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Abstrac® The processing capabilities of the biological vision
system are still vastly supeor to artificial vision, which has been
an active area of research for over half a century. Current
artificial vision techniques, motivated by this robust
performance, integrate many insights from biology yet they
remain far-off the capabilities of animak and humans in terms of
speed, power and performance. With respect to modelling the
retina, this is due to an insufficient understanding of the complex
interactions between the cells and their organisation within the
system. The core components within tsi system are the retinal
ganglion cells as they convey the accumulatathta of real world
images as action potentials onto the visual cortex via the optic
nerve. Computational models that approximate the processing
that occurs within these visual neurons @an be derived by
quantitatively fitting particular sets of physiological data using
an input-output analysis where the input is a known and its
output is recorded. Techniques capable of mapping this input
output response involve computational combinationsof linear
and nonlinear models that are generally complex and lack any
relevance to the underlying biophysics. In this workwe illustrate
how system identification techniques, which take inspiration
from biological systems, can accurately model ganglion ite
behaviour, and are a viable alternative to traditional linear
nonlinear approaches.

Index Term® Retinal ganglion cells, computational modelling,
biological vision, receptive field, artificial stimuli.
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Figure 1. Recorded receptive fields from ‘parasol' ganglion cells
macaque retinfl]

for higher processing. Previously, the retina was thought of as
a simple spatiotemporal filter, with the real prodegs
beginning in the visual cortex. However this view has been
substantially revised in recent tim&s3.

There is very little feedback from the brain to the retina thus
it is an ideal biological system to derive computational models
of a stimulusresponse relationship, as the inputs can be
precisely controlled whilst the outp can be extracellularly
recorded from RGCs through the use of a mrlkictrode
array [4]. Each RGC pools signals from multiple
photoreceptors via a networked infrastructure of the various
cell types. Collectively, the spatial area of photoreceptors

) ) : which contribute to a RGC eliciting a response is known as the
challenge in the visual research field for many years, oniivefield (RF), which can also be referred to as the

Vision begins with light that is projected to the back of the ey gion of the sensory space in which visual stimulus triggers a

onto the retina which

approximatéy 520mn¥ [1]. Around 125 million rod and cone
photoreceptors trafrm visible light into neural signal].
This is in comparison to 1 rnlibn ganglion cells which

intermediate layers consisting of horizontal,

. is. an _extension of the braiReuron to fire. The general shape of this spatial area is
approximately 0.3.4mm thick and covers an area ofC

ommonly approximated to be either a circulgt or an
elliptical region that is often defined with a 2D Gaussian

spatial profile[6], [7]. In reality, however, the actual shape of

) . ) . i X the RF is highly irregular as demonstratedrigure 1 where
receive the signal information, having been filtered througﬁ

GCs from macaque monkeys are shown to closely interlock

bipolar angnd span the entire area of the visual window. Derived models

amacl_rine cel:ls. There arhe_ art]roundéxsdistihnct t_ypi):—;s of re_tinal which acurately describe this relationship progress our
ganglion cells (RGC) which transform the sibiidormation g, tional understanding of the retina and inspire future image

into what are known as action potentials (spikes) and transmit, osing researdB]. In fact, biologically inspired models
the information via synaptic connections to the visual COM&y 1'c rotina. between stimulus and response, have been shown

to outperform various machine vision techniques in terms of
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to describe the stimuleseesponse relationshigl10]. In dynamics. Finally, a concluding discussion based on the
particular, LN models have been used to describe tifiadings of this work is presented in Section 5 along with
processing in the retifd1] though the main drawback is thatfuture directions for investigation.

they lack any relationship betwetire derived parameters and

underlying biophysics of the systen{10]. System Il. METHODS

identification tools are useful in this case as they are suited tODeriving a quantitative relationship between stimulus and
dynamical systems and allow for a better insight into thesponse of a ®C is challenging if we consider the internal
underlying physics of the biological system. First used tge| structure that precedes them or the numerous interactions
understand the responses of auditory neurd2j, output qyer the many interconnections between cells. To simplify
responses were recorded using white noise stimuli ags we consider the problem with a blamix approach
inferences were madenomapping the stimulus to the \yhich aims to estimate a matheinat model for a regression
response. As is often the case, white noise stimulation dgtaset and apply a number of different methods to form this
preferred for modelling biological vision systerfis3] as it model. In keeping with traditional approaches, the Linear

remains controlled and is easily analysed mathematicalljonlinear (LN) cascade approach is also utilised as a
However, there is evidence that the use of artificial Stimu@omparison to the investigated approaches.

