
1

A Global Generic Architecture for the future Internet of Things

Wei Wang, Kevin Lee and David Murray

Abstract The envisioned 6A Connectivity of the future
IoT aims to allow people and objects to be connected
anytime, anyplace, with anything and anyone, using any
path/network and any service. Because of heterogeneous
resources, incompatible standards and communication
patterns, the current IoT is constrained to specific devices,
platforms, networks and domains. As the standards have
been accepted worldwide, most existing IoT platforms use
Web Services to integrate heterogeneous devices. Human-
readable protocols of Web Services cause non-negligible
overhead for object-to-object communication. Other issues,
such as: lack of applications and modularized services,
high cost of devices and software development also hinder
the common use of the IoT. In this paper, a global generic
architecture for the future IoT (GGIoT) is proposed to meet
the envisioned 6A Connectivity of the future IoT. GGIoT
is independent of particular devices, platforms, networks,
domains and applications, and it minimizes transmission
message size to fit devices with minimal capabilities, such
as passive RFID tags. Thus, lower physical size and cost
are possible, and network overhead can be reduced. The
proposed GGIoT is evaluated via performance analysis and
proof-of-concept case studies.

Keywords Internet of Things · SOA · Generic
architecture ·Middleware · Ontology

1 Introduction

The Internet of Things connects physical objects on the
Internet. A thing is a virtualized object in information
systems [1]. The virtual object has identities, attributes and
communicates via its interfaces. The IoT involves people-
to-people, people-to-object (P2O) and object-to-object
(O2O) communication. Traditional Internet applications,
such as blogs and online games, are facilitated by people-
to-people communication. On the Internet, People can
interact with the physical world via P2O communication,
such as monitoring and tracking physical objects. In O2O
communication, objects communicate with other objects,
such as Near-Field Communications (NFC) [2].

The development of the IoT depends on innovation across

many domains and industries, such as hardware manufacture
and information technologies [3]. To collect real-time status
of physical objects, barcodes wireless sensor networks and
RFID technologies are necessary. Web 2.0 allows third-party
users to provide and discover virtual objects and services on
the Internet. To process device messages, Cloud Computing
can provide elastic resources to process excessive real-time
events [4]. With mobile networks and Wi-Fi, smart phones
can act as proxies to connect objects to the Internet [2]. To

exchange large amounts of data in networks, bandwidth is
required to be increased [1].

The development of the IoT can be classified into four
phases: i) Intranet of Things, ii) Extranet of Things, iii)
Internet of Things, iv) Future Internet of Things and People
[5]. Most existing RFID applications in closed systems are
considered as Intranet of Things and Extranet of things, and
little demand is needed for exchanging data across domains
[5]. The third phase points to the current IoT designed for
specific devices, platforms, networks, domains, services and
applications. The fourth phase, Future Internet of Things and
People, aims to connect people and objects on a global scale
and across domains and industries [5]. In the future IoT,
objects will become context-aware and make spontaneous
decisions to communicate with people and machines [6].

The future IoT will be an integral paradigm across many
domains, in which objects can seamlessly communicate with
each other [7]. The future IoT needs an open architecture to
realize interoperability among heterogeneous resources [1].
This paper presents a global generic architecture for the
future IoT (GGIoT), which has many advantages. First, as
the IoT is crossing domains, a generic architecture improves
interoperability across systems. Second, as technologies are
evolving and user requirements are changing, developing
applications on a generic architecture can reduce time and
cost to suit to the changes. Third, a generic IoT architecture
allows third-parties to offer and consume services on public
platforms in a simple way.

Building a generic IoT architecture is challenging, due to
many issues. In this paper, a generic architecture is presented
for the future IoT, and aims to resolve the following issues.
 Device integration: The IoT involves diverse devices,

such as sensors, barcode and RFID tags, to collect and
transmit description of physical objects. To integrate

ORIGINAL RESEARCH PAPER

2

heterogeneous devices, Web Services enable standard
web protocols to request data from IP-enabled devices.
Web Services cannot be embedded on some resource-
constrained devices. The future IoT needs to connect
devices with minimal capabilities and physical sizes.
In the proposed architecture, diverse devices can be
seamlessly integrated at middleware in the distributed
proxies. It is independent of devices and networks.

 Semantic integration: The future IoT needs to interpret
meaning of received messages from different people. It
is challenging to standardize description of objects by
defining mandatory rules, similar to enforcing people
to speak the same language worldwide. Using adaptors
can interpret meaning of exchanged messages between
systems. However, the interpretation of an adaptor is
only limited to recognize patterns appear. This paper
presents a novel approach of data integration based on
building ontologies. Users are not required to describe
data schema, object properties and units of measure in
device messages. Meanwhile, the meaning of object
and service description is also globally consistent.

 Personalization: Personalization delivers customized
services to meet user needs [7]. As billions of objects
are expected to connect to the future IoT, it is difficult
to predesign all virtual objects and services. In this
paper, the architecture enables third-parties to create
and customize content on a global public platform.

 Unexpected Interaction: The future IoT will reach a
global scale. When objects move between spaces, it is
difficult to handle the uncertainties and the unexpected
interactions among objects [8]. If an object discovers
many unknown objects nearby, it should only interact
with certain objects. Otherwise, numerous unnecessary
interactions would wastes resources. The proposed IoT
architecture uses distributed proxies to coordinate the
local interaction among objects and services.

 Real-time Capability: In the future IoT, a great number
of objects can generate a massive of real-time events.
Object property values change constantly. To update
real-time status of physical objects, events need to be
immediately transmitted and processed. Most existing
IoT platforms utilize Web Servers to exchange data
between systems. Apart from the high overhead of web
protocols, indirectly accessing sensor data in remote
web servers also increases latency. In the proposed IoT
architecture, to reduce network traffic for local O2O
communication, device messages are exchanged and
processed in distributed proxies via binary protocols.

 Service Modularization: Due to diversity of objects,
services and devices, most existing IoT platforms do
not provide reusable and modularized services, which
make providing and consuming services difficult for
third-parties, and also increase development costs. In
the proposed architecture, a physical object or service
is virtualized as a primitive middleware component.
Cost and time can be reduced by reusing many atomic
components to combine a composed service via the
globally consistent interface.

This paper is structured as follows: Section 2 discusses

architectural requirements for the future IoT. Section 3
analyzes constraints of existing IoT platforms. Section 4
presents a global generic architecture (GGIoT) for the
future IoT. In Section 5, the architecture is evaluated via
performance analysis and proof-of-concept case studies.
Finally, Section 6 concludes this paper.

2 Architectural requirements for the future IoT

Many obstacles, such as incompatible standards, different
communication patterns and lack of scalable frameworks,
may hinder the envisioned future IoT. There is no single
set of standards for the IoT currently. Some organizations
are standardizing the IoT in different domains, such as
EPC-global [9], ISO/IEC [10] and ZigBee [11]. These
standards are evolving and incompatible with each other. It
is impractical to ignore existing standards, and create new
standards for the future IoT. The proposed IoT architecture
uses existing Internet infrastructure, and it can integrate
emerging resources independent of specific standards.

2.1 The 6A Connectivity of the future IoT

The envisioned 6A Connectivity of the future IoT allows
people and objects to be connected anytime, anyplace, with
anything and anyone, using any path/network and any
service [3], which is the goal of the architecture in this
paper. In terms of anytime, the future IoT is required to
process received data on demand. IoT applications have
different demands for latency, which may vary from a few
seconds to a few days [5]. Previous work shows that the
performance of Web Services is acceptable for most IoT
applications currently [12]. For some time-sensitive IoT
applications, such as self-driving vehicles, latency needs to
be further decreased to guarantee QoS.

