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Abstract The envisioned 6A Connectivity of the future 
IoT aims to allow people and objects to be connected 
anytime, anyplace, with anything and anyone, using any 
path/network and any service. Because of heterogeneous 
resources, incompatible standards and communication 
patterns, the current IoT is constrained to specific devices, 
platforms, networks and domains. As the standards have 
been accepted worldwide, most existing IoT platforms use 
Web Services to integrate heterogeneous devices. Human-
readable protocols of Web Services cause non-negligible 
overhead for object-to-object communication. Other issues, 
such as: lack of applications and modularized services, 
high cost of devices and software development also hinder 
the common use of the IoT. In this paper, a global generic 
architecture for the future IoT (GGIoT) is proposed to meet 
the envisioned 6A Connectivity of the future IoT. GGIoT 
is independent of particular devices, platforms, networks, 
domains and applications, and it minimizes transmission 
message size to fit devices with minimal capabilities, such 
as passive RFID tags. Thus, lower physical size and cost 
are possible, and network overhead can be reduced. The 
proposed GGIoT is evaluated via performance analysis and 
proof-of-concept case studies. 
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1 Introduction 

The Internet of Things connects physical objects on the 
Internet. A thing is a virtualized object in information 
systems [1]. The virtual object has identities, attributes and 
communicates via its interfaces. The IoT involves people-
to-people, people-to-object (P2O) and object-to-object 
(O2O) communication. Traditional Internet applications, 
such as blogs and online games, are facilitated by people-
to-people communication. On the Internet, People can 
interact with the physical world via P2O communication, 
such as monitoring and tracking physical objects. In O2O 
communication, objects communicate with other objects, 
such as Near-Field Communications (NFC) [2]. 

The development of the IoT depends on innovation across 

many domains and industries, such as hardware manufacture  
and information technologies [3]. To collect real-time status 
of physical objects, barcodes wireless sensor networks and 
RFID technologies are necessary. Web 2.0 allows third-party 
users to provide and discover virtual objects and services on 
the Internet. To process device messages, Cloud Computing 
can provide elastic resources to process excessive real-time 
events [4]. With mobile networks and Wi-Fi, smart phones 
can act as proxies to connect objects to the Internet [2]. To 

exchange large amounts of data in networks, bandwidth is 
required to be increased [1].  

The development of the IoT can be classified into four 
phases: i) Intranet of Things, ii) Extranet of Things, iii) 
Internet of Things, iv) Future Internet of Things and People 
[5]. Most existing RFID applications in closed systems are 
considered as Intranet of Things and Extranet of things, and 
little demand is needed for exchanging data across domains 
[5]. The third phase points to the current IoT designed for 
specific devices, platforms, networks, domains, services and 
applications. The fourth phase, Future Internet of Things and 
People, aims to connect people and objects on a global scale 
and across domains and industries [5]. In the future IoT, 
objects will become context-aware and make spontaneous 
decisions to communicate with people and machines [6].   

The future IoT will be an integral paradigm across many 
domains, in which objects can seamlessly communicate with 
each other [7]. The future IoT needs an open architecture to 
realize interoperability among heterogeneous resources [1]. 
This paper presents a global generic architecture for the 
future IoT (GGIoT), which has many advantages. First, as 
the IoT is crossing domains, a generic architecture improves 
interoperability across systems. Second, as technologies are 
evolving and user requirements are changing, developing 
applications on a generic architecture can reduce time and 
cost to suit to the changes. Third, a generic IoT architecture 
allows third-parties to offer and consume services on public 
platforms in a simple way. 

Building a generic IoT architecture is challenging, due to 
many issues. In this paper, a generic architecture is presented 
for the future IoT, and aims to resolve the following issues.  
 Device integration: The IoT involves diverse devices, 

such as sensors, barcode and RFID tags, to collect and 
transmit description of physical objects. To integrate 
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heterogeneous devices, Web Services enable standard 
web protocols to request data from IP-enabled devices. 
Web Services cannot be embedded on some resource-
constrained devices. The future IoT needs to connect 
devices with minimal capabilities and physical sizes. 
In the proposed architecture, diverse devices can be 
seamlessly integrated at middleware in the distributed 
proxies. It is independent of devices and networks. 

 Semantic integration: The future IoT needs to interpret 
meaning of received messages from different people. It 
is challenging to standardize description of objects by 
defining mandatory rules, similar to enforcing people 
to speak the same language worldwide. Using adaptors 
can interpret meaning of exchanged messages between 
systems. However, the interpretation of an adaptor is 
only limited to recognize patterns appear. This paper 
presents a novel approach of data integration based on 
building ontologies. Users are not required to describe 
data schema, object properties and units of measure in 
device messages. Meanwhile, the meaning of object 
and service description is also globally consistent. 

 Personalization: Personalization delivers customized 
services to meet user needs [7]. As billions of objects 
are expected to connect to the future IoT, it is difficult 
to predesign all virtual objects and services. In this 
paper, the architecture enables third-parties to create 
and customize content on a global public platform.  

 Unexpected Interaction: The future IoT will reach a 
global scale. When objects move between spaces, it is 
difficult to handle the uncertainties and the unexpected 
interactions among objects [8]. If an object discovers 
many unknown objects nearby, it should only interact 
with certain objects. Otherwise, numerous unnecessary 
interactions would wastes resources. The proposed IoT 
architecture uses distributed proxies to coordinate the 
local interaction among objects and services.  

 Real-time Capability: In the future IoT, a great number 
of objects can generate a massive of real-time events. 
Object property values change constantly. To update 
real-time status of physical objects, events need to be 
immediately transmitted and processed. Most existing 
IoT platforms utilize Web Servers to exchange data 
between systems. Apart from the high overhead of web 
protocols, indirectly accessing sensor data in remote 
web servers also increases latency. In the proposed IoT 
architecture, to reduce network traffic for local O2O 
communication, device messages are exchanged and 
processed in distributed proxies via binary protocols. 

 Service Modularization: Due to diversity of objects, 
services and devices, most existing IoT platforms do 
not provide reusable and modularized services, which 
make providing and consuming services difficult for 
third-parties, and also increase development costs. In 
the proposed architecture, a physical object or service 
is virtualized as a primitive middleware component. 
Cost and time can be reduced by reusing many atomic 
components to combine a composed service via the 
globally consistent interface.  

This paper is structured as follows: Section 2 discusses 

architectural requirements for the future IoT. Section 3 
analyzes constraints of existing IoT platforms. Section 4 
presents a global generic architecture (GGIoT) for the 
future IoT. In Section 5, the architecture is evaluated via 
performance analysis and proof-of-concept case studies. 
Finally, Section 6 concludes this paper. 