produces models that do not adequately describe responses t )
natural visual sceneli4]. Therefore, models created unde®- Linear-Noninear(LN)
thee conditions using artificial stimuli may only be The LinearNonlinear (LN) cascaded approach is a popular
considered a subset of the full biological model under certamethod of estimating the output firing rate of a neuron by
conditions. applying the input to a linear temporal filter followed by a
Artificial Neural Network (ANN) methodologies, by static norlinear transformatiorfl0] and can be described by
definition, are designed to mimic biological aspects of thEq.1;
human brain[15] and through extension; the vision system.
Specifically, Nonlinear Autoregressive Network with
Exogenous INputsNARX) anq kNearest Ne|ghbogrs (kNN) where® is the temporal linear filter, F is a static Alamearity
approaches have been applied to neural encoding models_In, v «, : . ) .
o . .~ “andwz Y is the convolution of the temporal linear filter and
human vision[16] whilst methods, such as TDNN (Time _.. N : . I
. stimulus™Y. The first step in estimating the response @& th
Delayed Neural Network), MLP (Multayer Perceptron) and ~_ . ; S . . L
. . . rtha to visual stimuli is to compute the linear filter. This is
other ANN implementations have been used to derive mod?s. . . . .
. ) . ) ypically accomplished by computing the spike triggered
of retinal gangbn cell visual processing17]-{19]. The ; ; . !
: . ; .. average (STA), which is simply the average stimulus
NARMAX (nonlinear auteregressive moving average with . : .
X : : preceding each spike (SEgure2 for example).
exogenous inputs) model20]; a parametric system
identification technique, which is a natural extension t 1 23 4 5 6
NARX, has also been used within vision studies to modi < e ‘ ' :
adaptation of photoreceptors to light in flig21]. The
NARMAX technique lends itself to a broad range o
applications in several areas which include modelling rob ) )
behaviour[22], time series analysi3], iceberg calving and ‘ ‘ spike train
detecting and tracking tirmearying causality for EEG data
[24]. In previous work[18], [25] the NARMAX methodology : : — time, t
has been utilised to help formulate a retina modelling FigureZ: Calculating spikariggered average

development process and in particular, to express the, 113] this is defined by ER where T is the duration of
biological inputoutpu relationship using polynomial models. e gtimulus recordingy'Qis the stimulus preceding a spike
In this work we expand of25] by introducing, in addition ~q 1,5 the STA is the sum of all stimuli preceding a spike

to the NARMAX model, the selbrganising fuzzy neural i iqed by thetotal number of spikes within the recording.
network (SOFNN) and NARX methodologies. The predictive

i o oG Y ®

stimulus

performance of the investigated methodologies to adequately . B YQ
mo d e | a retinal ganglion cell s o‘*htgui‘Q i s eval@ated.

Pefformance is compared amongst these popular approaches,

outlined in Section 2, with specific reference to the standafide size of the temporal window is determined by examining
LN cascade technique. Section 3 provides details on tHie duration of the average response and ascertaining the point
physiological experiments used for data collection and tiaé Whid it converges to zefd3].

methods utilised to prprocess the data to form and input Determining the latter element of the LNscade entails ﬂje
output time series configuration suitable for modelling. Theéonvolution of the stimulus with the computed STz ("Yh
results are presented in Section 4 where models have b&:i§P) and computing the static ndinearity (F). This is
derived based on two types of artificial stimuli. These modefghieved by plotting the spike count as a function of the
are then analysed further to determamy underlying system Cconvolved stimulus and fitting a curve.



B. Nonlinear autoregressive exogenous model (NARX) alternative nonlinear system identification methods, for
NARX (Nonlinear Autoregressive eXogenous) is part of thexample NARMAX, which is discussed in the next section.
ANN family and is a model of a nonlinear neural networ Nonlinear autoregressive moving average modé
which accommodates dynamlc inputs from a time series tyBQogenous inputs (NARMAX)
dataset. It can learn to predict future values of the time series further i h dicti f th
based on past informiah from the same time series, feedback A further improvement to the predictive powers of the
input, and an additional time series referred to as ttNéA‘RX model can be achieved when the previous errors of the
exogenous time series. Based on the same architecture>Yem are Ljnt:ag_ratt:d a%ontrollehd varlalblesf[?at]_. hA
conventional recurrent neural networks, NARX provide yARMAX model IS torme asht e_resut of thishe |
powerful solution to time series prediction thaffers more N AF]R MA X q a E proac ' ds | ha pllo pul-ar
effective learning and faster convergence over other ANl\t@f _nquﬁ u:;e w enhatt_em@ to (;no el the non |:1ear d
[26]. A further advantage in principle is that one can us€ ationship between the inputs and outputs (stimulus an

