Hamming distance analysis argued against 

this interpretation because there was no trend toward older adults moving further away from 

single-dimensional rules over blocks, but there exist many different proposals of how 

complex rules are learned (e.g., COVIS, Rational Rules, or Nosofsky, Palmeri et al.’s, 1994, 

RULEX) and these would have to be examined in detail.  

The clustering hypothesis better accounts for these age deficits. We formalized the 

clustering hypothesis in the RMC and quantitatively showed that the deficits can be explained 

as older adults being less able to form new clusters than young adults. The best-fitting RMC 

showed the expected reversal in Type II and Type IV performance between older and young 
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adults. The RMC also matched the empirical data well on the Hamming distances and 

consecutive trial analysis that argued against single-dimensional rules.  

Using the clustering hypothesis rather than rules to explain age deficits leads to 

reinterpretations of some past results. For example, Maddox, Pacheco, Reeves, Zhu, and 

Schnyer (2010) found equal age-related declines in rule-based and information-integration 

tasks (akin to Type II and Type IV, respectively) when both were generated from four 

clusters. If older adults struggle to produce as many clusters as young adults, these equal 

declines would be expected. Additionally, clustering can be used to explain some of the 

strongest evidence for rule-specificity age deficits: age-related increases in perseverative 

errors in the WCST (Rhodes, 2004). Clustering models can be used in associative learning 

tasks to explain how old associations do and do not interfere with new associations: if both 

old and new associations are part of the same cluster then there will be interference because 

they cannot be accessed separately, but if old and new associations are part of separate 

clusters then the new associations can potentially be accessed without interference (e.g., 

Gershman, Blei, & Niv, 2010). If older adults have more trouble creating new clusters, this 

then could explain why they show greater perseverative errors when the rule changes in the 

WCST.  

Interpreting age declines as an increased difficulty in constructing new clusters yields 

a new interpretation of the relationship between working memory capacity and type of task. 

Rabi and Minda (2016) found that working memory capacity was related to performance on 

on Type II but not on Type I tasks. Instead of interpreting working memory capacity as 

related to performance on complex rules, we can interpret it as necessary for constructing 

more clusters, because each additional cluster means that there is more information to 

represent. Rabi and Minda argued that Type II may be more influenced by working memory 

than Type IV and recently, Stukken, Van Rensbergen, Vanpaemel, and Storms (2016) 
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showed that higher working memory ability was related to utilization of a greater number of 

clusters during categorization. However, contrary to this view, Lewandowsky (2011) found 

that working memory capacity affected performance on Types I-VI similarly. More research 

is needed to clarify the relationship between working memory and clustering, especially as 

clustering is more naturally described as implicit memory, and older adults show greater 

deficits in explicit than implicit memory. 

Clustering represents one implicit type of categorization, but there are others. 

Exemplar models, formalized as the Generalized Context Model (GCM; Nosofsky, 1984) and 

ALCOVE (Kruschke, 1992), also could potentially explain these results. These exemplar 

models use the mechanism of selective attention to produce better performance in Type II 

than Type IV problems. As it is easier to selectively attend to fewer dimensions, Type II has 

an advantage over Type IV because in Type II one of the dimensions can be completely 

ignored (see Figure 1). The claim for selective attention has been bolstered by findings that 

the performance advantage for Type II over Type IV only occurs for separable dimensions, 

like those used in our experiment, where selective attention can operate. The reverse pattern 

occurs with integral dimensions, such as the hue and saturation of colors, for which selective 

attention is much harder to employ (Nosofsky & Palmeri, 1996).  

A deficit in selective attention is another non-rule-based approach for explaining the 

reversal of Type II and IV performance between young and older adults. However, it is not 

clear whether selective attention can explain our results. Maddox, Filoteo, and Huntington 

(1998) tested selective attention for integral and separable stimuli, investigating how well 

young and older adults could ignore irrelevant information on non-selected dimensions. They 

found that for separable dimensions, older adults were just as good as young adults at 

selective attention, though they only tested application of a known categorization rule rather 

than learning an unknown rule as we did in our experiment. Future work could combine our 



Running head: DEFICITS IN CATEGORY LEARNING IN OLDER ADULTS 29 
 

task with a selective attention task to see if individual differences in selective attention in 

older adults correspond with individual differences in Type II and Type IV performance. 