 
2 Architectural requirements for the future IoT 

Many obstacles, such as incompatible standards, different 
communication patterns and lack of scalable frameworks, 
may hinder the envisioned future IoT. There is no single 
set of standards for the IoT currently. Some organizations 
are standardizing the IoT in different domains, such as 
EPC-global [9], ISO/IEC [10] and ZigBee [11]. These 
standards are evolving and incompatible with each other. It 
is impractical to ignore existing standards, and create new 
standards for the future IoT. The proposed IoT architecture 
uses existing Internet infrastructure, and it can integrate 
emerging resources independent of specific standards. 
 
2.1 The 6A Connectivity of the future IoT 

The envisioned 6A Connectivity of the future IoT allows 
people and objects to be connected anytime, anyplace, with 
anything and anyone, using any path/network and any 
service [3], which is the goal of the architecture in this 
paper. In terms of anytime, the future IoT is required to 
process received data on demand. IoT applications have 
different demands for latency, which may vary from a few 
seconds to a few days [5]. Previous work shows that the 
performance of Web Services is acceptable for most IoT 
applications currently [12]. For some time-sensitive IoT 
applications, such as self-driving vehicles, latency needs to 
be further decreased to guarantee QoS.  

In the future IoT, objects and devices access the Internet 
via different networks and paths. With respect to anyplace, 
it is required to integrate diverse networks. To enable the 
anything connectivity, size and cost of sensors and RFID 
tags need to be further reduced. As a result, most common 
objects can connect to the future IoT. In regards to anyone, 
people may use different languages to describe entities in 
device messages. The future IoT needs to integrate device 
messages worldwide, and provide an easy manner to allow 
third-parties to offer and consume services. 
 
2.2 Interoperability 

In the IoT, interoperability is the capability of integrating 
heterogeneous devices, networks, systems, services, APIs 
and data representation across domains and systems [13]. It 
can be classified into network, syntactic and semantic 
levels [14]. The network interoperability focuses on device 
connectivity across networks, but does not concern the 
shared content. Implementing Web Services on sensors can 
encapsulate sensor message via web protocols [15]. The 
future IoT will connect many resource-constrained devices 
that do not support Web Services. It is required to use a 
globally consistent method to connect lightweight devices 
independent of specific networks, platforms and systems, 



3 

 
and to integrate devices appears in the future [7]. 

When device messages are exchanged across systems, 
the incompatible data structures may hinder data parsing. 
Syntactic interoperation defines common data format and 
structure, such as HTML, for exchanged messages [14]. 
In the IoT, HTML adds much overhead for sensors [16], 
and Resource Description Framework (RDF) is heavy for 
resource-constrained devices as well [17]. Considering a 
trade-off between description level and the produced 
overhead, XML, JSON and CSV are accepted as the most 
suitable formats to describe objects in the IoT [5]. The 
difference is that these formats use different delimiters to 
set boundaries between data elements.  

As entities are diversely described in device messages, 
semantic integration can be achieved by converting the 
entity description into system-readable representation via 
customized adaptors, and then interpret the meanings [18]. 
This method adds high design complexity to the adaptors, 
as an adaptor is limited for pre-defined data conversion. 

Building ontologies can regularize rules to represent 
entities [14]. For example, Sensor Network Ontology 
describes types of sensors and sensor networks [19]. To 
classify object and service in the IoT, a service ontology 
use three sub-ontologies to describe the hosted services of 
sensors, locations, and physical properties [20]. However, 
as entity properties cannot be customized by third-parties, 
description capability of the ontology is limited and the 
ontology lacks scalability. In the IoT-A project, the class 
information model is used to classify fine-grained entities 
and build complex relations between the entities [21]. 
This model does not specify how entities are represented 
in sensor messages and how context is abstracted and 
interpreted in IoT applications.  
 
2.3 The SOA principle 

To allow third-parties to offer and consume services, the 
service-oriented architecture (SOA) is a design style that 
is independent of specific technologies and products [22]. 
SOA is not limited to the WS-* standards. Component-
based models can also be SOA-enabled, such as the EJB 
specification. Compared to using Web Services, binary 
protocols are allowed in communication in component-
based middleware, which permits a lower data rate in 
networks and lower overhead for sensor devices [23]. 
Traditional Internet applications are mostly designed for 
people-to-people communication. Human-readable web 
protocols facilitate third-parties to provide and consume 
services easily. Most IoT services, such as Smart Home 
and Smart Transport, are based on O2O communication. 
Using machine-readable binary protocols is beneficial for 
improving the overall performance.  
 
2.4 Service modularization and Loose-coupling 

In the IoT, loosely-coupled systems enable the logical 
separation of virtual objects and services. Each atomic 
object and service can be individually added, removed, 
and reconfigured. Thus, multiple objects and services can 
be combined to create new services. As primitive services 

are reused, cost and time in development can be reduced. 
Web Services provide relatively coarse-grained services, 
and component-based middleware enables more fine-
grained services. A composed service should not consist of 
many constituent Web Services, as the accumulated 
latency is intolerant for some time-sensitive applications 
[23]. For component-based models, services can also be 
designed as coarse-grained, such as the Façade Pattern, 
which allows multiple primitive services to be composed 
into a coarse-grained service to meet application needs [24].  
 
2.5 Multipoint communication 

In the future IoT, an object needs to communicate with 
many objects at the same time. For example, a self-driving 
vehicle should simultaneously interact with the near cars, 
and traffic signals [25]. Multipoint communication can also 
be used to combine child-objects into a parent-object, and 
ensure that all the child-objects and parent-object can be 
individually addressed. For example, a machine consists of 
many parts. Multithreading is needed for object-to-service 
communication. One service needs to concurrently interact 
with multiple objects, or one object offers services to many 
entities. For example, an Appliance Monitor service allows 
a user to monitor all appliances at the same time [26]. In 
Smart Retail scenarios, many customers need to receive 
information from the same product simultaneously. Thus, 
multipoint communication is an architectural requirement 
when composing services in the future IoT.   
  
2.6 Dynamicity and runtime reconfiguration 

The dynamicity of the future IoT involves many aspects. 
Devices are added and removed dynamically in networks, 
due to many reasons, such as dispose of objects, shutting 
down devices, and moving devices between networks. The 
caused network topology is changed in real-time. It needs 
to dynamically allocate and release system resources for all 
connected objects and services [13], and create dynamic 
flows among objects, services and systems [27]. To add or 
remove connections between objects or services, existing 
connections with other objects and services should not be 
affected. To enable this, interaction among virtual objects 
and services should not be pre-configured and hard-coded, 
and connections among virtual objects and services needs 
to be reconfigured at runtime[13]. The WS-* standards 
cannot achieve it, as the dependency resolution mechanism 
are hard-coded in the Web Services. For component-based 
models, the components need to be fine-grained to enable 
runtime reconfiguration; the coupling between components 
needs to be managed from outside mechanisms [28].  
 