NARX networks, rather than conventional recurrent networl{gs?pnse)a!ftfdoes this by ,r epresehntlng the problercr; ?5 ah§er;t of
with complex differentiable nonlinearities, without any°n!near difierence equations. The NARMAX madel, whic
computational losE27]. is a natural extension of the ARMAX modg2], can be

The topology of the network incorporates input, hidden ar%efined by:
output processing element (PE) layers with the tirtputhe ©o 00o pMRwe ¢ o QMo & K

network being fed by a number of delay units. Feedback from Q6 pBH6 0 Qo (4)
the output is also fed back to the hidden layer via delay units
[28] as shown irFigures. which accounts for the combined effects of noise, modelling

errors and unmeasured disturbances concerning the inputs and
outputs. Herep 0 and w0 are the input and utput vectors
respectively;Q 0 is system noise which is considered bounded and
cannot be measured directly ahd ¢ are the max output and input
delays respectively."08 , which is an unknown nonlinear
function, is typically taken to be jolynomial expansion of

x(r-1)

the arguments.
WD To develop a NARMAX model, the structure of the
('} nonlinear equation must first be identified along with the
e estimation of its parameters. The overall approach is made up
' I—H of the following step$24]:

1) Structure Detection: determine the terms within the model.

2) Parameter Estimaton: t une the coeffici e
3) Model Validation: analyse model to avoid overfitting.

4) Prediction: output of the model at a future point in time.

5) Analysis: analyse model performance and determine the

Figure3: Architecture of a NARX networfe8] underlying dynamics of the system

The description of the example modeb(re3) can be denoted As the structureis typically unknown prior to the
as: implementation, a range of possibilities exist to approximate
the function including polynomial, rational and various ANN
implementations[32], such as the NARX network. The
polynomial models however offer the most attractive
implementation with regards to visual modelling as takgw
where( i) ity and are constantsi O is the source input for the underlying dynamical properties of the system to be
and® O is the output of the network. Previously, NARX haveevealed and analysed. One solution to determine the
been used to modelarious elements of the visual systenimportant terms of the model can be achieved using an
including human tracking for robot vision applicatig9] orthogonal least squares approach by computing the
and the encoding of the natural visual system in humafg@ntribution that each potentiahodel term makes to the
through in vivo experimentatiofil6]. Although it has been System output. Building the system this way, term by term,
proven that NARX is effective in its predictive performance ofXposes the significance of each new term added and allows
complex time series dat@0], one of the disadvantages offor the avoidance of overfitting due to an excessive use of time
models created via NARX is that they are not easily analysé&gs or nonlinear function approximatiof2] by ensuring

due to their opaque nature in terms of the obtained mappifigat the model is as simple as possible and owtgood
This makes ti very difficult to understand any underlyinggeneralisation  properties. ~ This  approach  simulates
system dynamics that might otherwise be apparent iavestigative modelling techniques where the important model

WO Q. Hwo Q Mo "Qh ©)



terms are introduced first and then the model is refined t _
adding in less significant terms. The only difference is that i Bias A

the NARMAX method, the model terms can be identified

directly from the data set. The unknown parameters ar ¢ y f;
system noise can then be estimated and accommodated wit { x
the model. These procedures are now well established a
have been used in many modelling dom#33.

D. SelfOrganising Fuzzy Neural Network (SOFNN) “ 0 " f
Another methd which can be utilised to model and analyse

time series type datasets is the $&ifjanising Fuzzy Neural
Network (SOFNN). A SOFNN is a hybrid network which has As
the capability to model and forecast a complex nonlinee | =
system. It is capable of salfganis$ng its architecture by @ Uy f,
adding and pruning neurons as required based on tl
complexity of the dataset. This alleviates the requirement « . ! -

- . . [npnur Layer EBF Layer Normalised Layer Weighted Layver  Output Layer
predetermining the model structure and estimation of the Figured: Layer Structue of SOFNN
model parameters as the SOFNN can accomplish this without '
any in-depth knowledge of neural networks or fuzzy systems.
The SOFNN approach has demonstrated good performance in

applications of function approximation, complex system
identification and time series prediction, further details of ™
which can be found if84]{37].
The main architecture of th r fuzzy
neural network as depicted migure4. These include an input
layer, EBF (ellipsoidal basis function) layer, normalized layer, * ) @;

weighted layer and output layer. The SOFNN has the ability to
reorganise the connections between these layers during the
learning processn the EBF layereach neuron is &norm of
Gaussian membership function (MRattributed to the %
networks inputgseerigure5) whereeach neurorsignifies the

if-part of the fuzzy rule.The output from this layer is
computed byproducs of the membership values of each input

The output of the EBF layer is normalised by the third layer,

which contains an equal number of neurons, by dividing eaﬂji}esholdj adding a new EBF neuron tiee network will be

output by the sum of all outputs. _ , considered, otherwise an existing membership function may
The fourth network layeof the network is the weighted e mogifiedso that it appropriately clusters the new training
layer and signifies theonsequent thepartof the fuzzy rules sample.