 In summary, we have demonstrated that utilization of fewer clusters in older adults 

provides a parsimonious account of age differences in the Shepard et al. (1961) categorization 

tasks. We argue that this view is more consistent with the data than a rule-complexity 

account, and a rule-specificity account that postulates a reliance on single-dimensional rules 

in older adults. This does not mean that older adults do not use single-dimensional rules: 

although the overall pattern of results was best explained by the RMC with age deficits in 

both cluster formation and choice, the RMC was not able to match the participant 

performance on Type I problems, which can be perfectly represented by single-dimensional 

rules. It could be that a hybrid model that combines single-dimensional rules and a clustering 

representation would better explain the data, or perhaps a hierarchical elaboration of the 

RMC that introduces rule-like behavior is needed (Heller, Sanborn, & Chater, 2009). The 

clustering hypothesis is a start, but there is much about categorization in older adults that still 

needs investigation. 
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Table 1 

Model Comparison Between Versions of the Rational Model of Categorization That Tests for 

Differences in Parameters Between Age Groups 

Model 

Parameters 

Differing 

Between Age 

Groups 

Number of 

Parameters 

Negative 

Log 

Likelihood AIC 

AIC 

Weights BIC 

BIC 

Weights 

1 none 4 20740 41488 0.0000 41522 0.0000 

2 sP 5 20268 40547 0.0000 40589 0.0000 

3 sL 5 20517 41044 0.0000 41086 0.0000 

4 c 5 20383 40776 0.0000 40819 0.0000 

5 r 5 20339 40688 0.0000 40731 0.0000 

6 sP, sL 6 20243 40498 0.0000 40549 0.0000 

7 sP, c 6 20305 40622 0.0000 40673 0.0000 

8 sP, r 6 20221 40453 0.0000 40504 0.0000 

9 sL, c 6 20324 40661 0.0000 40712 0.0000 

10 sL, r 6 20328 40668 0.0000 40719 0.0000 

11 c, r 6 20238 40489 0.0000 40540 0.0000 

12 sP, sL, c 7 20241 40495 0.0000 40555 0.0000 

13 sP, sL, r 7 20205 40424 0.0000 40484 0.0000 

14 sP, c, r 7 20178 40371 0.7136 40430 0.9943 

15 sL, c, r 7 20200 40414 0.0000 40474 0.0000 

16 sP, sL, c, r 8 20178 40373 0.2864 40441 0.0057 

 

Note. sP is the physical salience parameter, sL is the label salience parameter, c is the coupling 

parameter, and r is the determinism parameter. Negative log likelihood is the goodness of fit 

of the model (smaller is better), and AIC and BIC are two different measures that balance 

goodness of fit with a penalty for model complexity (smaller is better). AIC Weights and BIC 

Weights transform the AIC and BIC values to approximate the probability of the model given 

the data (larger is better). The best model by both AIC and BIC is in bold. 
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Table 2 

Best-fitting Rational Model of Categorization Parameters for Young and Older Age Groups 

 

Age 

 

sP 

 

sL 

 

c 

 

r 

Young 0.6888 0.1615 0.5044 0.7738 

Older 0.4427 0.1615 0.7450 0.4540 

 

Note. sP is the physical salience parameter, sL is the label salience parameter, c is the coupling 

parameter, and r is the determinism parameter. In the best-fitting model, sL is the same for 

young and older age groups. 
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Table 3 

Predicted Accuracy for Problem Types I-IV  

 

Parameters 

 

Type I 

 

Type II 

 

Type III 

 

Type IV 

Young adults 0.86 0.77 0.70 0.73 

Older adults choosing like young adults  0.87 0.55 0.64 0.69 

Older adults 0.80 0.54 0.60 0.63 
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Type I 

 

Type II 

 

Alpha Beta Alpha Beta 

    
  

 

Type III 

 

 

Type IV 

Alpha Beta Alpha Beta 

    
 

Figure 1. Top: Stimuli could vary along three dimensions (size, color, and form). Bottom: 

Examples of category membership for the eight shapes organized into two groups (alpha and 

beta) for the four categorization tasks (Types I to IV) used in the study. 
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Figure 2. Accuracy for young and older adults learning categorization Types I, II, III and IV 

across six learning blocks (16 trials per block). Error bars are ±1SE. 
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Figure 3. Magnitude of age deficits in learning for the different experimental conditions 

Types I to IV. Data are averaged across all six blocks. Error bars are ±1SE. 
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Figure 4. Hamming distance for young and older adults across learning blocks 1-6. The 

dashed line indicates the Hamming distance that would occur if participants were responding 

with 100% accuracy for each type, though this is necessary and not sufficient to produce 

perfect performance: matching this distance does not imply 100% accuracy. The hollow line 

indicates the distance corresponding to single-dimensional rule use (SD). Error bars are 

±1SE. 
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Figure 5. Proportion of different responses to all consecutive trials with maximally different 

stimuli (top panel), and to consecutive trials with maximally different stimuli where the 

previous response was correct (bottom panel). Error bars are ±1SE. Black circles indicate 

predictions from the Rational Model of Categorization. 
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Figure 6. Model predictions for young and older adults learning categorization Types I, II, III 

and IV across six learning blocks. 
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Figure 7. Visualization of how young and older adults clustered the items for Types I-IV. 

The plots underneath each type display the different ways the problem was clustered across 

participants. Within each plot, the three dimensions represent the three different physical 

dimensions, though the dimension identities have been ignored and cluster assignments 

renumbered to minimize the variety of different patterns. Gray and white circles indicate the 

feedback given to the items and the numbers within each circle label the cluster to which that 

item has been assigned. Text underneath each plot gives the number of young and older 

adults who used that set of clusters for that problem. 
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Appendix A: Details of the Rational Model of Categorization 

 When making a category judgment, the Rational Model of Categorization (RMC; 

Anderson, 1991) determines the probability that a new item, item , belongs to the  

category ( ), based on the physical features of that item, , the physical features of 

all of the previously seen items, , and the category labels of all of the previously seen 

items, . This can be written as the probability of the category label and physical 

features of the new item, given all the previously seen items and labels 

. 