In the future IoT, objects and devices access the Internet
via different networks and paths. With respect to anyplace,
it is required to integrate diverse networks. To enable the
anything connectivity, size and cost of sensors and RFID
tags need to be further reduced. As a result, most common
objects can connect to the future IoT. In regards to anyone,
people may use different languages to describe entities in
device messages. The future IoT needs to integrate device
messages worldwide, and provide an easy manner to allow
third-parties to offer and consume services.

2.2 Interoperability

In the IoT, interoperability is the capability of integrating
heterogeneous devices, networks, systems, services, APIs
and data representation across domains and systems [13]. It
can be classified into network, syntactic and semantic
levels [14]. The network interoperability focuses on device
connectivity across networks, but does not concern the
shared content. Implementing Web Services on sensors can
encapsulate sensor message via web protocols [15]. The
future IoT will connect many resource-constrained devices
that do not support Web Services. It is required to use a
globally consistent method to connect lightweight devices
independent of specific networks, platforms and systems,

3

and to integrate devices appears in the future [7].

When device messages are exchanged across systems,
the incompatible data structures may hinder data parsing.
Syntactic interoperation defines common data format and
structure, such as HTML, for exchanged messages [14].
In the IoT, HTML adds much overhead for sensors [16],
and Resource Description Framework (RDF) is heavy for
resource-constrained devices as well [17]. Considering a
trade-off between description level and the produced
overhead, XML, JSON and CSV are accepted as the most
suitable formats to describe objects in the IoT [5]. The
difference is that these formats use different delimiters to
set boundaries between data elements.

As entities are diversely described in device messages,
semantic integration can be achieved by converting the
entity description into system-readable representation via
customized adaptors, and then interpret the meanings [18].
This method adds high design complexity to the adaptors,
as an adaptor is limited for pre-defined data conversion.

Building ontologies can regularize rules to represent
entities [14]. For example, Sensor Network Ontology
describes types of sensors and sensor networks [19]. To
classify object and service in the IoT, a service ontology
use three sub-ontologies to describe the hosted services of
sensors, locations, and physical properties [20]. However,
as entity properties cannot be customized by third-parties,
description capability of the ontology is limited and the
ontology lacks scalability. In the IoT-A project, the class
information model is used to classify fine-grained entities
and build complex relations between the entities [21].
This model does not specify how entities are represented
in sensor messages and how context is abstracted and
interpreted in IoT applications.

2.3 The SOA principle

To allow third-parties to offer and consume services, the
service-oriented architecture (SOA) is a design style that
is independent of specific technologies and products [22].
SOA is not limited to the WS-* standards. Component-
based models can also be SOA-enabled, such as the EJB
specification. Compared to using Web Services, binary
protocols are allowed in communication in component-
based middleware, which permits a lower data rate in
networks and lower overhead for sensor devices [23].
Traditional Internet applications are mostly designed for
people-to-people communication. Human-readable web
protocols facilitate third-parties to provide and consume
services easily. Most IoT services, such as Smart Home
and Smart Transport, are based on O2O communication.
Using machine-readable binary protocols is beneficial for
improving the overall performance.

2.4 Service modularization and Loose-coupling

In the IoT, loosely-coupled systems enable the logical
separation of virtual objects and services. Each atomic
object and service can be individually added, removed,
and reconfigured. Thus, multiple objects and services can
be combined to create new services. As primitive services

are reused, cost and time in development can be reduced.
Web Services provide relatively coarse-grained services,
and component-based middleware enables more fine-
grained services. A composed service should not consist of
many constituent Web Services, as the accumulated
latency is intolerant for some time-sensitive applications
[23]. For component-based models, services can also be
designed as coarse-grained, such as the Façade Pattern,
which allows multiple primitive services to be composed
into a coarse-grained service to meet application needs [24].

2.5 Multipoint communication

In the future IoT, an object needs to communicate with
many objects at the same time. For example, a self-driving
vehicle should simultaneously interact with the near cars,
and traffic signals [25]. Multipoint communication can also
be used to combine child-objects into a parent-object, and
ensure that all the child-objects and parent-object can be
individually addressed. For example, a machine consists of
many parts. Multithreading is needed for object-to-service
communication. One service needs to concurrently interact
with multiple objects, or one object offers services to many
entities. For example, an Appliance Monitor service allows
a user to monitor all appliances at the same time [26]. In
Smart Retail scenarios, many customers need to receive
information from the same product simultaneously. Thus,
multipoint communication is an architectural requirement
when composing services in the future IoT.

2.6 Dynamicity and runtime reconfiguration

The dynamicity of the future IoT involves many aspects.
Devices are added and removed dynamically in networks,
due to many reasons, such as dispose of objects, shutting
down devices, and moving devices between networks. The
caused network topology is changed in real-time. It needs
to dynamically allocate and release system resources for all
connected objects and services [13], and create dynamic
flows among objects, services and systems [27]. To add or
remove connections between objects or services, existing
connections with other objects and services should not be
affected. To enable this, interaction among virtual objects
and services should not be pre-configured and hard-coded,
and connections among virtual objects and services needs
to be reconfigured at runtime[13]. The WS-* standards
cannot achieve it, as the dependency resolution mechanism
are hard-coded in the Web Services. For component-based
models, the components need to be fine-grained to enable
runtime reconfiguration; the coupling between components
needs to be managed from outside mechanisms [28].

2.7 Controlled interaction and Decentralization

When objects are moving between spaces, it is difficult to
handle the uncertainties of interactive objects [8]. If an
object discovers many unknown objects nearby, it should
select certain types of objects for communication. Building
a full connection between all objects in a network would
cause many meaningless connections and waste resources.

4

In GGIoT, O2O communication is coordinated by a local
proxy. By analyzing relations among objects and services
in ontologies, the proxy can coordinate interaction among
these objects to avoid unexpected interaction.

Most existing IoT platforms use remote web servers to
request sensor data via HTTP, and to provide URIs to
access sensor data in the RESTful style. The centralized
IoT architecture has security, privacy, trust, responsibility
and data ownership issues [1]. When data is transmitted
through many networks, it is inefficient to use centralized
web servers to retrieve sensor data. The future IoT should
support distributed data accessing, processing, storage
and ownership. Users can decide which parts of data can
be shared in public or specific groups [13].

2.8 Simplified deployment

Simplified deployment can improve the common use of
the IoT. To reduce hardware cost, lightweight sensors and
RFID tags can be used in parts of IoT applications. To
reduce development cost, third-parties can reuse existing
services to compose services. A plug-and-play mode can
connect diverse devices transparently and seamlessly[29],
and no-programming is required to deploy devices and
services. The future IoT should use consistent methods to
model sensor data [30]. Moreover, service composition
and service optimization need be automated in context-
aware environments in the future IoT.

3 Existing IoT platforms

Most existing IoT platforms are designed for particular
devices, platforms, networks, domains and applications.
These IoT platforms use RESTful APIs to access sensor
devices, and to retrieve, store, update and delete data via
the standard HTTP operations such as Get, Post, Put and
Delete. The exchanged data formats are XML, JSON or
CSV. Sensor data is stored in cloud-based databases for
processing and accessing. IoT platforms, such as Xively
[31], Axeda [32], ARMmbed [33], Arrayent [34] Carriots
[35], Bugswarm [36], DIGI Device Cloud [37], Evrythng
[38], Thingspeak [39], Nimbits [40], and GroveStreams
[41] all follow this style. They have differences in some
non-core functions, such as business model, data storage
policy, data management, visualization, data analysis,
event notification and access permission control.