2.7 Controlled interaction and Decentralization 

When objects are moving between spaces, it is difficult to 
handle the uncertainties of interactive objects [8]. If an 
object discovers many unknown objects nearby, it should 
select certain types of objects for communication. Building 
a full connection between all objects in a network would 
cause many meaningless connections and waste resources. 
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In GGIoT, O2O communication is coordinated by a local 
proxy. By analyzing relations among objects and services 
in ontologies, the proxy can coordinate interaction among 
these objects to avoid unexpected interaction.  

Most existing IoT platforms use remote web servers to 
request sensor data via HTTP, and to provide URIs to 
access sensor data in the RESTful style. The centralized 
IoT architecture has security, privacy, trust, responsibility 
and data ownership issues [1]. When data is transmitted 
through many networks, it is inefficient to use centralized 
web servers to retrieve sensor data. The future IoT should 
support distributed data accessing, processing, storage 
and ownership. Users can decide which parts of data can 
be shared in public or specific groups [13].  

 
2.8 Simplified deployment 

Simplified deployment can improve the common use of 
the IoT. To reduce hardware cost, lightweight sensors and 
RFID tags can be used in parts of IoT applications. To 
reduce development cost, third-parties can reuse existing 
services to compose services. A plug-and-play mode can 
connect diverse devices transparently and seamlessly[29], 
and no-programming is required to deploy devices and 
services. The future IoT should use consistent methods to 
model sensor data [30]. Moreover, service composition 
and service optimization need be automated in context-
aware environments in the future IoT.  
 

3  Existing IoT platforms 

Most existing IoT platforms are designed for particular 
devices, platforms, networks, domains and applications. 
These IoT platforms use RESTful APIs to access sensor 
devices, and to retrieve, store, update and delete data via 
the standard HTTP operations such as Get, Post, Put and 
Delete. The exchanged data formats are XML, JSON or 
CSV. Sensor data is stored in cloud-based databases for 
processing and accessing. IoT platforms, such as Xively 
[31], Axeda [32], ARMmbed [33], Arrayent [34] Carriots 
[35], Bugswarm [36], DIGI Device Cloud [37], Evrythng 
[38], Thingspeak [39], Nimbits [40], and GroveStreams 
[41] all follow this style. They have differences in some 
non-core functions, such as business model, data storage 
policy, data management, visualization, data analysis, 
event notification and access permission control. 

The existing IoT platforms share many constraints that 
may hinder the deployment of the future IoT. To send 
data to the platforms, sensors must support Web Services, 
which is not suitable for resource-constrained devices. 
Another method is to use proxies to post sensor data to 
the RESTful API via manual programming. This method 
adds complexity for non-expert users. Most commercial 
platforms collaborate with their hardware manufacturers, 
and have specific requirements on devices and networks. 
For example, a device used in the AXEDA platform need 
to support mobile network, and the ARMmbed platform 
uses 6LoWPAN networks. The Xively platform requires 
users to write key pairs into firmware of the designated 
devices. The envisioned future IoT should be device and 

network-independent. The diversities and constraints may 
hinder the ubiquity of devices and networks in the IoT. 

The average cost of a single sensor device is too high if 
connecting many ordinary objects for common use. Some 
IoT platforms, such as Kaa [42], offer open source codes to 
third-parties for building applications. However, cost of the 
required devices is still a barrier for connecting ordinary 
objects to the IoT; the size of the sensors may also be too 
big to attach them on small objects. To reduce device size 
and development cost, barcode and RFID tags can replace 
sensors in parts of applications. For example, the Evrythng 
IoT platform enables connection of barcode and RFID tags 
by posting static object descriptions via the RESTful APIs.  

These IoT platforms do not provide ontologies, which 
hinder the interpretation of device messages from different 
parties. Third-parties describe entities in device messages. 
This constraint increases the message size and consumes 
more energy of devices. Due to diverse representation, it is 
also difficult to integrate sensor data at the syntactic and 
semantic level. Some IoT platforms, such as Arrayent and 
Kaa allow the users to create and share user-defined data 
models. The Arrayent platform enables describing device 
properties using the shared vocabularies, but it is limited to 
specified device properties. Other features, such context-
awareness, service composition, service optimization, and 
automation also cannot be realized. Therefore, the existing 
IoT platforms are far from meeting the envisioned 6A 
Connectivity of the future IoT. 

As the existing IoT platforms do not offer off-the-shelf 
applications, users need to build applications from scratch, 
or to write code by using the provided tools and manuals. It 
requires programming skills for non-expert users, reduces 
service reusability, and also increases cost. The future IoT 
should provide simplicity to non-experts users. Some IoT 
platforms provide customized services to their clients, such 
as system integration, software development and hardware 
design. It would further increase the cost of using the IoT, 
because of the lack of standardization and interoperability 
across heterogeneous platforms.   
 
4  Building a global generic architecture for the IoT 

4.1 Design principle  

GGIoT aims to integrate heterogeneous resources into the 
IoT, and to meet the 6A Connectivity of the future IoT. As 
some devices cannot run node-level middleware, device 
messages are integrated in gateway-level middleware to 
shield hardware details of the devices. The local proxy uses 
component-based middleware to receive, exchange and 
process device messages. O2O communication is enabled 
by binary protocols, as it can reduce message size to fit 
devices with minimal capabilities, and also reduce network 
overhead [43]. Each sensor message consists of a system-
allocated object ID, and collected dynamic object property 
values. Object properties, static property values, measure 
of units, and data models are described in object templates 
in ontologies. Thus, message size can be reduced to a 
minimum to fit energy-constrained devices. In ontologies, 
third-parties are able to customize description of entities, 
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and share the description worldwide. The ontologies can 
be easily expanded, and description of entities is also 
globally consistent. Each entity is described in a template. 
By mapping a sensor message with the related template in 
the ontologies, the message meaning can be interpreted.      

In middleware, an object component is a virtualized 
object, which is allowed to interface with multiple service 
components via the consistent APIs. Many atomic object 
and service components can be combined to provide a 
composed service. The reuse of primitive services can 
improve the common use of the IoT, reduce development 
cost, and facilitate easy-deployment. The middleware tier 
provides consistent APIs of modularized services to IoT 
applications. Between the middleware and applications, 
communication patterns can be designed as pull, push or 
publish-subscribe, to fulfill different application needs 
without concerning the underlying devices and networks. 
This paper focuses on the virtualization and integration of 
heterogeneous resources at the middleware tier.  
 
4.2 Object description 

In the IoT, object-attached devices have diverse physical 
size, memory size, energy consumption, processing and 
sensing ability. It is necessary to use a globally consistent 
method for describing entities in device messages, and 
enable the method to fit devices with minimal capabilities. 
Passive RFID tags do not have the ability to sense and to 
store too complex data. Static properties of the connected 
objects can be described in detail in the backend systems, 
and an object identifier is described in device messages to 
link the description in the backend systems. Barcode tags 
also do not have sensing ability, and similar methods can 
be used to index object description in systems.  