Each neuron in this layer has two inputs, one of which iS prning of a neuron is governed by the importance of each
directly related to the output of the previdager whilst the o 100 pased on its contribution to the overall networks

other is fed by a weightelias The product of these tWO hoformance. The strategy is based on the optimal brain
inputs translate as the output to the final layer which contalgargeon approach[38] which uses second derivative

a single neuron representing the summation of all incomifge - ation to find the least important neurand prune it

signals. _ o from the network. If the subsequent performance of the
During the learning process of the SOFNN, emal sopENN remains unchanged, the neuron is permanently

structure is dynamically modified through adding and pruningg|ated. Consequently, the neuron is restored should the

of neurons within the EBF layer to achieve an economicﬁlerformance be significantly degraded. An in depth

network siz_e Befor_e adding a neuron_to the network,_ eXiStin%xplanation of the adding drpruning strategy is outlined in
membership functions are first examined to ascertain whethggy

or notthey can be modified to accommodate the new training
sample while considering the generalisation performance of m
the overall network. This is determined using the following
error criteria:

Figure5: Internal Structure of EBF Neuron

STIMULUS AND DATA PRE-PROCESSNG

Neuronal data were recorded fromtinas, which were
isolated from dark adapted adult axoladtiger salamanders,
$ 0s N o (5) similar to the approach i], [39], where the retina is divided
in half, with each half placed cell side down onto a multi
where'Q is the desired output of the system abdis the electrode arrayEach imag was projected onto thRGCs by a
net work outoput. I f thi s er rminiaturé osgang dightaniiteng diddé @QLED) slisplaye witli s e r



white light. A lens then denagnifies the image and focuses ita)
onto the photoreceptor layer of the isolated retiihe
stimulus display ran a0 Hz whilst the §mulus itself was
updated at30Hz meaning a nevstimulus presentation was

made approximately every 33ms. The neural resporse

(spikes) were recordedt 10kHzand binned at the stimulus
updaterate meaning that all spikes that occur within the
stimulus presentation timeframe are sumnieecorded spikes
were sorted offine by a cluster analysis of their shapes, ani
spike times were measured relative to the beginninthef

stimulus presentation. Figure6: Pseuderandom sequence of a) Gaussian temporal sequence :
spatietemporal sequence.

Time

A. Stimulus

These recordings were performed whiledemstimulation
using temporal and spatie¢emporal Gaussian white noise
sequence Artificial white noise sequences are frequently
utilised when determining various characteristics of RGCs,
including the STA (Section 2.1), as this avoids cell adaptation: v
to swstained stimuli, is relatively robust and spans a wide
range of visual input$l3]. An example ofthe stimulus is
presented inFigure 6, where each image in theemporal
sequence is presented sequentiaiyure 6(@) shows a set of
images drawn from a randomly distributed &sian white
noise sequence, used for full field illumination, where all
pixels within each image are illuminated with the same light 1
intensity, thus no spatial arrangement is observable. This i:*
referred to as Full Field Flicker (FFF) and is the least dexnp ™
form of artificial stimulus used within these experiments_. 2 ¢ ¢ ¢ 10 %2 1% . -
Deriving models under these conditions, however, would on 'gg’rﬁ;'lsprriﬁ;"c-e ssing step which shows how the local stimbluapar

’ w ptive field is weighted with a 2D Gaussian filter. (a)
be relevant under a certain subset of conditions as the mos@hulus for a cells receptive field. (b) 2D Gaussian used to weig
would only consider the temporal component. Thgsre6(b)  stimulus intensities. (c) Weighted image of the local stimulus intensitie

extends the stimulus input range to include a sgatigporal _ . . .
input by introducing the binary checkerboard pattern. THEF: thus the average intensity of each presented image is

CheckerBoard Flicker (CBF), again drawn randomly from S£xtracted instead. The neurall response, originall_y recordeq as
Gaussian distribution, extends the complexity of the input d@e(reduency of 10kHz, were binned at 30Hz to align well with
to the additional spatial component and is commonly used & Stimulus input forming a single inpubutputdataset.