The existing IoT platforms share many constraints that
may hinder the deployment of the future IoT. To send
data to the platforms, sensors must support Web Services,
which is not suitable for resource-constrained devices.
Another method is to use proxies to post sensor data to
the RESTful API via manual programming. This method
adds complexity for non-expert users. Most commercial
platforms collaborate with their hardware manufacturers,
and have specific requirements on devices and networks.
For example, a device used in the AXEDA platform need
to support mobile network, and the ARMmbed platform
uses 6LoWPAN networks. The Xively platform requires
users to write key pairs into firmware of the designated
devices. The envisioned future IoT should be device and

network-independent. The diversities and constraints may
hinder the ubiquity of devices and networks in the IoT.

The average cost of a single sensor device is too high if
connecting many ordinary objects for common use. Some
IoT platforms, such as Kaa [42], offer open source codes to
third-parties for building applications. However, cost of the
required devices is still a barrier for connecting ordinary
objects to the IoT; the size of the sensors may also be too
big to attach them on small objects. To reduce device size
and development cost, barcode and RFID tags can replace
sensors in parts of applications. For example, the Evrythng
IoT platform enables connection of barcode and RFID tags
by posting static object descriptions via the RESTful APIs.

These IoT platforms do not provide ontologies, which
hinder the interpretation of device messages from different
parties. Third-parties describe entities in device messages.
This constraint increases the message size and consumes
more energy of devices. Due to diverse representation, it is
also difficult to integrate sensor data at the syntactic and
semantic level. Some IoT platforms, such as Arrayent and
Kaa allow the users to create and share user-defined data
models. The Arrayent platform enables describing device
properties using the shared vocabularies, but it is limited to
specified device properties. Other features, such context-
awareness, service composition, service optimization, and
automation also cannot be realized. Therefore, the existing
IoT platforms are far from meeting the envisioned 6A
Connectivity of the future IoT.

As the existing IoT platforms do not offer off-the-shelf
applications, users need to build applications from scratch,
or to write code by using the provided tools and manuals. It
requires programming skills for non-expert users, reduces
service reusability, and also increases cost. The future IoT
should provide simplicity to non-experts users. Some IoT
platforms provide customized services to their clients, such
as system integration, software development and hardware
design. It would further increase the cost of using the IoT,
because of the lack of standardization and interoperability
across heterogeneous platforms.

4 Building a global generic architecture for the IoT

4.1 Design principle

GGIoT aims to integrate heterogeneous resources into the
IoT, and to meet the 6A Connectivity of the future IoT. As
some devices cannot run node-level middleware, device
messages are integrated in gateway-level middleware to
shield hardware details of the devices. The local proxy uses
component-based middleware to receive, exchange and
process device messages. O2O communication is enabled
by binary protocols, as it can reduce message size to fit
devices with minimal capabilities, and also reduce network
overhead [43]. Each sensor message consists of a system-
allocated object ID, and collected dynamic object property
values. Object properties, static property values, measure
of units, and data models are described in object templates
in ontologies. Thus, message size can be reduced to a
minimum to fit energy-constrained devices. In ontologies,
third-parties are able to customize description of entities,

5

and share the description worldwide. The ontologies can
be easily expanded, and description of entities is also
globally consistent. Each entity is described in a template.
By mapping a sensor message with the related template in
the ontologies, the message meaning can be interpreted.

In middleware, an object component is a virtualized
object, which is allowed to interface with multiple service
components via the consistent APIs. Many atomic object
and service components can be combined to provide a
composed service. The reuse of primitive services can
improve the common use of the IoT, reduce development
cost, and facilitate easy-deployment. The middleware tier
provides consistent APIs of modularized services to IoT
applications. Between the middleware and applications,
communication patterns can be designed as pull, push or
publish-subscribe, to fulfill different application needs
without concerning the underlying devices and networks.
This paper focuses on the virtualization and integration of
heterogeneous resources at the middleware tier.

4.2 Object description

In the IoT, object-attached devices have diverse physical
size, memory size, energy consumption, processing and
sensing ability. It is necessary to use a globally consistent
method for describing entities in device messages, and
enable the method to fit devices with minimal capabilities.
Passive RFID tags do not have the ability to sense and to
store too complex data. Static properties of the connected
objects can be described in detail in the backend systems,
and an object identifier is described in device messages to
link the description in the backend systems. Barcode tags
also do not have sensing ability, and similar methods can
be used to index object description in systems.

In GGIoT, dynamic property values of objects, such as
temperature and location, are collected by sensors, active
RFID tags and GPS devices, to represent real-time states
of the labeled objects. A sensor message consists of two
data fields: object identifier and dynamic property values.
Other elements, such as message schema, static property
and the values, and unit of measure, are considered as the
description overhead, as they are constantly static in
object description. By moving the description overhead to
the back-end system, the size of sensor messages can be
significantly reduced to fit lightweight devices. Stripping
the overhead from sensor messages can also maintain the
description consistency and shield complexity from users.

Figure 1 illustrates an example of the stripping process.
A sensor message only contains a system-allocated object
ID and the collected dynamic property value “16”. Other
data elements are filled into in a generic milk template by
a third-party user, which results in creating a customized
object template. The customized template is stored in the
ontologies for interpreting messages from the attached
object. The gateway-level middleware abstracts each data
elements of received messages. By matching them to the
registered object template in the ontologies, meaning of
received messages can be interpreted. The update of the
ontologies is synchronized worldwide. Meanings of entity

descriptions are globally consistent. Virtual objects and
services across systems can be composed in middleware
without using data conversion.

Fig. 1 Stripping the description overhead from a sensor message

Some devices do not have data encryption ability; the
messages can be intercepted maliciously between devices
and gateways. In GGIoT, the message description method
can provide a potential solution to alleviate the "last mile
privacy issue". As a sensor message does not contain any
description about ownership, property, unit of measure and
data schema, the message needs the associated template to
interpret it. The device message is only system-readable.
For barcodes or passive RFID tags do not have sensing
ability, a device message or an image only contains an
object ID used to index a static object template in systems.

4.3 The overall architecture of GGIoT

Fig. 2 The overall framework of GGIoT

GGIoT is component-based, proxy-integrated and binary-

6

protocol-enabled. It is independent of underlying device,
network, system and service. The consistent description
of entities enables GGIoT to integrate resources across
domains and parties. Figure 2 demonstrates the overall
framework which includes: perception tier, routing tier,
middleware tier and global management system (GMS).

The perception tier collects raw data from the physical
world using different devices, and to represent the data as
dynamic property values of virtual objects in middleware.
The routing tier builds communication channels between
various devices and the middleware in the proxies. A
variety of intermediate devices, such as mobile phones,
tablets, and laptops can be used to relay messages from
end-point devices to nearby gateways. The gateways then
route aggregated messages to the middleware tier via the
Internet. As mobile networks cover most places of the
world, mobile devices can route messages in areas other
networks are unavailable. Considering security or privacy
issues, the public routing devices should be managed by
trusted parties, and relevant legislations need to be issued.

At the middleware tier, a distributed proxy consists of
ontologies, identification mechanism, lookup, database,
virtualization and application system. The virtualization
system virtualizes a device message of a physical object
into an object component, and modularizes a service as a
service component in middleware. Many primitive object
and service components can be combined as a composed
service to reduce development cost. Each component runs
temporarily in middleware. If a component is removed,
the unused resource is released.