In GGIoT, dynamic property values of objects, such as 
temperature and location, are collected by sensors, active 
RFID tags and GPS devices, to represent real-time states 
of the labeled objects. A sensor message consists of two 
data fields: object identifier and dynamic property values. 
Other elements, such as message schema, static property 
and the values, and unit of measure, are considered as the 
description overhead, as they are constantly static in 
object description. By moving the description overhead to 
the back-end system, the size of sensor messages can be 
significantly reduced to fit lightweight devices. Stripping 
the overhead from sensor messages can also maintain the 
description consistency and shield complexity from users.  

Figure 1 illustrates an example of the stripping process. 
A sensor message only contains a system-allocated object 
ID and the collected dynamic property value “16”. Other 
data elements are filled into in a generic milk template by 
a third-party user, which results in creating a customized 
object template. The customized template is stored in the 
ontologies for interpreting messages from the attached 
object. The gateway-level middleware abstracts each data 
elements of received messages. By matching them to the 
registered object template in the ontologies, meaning of 
received messages can be interpreted. The update of the 
ontologies is synchronized worldwide. Meanings of entity 

descriptions are globally consistent. Virtual objects and 
services across systems can be composed in middleware 
without using data conversion. 

 
Fig. 1 Stripping the description overhead from a sensor message 

Some devices do not have data encryption ability; the 
messages can be intercepted maliciously between devices 
and gateways. In GGIoT, the message description method 
can provide a potential solution to alleviate the "last mile 
privacy issue". As a sensor message does not contain any 
description about ownership, property, unit of measure and 
data schema, the message needs the associated template to 
interpret it. The device message is only system-readable. 
For barcodes or passive RFID tags do not have sensing 
ability, a device message or an image only contains an 
object ID used to index a static object template in systems.   
 
4.3 The overall architecture of GGIoT 
 

 

Fig. 2  The overall framework of GGIoT 

GGIoT is component-based, proxy-integrated and binary-
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protocol-enabled. It is independent of underlying device, 
network, system and service. The consistent description 
of entities enables GGIoT to integrate resources across 
domains and parties. Figure 2 demonstrates the overall 
framework which includes: perception tier, routing tier, 
middleware tier and global management system (GMS). 

The perception tier collects raw data from the physical 
world using different devices, and to represent the data as 
dynamic property values of virtual objects in middleware. 
The routing tier builds communication channels between 
various devices and the middleware in the proxies. A 
variety of intermediate devices, such as mobile phones, 
tablets, and laptops can be used to relay messages from 
end-point devices to nearby gateways. The gateways then 
route aggregated messages to the middleware tier via the 
Internet. As mobile networks cover most places of the 
world, mobile devices can route messages in areas other 
networks are unavailable. Considering security or privacy 
issues, the public routing devices should be managed by 
trusted parties, and relevant legislations need to be issued.  

At the middleware tier, a distributed proxy consists of 
ontologies, identification mechanism, lookup, database, 
virtualization and application system. The virtualization 
system virtualizes a device message of a physical object 
into an object component, and modularizes a service as a 
service component in middleware. Many primitive object 
and service components can be combined as a composed 
service to reduce development cost. Each component runs 
temporarily in middleware. If a component is removed, 
the unused resource is released.  

The identification mechanism assigns a global unique 
identifier (GUID) for a virtual object. In device messages, 
an object ID is pre-allocated by Identifier Manager before 
initializing the object component in middleware. The 
assigned object component ID is identical to the object ID 
in device messages. The aim of this design is to discover 
the virtual objects using system-allocated component IDs. 
The IDs are temporarily allocated to object and service 
components, and can be recycled and reused. In GGIoT, 
the lookup system provides a discovery mechanism to 
enable the discovery of virtual objects and services, or 
classification of objects and services in the ontologies.   

The application system can offer various development 
tools for third-parties. For example, template editing tools 
can be plugged into browsers, and to allow third-party 
users to describe objects and services in templates rather 
than in device messages. Third-parties can also use their 
own words to find suitable existing templates to match 
connected objects and services. Objects and services can 
be customized by modifying existing generic templates. 
Thus, third-party developers focus on application design 
without concern for hardware details of sensory devices. 
GGIoT also allows using multiple off-the-shelf services 
to compose a service on demand. 

The object and service ontology describe the relation 
between virtual objects and services. The unit ontology 
describes units of measure. Moreover, location, device, 
time and other types of entities can also be described in 
the ontologies. The ontologies can be updated to adapt to 

new emerging entities. To ensure global consistency, all 
ontology data is managed by the GMS. Other distributed 
proxies periodically download updates. The GMS allocates 
a range of identifiers to all distributed proxies. Then each 
distributed proxy further assigns the allocated identifiers to 
the local virtual objects and services. 

As most O2O communication occurs within specific 
areas, using a distributed proxy to handle communication 
of near objects and services can reduce network traffic and 
access latency. The distributed proxies can run on a local 
network, metropolitan area network, private and public 
cloud. Location and specification of a proxy is determined 
by the hosted objects and services, required resources and 
application needs. All distributed proxies form a global 
network. If O2O communication is beyond the range of a 
proxy, the GMS can coordinate the communication of the 
involved virtual objects and services in different proxies. 
The GSM can be used for discovering objects and services 
across proxies. Images of the GSM can be backed up and 
synchronized in different locations worldwide. The design 
of the GSM is beyond the scope of this paper.  
 
4.4 Object Virtualization 

GGIoT enables a globally consistent description of entities 
before virtualizing objects into middleware. Third-parties, 
such as end-users and manufactures, use their own words 
to look for off-the-shelf templates in ontologies to map 
connected objects and services. The user-defined keywords 
are analyzed in search engines, and then the most suited 
templates are discovered to represent static status of the 
connected objects. GGIoT provides flexibility to allow 
third-parties to use their own language to represent entities 
in the IoT, and all participants need to commit the rules for 
data representation in device messages. In middleware, an 
object component relays messages from the object-attached 
device to the wired service components. By mapping the 
messages into the associated object templates, meaning of 
the object state can be interpreted. Figure 3 illustrates the 
object virtualization process in GGIoT.  

 

Fig. 3 The process of object virtualization in GGIoT 
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In Step 1, third-parties login to a user management 

system. It allows users to store user profiles and manage 
virtual objects via web browsers. Step 2 is used to verify 
user identities by authentication methods, such as security 
devices and password. In step 3, third-parties discover an 
existing template to describe a connected object. Users 
can specify a template ID to access an object template, or 
use their own language as keywords to find the most 
suitable template. It is difficult to standardize languages 
to describe entities worldwide. GGIoT offers flexibility 
of allowing third-party users to represent entities using 
their own language in the IoT.  