determine characteri g40f cs o fAS& PrEpPgepsing stepithe LR stimulithepertingniy
stimulusvaluesmust first be extracteftom the checkerboard

B. Data Preprocessing pattern Eigure7(a)); here we extract only those checkerboard

The overall goal of pre-processing stage is to manipulate/@lues located either inside, ororhe bor der of th
the data so that they form a regressioclassificatiordataset, "€ RF is determined using a standard reveeseelation
i.e. inputoutput corresponding to the stimultesponse, Method[4], [13] which is a technique for studying how
which then can be used for developing the computationg§nSory neurons summate signals from different times and
models.Recordings were supplied far number ofganglion locations to generate a respofs].
cells and organied within two datasetspoth containing the ~ 10 emulate the procesg that occurs between the
visual stimuli and neuralkspike response The first dataset photoreceptors and RGCs, the local stimulus within the RF is
contained a large set of noepeated stimuliZ16000 samples Weighted using @D Gaussiatiilter (with a support of 8) [8],
for FFF and258000 sampleor CBF) that aresuitable to which is illustrated irFigure7(b). From the resulting weighted
ascertain characteristics suchtheSTA andto ensure that a Stimulus, shown irFigure 7(c), the pixels within theegion of
sufficient number of varied stimuli are presented in order {§€ RF (green ellipse) are extracted and summed to form an
evoke cell responses.h& seconddataet contained anuch input for the derived models. This results in a single value
smaller set of stimulf1200 samplesyhich werepresented to "epresenting the CBF pattern for each time step rather than the
the cellsrepeatedly individual pixel values (This is the standard approadé but,

Traditionally, only $ i mul us val ues wi aHhtjwil bg disgugsed latey, thg pauthgrs Believe it merits
considered for analysis as only values within this sensofyrther investigation). The binned neural response is again
space contribute to as kFel vsedsas theouniompighds binnedsagearding (to,the siimulus
stimulus has uniform spatial intensity throughdbgere is no update rate. In the case of the second dataset, i.e. the repeated

need to extract the specific stimulustie region of th&GCs trials, the mean of the binned spike rate is computed using the
43 trials andused as the model output.
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IV. RESULTS Spike-triggered Average

Recordings of the ganglion cell neural respsrfspikes) to 010 ' ‘
the FFF and CBFstimulation wereprovidedfor a number of a) /‘\\
different ganglion cells. Here we demonstrate analysisvof / '\\
selectedganglion cellsor each stimuls set oneON-cell and 005 / \
one OFF-cell. The cell type is traditionally characterised by # T

the shape of its temporal profile (STRE)3], [43], [44], whilst _
the length of the temporal window can be assessed by
examning the duration of the average response and
ascertaining the point at which it converges to &8). Figure .
8 illustrates the calculated profiles for both cells, where it was \ ]
determined that 21 lagged values (700ms) of the time serie: _y4 \
were sufficient to capture the required behavigigure 8(a) \ /
shows a temporal profile akin to what is described as a \f'
biphasic OFF type cell if43]; we refer to this cell simply as \.’
an OFF-cell in this work. Figure 8(b) shows a profile that is 0% =T =T > 0
typical of anON-cell. 0.0

0.08 b) ff\’\

A. Temporal Artificial Stimuli [\

L / \
Determining the STA profile of the cell is also useful for " ’ ‘-\

indicating the number of lagged values to use for training the o0} r’ \
models. For instance, for results presented in this section, i% . / \
was estimatedhat 21 lagged values would be sufficient to ' :
train each algorithm. Upon further investigation it was -
established that the use of 10 lagged values, essentiall f
capturing the main STA characteristiasggre 8(a)-(b)), was | f
sufficientto train both the NARX and NARMAX methods and .02 ,f
provided a marginal improvement in the estimated response
For the SOFNN method however, the full range of STA values
worked best. 008
Results of thederived models for the FFF stimuli are o s Upda before sole 0
presentedn TasLe | andTasLe Il respectivelyFor each of the Figure8: STA profile of(a) OFF-cell and (b)ON-cell using FFF stimuli
different approaches adel accuracy is measured using the
root mean square erroRKSE) between the predicted andcomparsonto the OFF-cell. This is evident when comparing
actual spike rateFrom the results shown, it cdre observed Figureg(b) andrigure9(d), which relates to the testing output. It

that the NARX method performs significantly better than thgan be observed that both methods perform well in terms of
other investigated methods for both cells. Specifically, the

performance increase of the NARX method over the LN

Average Intensity
£
2
1
L 4
\
L
/
$
|

000} . &t { ~o—4

Average Inten:

=006}

TABLE |
method is quite substantial, with respect to @teF-cell for RMSEVALUES FORO[?IEI(_:T;LL USING FFFSTIMULI
both'tranlng and testing datasets. Surprisingly, mtegratm_g the m Training RMSE | Testing RMSE
previous errors of the system as controlled variables did not
improve the predictive qualities of the model (Sectiad), as 071 0.63
is evident by the NARMAX output.