The identification mechanism assigns a global unique
identifier (GUID) for a virtual object. In device messages,
an object ID is pre-allocated by Identifier Manager before
initializing the object component in middleware. The
assigned object component ID is identical to the object ID
in device messages. The aim of this design is to discover
the virtual objects using system-allocated component IDs.
The IDs are temporarily allocated to object and service
components, and can be recycled and reused. In GGIoT,
the lookup system provides a discovery mechanism to
enable the discovery of virtual objects and services, or
classification of objects and services in the ontologies.

The application system can offer various development
tools for third-parties. For example, template editing tools
can be plugged into browsers, and to allow third-party
users to describe objects and services in templates rather
than in device messages. Third-parties can also use their
own words to find suitable existing templates to match
connected objects and services. Objects and services can
be customized by modifying existing generic templates.
Thus, third-party developers focus on application design
without concern for hardware details of sensory devices.
GGIoT also allows using multiple off-the-shelf services
to compose a service on demand.

The object and service ontology describe the relation
between virtual objects and services. The unit ontology
describes units of measure. Moreover, location, device,
time and other types of entities can also be described in
the ontologies. The ontologies can be updated to adapt to

new emerging entities. To ensure global consistency, all
ontology data is managed by the GMS. Other distributed
proxies periodically download updates. The GMS allocates
a range of identifiers to all distributed proxies. Then each
distributed proxy further assigns the allocated identifiers to
the local virtual objects and services.

As most O2O communication occurs within specific
areas, using a distributed proxy to handle communication
of near objects and services can reduce network traffic and
access latency. The distributed proxies can run on a local
network, metropolitan area network, private and public
cloud. Location and specification of a proxy is determined
by the hosted objects and services, required resources and
application needs. All distributed proxies form a global
network. If O2O communication is beyond the range of a
proxy, the GMS can coordinate the communication of the
involved virtual objects and services in different proxies.
The GSM can be used for discovering objects and services
across proxies. Images of the GSM can be backed up and
synchronized in different locations worldwide. The design
of the GSM is beyond the scope of this paper.

4.4 Object Virtualization

GGIoT enables a globally consistent description of entities
before virtualizing objects into middleware. Third-parties,
such as end-users and manufactures, use their own words
to look for off-the-shelf templates in ontologies to map
connected objects and services. The user-defined keywords
are analyzed in search engines, and then the most suited
templates are discovered to represent static status of the
connected objects. GGIoT provides flexibility to allow
third-parties to use their own language to represent entities
in the IoT, and all participants need to commit the rules for
data representation in device messages. In middleware, an
object component relays messages from the object-attached
device to the wired service components. By mapping the
messages into the associated object templates, meaning of
the object state can be interpreted. Figure 3 illustrates the
object virtualization process in GGIoT.

Fig. 3 The process of object virtualization in GGIoT

7

In Step 1, third-parties login to a user management

system. It allows users to store user profiles and manage
virtual objects via web browsers. Step 2 is used to verify
user identities by authentication methods, such as security
devices and password. In step 3, third-parties discover an
existing template to describe a connected object. Users
can specify a template ID to access an object template, or
use their own language as keywords to find the most
suitable template. It is difficult to standardize languages
to describe entities worldwide. GGIoT offers flexibility
of allowing third-party users to represent entities using
their own language in the IoT.

In step 4, the ontologies analyze the search keywords,
and find some suitable template candidates to match the
connected object. The discovered object templates can be
translated into different languages depending on users’
preferences. Then URIs of the translated templates are
sent to the users. In step 5, when the users receive the
system-recommended object templates, they can select
the most suitable template to describe the new connected
object. The URI of the selected template is returned to the
systems for registration. If the users cannot find a ready-
made object template, they can fill blanks of a generic
object template. The filled object template is registered in
ontologies, and a template ID is assigned for the template.

In step 6 and step 7, a GUID is allocated to the object.
The object ID is formatted into device messages by the
users, and is identical to the component ID of the virtual
object in middleware. Thus, the object can be discovered
via the system-allocated object ID. A mapping between
the object ID and the related template ID is registered in a
distributed proxy. As a result, it is unnecessary to present
the template ID in the device messages. It is beneficial to
remove the description overhead from the messages, and
enhance privacy strength of the transmitted data. In a
device message, another data field Values of Dynamic
Properties is collected from the physical object in real-
time. For example, in a sensor message "MFS003412 16",
"MFS003412" is the system-allocated object ID and "16"
is the dynamic property value of Temperature, which is
collected by a sensor. As a template ID "FOODB812" is
pre-associated with the object ID in a proxy, the template
can be used to interpret meaning of the sensor message.

In step 8, the middleware receives the sensor messages,
and map them into the related object template to interpret
the message meaning. The middleware can also generate
an object component to relay the device message to other
service components in real-time.

4.5 Building ontologies

In GGIoT, ontologies describe entities and the relations
between entities. The object ontology, service ontology
and unit ontology are the three basic ontologies that
describe the relations among objects, services and units of
measure. Other ontologies, such as the location, time, and
device ontology, can also be used to describe other types
of entities. Each template describes one type of entities
and the relations with other entity types. All templates

form the ontologies in GGIoT. The templates are published,
customized, discovered and accessed on public platforms,
to achieve the consistency worldwide. The ontologies are
formed in a hierarchical structure, and can be extended by
adding new templates to describe new type of entities.

An object template describes static states of one type of
objects. An object component outputs the received device
messages to update dynamic property values of the object
instance. A clear separation of object type and instance can
offer a loosely-coupled communication pattern in GGIoT.
The ontologies verify types of objects and services when a
proxy coordinates O2O communication among the objects.
An object is limited to communicate with pre-defined types
of objects and services to avoid unexpected interaction. All
object templates constitute the object ontology. Reusing
existing templates can simplify deployment, save time and
cost, and enable consistent entity description worldwide.
Third-parties can also customize objects by editing existing
object templates. By adding new object properties into an
existing template, a new object template is generated. One
type of objects is constrained to consume limited types of
services, which can also be defined in the object template.

Figure 4 illustrates an object template of a bottle of milk.
If adding a <Service> field into the object template, the
object component is entitled to interface with a service of
Temperature Monitor. "TM2371" is the URI of the service
template in the service ontology. <Connector> declares
the interface type, and <Interface> locates the interface. In
the ontologies, shared templates are public templates, and
private templates can only be accessed by authorized users.
By adding the <Private> field into the object template, the
associated object component can only be accessed by two
communities "US69043222" and "AUS4732973". The
<Created> field indicates the creator of the customized
template. The creator can also grant different access rights,
such as reading, deleting and modifying, to other users.

Fig. 4 Adding service and ownership into object template

A physical object consists of a set of physical properties,
and uses different units to measure the values. In GGIoT,
the unit ontology classifies the units of measure; describes
the relations between units; maintains semantic consistency
of units. In process of service composition, a unit can be
converted into other units to adapt to interface of the wired
components. For example, one meter can be converted to
10 decimeters, or 100 centimeters. In a unit template, a
field <UnitID> contains an identifier used to access the
unit template; a field <Subclass> indicates classification of
the unit; <definition> defines the semantic meaning; and

8

<Conversion> describes the relations with other units.

In middleware, a service component offers a primitive
service. It receives messages from the wired components,
and then output the processed data. A service template
describes one type of service, and is the primitive unit to
form the service ontology. A service template contains a
class used to generate service components. To customize
new types of services, existing service templates can be
edited by third-parties, which results in registering new
templates in the service ontology. Figure 5 illustrates a
service template for a Temperature Monitor service. The
service can send a notification message to subscribers if
the temperature value of an object falls below a threshold.