In step 4, the ontologies analyze the search keywords, 
and find some suitable template candidates to match the 
connected object. The discovered object templates can be 
translated into different languages depending on users’ 
preferences. Then URIs of the translated templates are 
sent to the users. In step 5, when the users receive the 
system-recommended object templates, they can select 
the most suitable template to describe the new connected 
object. The URI of the selected template is returned to the 
systems for registration. If the users cannot find a ready-
made object template, they can fill blanks of a generic 
object template. The filled object template is registered in 
ontologies, and a template ID is assigned for the template.  

In step 6 and step 7, a GUID is allocated to the object. 
The object ID is formatted into device messages by the 
users, and is identical to the component ID of the virtual 
object in middleware. Thus, the object can be discovered 
via the system-allocated object ID. A mapping between 
the object ID and the related template ID is registered in a 
distributed proxy. As a result, it is unnecessary to present 
the template ID in the device messages. It is beneficial to 
remove the description overhead from the messages, and 
enhance privacy strength of the transmitted data. In a 
device message, another data field Values of Dynamic 
Properties is collected from the physical object in real-
time. For example, in a sensor message "MFS003412 16", 
"MFS003412" is the system-allocated object ID and "16" 
is the dynamic property value of Temperature, which is 
collected by a sensor. As a template ID "FOODB812" is 
pre-associated with the object ID in a proxy, the template 
can be used to interpret meaning of the sensor message.  

In step 8, the middleware receives the sensor messages, 
and map them into the related object template to interpret 
the message meaning. The middleware can also generate 
an object component to relay the device message to other 
service components in real-time. 

 
4.5 Building ontologies 

In GGIoT, ontologies describe entities and the relations 
between entities. The object ontology, service ontology 
and unit ontology are the three basic ontologies that 
describe the relations among objects, services and units of 
measure. Other ontologies, such as the location, time, and 
device ontology, can also be used to describe other types 
of entities. Each template describes one type of entities 
and the relations with other entity types. All templates 

form the ontologies in GGIoT. The templates are published, 
customized, discovered and accessed on public platforms, 
to achieve the consistency worldwide. The ontologies are 
formed in a hierarchical structure, and can be extended by 
adding new templates to describe new type of entities.   

An object template describes static states of one type of 
objects. An object component outputs the received device 
messages to update dynamic property values of the object 
instance. A clear separation of object type and instance can 
offer a loosely-coupled communication pattern in GGIoT. 
The ontologies verify types of objects and services when a 
proxy coordinates O2O communication among the objects. 
An object is limited to communicate with pre-defined types 
of objects and services to avoid unexpected interaction. All 
object templates constitute the object ontology. Reusing 
existing templates can simplify deployment, save time and 
cost, and enable consistent entity description worldwide. 
Third-parties can also customize objects by editing existing 
object templates. By adding new object properties into an 
existing template, a new object template is generated. One 
type of objects is constrained to consume limited types of 
services, which can also be defined in the object template.  

Figure 4 illustrates an object template of a bottle of milk. 
If adding a <Service> field into the object template, the 
object component is entitled to interface with a service of 
Temperature Monitor. "TM2371" is the URI of the service 
template in the service ontology. <Connector> declares 
the interface type, and <Interface> locates the interface. In 
the ontologies, shared templates are public templates, and 
private templates can only be accessed by authorized users. 
By adding the <Private> field into the object template, the 
associated object component can only be accessed by two 
communities "US69043222" and "AUS4732973". The 
<Created> field indicates the creator of the customized 
template. The creator can also grant different access rights, 
such as reading, deleting and modifying, to other users. 

 

Fig. 4  Adding service and ownership into object template 
 

A physical object consists of a set of physical properties, 
and uses different units to measure the values. In GGIoT, 
the unit ontology classifies the units of measure; describes 
the relations between units; maintains semantic consistency 
of units. In process of service composition, a unit can be 
converted into other units to adapt to interface of the wired 
components. For example, one meter can be converted to 
10 decimeters, or 100 centimeters. In a unit template, a 
field <UnitID> contains an identifier used to access the 
unit template; a field <Subclass> indicates classification of 
the unit; <definition> defines the semantic meaning; and 
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<Conversion> describes the relations with other units.  

In middleware, a service component offers a primitive 
service. It receives messages from the wired components, 
and then output the processed data. A service template 
describes one type of service, and is the primitive unit to 
form the service ontology. A service template contains a 
class used to generate service components. To customize 
new types of services, existing service templates can be 
edited by third-parties, which results in registering new 
templates in the service ontology. Figure 5 illustrates a 
service template for a Temperature Monitor service. The 
service can send a notification message to subscribers if 
the temperature value of an object falls below a threshold.  

 

Fig. 5 The service template of Temperature Monitor 

 
The data fields <TypeID>, <Name> and <Definition> 

can be used for identification and discovery. <Subclass> 
indicates the service classification. The fields <Input> 
and <Output> declare receptacle and interface of the 
service component. For a virtual service, the receptacle 
receives messages and the interface output processed data. 
The field <DateType> is referred to data-type ontology 
that describes data types and the relations among them. 
As a result, output data of a service component can be 
converted into a compatible data type to connect another 
service. For example, integer data can be converted into 
real data to adapt to the input of a service component. 
The temperature threshold and notification message are 
adjustable variables. In the data field <Set>, third-parties 
are allowed to edit the threshold values, which resulting 
in generating a customized service template and a new ID 
is allocated for the new template. The field <Code> can 
provide the class source code used to generate instances 
of service components. 

Due to the global scale of the future IoT, if an object 
moves to a new network, the object would be unware of 
the existence of objects nearby. The object needs to select 
particular types of objects for interaction. In GGIoT, the 
limitations are defined in the object template. The relation 
among virtual objects and services is many to many. For 
instance, a refrigerator can use a Voltage Monitor service 
to monitor its voltage, and concurrently subscribes the 
Temperature Monitor service. One service can also be 
used by multiple virtual objects. For example, a Speed 
Monitor service can be used to measure speed of multiple 
vehicles at the same time. 

The device ontology describes properties of object-

connected devices. By adding a <device> field into an 
object template, the description of the connected device is 
linked to the device template. Other ontologies, such as 
time and location, can be created to describe other domain-
specific entities. All the ontologies use a template as the 
primitive unit, and can be customized to generate new 
templates to meet application needs. The IoT is evolving; it 
is difficult to pre-design all ontologies once and for all. In 
GGIoT, the ontologies are expanded to adapt to emerging 
entities without losing the relations with existing entities. 
 
4.6 Virtualization System 

The virtualization system is used to virtualize physical 
objects and services into components in middleware, and 
to combine primitive object and service components to 
provide composed services. In GGIoT, the loose-coupling 
feature enables efficient service composition via globally 
consistent interfaces of virtual objects and services. Figure 
6 illustrates the virtualization system.  