Although the NARMAX approach achieved good results for FNARIEVE 0.67 0.61
the OFF-cell surpassing both the LN and SOFNN methods in _
performance, it did not improve upon the NARX model output NARX 0.52 0.49
which is less complex and requires considerably less FS{@]=N|\! 0.77 0.68
computational power. Additionally, the SORNmethod,
which has shown good performance in modelling output TABLE Il
responses of isolated mice retindg], fails to provide an RMSEVALUES FORON-CELL USING FFESTIMULI
improved performance over the LN model for the salamander m Training RMSE | Testing RMSE
data.

To demonstrate the visible difference in performance of the 0.37 0.35
NARX vs. LN method, the training and testing outputs are _
plotted inFigure9 for 200 samples. The results presented here DARGYLAX — o

are for theON-cell, which shows the performance of the FN/N=)% 0.34 0.33
NARX method to be improved in terms of the magnitude even
though performance in terms of RM&Enot as significant in SOFNN 0.42 0.41
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Figure9: Prediction resultsf the ON-cell model usinghe LN and NARX modelfor FFF stimulifor: (a) the training samplesf the LN method(b) the
testing samplesf the LN method, (c) the training samples of the NARX method and (d) the testing samples of the NARX method

predicting the timing ofthe spike rate though thdARX drawn to the fact that amongst thmimber of methods
method additionally improves the magnitude of the predictionsvestigated, there is no significant improvement over the
and in the majority of cases, reaches the tagjée rate.
TABLE Il
RMSEVALUES FOR MODELS OFOFFCELL USING CBF STIMULI
Training Testing Testing
RMSE RMSE RMSE
(Dataset 1)| (Dataset 1)| (Dataset 2)

B. SpatieTemporal Artificial Stimuli

To increase the complexity of the derived models, such tha
they can generalise over a more complex stimulus set, the
CBF dataset is utilisedhe results of the experiments faoth

datasets fothe OFF-cell and ON-cell are outlined inrasLe Il L 0.35 0.35 0.27
andTaeLe IV respectiely wheremodel accuracy is measured

in terms ofthe RMSEbetween the predicted and actual spike MARAY Des Dt 028
rate Although the same cells are in use for these experimentsfN/\=54 0.34 0.35 0.27
the stimulus sets differ and thus the results between datase

are not directly comparable. Orabservation, immediately SOFNN 0.36 0.37 0.30
noted, is that there is no clear separation between the

performances of the LN approach vs. the other investigated TABLE IV

methodsThis iS discussed |ater RMSEVALUES FOR MODELS OFON-CELL USING CBF STIMULI

In terms of the RMSE values, the NARX method RVl
outperforms the other models for batells during the training
phase. Within the testing datasets however, the LN methoc
performs on par with the NARX method for both testing sets

Training Testing Testing
RMSE RMSE RMSE

with respect to the@N-cell and for the second dataset with FEN 0.38 0.38 0.24
respect to theOFF-cel. Among the remaining system

identification models, the NARMAX model outperforms the NARMAX 0.39 0.38 0.25
SOFNN model for both th®©FF-cell and ON-cell, with the NARX 0.37 0.37 0.24

exception of the SOFNN model achieving an equivalent
performance on ‘ODhadlaEsnphssis Is’ SOFNN 0.39 0.38 0.27
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standard LN approach. We believe that, due to the increagedns are based on what the model deems as important when it
spatial complexity of the stimulus, important information igs being derived. Therefore, for tH@FF-cell, Figure 10(b)

being lost through the interpretation of the receptiedfi shows the termsonsidered most important when training the
This is currently achieved by extracting pertinent values insigeodel which suggest that dramatic changes in the stimulus
the RF and simply summing or averaging to a singleontrast levels are important. This is also the case when
representative value. Interpreting the RF in this way disregardsmparing the STA and terms for tl@N-cell which are

any spatial characteristics that may have proven to kiésplayed irFigure10(c) andrigure10(d).