Fig. 5 The service template of Temperature Monitor

The data fields <TypeID>, <Name> and <Definition>

can be used for identification and discovery. <Subclass>
indicates the service classification. The fields <Input>
and <Output> declare receptacle and interface of the
service component. For a virtual service, the receptacle
receives messages and the interface output processed data.
The field <DateType> is referred to data-type ontology
that describes data types and the relations among them.
As a result, output data of a service component can be
converted into a compatible data type to connect another
service. For example, integer data can be converted into
real data to adapt to the input of a service component.
The temperature threshold and notification message are
adjustable variables. In the data field <Set>, third-parties
are allowed to edit the threshold values, which resulting
in generating a customized service template and a new ID
is allocated for the new template. The field <Code> can
provide the class source code used to generate instances
of service components.

Due to the global scale of the future IoT, if an object
moves to a new network, the object would be unware of
the existence of objects nearby. The object needs to select
particular types of objects for interaction. In GGIoT, the
limitations are defined in the object template. The relation
among virtual objects and services is many to many. For
instance, a refrigerator can use a Voltage Monitor service
to monitor its voltage, and concurrently subscribes the
Temperature Monitor service. One service can also be
used by multiple virtual objects. For example, a Speed
Monitor service can be used to measure speed of multiple
vehicles at the same time.

The device ontology describes properties of object-

connected devices. By adding a <device> field into an
object template, the description of the connected device is
linked to the device template. Other ontologies, such as
time and location, can be created to describe other domain-
specific entities. All the ontologies use a template as the
primitive unit, and can be customized to generate new
templates to meet application needs. The IoT is evolving; it
is difficult to pre-design all ontologies once and for all. In
GGIoT, the ontologies are expanded to adapt to emerging
entities without losing the relations with existing entities.

4.6 Virtualization System

The virtualization system is used to virtualize physical
objects and services into components in middleware, and
to combine primitive object and service components to
provide composed services. In GGIoT, the loose-coupling
feature enables efficient service composition via globally
consistent interfaces of virtual objects and services. Figure
6 illustrates the virtualization system.

Fig. 6 The virtualization system in GGIoT

In a proxy, the gathered messages consist of multiple
lines of text. Each message is received from an object-
connected device. A message consists of two data fields: i)
an object ID allocated by the Identifier Manager, and ii)
collected data to represent dynamic object property values.
The Component Factory can relay the device messages to
the associated object components. By mapping the device
messages to the object templates in ontologies, message
meaning can be interpreted. As the object ID in a message
is pre-allocated by the Identifier Manager, the proxy can
judge if the virtual object exists. If a virtual object does not
exist, the Component Factory initializes a new middleware
component for receiving messages from the object, and the
Identifier Manager allocates a GUID for the new generated
component. The component ID is identical to the object ID
in the device message.

9

If a message is from an already-virtualized object, the

message is routed to the related object component. Other
components wired to the object component can currently
receive the message. The message is used to update the
dynamic property values of the object in real-time. As
interfaces and receptacles of distributed components are
globally consistent, virtual objects and services can be
seamlessly integrated in middleware, and heterogeneity
of the underlying devices is hidden. As barcode tags and
RFID tags do not have sensing ability, the labeled objects
are virtualized as static virtual objects that do not have
incoming messages.

Each object component has an expiration period. If the
virtualization system has not received message from an
object above a predefined period, the object component is
altered to inactive state. If the object reconnects to a
proxy, the component can be reactivated. The temporary
disconnections can be caused by many reasons, such as
turning off sensors, moving objects between networks, or
rebooting a router.

If the object component fails to receive message from
an object, it may be caused by low battery, abandoning
objects, hardware error of devices and other issues. The
object component is removed from middleware to release
the unused system resource. The assigned component ID
and object ID are recycled for reusing as well. Users can
set a period threshold for the temporary and permanent
disconnection. The Backup Centre is used to provide a
recovery mechanism to recover the removed component,
and to rewire previous bindings with other components.

To provide virtual services, the Component Factory
can generate service components on demand. A service
component has an interface to output data, and more than
one receptacle to receive inputted data. The interfaces and
receptacles are predefined in the service template in the
ontologies. Many object and service components can be
combined to offer a composed service. The composition
workflow can be coordinated by a component of service
composer, which is discussed in Section 4.7.

4.7 Service Coordination

A service composer is a component generated by the
Component Factory. It contains rules and algorithms used
to control workflow in service coordination. To fulfill
different application needs, third-parties customize the
workflow and rules in template of the service composer.
A service composer is entitled to couple and uncouple a
connection between two components from the outside.
The decision-making depends on collected context and
pre-defined rules in a workflow. In service composition,
the required dynamic context is collected from the related
object and service components, and the static context can
be looked up in the object and service templates in the
ontologies. A service composer needs to be aware of
states of all involved components. To update component
states, events are sent to the Event Manager when a
component is activated, suspended or removed.

A composed service may suffer context change in the

dynamic environments. To adapt to change, components
are dynamically wired or unwired to other components by
following pre-defined rules. With runtime reconfiguration,
components and the wiring between components can be
reconfigured without rebooting systems. Reconfiguration
Manager can register, inspect and reconfigure components
on runtime. By invoking control commands, components
can be activated, suspended, removed, wired or unwired to
other components. All components are loosely-coupled;
unwring two components does not affect the coupling with
other components. The loose-coupling feature can enable
multipoint communication of virtual objects and services.

A GUID is assigned for an object or service independent
of location and networks. An object ID is static during the
lifetime of the object. If an object is moved from one place
to another where uses another proxy, the object component
in the previous proxy is terminated, and the setting of the
object component is stored in the Backup Centre. Then the
new proxy downloads the setting from the Backup Centre,
and generates a new object component with the previous
setting. The wiring with other components in the previous
proxy can be rewired in the new proxy. The aim of the
decentralized design is to reduce network traffic and access
latency when objects move between proxies.

5 Evaluation

This section presents a proof of concept evaluation of the
virtual system in GGIoT. As diverse devices are integrated
at the gateway-level middleware, the use of devices is not a
consideration in the test. As device messages are routed to
a proxy from different networks and paths, GGIoT is also
independent of networks and communication channels. In
middleware, as virtual objects and services use compatible
interfaces and receptacles to exchange messages, the entity
representation in device messages is globally consistent.
Thus, GGIoT has generality to integrate heterogeneous and
emerging resources. The features of the architecture are not
confined to devices, systems, setting, performance analysis,
services and case studies in this evaluation.

5.1 Implementation setup

Figure 7 shows the implementation setup. Device messages
was formatted into the Arduino UNO [44], and transmitted
via the Zigbee Xbee [11]. A dual-core PC acts a distributed
proxy. A ZigBee Xbee Explorer is used as a sink node to
aggregate messages from all objects in a WSN, and bridge
the WSN with the proxy. The proxy receives the messages
from the sink node via a USB port. GGIoT is independent
of operating systems; both Ubuntu 10.10 and Windows XP
were tested as underlying systems.

Fig. 7 The setup of the implementation

10

The proxy runs the virtualization system based on the

LooCI/OSGI V1.0 [45]. LooCI middleware was taken
off-the-shelf to support evaluation of the virtualization
system [46], for three reasons. First, LooCI components
run on Java Virtual Machine rather than on physical
platforms, the middleware is independent of processors,
platforms and systems. Therefore, it can meet the device-
independency need. Second, as LooCI supports runtime
reconfiguration in the LooCI network, components and
bindings between the components can be reconfigured
without a recompilation or restart, which can fulfill the
loose-coupling need. Compared to middleware, such as
OpenCOM [47], LooCI supports multithreading among
components, which can enable multipoint communication
in the proposed architecture GGIoT.