 

Fig. 6 The virtualization system in GGIoT 

In a proxy, the gathered messages consist of multiple 
lines of text. Each message is received from an object-
connected device. A message consists of two data fields: i) 
an object ID allocated by the Identifier Manager, and ii) 
collected data to represent dynamic object property values. 
The Component Factory can relay the device messages to 
the associated object components. By mapping the device 
messages to the object templates in ontologies, message 
meaning can be interpreted. As the object ID in a message 
is pre-allocated by the Identifier Manager, the proxy can 
judge if the virtual object exists. If a virtual object does not 
exist, the Component Factory initializes a new middleware 
component for receiving messages from the object, and the 
Identifier Manager allocates a GUID for the new generated 
component. The component ID is identical to the object ID 
in the device message.  
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If a message is from an already-virtualized object, the 

message is routed to the related object component. Other 
components wired to the object component can currently 
receive the message. The message is used to update the 
dynamic property values of the object in real-time. As 
interfaces and receptacles of distributed components are 
globally consistent, virtual objects and services can be 
seamlessly integrated in middleware, and heterogeneity 
of the underlying devices is hidden. As barcode tags and 
RFID tags do not have sensing ability, the labeled objects 
are virtualized as static virtual objects that do not have 
incoming messages.  

Each object component has an expiration period. If the 
virtualization system has not received message from an 
object above a predefined period, the object component is 
altered to inactive state. If the object reconnects to a 
proxy, the component can be reactivated. The temporary 
disconnections can be caused by many reasons, such as 
turning off sensors, moving objects between networks, or 
rebooting a router.  

If the object component fails to receive message from 
an object, it may be caused by low battery, abandoning 
objects, hardware error of devices and other issues. The 
object component is removed from middleware to release 
the unused system resource. The assigned component ID 
and object ID are recycled for reusing as well. Users can 
set a period threshold for the temporary and permanent 
disconnection. The Backup Centre is used to provide a 
recovery mechanism to recover the removed component, 
and to rewire previous bindings with other components.  

To provide virtual services, the Component Factory 
can generate service components on demand. A service 
component has an interface to output data, and more than 
one receptacle to receive inputted data. The interfaces and 
receptacles are predefined in the service template in the 
ontologies. Many object and service components can be 
combined to offer a composed service. The composition 
workflow can be coordinated by a component of service 
composer, which is discussed in Section 4.7.  

 
4.7 Service Coordination 

A service composer is a component generated by the 
Component Factory. It contains rules and algorithms used 
to control workflow in service coordination. To fulfill 
different application needs, third-parties customize the 
workflow and rules in template of the service composer. 
A service composer is entitled to couple and uncouple a 
connection between two components from the outside. 
The decision-making depends on collected context and 
pre-defined rules in a workflow. In service composition, 
the required dynamic context is collected from the related 
object and service components, and the static context can 
be looked up in the object and service templates in the 
ontologies. A service composer needs to be aware of 
states of all involved components. To update component 
states, events are sent to the Event Manager when a 
component is activated, suspended or removed. 

A composed service may suffer context change in the 

dynamic environments. To adapt to change, components 
are dynamically wired or unwired to other components by 
following pre-defined rules. With runtime reconfiguration, 
components and the wiring between components can be 
reconfigured without rebooting systems. Reconfiguration 
Manager can register, inspect and reconfigure components 
on runtime. By invoking control commands, components 
can be activated, suspended, removed, wired or unwired to 
other components. All components are loosely-coupled; 
unwring two components does not affect the coupling with 
other components. The loose-coupling feature can enable 
multipoint communication of virtual objects and services.  

A GUID is assigned for an object or service independent 
of location and networks. An object ID is static during the 
lifetime of the object. If an object is moved from one place 
to another where uses another proxy, the object component 
in the previous proxy is terminated, and the setting of the 
object component is stored in the Backup Centre. Then the 
new proxy downloads the setting from the Backup Centre, 
and generates a new object component with the previous 
setting. The wiring with other components in the previous 
proxy can be rewired in the new proxy. The aim of the 
decentralized design is to reduce network traffic and access 
latency when objects move between proxies.   
 
5  Evaluation 

This section presents a proof of concept evaluation of the 
virtual system in GGIoT. As diverse devices are integrated 
at the gateway-level middleware, the use of devices is not a 
consideration in the test. As device messages are routed to 
a proxy from different networks and paths, GGIoT is also 
independent of networks and communication channels. In 
middleware, as virtual objects and services use compatible 
interfaces and receptacles to exchange messages, the entity 
representation in device messages is globally consistent. 
Thus, GGIoT has generality to integrate heterogeneous and 
emerging resources. The features of the architecture are not 
confined to devices, systems, setting, performance analysis, 
services and case studies in this evaluation. 

 
5.1 Implementation setup 

Figure 7 shows the implementation setup. Device messages 
was formatted into the Arduino UNO [44], and transmitted 
via the Zigbee Xbee [11]. A dual-core PC acts a distributed 
proxy. A ZigBee Xbee Explorer is used as a sink node to 
aggregate messages from all objects in a WSN, and bridge 
the WSN with the proxy. The proxy receives the messages 
from the sink node via a USB port. GGIoT is independent 
of operating systems; both Ubuntu 10.10 and Windows XP 
were tested as underlying systems. 

 

Fig. 7 The setup of the implementation  
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The proxy runs the virtualization system based on the 

LooCI/OSGI V1.0 [45]. LooCI middleware was taken 
off-the-shelf to support evaluation of the virtualization 
system [46], for three reasons. First, LooCI components 
run on Java Virtual Machine rather than on physical 
platforms, the middleware is independent of processors, 
platforms and systems. Therefore, it can meet the device-
independency need. Second, as LooCI supports runtime 
reconfiguration in the LooCI network, components and 
bindings between the components can be reconfigured 
without a recompilation or restart, which can fulfill the 
loose-coupling need. Compared to middleware, such as 
OpenCOM [47], LooCI supports multithreading among 
components, which can enable multipoint communication 
in the proposed architecture GGIoT. 

 
5.2 Virtualization process 

In this test, Ubuntu 10.10 was installed on the proxy. A 
sensor message has three fields: ObjectID, Temperature 
value, and Sending time. This test assumes that the data 
fields of Temperature value and Sending time are the two 
dynamic property values of an object. Figure 8 illustrates 
the logical model and virtualization process workflow. A 
component of Sensor Relay was designed to interpret 
gathered sensor messages from the sink node. ObjectID 
are abstracted from each message by the Sensor Relay, 
and are sent to the Identifier Manager. As an ObjectID is 
pre-registered in the Identifier Manager, the registration 
can be verified by the proxy. If a device message is from 
a registered object, the message will be further processed. 
Otherwise, the message is discarded. 

 

Fig. 8  The logical model and workflow of object virtualization  

Reconfiguration Center can reconfigure components and 
the binding between components on runtime. It also stores 
the states of each component, such as initialized, activated 
or wiring. These states can be requested by the commands, 
such as GetState and GetInterface [48]. In this evaluation, 
if state of a target object component is activated, related 
messages are routed to the object component. Otherwise, a 
new object component is initialized to receive messages 
from the object-attached device. 