 This probability is then transformed into the probability of making a binary category 

response  by raising it to the exponent  and then renormalizing 

 . 

The probability of a new item and its category label is a weighted sum of the 

probability of the item and label arising from each of the clusters. Because the cluster indices 

are inferred from the data, these are marginalized out 

 (A1) 

where  is the cluster index of the cluster for item , and  are the cluster indices for 

the previously seen items. 

 There are three terms on the right-hand side of Equation A1 that must be defined. 

First, the prior probability of the cluster index of the new item  is defined as a 

Chinese Restaurant Process prior which can flexibly interpolate between a single cluster for 
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all the items and a different cluster for each item (Aldous, 1985). This prior can be written as 

a simple sequential rich-get-richer process 

 

where  is the number of items assigned to cluster  and  is the coupling parameter which 

helps determine the number of clusters. 

 Second, the posterior on cluster assignments for previous items can also be built up as 

a sequential process 

. (A2) 

We used the original inference algorithm for the RMC which assigns an item to the 

cluster that had the highest probability of producing that item. This approximation makes 

simulation feasible relative to summing Equation A1 over all possible partitions of the items 

into clusters, and it is deterministic which improves speed of computation. This 

approximation is sensitive to the ordering of the items, so the likelihood of each participant’s 

responses was computed given the order in which he or she saw the items.  

 Finally, we need the likelihood of an item and its category label given the other items 

that are already assigned to a cluster. Because the RMC assumes that within a cluster the 

category label is independent from the physical features, and that all of the physical features 

are independent from one another 

 

where  is the value of the  physical feature of item . 
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The Shepard et al. (1961) learning task used three binary-valued physical features, so 

a Beta-binomial likelihood distribution was used 

 

where  is the number of items in the cluster that match the new item along the  

physical feature,  is the number of items in the cluster, and  is the parameter of a 

symmetric Beta prior distribution on the probability of obtaining different features. The 

likelihood of the binary-valued category feature uses the same form with a separate 

symmetric Beta prior 

 . 

 The parameters used to infer the category label and those used to infer the cluster 

assignments are defined by the model to be the same, but it is possible to use separate 

parameters in the two operations (e.g., Nosofsky, 1991). In the results, we separated the two 

processes by computing Equation A2 with one set of parameters, and then computing the 

response probabilities in Equation A1 (given the indices computed in Equation A2) using a 

different set of parameters.  

Model Fitting Details 

 The likelihood of participant responses was determined using a Bernoulli likelihood. 

We implemented our model in R and used the nlm function from the stats package (R core 

team, 2016) to search for the best-fitting parameters. The parameter search was difficult 

because the predictions of the RMC can change suddenly with small changes in the 

parameters (e.g., Sanborn, Griffiths, & Navarro, 2010). We eventually settled on a procedure 

of running the nlm function until it converged and then restarting the algorithm by randomly 
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jittering the best-fitting parameters. The random new starting point was a sample from a 

Gaussian distribution centered on the previous best fit with a standard deviation of 0.5% of 

the value of the parameter. We restarted the algorithm at least thirty times for each model, but 

finding that some of the models were still improving, we repeated this exercise until the log 

likelihood appeared stable and all models nested within more general models fit worse than 

the more general models. For the collection of models we analyzed, the parameter search 

required a month on a desktop computer. 
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Appendix B: Response Consistency 

The experimental results showed that for older adults in the Type II task their 

responses matched between maximally different stimuli on approximately half of trials, even 

when they were correct on the previous trial. This pattern of behavior could be a result of 

random responding, or equivalently the result of choosing a new single-dimensional rule with 

equal probability on each trial from amongst the complete set of single-dimensional rules. 

To determine if young or older adults were randomly responding in any of the tasks, 

we calculated a measure of response consistency, which can identify participants who are at 

chance accuracy but are still making consistent responses. This measure calculated for each 

stimulus the proportion of trials on which participants made the same response, which ranged 

from 0.5 (i.e., ‘Alpha’ to half the trials and ‘Beta’ to the other half) to 1 (i.e., responses were 

either always ‘Alpha’ or always ‘Beta’).  

We simulated the distribution of response consistency for individuals performing 

according to chance. Ordering the simulated response consistency from lowest to highest, the 

95th percentile was almost exactly 2/3, so this value was used as the cut-off for significance. 

The proportion of participants that were significantly above chance in response consistency is 

shown in Table B1 for each age group and task type.  

Table B1 

Proportion of Participants Significantly Above Chance in Response Consistency  

 

 

 

Type I 

 

Type II 

 

Type III 

 

Type IV 

Young  0.98 0.81 0.83 0.77 

Older  0.90 0.46 0.54 0.79 

 