5.2 Virtualization process

In this test, Ubuntu 10.10 was installed on the proxy. A
sensor message has three fields: ObjectID, Temperature
value, and Sending time. This test assumes that the data
fields of Temperature value and Sending time are the two
dynamic property values of an object. Figure 8 illustrates
the logical model and virtualization process workflow. A
component of Sensor Relay was designed to interpret
gathered sensor messages from the sink node. ObjectID
are abstracted from each message by the Sensor Relay,
and are sent to the Identifier Manager. As an ObjectID is
pre-registered in the Identifier Manager, the registration
can be verified by the proxy. If a device message is from
a registered object, the message will be further processed.
Otherwise, the message is discarded.

Fig. 8 The logical model and workflow of object virtualization

Reconfiguration Center can reconfigure components and
the binding between components on runtime. It also stores
the states of each component, such as initialized, activated
or wiring. These states can be requested by the commands,
such as GetState and GetInterface [48]. In this evaluation,
if state of a target object component is activated, related
messages are routed to the object component. Otherwise, a
new object component is initialized to receive messages
from the object-attached device.

A component of Component Factory was designed to
generate object components in middleware. Source codes,
used to generate object components, were pre-stored in a
Java file. The Component Factory can fill some data fields,
such as object identifier, of the source code with captured
data from messages and proxies. The filled source code is
compiled to generate byte code, such as Class and Jar files.
By executing the byte code in JVM, object components can
be deployed in heterogeneous platforms. In GGIoT, object
components can be transferred from one proxy to another.
As byte code of object components is portable, it can be
backed up in the GSM, and then moved to other proxies.

In this test, by parsing aggregated messages from the
sink node, the virtualization system dynamically generated
object components for objects in a WSN. The components
were published on the event bus, and can be subscribed by
other components in the middleware. Each component was
individually accessed by the component ID and IP address
of the proxy. As these object components use compatible
interfaces to output the dynamic object property values,
middleware components in other platforms are able to wire
to them without data conversion of adaptors.

5.3 Memory footprint and overhead testing

Compared to executing middleware or Web Services on
sensors, GGIoT runs all middleware components in the
proxies. Thus, devices with minimal capabilities can be
integrated. The previous test shows that the visualization
system used 196 KB to initialize the first object component
[49]. Upon activating additional components, footprint of
each component decreased from the second component (82
KB) and then stabilized at the sixth component (28 KB).
The disparity of component size can be inferred by creating
components from the same source code; many components
shared the same process in memory.

The memory size is acceptable for a distributed proxy in
GGIoT. For example, a regular PC with 8 GB of RAM can
offer memory for running at least 200,000 components if
the operation system uses 2 GB of memory. In GGIoT, a
proxy could run in a router, regular PC, private cloud or
public cloud. Required hardware specification of proxies
depends on many factors, such as number of the connected
objects and services at peak times, budget, QoS, user and
application needs.

In GGIoT, many primitive objects and services can be
combined to provide a composed service without protocol
conversion. The overall overhead of a composed service is
accumulated by the communication overhead between all
the primitive components, which depends on applications.

11

The test measured the communication overhead of two
atomic components. In the proxy, two components were
deployed in the proxy. Round trip time (RTT) latencies
between the two components were measured, and socket
communication was tested for benchmarking. A Java
method System.nanoTime returned the local system time.
In GGIoT, each sensor message only contains an object
ID and collected dynamic property values. Considering
the message size is typically less than 100 bytes, this test
used 100 bytes of data in the message. Two components
A and B were wired to test the RTT latency. Component
A initially sent a message to component B, and then the
message is returned to A. By comparing the sending time
and receiving time, the RTT latency was tested.

In GGIoT, it is unnecessary to invoke remote services
in other proxies in most applications. Service components
can be initialized in a proxy on demand. Comparing to
the remote procedure call (RPC) of Web Services, local
invocation can significantly reduce the latency when data
goes through many networks on the Internet. In this test,
the latencies between two atomic components based on
local and remote invocation were both tested. The tests
are repeated 100 times, and the average values are used
for comparison. Figure 9 illustrates the latency test results
based on the local invocation, socket and RPC.

Fig. 9 The latency between two primitive components

The results show the average RTT latency based on

local invocation is 0.356ms; the average latency on the
socket communication is 0.412ms. The added 0.056ms
can be inferred that the socket API operations, such as
reading and writing, can be blocked by the underlying
operation systems for context switch [50]. The average
RTT latency based on RPC communication is 0.483ms.
Compared to the socket communication, the added 0.071
ms of latency can be explained by the need to firstly relay
the data to the Macro-component [45]. The results show
that the local invocation has the smallest variation and the
RPC has the largest variation in execution time.

In GGIoT, as O2O communication is coordinated and
processed by distributed proxies rather than centralized
web servers. The test results indicate a significantly low
overhead between the two primitive components, which
enables a composed service to consist of many primitive
components on a proxy. For RPC communication, as the
middleware uses the UDP protocol, the added overhead is
less than 0.1ms. The purpose of this test is to measure the

minimized overhead between the two components in the
specific proxy. In practice, the performance of a service
will depend on the many factors, such as the underlying
systems, devices, networks and applications.

5.4 Case studies

GGIoT aims to provide a generic IoT architecture across
domains. Due to the global scale, implementing a concrete
architecture needs a great deal of cooperation and efforts
from many parties. In this section, two case studies were
designed to demonstrate basic features of monitoring and
tracking services, and O2O communication in GGIoT. The
illustrated principles have generality to adapt to services in
different domains. XML was used as the data format for
the involved object and service templates in the ontologies.

5.4.1 Monitoring and tracking services

This section utilizes a service of Temperature monitor to
illustrate monitoring services. An object component was
deployed to receive and relay the dynamic property values
of a simulated refrigerator. By wiring to the refrigerator
component, a Temperature Monitor component can receive
and monitor the temperature values of the refrigerator. The
Temperature Monitor sends a notification to subscribers if
the temperature value is above a predefined threshold. The
threshold value can be customized for reusing the service.
In this test, the threshold was set as "5". If the monitored
temperature value is above 5 ℃, the notification message
is "Your refrigerator is too hot". Otherwise, the notification
is "Your refrigerator is normal".

Figure 10 shows the object template used to describe the
refrigerator. The refrigerator template has six data fields to
describe static property values of the refrigerator, such as
<TemplateId> and <Weight>. The template also has three
dynamic properties including <Temperature>, <Voltage>
and <Date>. The fields of the dynamic properties are left
blank for mapping values from the sensor messages. The
values of <Unit> are linked to the Unit Ontology, and the
<DateFormat> fields describe various date formats. It is
unnecessary to parse all data fields of the template, which
depend on application needs. In this service, it is required
to interpret the values of <ObjectId> and <Temperature>.

Fig. 10 The object template of the refrigerator

12

The object component is restricted to interact with

three types of services. Template IDs of the supported
service types were pre-defined in the <Services> field.
Figure 11 demonstrate a workflow of the Temperature
Monitor. The refrigerator component relays the device
messages to the service components of Temperature
Monitor in real-time. By mapping the received messages
with the associated template, the Temperature Monitor
interprets meaning of each data field in the messages. A
device message does not contain a template ID. The
Temperature Monitor looks up the template ID of the
refrigerator in the Identifier Manager before it parses the
dynamic property values.

Fig. 11 The workflow of the Temperature Monitor

The module of Query Service parses the ontologies,

and verifies if the service of Temperature Monitor is
compatible with the object component. If the verification
is passed, the module of Execute Services retrieves the
current temperature value from the latest sensor message.
By comparing the retrieved temperature values with the
predefined threshold "5", temperature of the refrigerator
can be monitored in real-time. The test results show the
notification messages were displayed as expected. In this
case, the triggered action is sending notifications. Other
actions can also be designed to meet different application
needs. In GGIoT, current location of objects can also be
parameterized as a dynamic property value. As a result,
the data processing of tracking services is similar to the
monitoring services.