A component of Component Factory was designed to 
generate object components in middleware. Source codes, 
used to generate object components, were pre-stored in a 
Java file. The Component Factory can fill some data fields, 
such as object identifier, of the source code with captured 
data from messages and proxies. The filled source code is 
compiled to generate byte code, such as Class and Jar files. 
By executing the byte code in JVM, object components can 
be deployed in heterogeneous platforms. In GGIoT, object 
components can be transferred from one proxy to another. 
As byte code of object components is portable, it can be 
backed up in the GSM, and then moved to other proxies.  

In this test, by parsing aggregated messages from the 
sink node, the virtualization system dynamically generated 
object components for objects in a WSN. The components 
were published on the event bus, and can be subscribed by 
other components in the middleware. Each component was 
individually accessed by the component ID and IP address 
of the proxy. As these object components use compatible 
interfaces to output the dynamic object property values, 
middleware components in other platforms are able to wire 
to them without data conversion of adaptors.  

 
5.3 Memory footprint and overhead testing 

Compared to executing middleware or Web Services on 
sensors, GGIoT runs all middleware components in the 
proxies. Thus, devices with minimal capabilities can be 
integrated. The previous test shows that the visualization 
system used 196 KB to initialize the first object component 
[49]. Upon activating additional components, footprint of 
each component decreased from the second component (82 
KB) and then stabilized at the sixth component (28 KB). 
The disparity of component size can be inferred by creating 
components from the same source code; many components 
shared the same process in memory.  

The memory size is acceptable for a distributed proxy in 
GGIoT. For example, a regular PC with 8 GB of RAM can 
offer memory for running at least 200,000 components if 
the operation system uses 2 GB of memory. In GGIoT, a 
proxy could run in a router, regular PC, private cloud or 
public cloud. Required hardware specification of proxies 
depends on many factors, such as number of the connected 
objects and services at peak times, budget, QoS, user and 
application needs. 

In GGIoT, many primitive objects and services can be 
combined to provide a composed service without protocol 
conversion. The overall overhead of a composed service is 
accumulated by the communication overhead between all 
the primitive components, which depends on applications. 
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The test measured the communication overhead of two 
atomic components. In the proxy, two components were 
deployed in the proxy. Round trip time (RTT) latencies 
between the two components were measured, and socket 
communication was tested for benchmarking. A Java 
method System.nanoTime returned the local system time. 
In GGIoT, each sensor message only contains an object 
ID and collected dynamic property values. Considering 
the message size is typically less than 100 bytes, this test 
used 100 bytes of data in the message. Two components 
A and B were wired to test the RTT latency. Component 
A initially sent a message to component B, and then the 
message is returned to A. By comparing the sending time 
and receiving time, the RTT latency was tested.  

In GGIoT, it is unnecessary to invoke remote services 
in other proxies in most applications. Service components 
can be initialized in a proxy on demand. Comparing to 
the remote procedure call (RPC) of Web Services, local 
invocation can significantly reduce the latency when data 
goes through many networks on the Internet. In this test, 
the latencies between two atomic components based on 
local and remote invocation were both tested. The tests 
are repeated 100 times, and the average values are used 
for comparison. Figure 9 illustrates the latency test results 
based on the local invocation, socket and RPC. 

 

Fig. 9 The latency between two primitive components 

 
The results show the average RTT latency based on 

local invocation is 0.356ms; the average latency on the 
socket communication is 0.412ms. The added 0.056ms 
can be inferred that the socket API operations, such as 
reading and writing, can be blocked by the underlying 
operation systems for context switch [50]. The average 
RTT latency based on RPC communication is 0.483ms. 
Compared to the socket communication, the added 0.071 
ms of latency can be explained by the need to firstly relay 
the data to the Macro-component [45]. The results show 
that the local invocation has the smallest variation and the 
RPC has the largest variation in execution time.  

In GGIoT, as O2O communication is coordinated and 
processed by distributed proxies rather than centralized 
web servers. The test results indicate a significantly low 
overhead between the two primitive components, which 
enables a composed service to consist of many primitive 
components on a proxy. For RPC communication, as the 
middleware uses the UDP protocol, the added overhead is 
less than 0.1ms. The purpose of this test is to measure the 

minimized overhead between the two components in the 
specific proxy. In practice, the performance of a service 
will depend on the many factors, such as the underlying 
systems, devices, networks and applications. 

 
5.4 Case studies 
 
GGIoT aims to provide a generic IoT architecture across 
domains. Due to the global scale, implementing a concrete 
architecture needs a great deal of cooperation and efforts 
from many parties. In this section, two case studies were 
designed to demonstrate basic features of monitoring and 
tracking services, and O2O communication in GGIoT. The 
illustrated principles have generality to adapt to services in 
different domains. XML was used as the data format for 
the involved object and service templates in the ontologies. 

 
5.4.1 Monitoring and tracking services  
 

This section utilizes a service of Temperature monitor to 
illustrate monitoring services. An object component was 
deployed to receive and relay the dynamic property values 
of a simulated refrigerator. By wiring to the refrigerator 
component, a Temperature Monitor component can receive 
and monitor the temperature values of the refrigerator. The 
Temperature Monitor sends a notification to subscribers if 
the temperature value is above a predefined threshold. The 
threshold value can be customized for reusing the service. 
In this test, the threshold was set as "5". If the monitored 
temperature value is above 5 ℃, the notification message 
is "Your refrigerator is too hot". Otherwise, the notification 
is "Your refrigerator is normal".  

Figure 10 shows the object template used to describe the 
refrigerator. The refrigerator template has six data fields to 
describe static property values of the refrigerator, such as 
<TemplateId> and <Weight>. The template also has three 
dynamic properties including <Temperature>, <Voltage> 
and <Date>. The fields of the dynamic properties are left 
blank for mapping values from the sensor messages. The 
values of <Unit> are linked to the Unit Ontology, and the 
<DateFormat> fields describe various date formats. It is 
unnecessary to parse all data fields of the template, which 
depend on application needs. In this service, it is required 
to interpret the values of <ObjectId> and <Temperature>.  

 

Fig. 10 The object template of the refrigerator 
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The object component is restricted to interact with 

three types of services. Template IDs of the supported 
service types were pre-defined in the <Services> field. 
Figure 11 demonstrate a workflow of the Temperature 
Monitor. The refrigerator component relays the device 
messages to the service components of Temperature 
Monitor in real-time. By mapping the received messages 
with the associated template, the Temperature Monitor 
interprets meaning of each data field in the messages. A 
device message does not contain a template ID. The 
Temperature Monitor looks up the template ID of the 
refrigerator in the Identifier Manager before it parses the 
dynamic property values.   