important to tle cells behaviour. This concept is explored Due to the opaque nature of the NARX approach it is

further in SectiorV. difficult to gain insight into any RGC models created using
) them. However, when analysing the weights of the input and
C. Model Analysis hidden layers, a similarity oaalso be drawn with the

The various models derived were analysed further tmalculated STA of the celkigure 11(a)(b) shows this strong
ascertain any underlying system dynamics that may be sifilarity when considering the most prominent neuron for the
interest to provide areas for furthémvestigation. Models OFF-cell. Again, this is evident for th®N-cell illustrated in
developed for both the FFF and CBF stimulus showed similgigure11(c)-(d).
characteristics when under review thus here we report only onFinally, the SOFNN techniquallows us to gain some
the analysis for the FFF stimulus set. insight into the underlying dynamics of the data by analysing

Analysis of the NARMAX model reveals some interestinghe fuzzy rules generateglor examplearule generated by the
observations withirthe model terms. To discuss further, weSOFNN for theOFF-cell under FFF stimulation is disllows:
first compute the spike triggered average (STA) using the
standard approach reported18]. The terms for each derived Rule 1 If Input 1 is A¢0.19113, 1.0375) AND Input 2 is
NARMAX model are then plotted and compared to the STAA(0.15069, 1.0375) AND Input 3 is A(0.10993, 1.0375) AND
Figure 10 illustrates the calculated STA and plotted NARMAXInput 4 is A¢0.088315, 1.0375) AND Input 5 is A(0.30136,
terms for both cells wherthe similarities between them are1.0375) AND Input 6 is AQ.085507, 1.0375) AND Input 7 is
clearly observable. It is important to note that the NARMAXA(-0.064816,1.0375) AND Input 8 is A{.08625, 1.0375)
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AND Input 9 is A(0.23699, 1.0375) AND Input 10 is -A( plotting the coefficients othe consequent part of the ruge
0.12157, 1.0375) AND Input 11 is A(71477, 0.96985) AND shown in Figure 12(b). Remarkably, thisapproximately
Input 12 is A(0.15307, 1.0375) AND Input 13 is A(0.15517resembles th&TA of the OFF-cell, which isshown inFigure
1.0375) AND Input 14 is A(0.16102, 1.0375NA Input 15is 12(a) for comparison Analysing therules for the ON-cell
A(0.16543, 1.0375) AND Input 16 is A(.010237, 1.0375) yields a similar outcomerigure 12(c) and Figure 12(d)). We
AND Input 17 is A(0.074938, 1.0375) AND Input 18 ishypothesise that the SOFNN, similar to the previous two
A(0.1176, 1.0375) AND Input 19 is A(0.00056977, 1.0375inethods, has identified the tempoaracteristics of the
AND Input 20 is A¢0.20507, 1.0375) THEN STA as being the most important attribute of the stimulus that
contribute to a cells response though further work in this area
Output is 0.33452 +-0.0070681 * Iput 1 + 0.0029931 * is ongoing. Both cells weradequately modelled byne
Input 2 +-0.42334 * Input 3 +1.4056 * Input 4 +0.89218 * neuron,corresponding to 1 fuzzy rulelnder CBF smulation,
Input 5 + 0.67233 * Input 6 + 1.428 * Input 7 + 1.1801 * Inputhe SOFNN model consisted of two neurons and consequently
8 + 0.59511 * Input 9 + 0.12145 * Input 10-8.10781 * Input two fuzzy rules to model each cellhe increased network
11 +-0.26965 * Input 12 +0.29999 * Input 13 +0.34188 * size i.e. number of neuronsndicates thatCBF stimuli are
Input 14 +-0.17775 * Input 15 +0.053445 * Input 16 + more complexo modelthan theFFF stimuli.
0.034553 * Input 17 + 0.018151 * Input 18 + 0.050873 *

Input 19 + 0.01101 * Input 20. V. DIsScuUssSION ANDFUTURE WORK

Modellingretinal ganglion cells withitthe retina is difficult
due to insufficient knowledge about the internal components,
their organisation andthe complexity of the interactions
within the system. Existing computational modelsare
traditionally cerivedby quantitatively fitting particular sets of
physiological data using an inpautput analysisnvolving
computational combinations of linear and nonlinear models