5.4.2 Object-to-object (O2O) communication

Most IoT services are designed for O2O communication.
Compared to the monitoring and tracking services, some
differences exist. Monitoring services can be applied to a
single object; O2O communication needs participation of
at least two objects. Therefore, a third-party component is
required to coordinate O2O communication. Moreover,
most monitoring and tracking services are provided to
specified objects, while objects in O2O communication
are unpredictable. Objects may move between networks,

which causes interaction with new objects nearby.
This section presents a service of Expiration Manager to

demonstrate O2O communication in GGIoT. In this test,
two object components were deployed to receive messages
from two sensors that describe a refrigerator and a bottle of
milk respectively. The refrigerator uses the same object
template in Figure 10. In the middleware, outputs messages
of the refrigerator component contain a dynamic property
value of <Date> to describe local time of the refrigerator.
Another template was used to describe a bottle of milk.
The milk template has some static object properties, such
as <Manufacturer> and <Volume>, and a dynamic object
property <Expiration> describes the expiration date of the
milk. Although expiration date of a product is static after
the product is produced, the same types of milk may have
different property values of <Expiration>. It is inefficient
to duplicate many templates to describe the same product
in mass production. This case assumes that <Expiration>
is a dynamic property of the milk, and formatted into
messages of the attached RFID tag.

A component of Expiration Manager was designed and
multithreaded to the two object components to receive the
messages. By comparing property values of <Date> of the
refrigerator to property values of <Expiration> of the milk,
the service of Expiration Manager can decide if the milk is
expired, and send notifications to the subscribers. If the
expiration date of the milk is after the local date of the
refrigerator, a message "Your milk has expired" is notified.
Otherwise, the notification message is "Your milk is still
fresh". Figure 12 illustrates the workflow.

Fig. 12 The workflow of the Expiration Manager

In GGIoT, as third-parties may set different intervals to

send device messages, it needs to synchronize received
messages of different objects before executing services. In
this case, the Expiration Manager adds a new module of
Synchronize Messages to retrieve the latest messages from
the two objects. A hashmap instance was created to cache
device messages of the two object components. When the
Expiration Manager receives a message from the milk or
the refrigerator, each data field of the message is separated
and cached into an array. The value of object ID is used to

13

index the message in the hash map. When two messages
with two object IDs are cached, the two messages provide
the latest dynamic property values of the two objects.

The two messages are retrieved from the hash map,
and then the hash map is cleared to cache new coming
messages from the two object components. The sources
of the two retrieved messages can be judged by object
IDs. Then Template IDs of the two objects are looked up
in the Identifier Manger. The module of Query Service
verifies if both the two objects both support the service of
Expiration Manager by parsing the ontologies. Then the
Execute Service module can compare dynamic propriety
values of <Expiration> and <date> of the two objects,
and decide if the milk is expired.

This method caches the latest sensor messages of the
two objects to synchronize dynamic property values of
the two objects. Compared to indirectly accessing stored
messages in web servers, the messages of the two objects
are synchronized in RAM of the distributed proxy. A few
milliseconds of latency are enough to meet requirements
of most IoT applications. If O2O communication crosses
many networks on the Internet, two approaches can be
applied to guarantee the QoS. For sensors with accurate
timing capability, timestamps are added into the device
messages for comparison. Otherwise, timestamps can be
appended to device messages at a local proxy when the
proxies receive the device messages. As a result, service
components can verify if received messages are time-
effective for specific services.

6 Conclusions and future works

The 6A Connectivity of the future IoT has been proposed
for a decade [3]. The IoT is still constrained to particular
devices, platforms, networks, applications and domains,
and many barriers may hinder development. In this paper,
the proposed IoT architecture provides potential solutions
to overcome these barriers. Due to limitations of device
cost, object size and energy consumption, it is difficult to
embed Web Services into all devices in the future IoT.
GGIoT is independent of device, platform, network and
system, and aims to meet the 6A Connectivity in term of
anytime, anyplace, anything and any network/path.

As the modularized object and service components are
loosely-coupled and the interfaces are globally consistent,
many object and service components can be combined to
provide a composed service. Services can be customized,
shared and discovered by third-parties on a global public
platform. Cost and time in development can be reduced.
These features aims to fulfill the any service requirement.
Third-parties are allowed to look for an existing template
to describe an object or service. The off-the-shelf feature
allows non-expert users to provide and consume services
without programming. Other features, such as simplified
deployment, personalization and device independency
enables GGIoT to meet the anyone requirement.

In GGIoT, a sensor message consists of an object ID
and dynamic property values collected from the object.
Other descriptions, such as data schema, unit of measure,

static property and static property values, are stripped from
sensor messages. This method can minimize message size
to fit devices with minimal capabilities. In GGIoT, objects
are restricted to interact with predefined types of objects
and services. On a distributed proxy, a service composer
verifies the compatibility of all participating objects and
services before coordinating O2O communication. Thus,
the unexpected interaction among multiple objects can be
controlled when objects are moving between spaces. Most
O2O communication occurs within specific networks or
areas. To reduce network traffic and access latency, GGIoT
uses distributed proxies and binary protocols to coordinate
the local O2O communication without Internet traffic.

Building a global IoT architecture needs a lot of efforts
across many domains. The development of the future IoT
will be determined by many factors, such as government
policies, academia and markets. This paper illustrates the
initial design concept of the proposed architecture GGIoT,
and mostly focuses on device and data integration in the
virtualization system. A lot of mentioned concepts, such as
the GMS and backup mechanism, can be extended in the
future work. This paper emphasizes on the middleware tier
of GGIoT. If applying the architecture in IoT applications,
the design of application tier needs to be completed. Future
work will address service composition and optimization,
and discovery mechanisms in GGIoT. It is the authors hope
that the proposed architecture in this paper will contribute
to evolution of the future IoT.

References

1. Vermesan O, Friess P, Guillemin P, Gusmeroli S, Sundmaeker H,
Bassi A, Jubert IS, Mazura M, Harrison M, and Eisenhauer M,
Internet of things strategic research roadmap. Internet of Things-
Global Technological and Societal Trends, 2011: p. 9-52.

2. Al-Ofeishat HA and Al Rababah MA, Near Field Communication
(NFC). International Journal of Computer Science & Network
Security, 2012. 12(2).

3. ITU, ITU Internet Reports - The Internet of Things, 2005.
4. Lee K, Murray D, Hughes D, and Joosen W. Extending sensor

networks into the Cloud using Amazon Web Services. in IEEE
International Conference on Networked Embedded Systems for
Enterprise Applications (NESEA). 2010.

5. Uckelmann D and Harrison M, Architecting the Internet of
Things2011, Heidelberg, Germany: Springer. 347.

6. Evans D, The internet of everything: How more relevant and
valuable connections will change the world. Cisco IBSG, 2012: p.
1-9.

7. Gyumyang L and Crespi N, Shaping future service environments
with the cloud and internet of things: networking challenges and
service evolution, in Proceedings of the 4th international
conference on Leveraging applications of formal methods,
verification, and validation - Volume Part I2010, Springer-Verlag:
Heraklion, Crete, Greece. p. 399-410.

8. Huadong, Internet of things: Objectives and scientific challenges.
Journal of Computer Science and Technology, 2011. 26(6): p. 919-
924.