 

Fig. 11 The workflow of the Temperature Monitor 

 
The module of Query Service parses the ontologies, 

and verifies if the service of Temperature Monitor is 
compatible with the object component. If the verification 
is passed, the module of Execute Services retrieves the 
current temperature value from the latest sensor message. 
By comparing the retrieved temperature values with the 
predefined threshold "5", temperature of the refrigerator 
can be monitored in real-time. The test results show the 
notification messages were displayed as expected. In this 
case, the triggered action is sending notifications. Other 
actions can also be designed to meet different application 
needs. In GGIoT, current location of objects can also be 
parameterized as a dynamic property value. As a result, 
the data processing of tracking services is similar to the 
monitoring services. 

 
5.4.2  Object-to-object (O2O) communication 

Most IoT services are designed for O2O communication. 
Compared to the monitoring and tracking services, some 
differences exist. Monitoring services can be applied to a 
single object; O2O communication needs participation of 
at least two objects. Therefore, a third-party component is 
required to coordinate O2O communication. Moreover, 
most monitoring and tracking services are provided to 
specified objects, while objects in O2O communication 
are unpredictable. Objects may move between networks, 

which causes interaction with new objects nearby.  
This section presents a service of Expiration Manager to 

demonstrate O2O communication in GGIoT. In this test, 
two object components were deployed to receive messages 
from two sensors that describe a refrigerator and a bottle of 
milk respectively. The refrigerator uses the same object 
template in Figure 10. In the middleware, outputs messages 
of the refrigerator component contain a dynamic property 
value of <Date> to describe local time of the refrigerator. 
Another template was used to describe a bottle of milk. 
The milk template has some static object properties, such 
as <Manufacturer> and <Volume>, and a dynamic object 
property <Expiration> describes the expiration date of the 
milk. Although expiration date of a product is static after 
the product is produced, the same types of milk may have 
different property values of <Expiration>. It is inefficient 
to duplicate many templates to describe the same product 
in mass production. This case assumes that <Expiration> 
is a dynamic property of the milk, and formatted into 
messages of the attached RFID tag.  

A component of Expiration Manager was designed and 
multithreaded to the two object components to receive the 
messages. By comparing property values of <Date> of the 
refrigerator to property values of <Expiration> of the milk, 
the service of Expiration Manager can decide if the milk is 
expired, and send notifications to the subscribers. If the 
expiration date of the milk is after the local date of the 
refrigerator, a message "Your milk has expired" is notified. 
Otherwise, the notification message is "Your milk is still 
fresh". Figure 12 illustrates the workflow.  

 

Fig. 12 The workflow of the Expiration Manager 

 
In GGIoT, as third-parties may set different intervals to 

send device messages, it needs to synchronize received 
messages of different objects before executing services. In 
this case, the Expiration Manager adds a new module of 
Synchronize Messages to retrieve the latest messages from 
the two objects. A hashmap instance was created to cache 
device messages of the two object components. When the 
Expiration Manager receives a message from the milk or 
the refrigerator, each data field of the message is separated 
and cached into an array. The value of object ID is used to 
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index the message in the hash map. When two messages 
with two object IDs are cached, the two messages provide 
the latest dynamic property values of the two objects.  

The two messages are retrieved from the hash map, 
and then the hash map is cleared to cache new coming 
messages from the two object components. The sources 
of the two retrieved messages can be judged by object 
IDs. Then Template IDs of the two objects are looked up 
in the Identifier Manger. The module of Query Service 
verifies if both the two objects both support the service of 
Expiration Manager by parsing the ontologies. Then the 
Execute Service module can compare dynamic propriety 
values of <Expiration> and <date> of the two objects, 
and decide if the milk is expired.  

This method caches the latest sensor messages of the 
two objects to synchronize dynamic property values of 
the two objects. Compared to indirectly accessing stored 
messages in web servers, the messages of the two objects 
are synchronized in RAM of the distributed proxy. A few 
milliseconds of latency are enough to meet requirements 
of most IoT applications. If O2O communication crosses 
many networks on the Internet, two approaches can be 
applied to guarantee the QoS. For sensors with accurate 
timing capability, timestamps are added into the device 
messages for comparison. Otherwise, timestamps can be 
appended to device messages at a local proxy when the 
proxies receive the device messages. As a result, service 
components can verify if received messages are time-
effective for specific services. 
 
6   Conclusions and future works 

The 6A Connectivity of the future IoT has been proposed 
for a decade [3]. The IoT is still constrained to particular 
devices, platforms, networks, applications and domains, 
and many barriers may hinder development. In this paper, 
the proposed IoT architecture provides potential solutions 
to overcome these barriers. Due to limitations of device 
cost, object size and energy consumption, it is difficult to 
embed Web Services into all devices in the future IoT. 
GGIoT is independent of device, platform, network and 
system, and aims to meet the 6A Connectivity in term of 
anytime, anyplace, anything and any network/path.   

As the modularized object and service components are 
loosely-coupled and the interfaces are globally consistent, 
many object and service components can be combined to 
provide a composed service. Services can be customized, 
shared and discovered by third-parties on a global public 
platform. Cost and time in development can be reduced. 
These features aims to fulfill the any service requirement. 
Third-parties are allowed to look for an existing template 
to describe an object or service. The off-the-shelf feature 
allows non-expert users to provide and consume services 
without programming. Other features, such as simplified 
deployment, personalization and device independency 
enables GGIoT to meet the anyone requirement. 

In GGIoT, a sensor message consists of an object ID 
and dynamic property values collected from the object. 
Other descriptions, such as data schema, unit of measure, 

static property and static property values, are stripped from 
sensor messages. This method can minimize message size 
to fit devices with minimal capabilities. In GGIoT, objects 
are restricted to interact with predefined types of objects 
and services. On a distributed proxy, a service composer 
verifies the compatibility of all participating objects and 
services before coordinating O2O communication. Thus, 
the unexpected interaction among multiple objects can be 
controlled when objects are moving between spaces. Most 
O2O communication occurs within specific networks or 
areas. To reduce network traffic and access latency, GGIoT 
uses distributed proxies and binary protocols to coordinate 
the local O2O communication without Internet traffic.  

Building a global IoT architecture needs a lot of efforts 
across many domains. The development of the future IoT 
will be determined by many factors, such as government 
policies, academia and markets. This paper illustrates the 
initial design concept of the proposed architecture GGIoT, 
and mostly focuses on device and data integration in the 
virtualization system. A lot of mentioned concepts, such as 
the GMS and backup mechanism, can be extended in the 
future work. This paper emphasizes on the middleware tier 
of GGIoT. If applying the architecture in IoT applications, 
the design of application tier needs to be completed. Future 
work will address service composition and optimization, 
and discovery mechanisms in GGIoT. It is the authors hope 
that the proposed architecture in this paper will contribute 
to evolution of the future IoT. 
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