where A(centre, width) describes the memberdhipction for
each inputSimilar to the machine leaing models, thénputs
to the SOFNN are lagged values of the stimgleguenceso
Input 1 corresponds to the current value of the séreszero
milliseconds delay)and Input20 corresponds to the value
nineteentime steps in theast(i.e. 700ms dely). The result of
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that are generally complex and lack any relevance to theth the SOFNN and LN techniques, it was not able to
underlying biophysics.The wak outlined in this paper outperform NARX which is significantly & complicated.
explores the application ailk SOF&N did roti periormyas favéurabtyandneotellirng ihg
with system identification techniques as an alternative to tisalamander RGCs but has shown good performance in past
traditional lineamonlinear approach. We present results basegplications with mouse RGC47]. Its ability to capture
on the application of a selection of systedentification characteristics that align well with the RGCs STA surpasses
technigues, namely NARX, NARMAX and SOFNN, to boththe representation observed through the NARMAX
temporal and spatitemporal data revealing any underlyingpolynomial terms or the NARXnternal layer weights though
system dynamics that are observed after the modellifgr this application it seems more appropriate to choose the
process. simpler models that can generalise well over the input data,
The fulkfield temporal stimulus presented in Section 3.5uch as the NARX model.
was theleast complex stimulus considered for the work and With these interesting results for the temporal stimulus, we
consequently the explored models showed good performaredended these mdelling approaches to a more complex
in predicting the relationship between stimulus and responspatictemporal stimulus (outlined in Section 3.1). The spatio
In particular, the NARX method outperformed the othetemporal artificial stimuli increased the complexity of the
technigues in modelling both tl@FF-cell and ON-cell. This  stimulus as it introduced the need to process the receptive field
performance increase is also clearly observable whéerformation pertaining to eaatell by extracting pixels within
reviewing the model for th©N-cell which shows the least the region of interest, weighting with a Gaussian filter and
difference in terms of the RMSE when compared to the LBumming the result. Of the methods investigated to model the
model. Surprisingly, the NARMAX method did not offer arelationship of the increased complexity between the input and
better performance with its increased complexity througloutput, the NARX method again perfoech favourably in
integration of previous errors as controlled variablezomparison to the other methods investigated. However,
Although the results show that the NARMAX outperformedvhere the NARX clearly performed better foetFFF dataset,



the difference observed between the NARX and LN withinthg* VI SUALI SE” ) .
CBF dataset was diminished in terms of the RMSE. Here, thet u d y
NARX had an improved performance with respect to thRet i na”

The experiment s
s uRrogdssing oh thd y t
group at the

have been
research

training dataset for both cells but performed on par with tHéniversity of Gttingen as part of the VISUALISE project.

LN method for the testing sets. The NARMAX method

provided a slightly improved performance over the SOFN'Peferences

method for theOFF-cell but an equal performance for tE&-

cell. Similarly with the temporal data, characteristics akin thtl
the STA of each cell were obsebla in all the system
identification methods presented for the CBF dathe
readability of such characteristicoffers an advantage over [2]
more opaquepproachesike LN that may provide a more in
depth understanding of the underlying dynamics of the systeﬁ]
however further investigation into the relationship between
these characteristics and the STA is ongoing.

Although the models presented adequately fit the real neu[fél
response, specifically the NARX method, there is quite a
significant difference betweethe results for the temporal and
spatietemporal datasets. While not directly comparable, it ce{ﬁ]

be observed that within the temporal data results, there is a
clear separation between the performances of the standard HGH\I

approach vs the more binspiredtechniques. Analysis of the
spatietemporal results revealed results which were not as
clearly discriminable.

A. Future Work

Stemming from the comparative analysis between tHél
temporal and spatitemporal modelling approaches, we
further investigated variousspects of the spatiemporal
modelling process. In particular, we questioned thi8]
transformation process of the receptive field and queried
whether summing all of the spatial information to a singular
representative value is sufficient enough to modelR&C
efficiently. Given the increased complexity of the spatiol9]
temporal to that of the temporal dataset it was hypothesised
that summing the Gaussian weighted data within each
receptive field was resulting in the significant loss of spatial
information whth could account for the increased complexity
of fitting a model to the neural response[46] a method for
retaining the spatial information is presented which calculates
the STA spatially as well as temporally, filtering the stimulus

with spatial information to create the input stimulus to &Ll1]

model. In this method, it ishe LN method which benefits
from this approach thus our initial investigation lead to
constructing the linear filter within the LN approach from a
spatial STA analysis.

The results obtained from this approach were marginallyZ2]

better in terms oRMSE andthe magnitude of the nonlinear

estimate; however the associated computational cost would be
[13]

extremely large for thBlARX and other bignspired methods
without reducing the input space. This warrants further
investigation into how the data within the receptive field can

be compressed so that its influence is calculated correctly dAd]

with efficient computational complexity.
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