9. EPCglobal. Standards Development. 2014; Available from:
http://www.gs1.org/gsmp/kc.

10. ISO/IEC. list of ISO/IEC JTC 1/SC 31 standards. 2014.
11. ZigBeeAlliance. The ZigBee Alliance creates IoT standards that

help Control Your World 2015; Available from:

14

http://www.zigbee.org/zigbeealliance/.

12. Trifa V, Wieland, S., Guinard, D., Bohnert, T. M. Design and
implementation of a gateway for web-based interaction and
management of embedded devices. in 2nd International
Workshop on Sensor Network Engineering (IWSNE 09). 2009.
CA, USA.

13. Saint-Exupery A, Internet of things, strategic research roadmap,
2009.

14. Terziyan V, Kaykova O, and Zhovtobryukh D. Ubiroad:
Semantic middleware for context-aware smart road
environments. in Internet and Web Applications and Services
(ICIW), 2010 Fifth International Conference on. 2010. IEEE.

15. Moritz G, Zeeb E, Golatowski F, Timmermann D, and Stoll R.
Web services to improve interoperability of home healthcare
devices. in Pervasive Computing Technologies for Healthcare,
2009. PervasiveHealth 2009. 3rd International Conference on.
2009. IEEE.

16. Guinard D, Trifa V, Mattern F, and Wilde E, From the internet
of things to the web of things: Resource-oriented architecture
and best practices, in Architecting the Internet of Things2011,
Springer. p. 97-129.

17. Larizgoitia I, Muguira L, and Vazquez JI, Architecture for WSN
nodes integration in context aware systems using semantic
messages, in Ad Hoc Networks2010, Springer. p. 731-746.

18. Paridel K, Bainomugisha E, Vanrompay Y, Berbers Y, and De
Meuter W, Middleware for the internet of things, design goals
and challenges. Electronic Communications of the EASST, 2010.
28.

19. W3C, Semantic Sensor Network XG Final Report, 2011.
20. Kim J-H, Kwon H, Kim D-H, Kwak H-Y, and Lee S-J. Building

a service-oriented ontology for wireless sensor networks. in
Computer and Information Science, 2008. ICIS 08. Seventh
IEEE/ACIS International Conference on. 2008. IEEE.

21. Walewski JW, Initial architectural reference model for IoT. EC
FP7 IoT-A (257521) D, 2011. 1: p. 2.

22. Spiess P, Karnouskos S, Guinard D, Savio D, Baecker O, Souza
L, and Trifa V. SOA-based integration of the internet of things in
enterprise services. in Web Services, 2009. ICWS 2009. IEEE
International Conference on. 2009. IEEE.

23. Petritsch H Service-Oriented Architecture (SOA) vs. Component
Based Architecture. 2005.

24. Milanovic N. Service engineering design patterns. in Service-
Oriented System Engineering, 2006. SOSE'06. Second IEEE
International Workshop. 2006. IEEE.

25. Bao F, Chen I-R, and Guo J. Scalable, adaptive and survivable
trust management for community of interest based Internet of
Things systems. in Autonomous Decentralized Systems (ISADS),
2013 IEEE Eleventh International Symposium on. 2013. IEEE.

26. Petriu EM, Georganas ND, Petriu DC, Makrakis D, and Groza
VZ, Sensor-based information appliances. Instrumentation &
Measurement Magazine, IEEE, 2000. 3(4): p. 31-35.

27. Valente B and Martins F. A middleware framework for the
Internet of Things. in AFIN 2011, The Third International
Conference on Advances in Future Internet. 2011.

28. Nain G, Fouquet F, Morin B, Barais O, and Jézéquel J-M.
Integrating iot and ios with a component-based approach. in
Software Engineering and Advanced Applications (SEAA), 2010
36th EUROMICRO Conference on. 2010. IEEE.

29. Bandyopadhyay S, Sengupta M, Maiti S, and Dutta S, A survey
of middleware for internet of things, in Recent Trends in
Wireless and Mobile Networks2011, Springer. p. 288-296.

30. Tracey D and Sreenan C. A Holistic Architecture for the Internet
of Things, Sensing Services and Big Data. in Cluster, Cloud and
Grid Computing (CCGrid), 2013 13th IEEE/ACM International
Symposium on. 2013. IEEE.

31. Xively. Xively – Public Cloud for the Internet of Things. 2014;
Available from: https://xively.com/.

32. Axeda. Axeda Tutorials. 2015 [cited 2015 4th, July]; Available

from: http://developer.axeda.com/learn/by-type/tutorial.
33. AMRmbed. Let's Connect Everything. 2015 [cited 2015 4th, July];

Available from: http://mbed.com/.
34. Arrayent. The Arrayent Connect Platform. 2015 [cited 2015 4th,

July]; Available from: http://www.arrayent.com/.
35. Carriots. Create amazing products and services with our Internet of

Things Platform. 2015 [cited 2015 4th, July]; Available from:
https://www.carriots.com/.

36. Bugswarm. Bugswarm documentation. 2015 [cited 2015 4th, July];
Available from: http://developer.bugswarm.net/.

37. DIGI. Digi Device Cloud. 2015 [cited 2015 4th, July]; Available
from: http://www.digi.com/cloud/digi-device-cloud#docs.

38. Evrythng. How it works. 2015 [cited 2015 4th, July]; Available
from: https://www.evrythng.com/technology/.

39. Thingspeak. Getting Started. 2015 [cited 2015 4th, July];
Available from: https://thingspeak.com/docs.

40. Nimbits. Nimbits Manual. 2015 [cited 2015 4th, July]; Available
from: https://docs.google.com/document/d/1aOEpfeJOtV-
v0diDBAQ9e2hOjXhs0uInA2QE--OS8Pk/view.

41. GroveStreams. GroveStreams Development. 2015 [cited 2015 4th,
July]; Available from:
https://grovestreams.com/developers/developers.html.

42. KAA. The truly open-source Kaa IoT Platform. 2016 [cited 2016
28, April]; Available from: http://www.kaaproject.org/.

43. Juric MB, Rozman I, Brumen B, Colnaric M, and Hericko M,
Comparison of performance of Web services, WS-Security, RMI,
and RMI–SSL. Journal of Systems and Software, 2006. 79(5): p.
689-700.

44. Arduino. Arduino Uno Overview. 2014; Available from:
http://arduino.cc/en/Main/arduinoBoardUno.

45. Hughes D, Thoelen K, Horré W, Matthys N, Cid JD, Michiels S,
Huygens C, and Joosen W. LooCI: a loosely-coupled component
infrastructure for networked embedded systems. in Proceedings of
the 7th International Conference on Advances in Mobile
Computing and Multimedia. 2009. ACM.

46. LooCI. LooCI OSGi implementation. 2014; Available from:
https://code.google.com/p/looci/wiki/OSGiImpl.

47. Coulson G, Blair G, Grace P, Taiani F, Joolia A, Lee K, Ueyama J,
and Sivaharan T, A generic component model for building systems
software. ACM Transactions on Computer Systems (TOCS), 2008.
26(1): p. 1.

48. LooCI. LooCI: Command Overview. 2014; Available from:
http://code.google.com/p/looci/wiki/Commands.

49. Wang W, Lee K, and Murray D. Integrating sensors with the cloud
using dynamic proxies. in Personal Indoor and Mobile Radio
Communications (PIMRC), 2012 IEEE 23rd International
Symposium on. 2012. IEEE.

50. Hruby T, Crivat T, Bos H, S. aA, Tanenbaum, and Amsterdam VU,
On Sockets and System Calls: Minimizing Context Switches for
the Socket API, in Conference on Timely Results in Operating
Systems (TRIOS 14)2014, USENIX Association: Broomfield, CO.

